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Abstract
Latrunculins are marine toxins used in cell biology to block actin polymerization. The development of new synthetic strategies and
methods for their synthesis is thus important in order to improve, modulate or control this biological value. The total syntheses
found in the literature all target similar disconnections, especially an aldol strategy involving a recurrent 4-acetyl-1,3-thiazolidin-2-
one ketone partner. Herein, we describe an alternative disconnection and subsequent stereoselective transformations to construct a
stereopentade amenable to latrunculin and analogue synthesis, starting from (+)-β-citronellene. Key stereoselective transformations
involve an asymmetric Krische allylation, an aldol reaction under 1,5-anti stereocontrol, and a Tishchenko–Evans reduction accom-
panied by a peculiar ester transposition, allowing to install key stereogenic centers of the natural products.
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Introduction
Latrunculins constitute a class of marine polyketide natural
products isolated from Sponges like Negombata (= Latrunculia)
magnifica [1,2]. They are characterized by the presence of an
unsaturated fourteen- or sixteen-membered macrolactone deco-
rated by an ʟ-cysteine-derived 2-oxo-1,3-thiazolidin-4-yl substi-
tutent, and the presence of five stereogenic centers forming a
1,2,4,6,9-stereopentade (Figure 1). In latrunculins A (1) and B
(2) three of them are embedded in a lactol ring, while latrun-
culin C (3) lacks this ring due to the reduction of C-15. The bio-

logical activities of latrunculins A and B have early been re-
ported [3]. These compounds induce important but reversible
morphological changes on mouse neuroblastoma and fibroblast
cells at low concentrations such as 50 ng/ mL [2]. It was rapidly
demonstrated that the toxins target the cytoskeleton and inhibit
the actin polymerization by specifically sequestering the
G-actin monomers with a high affinity [4], unlike cytochalasin
D that targets the actin filament [5]. Structure–activity relation-
ships have also been demonstrated thanks to the synthesis of an-
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Figure 2: General strategy for latrunculin cycle disconnections (left), previous works towards linear precursor 4 (A), and our alternative disconnection
of 7 through the aldol reaction (B).

alogues, which hardly superseded the natural product proper-
ties, highlighting the importance of the macrocycle and of the
lactol ring for this biological activity (3 is inactive) [6,7].

Figure 1: Structure of latrunculins (the red dots show the natural prod-
uct stereopentade).

Considering the structural features of these toxins and their
valuable biological properties (1 and 2 are nowadays commer-
cially available as tools for cell biology), latrunculins have been
appealing targets for synthetic studies. Several total syntheses
of latrunculins were reported by Smith III [8-10], White [11],
Fürstner [6,12] and Watson [13]. These syntheses involved sim-
ilar disconnection strategies for the macrocycle or the lactol for-
mation (Figure 2, left), and for the aldol reaction leading to 4,

using a 4-acetyl-1,3-thiazolidin-2-one 5 as ketone partner
(Figure 2, route A). Strikingly, this last disconnection was
adopted in all previous syntheses to form the (15,16)- or the
(13,14)-bond of 1 and 2, respectively. Conversely, we envis-
aged an alternative disconnection to form the (16,17)- or the
(14,15)-bond of 1 and 2, through an aldol reaction of aldehyde 8
readily available from ʟ-cysteine, leading to aldol adduct 7
(Figure 2, route B). The methyl ketone partner 9 could be
formed by the oxidation of an allyl moiety introduced by the
asymmetric allylation of an aldehyde derived from (+)-β-
citronellene. At this stage, we can speculate that the stereocon-
trol of this reaction could either follow a polar Felkin–Anh
model [14-16] based on chiral aldehyde partner 8 [17], or a 1,5-
anti induction of the aldol reaction [18-20] based on chiral
alkoxy partner 9. Furthermore, it could be envisaged to reduce
the resulting β-hydroxyketone 7 in a diastereoselective manner
to obtain a 1,3-diol.

This synthetic strategy could thus bring new stereochemical op-
portunities to synthesize latrunculin analogues for chemical
biology studies. In particular, our initial goal was to protect an
inactive lactol-opened form of latrunculins, which could cyclize
in vivo upon deprotection under a specific stimulus (light or en-
zyme, for instance) for biological applications. This challenge
precluded the installation of the pyran ring – and the use of its
well-known isomerization to set up important stereocenters
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Scheme 1: Synthesis of fragment 15 from (+)-β-citronellene (10).

[6,9] –, thus imposing the anticipated construction of key asym-
metric centers. The following discussion will deal with the
stereoselective synthesis of a stereopentade amenable to such
latrunculin synthesis and the encountered difficulties thereof.

Results and Discussion
Our synthesis started from commercially available (+)-β-
citronellene (10). The ozonolysis of the trisubstituted double
bond followed by a reductive treatment with NaBH4 chemose-
lectively afforded primary alcohol 11 in 78% yield (Scheme 1).
Due to easier purification, this alcohol was preferred to the
aldehyde in our synthetic route, allowing a key stereoselective
Krische allylation [21,22] to be envisaged. Applying reported
conditions for this allylation – in presence of allyl acetate
(10 equiv), [Ir(COD)Cl]2 (2.5 mol %), (S)-SEGPHOS
(5 mol %), 3-nitrobenzoic acid (10 mol %), Cs2CO3 (20 mol %)
in THF at 100 °C for 24 hours – we obtained homoallylic
alcohol 12 in a good 86% yield, with a diastereomeric ratio (dr)
of 93:7 deduced from the NMR analysis of the methyl substitu-
ent signals in CD3OD (NMR spectra compared to those of a
50:50 mixture of diastereoisomers, obtained from the addition
of allylmagnesium bromide onto the corresponding aldehyde).
The stereochemistry of the resulting secondary alcohol was ex-
pected to be (R) according to Krische's studies involving (S)-
SEGPHOS [22]. This result was secured by the NMR analysis
of Mosher's esters made from (R)-(+)- and (S)-(−)-α-methoxy-
α-trifluoromethylphenylacetic acid (MTPA) (see Supporting
Information File 1) [23-25], confirming the installation of the
C-11 stereocenter of latrunculins.

The next steps consisted in the functionalization of 12, in view
of its coupling to 8. We first relied the chemoselective epoxida-

tion of the homoallylic alcohol, done in presence of VO(OiPr)3
(20 mol %) and t-BuOOH to afford epoxide 13, in 86% yield
and a dr of 75:25 (measured by NMR, presumably resulting
from the major diastereoisomer of 13; minor isomers were not
identified), when the reaction was performed at room tempera-
ture during 6 hours. This vanadium catalyst superseded
VO(acac)2 in terms of yields [26,27]. Additional epoxidation
attempts allowed to improve the dr to 82:18 (82% yield) when
the reaction was left at −30 °C for 6 days. Unfortunately, it was
not possible to set up an appropriate nucleophile through the
umpolung of aldehyde 8 to react with this epoxide, which led us
to envisage the following aldol strategy through ketone 15.
Attempts of Wacker reactions to produce 15 were unsuccessful
on 12, presumably due to a competition between the two
olefinic parts. After protection of the secondary alcohol as a
para-methoxybenzyl (PMB) ether (78% yield of 14), the ke-
tone (15) was installed in two steps from the epoxide (direct re-
arrangement attempts of the epoxide to form the ketone were
unsuccessful). Thus, the epoxide was first reduced on its prima-
ry carbon in presence of LiAlH4, and the resulting secondary
alcohol was oxidized in presence of Dess–Martin periodinane
(DMP), giving ketone 15 in 78% yield over the two steps. This
six-step sequence to 15 was performed in a 35% overall yield
from starting material 10.

The aldehyde partner (8) for the aldol reaction brings the thiazo-
lidinone heterocycle of the natural product. It was synthesized
in four steps from ʟ-cysteine ester derivative 16, first reacting
with carbonyldiimidazole (CDI) to afford thiazolidinone 17 in
85% yield (Scheme 2). The nitrogen atom was protected with a
PMB group in 72% yield (18), after deprotonation with NaH
and reaction with PMBBr. The ester moiety of 18 was then
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Scheme 3: Synthesis of fragment 21 through a stereoselective aldol reaction.

chemoselectively reduced into alcohol 19 in 90% yield, in pres-
ence of LiBH4 to avoid the reduction of the thiazolidinone part.
Finally, the aldehyde (8) was generated in 78% yield by oxida-
tion in presence of DMP.

Scheme 2: Synthesis of fragment 8 from ʟ-cysteine ethyl ester hydro-
chloride (16).

The assembly of aldehyde 8 and methyl ketone 15 was envis-
aged through a stereoselective aldol reaction. After unsuccess-
ful attempts of Mukaiyama aldol reactions with silyl enol ethers
[28], we found that dicyclohexylboron enolate 20, made in situ
from ketone 15 and Cy2BCl in presence of DIPEA, performed
well in the aldol reaction to furnish product 21 in 55% yield
with a good dr of 91:9 (Scheme 3).

The stereocontrol of the reaction could be envisaged through
two principal mechanisms. A remote stereocontrol by the
nucleophile could first be expected [29], through a 1,5-anti-
induction of the aldol stereocenter by β-alkoxy ketone 9,
leading to an (S)-configuration [18-20]. This control is
supposed to follow a boat transition state A stabilized by a
formyl hydrogen bond [30]. It is known to be dependent on the
nature of the β-alkoxy substituent, being particularly favoured
by the PMB and other aromatic groups, while being disfavoured
by silyl protecting groups. Alternatively, an (R)-configuration
of C-15 could result from a polar Felkin–Anh model controlled
by aldehyde 8 through chair-transition state B [14-16]. To deter-
mine the configuration of C-15, we initially relied on the com-
parative NMR analysis of Mosher's esters [23]. Despite clear
1H NMR spectra, irregular values of ΔδS–R precluded the unam-
biguous determination of the C-15 stereocenter [24]. These
difficulties were attributed to the hindered character of this sec-
ondary alcohol, substituted by the thiazolidinone ring, possibly
leading to a strong conformational distortion of Mosher's
model. The question of the resulting stereoselectivity was thus
left open for later resolution.
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Scheme 4: 1,3-Anti-diastereoselective reduction of 21 with PNBz transposition, and final determination of the relative stereochemistry by NOESY ex-
periment on 25.

To complete this study, the 1,3-anti-diastereoselective reduc-
tion of β-hydroxyketone 21 was undertaken through the
Evans–Tishchenko method [31,32], in presence of SmI2 and an
aldehyde (Scheme 4). para-Nitrobenzaldehyde was used [33] to
introduce a labile para-nitrobenzoate on the product, planning
an easy deprotection of the alcohol. This would also pave the
way to an orthogonal manipulation of protecting groups on the
stereopentade, in view of designing molecular tools for biologi-
cal purpose. The reduction took place in 76% yield with com-
plete stereoselectivity. However, a mixture of two inseparable
products was obtained, containing the expected but minor
alcohol 22 (10%), and more surprisingly the major isomer 23
(66%). This compound results from the transposition of the
para-nitrobenzoyl (PNBz) group onto the 13-OH, which could
be favoured by the steric hindrance of C-15 and a possible π–π
stacking with the OPMB group.

These PNBz esters were readily hydrolyzed to furnished diol 24
in 97% yield. The oxydation of the PMB group, in presence of
DDQ under anhydrous conditions [18], gratifyingly afforded
acetal 25 in 74% yield, whose stereochemical assignment by
NOESY NMR experiment showed the syn stereochemistry of
the acetal. By deduction, it was confirmed that the asymmetric
boron aldol reaction between 8 and 15 proceeded through a 1,5-
anti induction by the ketone to form 21. Most importantly, com-
pounds 22–25 bear the (11R,13R) configuration of latrunculins
(1 and 2).

Conclusion
A straightforward synthesis of a stereopentade intermediate
towards latrunculins and lactol-opened analogues was achieved
with high stereoselectivity. Starting from the chiral pool
bringing the 8-methyl substituent, the secondary alcohol on

C-11 was stereoselectively introduced by the Krische allylation
of alcohol 11. The next key step consisted in an aldol reaction
of ketone 15 onto aldehyde 8, which proceeded with a high
stereocontrol resulting from a 1,5-anti induction by the nucleo-
phile leading to product 21, and excluding a Felkin–Anh
control  by the aldehyde.  This reaction validates a
unique disconnection among latrunculin synthetic strategies and
avoids the construction of a 4-acetyl-1,3-thiazolidin-2-one.
Finally, this β-hydroxyketone was submitted to the
SmI2-mediated Evans–Tishchenko reduction,  which
was performed with full  1,3-anti-stereocontrol  but
surpr is ingly resul ted in  the es ter  t ransposi t ion to
predominantly form alcohol 23 in good yields. This last
reduction allowed to install the key (11R,13R) configuration
of latrunculins.

Supporting Information
Crystallographic data of compound 19 were deposited in
the Cambridge Crystallographic Data Center under the
CCDC number 2225628.

Supporting Information File 1
Experimental procedures, compound characterizations and
spectra.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-19-32-S1.pdf]

Supporting Information File 2
Crystallographic Information File of compound 19.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-19-32-S2.cif]
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