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Antcar: Simple Route Following Task with Ants-Inspired Vision and
Neural Model

G. Gattaux1,∗, R. Vimbert1, A. Wystrach2, J.R. Serres1,3 and F. Ruffier1

Abstract— The goal of this project is to develop a new
method of Route following for mobile robots in a GNSS-
denied environment like urban canyons or indoor. We used
a robust biologically constrained neural model inspired by ants
developed previously in simulation to assess the familiarity
index of a panorama. A visual compass algorithm consists in
determining the orientation of the maximum familiarity index
with respect to the learned panoramas along a path. A car-like
robot was equipped with a 220° fisheye camera. The visual
compass algorithm used low resolution images of 44x44 pixels
(5°/pixel) indoors and outdoors to determine the direction to
follow the previously visually-learned path. Finally, the car-like
robot was automated to recall the learned path indoors. The
biologically constrained neural model compressed the visual
information with a high efficiency so that the visual memory
has a very low footprint of a few tens of kilobits that does not
depend directly on the path length.

I. INTRODUCTION

Three questions can represent the navigation process:
"Where am I?","Where am I going?" and "How do I get
there?" [1]. Standalone autonomous navigation is one of the
greatest challenges in robotics [2]. As an example, mapping in
robotics requires a significant effort and a large memory, like
the use of Simultaneous Localization And Mapping (SLAM)
equipped with a Light Detection And Ranging (LiDAR) [3]
or stereoscopic vision [4]. In the same way, the localization
requires bigger means as the Global Positioning System (GPS)
and the Real-Time Kinematic positioning (RTK) to obtain
accuracy up to centimeters [5] or reasonable means as the
estimations and derivation via the Inertial Measurement Unit
(IMU) [6] or the odometer, but drifting in time.

The insects-based algorithms, from the brains to the
mechanical movements, are full of knowledge and further
robotics realizations will experience a tour de force in the
scientific area of autonomous navigation [7], [8] and [9].
Ants, like Catagliphys velox or Melophorus bagotis, which
are recognized for their visual-based navigation skills are
capable, with a single learning trial, to memorize long routes
between points of interest like a feeder and their nest (see
Fig.4a in [10]). They utilize several instruments of navigation
to explore, then to return to the nest as we can see it through
its unified navigation model [11] or multimodal model [12].
It appears that ants have a constant recalling process from the
road learned dues to visual cues or Path Integrator (PI) [13].
As concluded in [10] the route recalling process is working
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even if the global PI is "disabled" in ants brain, visual cues
are therefore important for this process.

Ants can see the world through two primary channels,
green and ultraviolet (UV) [14], [15]. The key characteristic
of these insects’ visual system is their low resolution (5°/pixel
to 10°/pixel) with a wide field of view (almost 330°). A
previous study [16] indicated that thanks to their reduced
resolution, they are untangled with branches, leaves or other
ephemeral cues.

The connectomics data is the comprehensive maps of
connections within an organism’s nervous system [17]. To pre-
process the visual information, ants use a lateral inhibition,
considered as an edge detection [18]. They transform those
views in Neural Projection (PN), PN are interneurons that
transmit the sensors’ information to the calyxes of the
Mushroom Bodies (MBs). In others words, PNs (or sensory
information) are learned in the memory center, called MBs
[19]. The MBs were accurately described in insects starting
in 2003 with Heisenberg [20] using the fly Drosophila
melanogaster and his "Olfactory Memory Circuit Model." The
information is therefore encoded sparingly, without snapshot
storage, in the case of visual sensory message [21]. Inside an
MB, the intrinsic neurons in charge of learning are called the
Kenyon Cells (KCs). Bigger KC’ number do not necessary
means that the insect is best suited for recognition. For
example, associative learning (defined as learning about the
relationship between two separate stimuli, the stimuli can
be abstract like time, location or context) can be achieved
in MB containing only a few hundred KC, even if the bees
have 170,000 KCs [22].

Fig. 1. Antcar mobile robot fitted with fisheye camera at 220° elevation
field of view sky oriented in grassy environment. © Cyril Frésillon / ISM /
CNRS Photothèque.



One hypothesis implemented in simulation is that their
route-following behavior is based on a Visual Compass
(VC). VC consists in determining the direction (by scanning)
that maximize the familiarity index with respect to the
views learned along the path [23]. This VC model can
be implemented by an Image Difference Function (IDF)
known as Perfect Memory (PM) which consist of differentiate
pixelwise the current image from the learned images stocked.
IDF allows us to have a familiarity-like index compared to
the learned path. However, certain neural models allow us to
encode the visual memory and therefore not to store images,
while still having this familiarity index. This is, for example,
the case with Infomax [24], Multi layer perceptron (MLP) or
our famous MB model. Few VC models exist in simulation:

• This study investigates the difference (in time and
performance) between PM and Infomax [25].

• Using MB model, PM and Infomax, they are able to
recover the route learned [26].

• They compare here simple MLP vs PM [27].
• For UAV this time, they compare Infomax vs PM [28].

Very few VC models exist in real environments :
• Indoor environments with PM, they are able to recognize

and reach their learned route [29].
• Outdoor with closed loop control, they compare PM vs

Infomax [30].
• Indoor with MB model, they investigate the limits of

their MB model [31].
• A dataset was settled up by [32] and they also compared

the following papers [26];[31];[25].
Klinokinesis (direct gradient descent without the process of
VC) could be a useful algorithm to reach the best familiarity
in a picture [33] without the calculation time of VC.

The visual system and the neural network on board the
mobile robot AntCar (Fig. 1) try to mimic faithfully desert
ants’ navigation techniques based on visual cues. To avoid
or to combine the use of GPS, LiDAR and any other energy
consuming sensors, which are sensitive to spoofing, jamming,
or dazzling on board an autonomous mobile robot for route
following in complex environments. To situate our work, we
present knowledge about the capabilities of the VC coupled
with the MB model to work in any type of environment,
indoors (visually controlled environments) and outdoors (semi-
wild environments). There is a perspective for this coupled
model (VC and MB) to be readily implemented in robots
navigating in the real world, indoor (shown) and outdoor (not
shown), what has never been done before. The goals are to
obtain a closed-loop behavior that resembles the behaviors
observed in ants (see Fig.4a in [10]) based solely on visual
cues.

This study is structured as follows: section II provides a
brief description of the mobile robot and its visual system.
The visual memorization using an MB model is introduced in
section III. Then, indoor out outdoor VC results are described
in section IV, and a simple real time controller based on VC
and MB are described in section V. Finally, a conclusion and
future works are developed in section VI.

II. ANTCAR SYSTEM AND VISION

A. Experimental Setup

Fig. 2. Panoramic picture of the indoor visual scene in the AVM, man
point of view.

To implement this visual learning strategy, we used the
PiRacer robot purchased on www.waveshare.com. The car-
like mobile robot is 40cm-long and made of four wheels.
Each of the rear wheels is driven by a DC motor. A servo
motor is connected to the two front wheels to steer the robot.
The chassis of the robot is made of aluminum to ensure
resistance to small shocks. The processing and computation
are done by a Raspberry Pi 4B that communicates by I2C
with an external hat configured with PCA9685 module. In the
Mediterranean flight arena (AVM) Fig. 2, the ground truth is
extracted from a VICON motion capture system completed
with 17 infrared cameras capturing 8 x 6 x 6 m. To have
ground truth in different place, the Antcar is equipped with
RP LIDAR A1 as well as an MPU6050, hector SLAM ROS
packages have been used for pose estimation. The whole data
are transmitting through ROS network as seen in the Fig. 3.
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Fig. 3. The ground truth is possible thanks to the motion capture system,
the five reflective markers and the hector SLAM ROS packages.

B. Image processing steps

The acquisition part is made by an Entaniya fisheye camera
with a 220° angle of view for elevation and 360° azimuth.
This camera is fixed on the head of the robot, Fig. 1. It has
a frame rate of 30Hz and a glass cap covers the camera for
optimal rain/dust resistance. The image was used as it is
without performing any panoramic expansion for the purpose
of saving computation time. The steps to manage an ant-like
view are explained below by comparing the real mechanisms
to the imitating one.

1) Acquisition :
• Natural : Compound eye capturing environment at

low resolution 5°/pixels.



• Robotic : Entaniya fisheye camera with green
channel at 160 x 160 pixels, then subsampled to
44 x 44 pixels.

2) Edge extraction :
• Natural : Lateral inhibition.
• Robotic : Sobel filter is applied on the 44 x 44

pixels image.
3) Image encoding :

• Natural : The visual information is encoded through
the PN.

• Robotic : With aim to recreate the PN, scroll the
image in a vector from top left to bottom right with
the condition where the pixel exist if it is inside a
circle of 22 pixels radius starting from the center
of the image. Corresponding to the PN creation.

An example of such processing results are showed in the
Fig. 4 for the indoor and outdoor environment. Those images
will further represent the corresponding indoor and outdoor
environment for the results part.

A B

Fig. 4. Pictures from Antcar point of view with fisheye deformation and
transformations. A) Indoor photo of the AVM. B) Outdoor photo of the
Gateway to the National Park of the Calanques of Marseilles. (Up) Image
taken at 160 x 160 px. (Down) Subsampled at 44 x 44 then Sobel filtered.

III. VISUAL MEMORIZATION USING MUSHROOM
BODIES MODEL

The Fig. 5 represents a simplified MB model which
illustrate the different stages of the image learning process.
The model used here has been derived from [26]. After the
image treatment process, the PNs are projected to ten of
thousands Kenyon cells in the mushroom bodies through
fixed but pseudo-random connections.

A. Initialisation

The input of the neural model is a PN. Let us define N
= 1078, the size of the PN vector, which is the number of
pixels inside the useful and processed image. The number
of KC arbitrary choose as n = 10 000. Read below i as
being the ith value of a vector. Firstly, the learning process is
defined by successive steps, illustrated by the Fig. 6 as well
as the recognition process in Fig. 7. The connectivity matrix

Fig. 5. Mushroom bodies model from the compound eye to Mushroom
bodies output neurons (MBON), including the Kenyons Cells (KCs). Adapted
from [34]

PN-to-KC is kept in memory, it is a constant matrix that has
to be stored continuously without changing values, it only
depends on the model parameter.

B. Learning (or memorization) process

At the end of the learning, the vector SW have to be stored
and changed dynamically, Fig. 6. It is the SW information
(vector of n x 1) that will be compared to know if we
recognize the route. The path memory is encoded in this
vector. As a result, the memory’s size is not a direct function
of the number of images learned, but depends on the number
of KC.

PN-to-KC

Fig. 6. The learning (or memorization) process takes as input an image or
a series of coarse images organized in an elongated column vector called PN.
Due to the fixed pseudo-random PN-to-KC connectivity, each image triggers
a unique pattern of activity in the Kenyon cells’ population. Kenyon’s cells
that receive strong excitatory post-synaptic potential (EPSP) are considered
to fire one action potential (PA). The output connection of the KC that fired
during learning is switched-off (SW=0). As novel images are learned, more
and more KC’s output are thus switched to zero.



1) Initialization
a) Creation of the connectivity matrix PN-to-KC:

Binary matrix of size N*n. Each row is filled by
a defined percentage of 1, here 5 by an arbitrary
choice.

b) Creation of the synaptic weight vector SW : a
Binary vector of size n initialized to 1 everywhere.

2) Creation of the neural projection PN : This step
corresponds to the part explained previously, the trans-
formation of the image into a vector of size N.

3) KC processing : Multiplication of the vector PN by the
connectivity matrix PN-to-KC which results in a vector
called EPSP (Excitatory Post-Synaptic Projection).

4) Binary vector Activation potential PA of size n : Passes
to 1 for the 5% of the largest values of the vector EPSP,
the others to 0.

5) If PA(i) = 1, switch the value SW(i) to 0. So if PA(i)
= 0, SW(i) = 1.

6) Repeat steps 2 through 5 for each image to be learned.

C. Recognition (or exploitation) process

Now, each PN-transformed image can be compared to the
stored memory (SW) corresponding to a previously learned
path. The result of this recognition process is a familiarity
index. As seen on the Fig. 7, the more the index tends towards
0 the more the image is familiar and conversely (unfamiliarity
is 1-familiarity).

Fig. 7. The recognition process takes as input the current image organized in
an elongated column vector called PN which is multiplied by the PN-to-KC
connectivity matrix as during training, resulting in a pattern of activation
in the Kenyon Cells specific to the current image. The firing KCs (PA=1)
activate the output neuron (MBON) only if their output connection has not
been switched off during the learning stage (SW=1). MBON activity can
thus be implemented as a logical PA=1 AND SW=1 operation, which results
in an estimate of current image’s unfamiliarity.

1) Initialization
a) Recovery of the connectivity matrix PN-to-KC

from the learning phase
b) Retrieve the vector SW of the learning phase

2) Creation of the neural projection: Transformation of
the image into a vector of size N.

3) KC processing: Same as step 3 of the learning phase.
4) Binary vector Potential of activation PA of size n :

Same as step 4 of the learning phase.
5) Here, we compare the current values of PA(i) and the

learned values of SW(i). That is, if PA(4) = 1 and SW(4)
= 1 then, we increment a temporary variable tmp =
tmp + 1 (logical AND). Otherwise, if PA(4) = 0 and
SW(4) = 1 then nothing is incremented.

6) Once this operation is carried out, normalize the result
by n as MBON = tmp / n. Where MBON is the non-
familiarity index ranging from 0 to 1 for the image
currently compared to a memory learned in the MB
(SW).

7) Repeat steps 2 through 6 for each image to be
compared.

IV. RESULTS 1 : INDOOR AND OUTDOOR VISUAL
COMPASS WITH MB MODEL

Firstly, the VC algorithm was tested in diverse environ-
ments along with the MB model described in Section III.
The Fig. 8 show the familiarity computation over 360° for
a learned direction of vision in the AVM environment. This
clearly shows the most familiar image is the one in the
direction of vision learned (red arrow).

Fig. 8. Familiarity computed by the recognition process in III-C with
the MB model over 360 degree (blue line). The learned image was in the
direction of 270 degree in the AVM (red arrow). The internal radius length
is the familiarity index value.

For the result in Fig. 9 and Fig. 10, the images are learned
every 10 cm in a memory called (5 Hz at a speed of 0.5 m/s).
In order to have smoothed results, a Savitsky-Golay filter of
order 1 and window 7 is applied on the unfamiliarity indices.
An interpolation of the results was also undertaken.

For a robotic purpose, there can be two useful outputs. On
one hand, the direction that maximize the familiarity index
by rotating in silico in steps of 1 degree over 360 degrees,
i.e. the VC. We have shown experimentally in Fig. 9 that the
most familiar direction was to choose the direction parallel
to the learned path, whether outside or inside, which consist



-3 -2 -1 0 1

x [m]

-1

0

1

2
y
 
[
m
]

0 1 2 3 4

x [m]

A B

Fig. 9. The most familiar direction: (A) Indoor. (B) Outdoor. The red
lines represent the learned visual routes. The black arrow represents the
direction maximizing familiarity by scanning in silico at different position
and whatever orientation.

in orientation error. The information here allows us to know
in which relative direction the agent must go to follow its
path parallel to the learned path. On the other hands, the
familiarity index in the best direction is measured to allow
an estimation of the position error between the learned path
and our current position in Fig. 10

Fig. 10. Unfamiliarity over 2D space: The colors gradient represents the
unfamiliarity index against the best direction of vision from the Mushroom
Bodies Output Neuron (MBON). (A) Indoor. (B) Outdoor.

The improvement of the skyline contrast appears to
decrease the gradient values of these "canyon" shapes. These
results in a recognition that extends around the path compared
to inside. The AntCar performance is slightly improved by
enhancing the contrast of the skyline: results in Fig. 9.B and
10.B are indeed better than in Fig. 9.A and 10.A due to the
open space that strongly improved the familiarity index’s
map.

V. RESULTS 2 : INDOOR SIMPLE CONTROLLER BASED ON
VISUAL COMPASS

This result shows a simple proportional controller based on
VC output along with MB model for learning and recognition
process in the AVM. The image resolution was about 44 x 44
pixels, the number of KC equals 10 000, to be able to learn
the path without necessarily demanding too much time. To
have faster computation time, the scanned beam was not 360°
in steps of 1° but ± 100° in steps of 10°. The proportional
gain Kp = 1.3. The error considered here is only the error of
heading between the current view and the visual direction of
the path learned, noted θmax. The output of the algorithm is

then a relative desired heading, considered here as the error
we tend to minimize. The error has a refreshing rate of 3 Hz.
The proportional heading controller is described in Eq. 1

θ = Kp ∗θmax (1)

Fig. 11. Real time trials with visual compass based controller. The learning
route is in red

Following the implementation of this algorithm in real time,
we can see on the Fig. 11 the learning route in red and then the
successive eleven routes that the robot follows autonomously
thanks to the visual compass algorithm coupled to the internal
memory encoded in an MB model. The learning road (red)
and replacement in the initial condition (not plotted) were
done by human teleoperation. This last experiment shows us
that the algorithm is relatively slow (3Hz) because it must
scan its environment (i.e. internally rotate the image and
compare it to the encoded memory). The oscillations are
mainly due to the Ackerman system coupled with a slow
refreshing rate, which gives the errors at a previous location
and not the current one. We can also see the agent does not
join the route well when there is a deviation in its initial
position compared to the learned route. The robot is not
capable to rejoin the route learned if it is positioned far
from it. However, we can see some robustness of the route
following, as the agent moves in a corridor of 1 m width
centered on the learned route Fig. 11.

VI. CONCLUSION AND FUTURE WORKS

As seen in the previous results, the recognition process is
rotation-variant, in other words, a big familiar index appear
when the direction of vision is the same as the direction of
vision learned. This specificity is used by the VC. This study



show the potential for further improvements or uses with the
VC output along with the MB model and demonstrated the
feasibility of such an algorithm on a simple car-like robot,
only equipped with a Raspberry Pi 4 control board. This
model could be the first step of a useful additional backup
for robotic route following task in complex environments.

One limitation is the algorithm leads to a parallel route and
therefore does not allow for accurate route recovering if the
initial condition is not on the learned route. An idea could
be to implement a descent gradient algorithm after the VC
process to achieve the route following not only parallel to the
learned path, but for returning to it, to solve the registration
problem.

From a biological point of view, a question remains
unanswered, how do the ants reach this road when they are
relatively far from it. Several hypotheses have been proposed,
notably the possibility that ants use a different navigation
strategy on and off the road [35] but also lately the opposition
process in visual memory [34].
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