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Abstract

We introduce the problem for a robot to localize itself, and, simultaneously, actively infer
the existence and properties of phenomena present in its surrounding environment: the
SLAPI problem. A phenomenon is a representation of an entity “as the robot experiences
it” through interaction. The SLAPI problem relates to the SLAM (simultaneous localization
and mapping) problem but differs in that it does not aim at constructing a precise map of
the environment, and it can apply to robots with coarse sensors. We demonstrate a SLAPI
algorithm to control a robot equipped with omni-directional wheels, an echo-localization
sensor, photosensitive sensors, and an inertial measurement unit, but no precise sensors
like camera, lidar, or odometry. As the robot circles around an object, it constructs the
phenomenon corresponding to this object under the form of the set of the spatially-localized
control loops of interaction that the object affords to the robot. SLAPI algorithms could
help design companion robots that mimic intrinsic motivation such as curiosity and play-
fulness. Further studies of the SLAPI problem could improve the scientific understanding
of how cognitive beings construct knowledge about objects from sensorimotor experience
of interaction.

Keywords: Constructivism; Active Inference; Eaction; Autonomous Robotics; SLAM

1. Introduction

Hawkins et al. (2019) proposed the thousand brain theory to explain how the brain con-
structs knowledge of objects from sensorimotor experience using neuronal structures involv-
ing place cells distributed throughout the cortex. We situate this theory in the epistemo-
logical framework of developmental learning from sensorimotor experience, often attributed
to Piaget. To test such theories, it is useful to design robots that autonomously learn from
their experience of interacting with objects. Hawking specifically emphasizes the importance
of spatial learning and conversion of spatial reference through displacement encoding.
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In robotics, spatial learning has been formalized and studied since the 1990s under the
name of the SLAM problem (Simultaneous Localization and Mapping): constructing and
updating a map of an unknown environment while simultaneously keeping track of the
robot’s position within it (e.g., Taketomi et al., 2017). SLAM algorithms are tailored to the
available resources: odometric sensors, sensors of the environment, computational capacities,
as well as the landmarks’ properties, quantity, and dynamics, and the usage intended for
the robot. When displacements are imprecise and odometric data is not available, and
below a certain level of scarcity and noise in the sensory data relative to the environment’s
complexity, it becomes difficult to perform SLAM accurately (Gay et al., 2021).

The sensory system of humans and animals does not provide precise measures of dis-
tances and displacements. To investigate how an autonomous system equiped with coarse
sensors can nonetheless perform sensorimotor spatial learning, we propose the SLAPI prob-
lem in robotics: Simultaneous Localization and Active Phenomenon Inference. In contrast
with SLAM, SLAPI does not aim at constructing a map to use for navigation. Instead, it
aims at organizing behavior spatially in the vicinity of objects to design robots that mimic
intrinsic motivation such as playfulness and curiosity as they discover and interact with
unknown objects (e.g., Oudeyer et al., 2007). Possible applications may not include deliv-
ery tasks but may include entertainment and games with lifelike companion robots, real or
virtual.

SLAPI makes no assumption that landmarks can be directly distinctively identified
through sensors. The robot must rather actively interact with objects, possibly from different
angles and through different modalities of control loops, to categorize and recognize objects,
and possibly use them as landmarks. We call this process active phenomenon inference, in
line with the theory of active inference (e.g., Friston et al., 2021).

2. The representational status of sensory data

An autonomous agent faces the necessity to actively infer the presence and the properties
of objects in its environment when such presence and properties are not directly registered
in sensory data. This raises the question of the representational status of sensory data: is
sensory data representational or not? This question has been discussed time and again at the
philosophical level (e.g., Williford, 2013). Loosely, two hypotheses collide: the hypothesis
that sensory data carry information about features of the world, versus the hypothesis
that sensory data carry information about the agent’s experience of interaction with the
world. We refer to the former as the representationalist hypothesis, and to the latter as
the constructivist hypothesis because it relates to Piaget’s theory of construcitivist learning
based on sensorimotor schemes (Guillermin and Georgeon, 2022).

SLAPI specifically helps investigate the constructivist hypothesis because the robot must
probe the environment a little bit like a blind person who uses a cane to actively construct
a mental representation of its surroundings. Probing experiences consist of control loops
during which the robot interacts with the environment. They are triggered by an action
selected by the robot and result in an outcome. The outcome is informative not of the object
itself but of the possibility of interaction afforded by the object to the robot. Past probing
experiences drive future behavior because they signal affordances for action. Figure 1 shows
this cycle of interaction. The software selects an action associated with spatial information
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that specifies how the control loop should be enacted in the world. In return, the software
receives an outcome associated with spatial information that describes how the control loop
has been enacted depending on the actual nature and position of surrounding objects.

World

Software

Action 
with spatial 
information

Outcome 
with spatial 
information

Figure 1: The interaction cycle. Black bullet: the cycle begins with the software selecting
an action containing spatial information to enact in the world (right). Black
arrowhead: the cycle ends with the software receiving the outcome containing
spatial information (left).

Note that the constructivist hypothesis accepts that the outcome may sometimes reg-
ister features of the environment but avoids “baking” this assumption in the algorithm a
priori. Rudrauf et al. (2017) have also proposed an active inference model related to the
constructivist hypothesis. They state that “All we need here is the idea that in one way or
another the sensory organs provide an independent source of input and correction for the
continually updated world model” (p. 19).

3. The experimental setup

We use the robot cat of brand Osoyoo1, to which we added an inertial measurement unit
(Figure 2). We use the omni-directional wheels only to move longitudinally or laterally
(sweep). Section 4.1 will explain the primitive moves. Each primitive move induces an
incertitude of displacement of about ±20% that we can’t measure. The inertial measurement
unit can only measure the yaw with the relatively good accuracy of ±1°. It also provides
a compass with an accuracy of ±5°. We compute the robot’s azimuth (angle from North)
using both yaw integration (for precision) and compass (to correct drift). We then devise the
absolute head direction knowing the head angle relative to the robot with good precision.

The robot can turn its head to perform echo localization in different directions. The dis-
tance measure has an accuracy of ±2mm but the detection cone spans 70°. We implemented
two methods to estimate the direction of an object. Method 1 consists of scanning every
10° through the full range of head direction [−π/2, π/2] and then computing the center of
“strikes” of similar distances. Method 2 consists of turning the head by steps of 10° until
finding a local minimum distance. We use Method 1 to find objects in the surrounding. We
programmed the robot to keep its head aligned toward a focus point during its moves, and
then to performs Method 2 to re-align its head towards the object.

1. https://osoyoo.com/2019/11/08/omni-direction-mecanum-wheel-robotic-kit-v1/ – accessed
Nov. 22, 2022.
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We set up an environment with various objects that can be detected through echo-
localization, and a black circle to delimit the robot’s territory. With the inaccuracy of
measures listed above, it is challenging to infer the position and shapes of objects. On the
other hand, the robot has no target to reach. We only want it to explore its environment.

Inertial 
measurement unit 

+ compass

Arduino + wifi 
board

Omni-directional 
wheels

Echo-localization 
sensor on 

pivoting head

Light sensors 
directed to floor

Figure 2: The experimental setup. Osoyoo robots, a black line on the floor, and various
objects detectable through echo-localization. The omni-directional wheels allow
the robot to translate laterally (sweep right or left).

4. The software architecture and algorithm

As a proof of concept to illustrate the SLAPI problem, we implemented the cognitive archi-
tecture depicted in Figure 3. This architecture is implemented on a remote PC and takes
the place of the Software in Figure 1. The robot plus the environment take the place of the
World.

The architecture follows a regular Model-View-Controller design pattern in which the
Memory plays the role of the database, and the Workspace plays the role of the Model. As
we will further develop, the Memory contains the egocentric memory and the allocentric
memory which are displayed on screen via the View Controllers (Figure 3, right). The
Workspace contains the Decider which implements the robot’s policy, and the Integrator
which infers the phenomena.

4.1. The control loops of interaction implemented in the robot

A C++ program on the robot’s Arduino board handles the reception of the action from
the PC through wifi, drives the control loop, and then sends the outcome back to the PC.
Table 1 lists the supported actions and outcomes.

The reception of an action triggers the enaction of the corresponding control loop until
its termination condition is satisfied. For example, the Forward action sets the robot
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Workspace

Decider Integrator

Robot controller

Egocentric 
View

Controller

Allocentric 
View

Controller

Memory

Figure 3: The software architecture implemented on a remote PC. Bottom: the robot in-
teracting with a moneybox. It receives the action and sends back the outcome
through wifi. Top-right: Egocentric memory display. Bottom-right: Allocen-
tric memory display showing the constructed representation of the moneybox.
Orange: echos, green: previous robot positions, red: focus point.

Table 1: Actions available to the robot and their possible outcomes

(a) Actions

Code Description

Forward During 1 sec.
or until
impact or line
detection

Backward

Sweep left

Sweep right

Turn left by π/4
Turn right by −π/4
Head scan −π/2 to π/2

(b) Outcomes

Code Description

Line left Floor sensors
cross luminosity
threshold

Line front

Line right

Impact Violent deceleration

Echo lost focus No echo where expected

Echo left

Direction and
range of the
nearest echo

Echo right

Echo far left

Echo far right

Echo far front

Echo close front

Default No line, no echo
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in motion. It has three possible termination conditions: Default: time out of 1 second
(approximately 20 cm traveled); Line detection: the floor sensor detects a line causing
the robot to retreat back for a few centimeters; and Impact: the inertial measurement unit
detects a strong deceleration indicating an impact with an object.

Besides the action code, the cognitive architecture sends two more values to the robot:
the coordinates of the focus point if any, and an estimated speed. As introduced in Section 3,
the robot uses them to keep its head aligned towards objects over successive moves. This
behavior gives the human observer the impression that the robot keeps its attention on a
particular object, making it look more alive.

The robot also returns additional information to the cognitive architecture: yaw, az-
imuth (angle relative to the north), and duration of the various phases of the control
loop. The cognitive architecture uses this information to update the spatial memory based
on the robot’s displacement. The termination phase of the control loop aligns the robot’s
head towards the nearest echo. The robot then also returns the nearest echo measure along
with the head direction. The cognitive architecture uses this information to mark the po-
sition of the echo in spatial memory. This will be used to infer the presence of an object
when multiple echos are localized in the same area. Table 2 summarizes the data exchanged
between the PC and the robot.

Table 2: Dialogue between the PC and the robot through wifi

PC to Robot Action code, focus coordinates (x, y), estimated speed (x, y)

Robot to PC Outcome code, echo distance, head direction, yaw, azimuth, duration

4.2. Egocentric memory

The egocentric memory is a short-term spatial memory of the experiences of interaction in
the surrounding of the robot. It is inspired by the brain’s egocentric cells located in the
superior colliculus (Grieves and Jeffery, 2017).

Technically, it stores the robot’s experiences in a coordinate system centered on the
robot. An experience is a data structure that contains the action, the outcome, the position
in space relative to the robot, and the timestamp. Our implementation initializes the
position from a hard-coded model of the robot: line-detection experiences are placed at
the position of the floor sensors; echo experiences are placed at the estimated origin of the
echo using head direction and measure of echo distance. Additionally, echo experiences also
store the direction of the sensor needed by the phenomenon inference function. When the
robot moves, the positions of experiences are then moved opposite by the robot’s estimated
displacement (Figure 3, top right). Due to the imprecision listed in Section 3, errors in
the estimation of the robot’s position accumulate causing a drift in egocentric memory. Our
implementation removes the experiments older than 10 interaction cycles from the egocentric
memory display because they are unreliable.
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4.3. Allocentric memory

The allocentric memory is inspired by grid cells in the entorhinal cortex (Grieves and Jeffery,
2017), and reproduces their hexagonal structure. Technically, it stores a set of affordances
that represent the possibilities of interaction afforded by the environment to the robot. An
affordance is an experience associated with its position in allocentric reference (Figure 4).

Converting from egocentric to allocentric reference requires establishing an origin point
from which path integration can be performed. If this origin point is immobile and recog-
nizable later, it can be used to correct the robot’s position and avoid infinite accumulation
of position errors. Fortunately, in our case, we can use the position of the echo associated
with the absolute head direction to recognize the origin point when the robot has performed
a complete tour around the object. This solution works if the object is convex, as long as
the robot does not mistake objects.

Figure 4: Example allocentric memory after circling around an oblong object. Green: cells
previously traversed by the robot. Orange: echos localized with Method 1. Yel-
low: origin of the phenomenon. Small red hexagon: current focus point. Brown:
echos localized with method 2 (in this example coming from another object).

4.4. The phenomenon integrator

The phenomenon integrator constructs a data structure that represents an object in term
of affordances. We call this data structure a phenomenon in compliance with the common
sense usage of this term: the perception by a cognitive being of “something” in the envi-
ronment. (Thórisson, 2021, p. 8) provides a more technical definition that also matches
our usage: “any useful grouping of a subset of spatio-temporal patterns experienced by
an agent in an environment”. Notably, these action-related representations of objects also
resemble action codes that have been found in parietal regions of the cerebral cortex of
humans and other primates (Chao and Martin, 2000; Colby and Goldberg, 1999; Schubotz
et al., 2014). Like our affordances, action codes are linked to memory traces of previous
actions involving the object.

Our phenomenon data structure contains a set of affordances and a decimal confidence
coefficient in the range [0, 1]. We implemented Algorithm 1 to address the difficulty of local-
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izing affordances relative to an initially unknown phenomenon while the robot’s estimated
position is prone to error.

Algorithm 1 takes a newly found affordance object in input, and returns the distance
vector by which the robot’s position must be corrected.

Lines L1 and L2 compare the position vector of the new affordance with the position vector
of the nearest affordance already attached to this phenomenon.

L3: if the difference is below MAX DISTANCE, the new affordance is considered belonging
to this phenomenon.

L4: the method similar to() compares the new affordance with the origin affordance (the
first affordance attached to this phenomenon) on the basis of their positions and their
absolute head directions.

L5: the method increase confidence() keeps track of the number of tours the robot has
made around the object. When a new affordance is found similar to the origin affordance
after a new tour, it increases the phenomenon’s confidence coefficient.

L6: the position correction vector is computed to reposition the robot at the origin position
given by the origin affordance.

L8: when the new affordance is not similar to the origin affordance, the length of the
position correction vector is made proportional to the confidence coefficient.

L10: the position of the new affordance is corrected by the position correction vector. This
means that, when the confidence in the phenomenon is close to zero at the beginning, the
robot rests on its estimated position to roughly estimate the phenomenon’s shape. When
the confidence in the phenomenon becomes close to one after several tours, the robot ceases
updating the phenomenon’s shape and rather corrects its own position relative to the phe-
nomenon.

L11: phenomenon.prune() removes old affordances near the new one that have become
irrelevant.

L12: phenomenon.append() attaches the new affordance to the phenomenon.

L14: returns the position correction vector to correct the robot’s position.

Algorithm 1: Phenomenon.update(affordance)

nearest affordance← phenomenon.find nearest(affordance);
delta← nearest affordance.position− affordance.position;
if delta < MAX DISTANCE then

if affordance.similar to(origin affordance) then
phenomenon.increase confidence();
position correction = origin affordance.position− affordance.position;

else
position correction = phenomenon.confidence ∗ delta;

end
affordance.position← affordance.position+ position correction;
phenomenon.prune(affordance);
phenomenon.append(affordance);

end
return position correction
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Figure 5 shows two example phenomena learned by the robot with this algorithm. It
shows that the object’s shapes inferred by the robot, while imprecise, allow discriminating
between different objects.

(a) (b)

Figure 5: Example phenomena a) learned from the moneybox shown in Figure 3, b) from
two moneyboxes next to each other. Each affordance is represented by a gray
triangle (cone of echo-localization) and an orange half-circle (estimated position
of echo). Black line: the object’s outline estimated by the robot.

4.5. The decider

The Decider implements the policy that selects the robot’s actions. For our proof of concept,
we used decision mechanism inspired by our previous work (Georgeon et al., 2013; Robertson
and Laddaga, 2009). It stores a list of behaviors in the form of sequences of experiences
that the robot can enact. After each interaction cycle, the Decider activates the sequences
in this list whose beginning sub-sequence matches experiences present in memory. The
activated sequences then propose their ending sub-sequences for further enaction with a
weight. Finally the Decider selects the sub-sequence that is proposed with the highest
weight. We have initialized the list of behaviors with predefined behavioral patterns that
give the robot a tendency to circle around objects when it detects them.

With this policy, the robot wanders randomly until it detects an object nearby, and then
it circles around this object until the experimenter removes the object. This is sufficient for
our demonstration. In future studies, we will implement more complex information-seeking
policies, possibly inspired by a rich recent literature on this topic (e.g. Gottlieb and Oudeyer,
2018).

5. More demonstrations

Videos of example runs are available on Titouan Knockaert’s and Olivier Georgeon’s youtube
channels. Knockaert (2022) demonstrates the robot circling around an object while con-
structing the egocentric and allocentric maps. Georgeon (2021) shows the robot interacting
with black lines and the user. Now we are working on demonstrating the learning of phe-
nomena from different sensory modalities. It is worth noting that many human observers
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attribute the intention of the robot to carefully observe the object due to the fact that it
keeps its head pointing to the object.

6. Conclusion

This paper presents the SLAPI problem: the problem for an autonomous artificial agent
to construct knowledge about entities in its environment from sensorimotor experience of
interaction. This problem is particularly salient when the agent has rudimentary sensors
that provide poor information about the features of the environment. In this case, to be
informative, sensory data should rather be considered as outcome of a control loop than
percepts.

On the contrary, when the agent has rich sensors that allow the identification of features
of the world, it is tempting for the developer of the agent’s software to consider that sensory
data carries representational information about the world. Philosophy of mind, however,
provides theoretical arguments against this representationalist hypothesis. These arguments
go back to Kant, who claimed that the world “in itself” is unknowable, and relate to Piaget’s
developmental psychology and theory of enaction (e.g., Froese and Ziemke, 2009). If we trust
these arguments, we can expect SLAPI algorithms to also bring value to agents that have
rich sensors. They could endow such agents with more autonomy in the way they construct
their own knowledge of the world, and keep this knowledge grounded in their individual
experience of interaction.

We reported our implementation and experiment as an initial example to illustrate the
SLAPI problem, in the hope that it provides clarification on how SLAM techniques can
be used to study autonomous constructivist learning. We hope that future models will
address more complex problems of phenomenal inference such as recognition of similarities
and differences between types of phenomena and composition of parts of phenomena, as
called for by Hawkins et al. (2019). A more precise evaluation of the performance of the
integrator’s mechanism may also tell us whether it holds further similarities with observed
neuronal representations of action in the brain. More broadly, such models can improve our
understanding of how animals construct knowledge of objects through enaction.
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