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Abstract

The theory of epistemic random fuzzy sets is a general theory of uncertainty encompassing
both possibility theory and the Dempster-Shafer theory of belief functions as special cases.
Within this framework, Gaussian random fuzzy numbers have recently been introduced as
a practical model of uncertainty about real variables. However, the limited flexibility of
this model does not allow it to represent all kinds of beliefs encountered in applications.
In this paper, it is extended in two ways. First, we study one-to-one transformations of
random fuzzy sets and show that such transformations commute with combination. This
property allows us to define parametric families of easily combinable random fuzzy numbers
and vectors on different frames based on the Gaussian model. We then go one step further
by studying mixtures of random fuzzy variables, which provide a very flexible model making
it possible to construct belief functions on continuous frames with arbitrary complexity.
To demonstrate the applicability and practical interest of these models, two applications
are studied: the elicitation of expert beliefs about numerical quantities, and generalized
Bayesian inference with weak prior information represented by random fuzzy numbers.

Keywords: Belief functions, evidence theory, possibility theory, random fuzzy sets,
uncertainty, statistical inference, elicitation.

1. Introduction1

The Dempster-Shafer (DS) theory of belief functions [5, 26, 12] and possibility theory [30,2

15, 13] are two powerful frameworks for representing partial information and reasoning with3

uncertainty. Whereas DS theory makes it possible to represent partially reliable evidence,4

possibility theory allows us to express uncertainty associated with vague information such5

as conveyed by fuzzy sets. In [8, 14], we have argued that DS and possibility theories can6

be viewed as two specializations of a more general theory of “epistemic random fuzzy sets”.7

A random fuzzy set (RFS), also called “random fuzzy variable”, maps each element of a8

probability space to a fuzzy subset of a set Θ. It is, thus, a model of evidence that can9
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be both uncertain and fuzzy. In this framework, a possibility distribution can be viewed10

as a constant RFS, while a random set (a notion underlying DS theory) corresponds to the11

special case where all images are crisp. Random fuzzy sets induced by independent pieces of12

evidence can be combined by the (generalized) product-intersection rule, which generalizes13

both Dempster’s rule of combination and the normalized product intersection of possibility14

distributions.15

Whereas the theory of belief functions has been defined from the start in a very general16

setting [27], most applications have used only belief functions on finite spaces. This limita-17

tion was mainly due to the absence of general enough parametric families of belief functions18

in continuous spaces that could easily be defined and combined by Dempster’s rule of com-19

bination. In [9], we have proposed Gaussian Random Fuzzy Numbers (GRFNs) as a model20

for defining belief functions on the real line. A GRFN is a “doubly Gaussian model”: it21

can be seen either as a Gaussian possibility distribution whose mode is a Gaussian random22

variable, or as a Gaussian probability distribution whose mean is a Gaussian fuzzy set. We23

have also proposed Gaussian Random Fuzzy Vectors (GRFVs) as a multidimensional exten-24

sion of GRFNs, which makes it possible to construct belief functions in Rp for p ≥ 1. The25

families of GRFNs and GRFVs are closed under the product-intersection operation, which26

makes them suitable for evidential reasoning with continuous variables. An application to27

machine learning was presented in [9, 11].28

Practical as it may be, the GRFN model is quite restricted. The domain of a GRFN is29

the whole real line, making the model unsuitable for representing belief functions on a real30

interval such as (0,+∞) or [a, b]. Furthermore, a GRFN is unimodal (the contour function31

has a unique maximum) and symmetric about the mean µ, i.e., intervals of the form [µ−r, µ]32

and [µ, µ+ r], for any r > 0, have the same degree of belief; these properties may not always33

reflect an agent’s actual beliefs. The GRFV model is also inadequate for representing, e.g.,34

beliefs on probabilities or proportions, for which the domain of interest is the probability35

simplex. It is thus of interest to define more flexible parameterized families of random fuzzy36

numbers and vectors with different supports and different “shapes”, while maintaining the37

closure property under the product-intersection rule.38

In this paper1 the objective stated above is achieved in two ways. We first study bijective39

transformations of RFSs and show that such transformations commute with combination,40

i.e., applying the transformation before or after the combination yields the same result. This41

property is exploited to define easily combinable random fuzzy numbers and vectors based42

on GRFNs and GRFVs. We then go one step further by studying mixtures of RFSs, which43

provide a very flexible model making it possible to construct belief functions on Rp with44

virtually unlimited complexity. Finally, we combine the two ideas and propose mixtures of45

transformed GRFNs and GRFVs as a very general model of RFSs (and associated belief46

functions) easily combinable using the product-intersection rule.47

To demonstrate the applicability and practical interest of the flexible models introduced48

in this paper, two applications will be discussed. The first one concerns the elicitation49

1This paper is an extended version of the short paper [10] to be presented at the 2023 IEEE International
Conference on Fuzzy Systems, Songdo Incheon, Korea, August 13-17, 2023.
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of expert beliefs about a numerical quantity of interest. Without getting into the delicate50

methodological problems posed by real elicitation experiments, we will demonstrate how51

the parameters of a random fuzzy number can be fitted to a small number of expert plau-52

sibility statements. The second application is related to generalized Bayesian inference. As53

discussed in [8, 14], the relative likelihood function can be seen as possibility distribution54

about the parameter of interest. This sample information can be combined with prior knowl-55

edge expressed as a RFS, which constitutes a form of “weak prior”, ranging continuously56

from precise knowledge represented by a probability distribution, to complete ignorance. In57

many cases, the likelihood function (sometimes after transforming the parameter) is well ap-58

proximated by a Gaussian possibility distribution and can easily be combined with a GRFN59

or a mixture thereof to compute a posterior RFS.60

The rest of this paper is organized as follows. The main definitions related to RFSs and61

GRFNs are first recalled in Section 2. Transformations of RFSs and mixture models are62

studied, respectively, in Section 3 and 4. The applications are then discussed in Section 5.63

Finally, Section 6 concludes the paper.64

2. Random fuzzy sets65

To make the paper self-contained, the RFS setting and its relation with belief functions66

will first be briefly reviewed in Section 2.1. The GRFN and GRFV models will then be67

recalled, respectively, in Sections 2.2 and 2.3.68

2.1. General definitions and results69

Definition. Let us consider a probability space (Ω,ΣΩ, P ), a measurable space (Θ,ΣΘ), and70

a mapping X̃ from Ω to the set [0, 1]Θ of fuzzy subsets of Θ (see Figure 1). For any α ∈ [0, 1],71

let αX̃ be the mapping from Ω to 2Θ such that72

αX̃(ω) = α[X̃(ω)],

where α[X̃(ω)] = {θ ∈ Θ : X̃(ω)(θ) ≥ α} is the weak α-cut of X̃(ω). If, for any α ∈ [0, 1],73

αX̃ is ΣΩ−ΣΘ strongly measurable [24], the tuple (Ω,ΣΩ, P,Θ,ΣΘ, X̃) is said to be a random74

fuzzy set (also called a fuzzy random variable) [4]. The images X̃(ω) of elements of Ω by75

X̃ are called the (fuzzy) focal sets of X̃. We define the support of X̃ as the union of the76

supports of its focal sets, i.e.,77

supp(X̃) =
⋃

ω∈Ω

{θ ∈ Θ : X̃(ω)(θ) > 0}.
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Figure 1: Definition of a random fuzzy set.
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If Θ is equal to R or a real interval, and if the images X̃(ω) are fuzzy numbers (i.e., normal78

and convex fuzzy subsets of R), X̃ is said to be a random fuzzy number (RFN). For any79

α ∈ [0, 1], the mapping αX̃ is, then, a random interval.80

Interpretation. In epistemic random fuzzy set (ERFS) theory, RFSs are used to represent81

unreliable and fuzzy evidence: the set Ω is then seen as a set of interpretations of a piece of82

evidence about a variable θ taking values in Θ. If interpretation ω ∈ Ω holds, we know that83

“θ is X̃(ω)”, i.e., θ is constrained by the possibility distribution defined by fuzzy set X̃(ω),84

which represents the meaning of the evidence if interpretation ω holds. We do not know85

which interpretation is true, but we hold beliefs about the true interpretation, expressed by86

the probability measure P on Ω. Such a RFS represents a piece of evidence with uncertain87

meaning or, equivalently, a state of knowledge about some variable θ, hence the adjective88

“epistemic”. This model should not be confused with alternative interpretations of RFSs as89

describing a fuzzy data generation mechanism [25, 18], or as imprecise information about a90

“true” random variable [21, 3].91

As a toy example illustrating the notion of unreliable and fuzzy evidence, assume that θ92

represents John’s height in centimeters, with domain Θ = [0, 200]. We receive a testimony93

telling us that “John is tall”, the linguistic term “tall” being represented by a fuzzy subset94

T̃ of Θ. Let us denote by Ω = {R,¬R} the set of interpretations of the evidence, where R95

stands for “reliable” and ¬R for “not reliable”, and assume that we have 80% confidence96

that this testimony is reliable, i.e., P (R) = 0.8 and P (¬R) = 0.8. If the testimony is reliable,97

John’s height is constrained by fuzzy set T̃ ; if it is not, we know nothing about John’s height;98

the mapping X̃ is, thus, defined by X̃(R) = T̃ and X̃(¬R) = Θ.99

It is clear that this model can encode different kinds of uncertainty: probabilistic uncer-100

tainty represented by P , and imprecision and/or fuzziness represented by mapping X̃. If101

each image X̃(ω) is a singleton, only probabilistic uncertainty is present. Pure imprecision102

or fuzziness corresponds to the case where X̃ is a constant mapping, i.e., there exists some103

crisp or fuzzy subset F̃ of Θ such that for all ω ∈ Ω, X̃(ω) = F̃ . If F̃ is a crisp subset, no104

fuzziness is present.105

Belief and plausibility functions. Just as a random set, a RFS induces a belief function,106

which can be seen as quantifying one’s beliefs based on the available evidence. From now107

on, we will assume any RFS X̃ to verify the following normalization conditions:108

1. For all ω ∈ Ω, the height of X̃(ω), defined as hgt(X̃(ω)) = supθ∈Θ X̃(ω)(θ) is either 0109

or 1, i.e., X̃(ω) is either the empty set, or a normal fuzzy set;110

2. The image X̃(ω) is almost surely nonempty, i.e., P ({ω ∈ Ω : X̃(ω) = ∅}) = 0.111

For any ω ∈ Ω, let ΠX̃(ω) be the possibility measure on Θ quantifying our beliefs on θ112

given that interpretation ω holds; it is defined, for any B ∈ ΣΘ, as113

ΠX̃(ω)(B) = sup
θ∈B

X̃(ω)(θ). (1a)
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The dual necessity measure NX̃(ω) is114

NX̃(ω)(B) =

{
1− ΠX̃(ω)(B

c) if X̃(ω) 6= ∅
0 otherwise,

(1b)

where Bc denotes the complement of B. For any B ∈ ΣΘ, let BelX̃(B) and PlX̃(B) denote,115

respectively, the expected necessity and the expected possibility of B:116

BelX̃(B) =

∫

Ω

NX̃(ω)(B)dP (ω), (2a)

117

PlX̃(B) =

∫

Ω

ΠX̃(ω)(B)dP (ω) = 1−BelX̃(Bc). (2b)

The mappings B 7→ BelX̃(B) and B 7→ PlX̃(B), are, respectively, belief and plausibility118

functions [31, 4].119

Lower and upper expectations of a RFN. Let X̃ be a RFN, and let F∗ and F ∗ be its lower120

and upper cumulative distribution functions (cdfs) defined, respectively, as121

F∗(x) = BelX̃((−∞, x]) and F ∗(x) = PlX̃((−∞, x])

for all x ∈ R. We define the lower and upper expectations of X̃ (see [5]) as, respectively, the122

integrals123

E∗(X̃) =

∫
xdF ∗(x) and E∗(X̃) =

∫
xdF∗(x).

It can be shown [4, 14] that these integrals can be computed as the means of the lower and124

upper expectations of the α-cuts of X̃, i.e.,125

E∗(X̃) =

∫ 1

0

E∗(αX̃)dα and E∗(X̃) =

∫ 1

0

E∗(αX̃)dα.

If, for any ω ∈ Ω and any α ∈ (0, 1], the α-cut αX̃(ω) is an interval with lower bound αX̃−(ω)126

and upper bound αX̃+(ω), the lower and upper expectations of αX̃ are, respectively, the127

expectations of these lower and upper bounds. The lower and upper expectations of X̃ can128

then be computed by averaging these expectations with respect to α, i.e.,129

E∗(X̃) =

∫ 1

0

E(αX̃−)dα and E∗(X̃) =

∫ 1

0

E(αX̃+)dα. (3)

130
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Combination of RFSs. The combination of independent pieces of evidence by Dempster’s131

rule [26] is a key component of DS theory. In possibility theory, conjunctive combination132

operators are based on t-norms [16]. In ERFS theory, the product-intersection rule intro-133

duced in [8, 14] extends these operators to the general case where evidence is represented134

by RFSs.135

Let us assume that we have a piece of evidence about θ represented by RFS136

(Ω1,Σ1, P1,Θ,ΣΘ, X̃1),

and we receive a second one represented by RFS (Ω2,Σ2, P2,Θ,ΣΘ, X̃2). We consider the137

joint measurable space (Ω1×Ω2,Σ1⊗Σ2), where Σ1⊗Σ2 is the tensor product of σ-algebras138

Σ1 and Σ2, and we denote by P the probability measure representing our beliefs about the139

interpretations of both items of evidence, before considering the conflicts between mappings140

X̃1 and X̃2. Naturally, we have P (A×Ω2) = P1(A) for all A ∈ Σ1 and P (Ω1 ×B) = P2(B)141

for all B ∈ Σ2. The two pieces of evidence are said to be independent2 iff the following two142

conditions hold:143

1. The meaning of one piece of evidence depends only on its own set of interpretations.144

That is to say, if we denote by X̃1·(ω1, ω2) the meaning of the first piece of evidence145

given that the pair of interpretations (ω1, ω2) ∈ Ω1 × Ω2 holds, we have146

∀(ω2, ω
′
2) ∈ Ω2

2, X̃1·(ω1, ω2) = X̃1·(ω1, ω
′
2)

and, symmetrically, denoting by X̃·2(ω1, ω2) the meaning of the second piece of evidence147

given (ω1, ω2) ∈ Ω1 × Ω2,148

∀(ω1, ω
′
1) ∈ Ω2

1, X̃·2(ω1, ω2) = X̃·2(ω′1, ω2).

2. For any A ∈ Σ1 and B ∈ Σ2, our degree of belief that the true interpretation of the149

first evidence belongs to A and the true interpretation of the second evidence belongs150

to B is P (A×B) = P1(A)P2(B), i.e., P is the product measure P1 × P2.151

Under these two assumptions, we construct a RFS representing the aggregation of the two152

pieces of evidence by proceeding in two steps.153

Step 1: We define a new mapping from the product space Ω1 × Ω2 to [0, 1]Θ that maps154

each pair of interpretations (ω1, ω2) to a fuzzy intersection of X̃1(ω1) and X̃2(ω2).155

As argued in [16, 8], the normalized product intersection � is the most suitable for156

combining fuzzy information from independent sources. Furthermore, this operation157

is associative. We thus define the following mapping,158

(ω1, ω2) 7→ X̃�(ω1, ω2) = X̃1(ω1) � X̃2(ω2)

2The notion of independence defined here concerns items of evidence, and not RFSs. A formal definition
of independence for RFSs could be useful, e.g., in relation with the interpretation of RFSs as models of
mechanisms for generating fuzzy data; it is outside the scope of this paper.
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with159

(
X̃1(ω1) � X̃2(ω2)

)
(θ) =





X̃1(ω1)(θ) · X̃2(ω2)(θ)

hgt(X̃1(ω1) · X̃2(ω2))
if hgt

(
X̃1(ω1) · X̃2(ω2)

)
> 0

0 otherwise.

(4)

We assume that each α-cut αX̃� is Σ1 ⊗ Σ2-ΣΘ strongly measurable.160

Step 2: We then need to take into account the conflict between mappings X̃1 and X̃2. Pair161

of interpretations (ω1, ω2) such that hgt(X̃1(ω1)X̃2(ω2)) = 0 are obviously inconsistent162

and they must be eliminated. However, in the fuzzy setting, we also need to consider163

partially inconsistent pairs of interpretation such that 0 < hgt(X̃1(ω1)X̃2(ω2)) < 1.164

This can be achieved by soft normalization proposed in [8, 14], which consists in con-165

ditioning the product probability measure P1×P2 by the fuzzy subset Θ̃∗ of consistent166

pairs of interpretations, with membership function167

Θ̃∗(ω1, ω2) = hgt
(
X̃1(ω1) · X̃2(ω2)

)
. (5)

The resulting conditional probability measure P̃12 = (P1×P2)(· | Θ̃∗) has the following
expression, for any C ∈ Σ1 ⊗ Σ2:

P̃12(C) =
(P1 × P2)(C ∩ Θ̃∗)

(P1 × P2)(Θ̃∗)

=

∫
Ω1

∫
Ω2
C(ω1, ω2)hgt

(
X̃1(ω1) · X̃2(ω2)

)
dP2(ω2)dP1(ω1)

∫
Ω1

∫
Ω2

hgt
(
X̃1(ω1) · X̃2(ω2)

)
dP2(ω2)dP1(ω1)

, (6)

where C(·, ·) denotes the indicator function of C.168

The combined RFS, denoted by X̃1 ⊕ X̃2 and called the orthogonal sum of X̃1 and X̃2169

is, thus, formally defined by the following tuple:170

(Ω1 × Ω2,Σ1 ⊗ Σ2, P̃12,Θ,ΣΘ, X̃�).

The operator ⊕ is commutative and associative; it generalizes both Dempster’s rule and the171

normalized product intersection of possibility distributions.172

2.2. Gaussian random fuzzy sets173

The important role played by the Gaussian distribution in probability theory and statis-174

tics is partly due to the fact that it is amenable to easy calculation. Until recently, such a175

practical model was missing in DS theory, which hindered its application to uncertain rea-176

soning with real variables. The GRFN model fills this gap by blending Gaussian possibility177

distributions and Gaussian random variables.178
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Gaussian fuzzy number. Let us start by recalling the definition of a Gaussian Fuzzy Number179

(GFN) as a fuzzy subset of R with membership function180

x 7→ ϕ(x;m,h) = exp

(
−h

2
(x−m)2

)
,

where m ∈ R is the mode and h ∈ [0,+∞] is the precision. Such a fuzzy number will be181

denoted by GFN(m,h). GFNs are easily combined by the normalized product intersection op-182

erator (4), as the following property holds: GFN(m1, h1)�GFN(m2, h2) = GFN(m12, h1 +h2),183

with m12 = (h1m1 +h2m2)/(h1 +h2). Furthermore, the height of GFN(m1, h1) ·GFN(m2, h2)184

is185

hgt [GFN(m1, h1) · GFN(m2, h2)] = exp

(
−h1h2(m1 −m2)2

2(h1 + h2)

)
. (7)

186

Gaussian random fuzzy number. Let us now consider a probability space (Ω,ΣΩ, P ) and a187

Gaussian random variable (GRV) M : Ω → R with mean µ and variance σ2. The random188

fuzzy set X̃ : Ω→ [0, 1]R defined as189

X̃(ω) = GFN(M(ω), h)

is called a Gaussian random fuzzy number (GRFN) with mean µ, variance σ2 and precision190

h, which we write X̃ ∼ Ñ(µ, σ2, h). A GRFN can, thus, be seen as a GFN whose mode is191

uncertain and described by a Gaussian probability distribution. It is defined by a location192

parameter µ, and two parameters h and σ2 corresponding, respectively, to possibilistic and193

probabilistic uncertainty. In the special case where the precision is infinite, X̃ becomes194

equivalent to a GRV with mean µ and variance σ2, which we can write: Ñ(µ, σ2,+∞) =195

N(µ, σ2). If σ2 = 0, M is constant and X̃ is equivalent to possibility distribution GFN(µ, h),196

i.e., Ñ(µ, 0, h) = GFN(µ, h). Finally, when h = 0, we have X̃(ω)(x) = 1 for all ω ∈ Ω and197

all x ∈ R: such a RFS represents total ignorance and the corresponding belief function is198

said to be vacuous.199

Belief and plausibility. Formulas to compute the plausibility and belief degrees of any real200

interval [x, y] induced by a GRFN X̃ ∼ Ñ(µ, σ2, h) are given in [14]. In particular, the201

contour function of X̃ is given by202

plX̃(x) =
1√

1 + hσ2
exp

(
− h(x− µ)2

2(1 + hσ2)

)
. (8)

The lower and upper cdfs have the following expressions:203

BelX̃((−∞, x]) = Φ

(
x− µ
σ

)
− plX̃(x)Φ

(
x− µ

σ
√
hσ2 + 1

)
, (9a)

where Φ is the standard normal cdf, and204

PlX̃((−∞, x]) = BelX̃((−∞, x]) + plX̃(x). (9b)
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Lower and upper expectations. Let X̃ ∼ Ñ(µ, σ2, h) be a GRFN with h > 0. As shown in205

[14], its lower and upper expectations are, respectively,206

E∗(X̃) = µ−
√

π

2h
and E∗(X̃) = µ+

√
π

2h
. (10)

Combination of GRFNs. Most importantly, as shown in [14], the family of GRFNs is207

closed under the product-intersection rule: given two GRFNs X̃1 ∼ Ñ(µ1, σ
2
1, h1) and208

X̃2 ∼ Ñ(µ2, σ
2
2, h2), we have X̃1 ⊕ X̃2 ∼ Ñ(µ̃12, σ̃

2
12, h1 + h2), with209

µ̃12 =
h1µ̃1 + h2µ̃2

h1 + h2

, σ̃2
12 =

h2
1σ̃

2
1 + h2

2σ̃
2
2 + 2ρh1h2σ̃1σ̃2

(h1 + h2)2
, (11a)

where210

µ̃1 =
µ1(1 + hσ2

2) + µ2hσ
2
1

1 + h(σ2
1 + σ2

2)
, (11b)

211

µ̃2 =
µ2(1 + hσ2

1) + µ1hσ
2
2

1 + h(σ2
1 + σ2

2)
, (11c)

212

σ̃2
1 =

σ2
1(1 + hσ2

2)

1 + h(σ2
1 + σ2

2)
, σ̃2

2 =
σ2

2(1 + hσ2
1)

1 + h(σ2
1 + σ2

2)
, (11d)

213

ρ =
hσ1σ2√

(1 + hσ2
1)(1 + hσ2

2)
, (11e)

and h = h1h2/(h1 +h2). The degree of conflict between X̃1 and X̃2 is given by the following214

proposition.215

Proposition 1. The degree of conflict between X̃1 ∼ Ñ(µ1, σ
2
1, h1) and X̃2 ∼ Ñ(µ2, σ

2
2, h2)

is

κ =





1− σ̃1σ̃2
σ1σ2

√
1− ρ2 exp

{
−1

2

[
µ21
σ2
1

+
µ22
σ2
2

]
+ 1

2(1−ρ2)

[
µ̃21
σ̃2
1

+
µ̃22
σ̃2
2
− 2ρ µ̃1µ̃2

σ̃1σ̃2

]}
if σ1, σ2 > 0

1− 1√
1+hσ̃2

1

exp
(
− h

2(1+hσ̃2
1)

(µ̃1 − µ2)2
)

if σ1 ≥ 0, σ2 = 0,

where µ̃1, µ̃2, σ̃2
1, σ̃2

2, ρ are given by (11).216

Proof. The formula for the case σ1 > 0, σ2 > 0 is proved in [14]. The case σ2 = 0 can be217

treated by replacing µ̃1, µ̃2, σ̃2
1, σ̃2

2, by their expressions given by (11), and letting σ2 tend218

to zero.219

2.3. Gaussian random fuzzy vectors220

Gaussian random fuzzy vectors (GRFVs) are multidimensional extensions of GRFNs:221

they are defined as Gaussian fuzzy vectors (GFVs), whose modes are random vectors with222

a multidimensional Gaussian distribution. We start by giving the definition of GFVs, after223

which we recall that of GRFVs as well as some properties.224

9



Gaussian fuzzy vectors. A p-dimensional GFV with mode m ∈ Rp and p × p symmetric225

and positive semidefinite precision matrix H is defined as the normalized fuzzy subset of226

Rp with membership function227

ϕ(x;m,H) = exp

(
−1

2
(x−m)TH(x−m)

)
.

It is denoted as GFV(m,H). The normalized product of two GFV’s is still a GFV; more228

precisely, the following equality holds: GFV(m1,H1) � GFV(m2,H2) = GFV(m12,H12),229

with m12 = (H1 +H2)−1(H1m1 +H2m2) and H12 = H1 +H2.230

Gaussian random fuzzy vectors. Let (Ω,ΣΩ, P ) be a probability space, M : Ω → Rp a p-231

dimensional Gaussian random vector with mean µ and variance matrix Σ, and H a p × p232

symmetric and positive semidefinite real matrix. The random fuzzy set X̃ : Ω → [0, 1]R
p

233

defined as X̃(ω) = GFV(M (ω),H) is called a Gaussian random fuzzy vector (GRFV), which234

we denote as X̃ ∼ Ñ(µ,Σ,H).235

As shown in [14], the contour function of a GRFV is given by the following equation,236

which generalizes (8):237

plX̃(x) =
1

|Ip + ΣH|1/2 exp

(
−1

2
(x− µ)T (H−1 + Σ)−1(x− µ)

)
, (12)

where Ip is the p-dimensional identity matrix.238

The orthogonal sum of two GRFVs is still a GRFV. Formulas for the mean, variance239

matrix and precision matrix of the combined GRFV were derived in [14]. For completeness,240

they are recalled in Appendix A.241

3. Transformations of Gaussian random fuzzy variables242

As mentioned in Section 1, the GRFN and GRFV models are very convenient for un-243

certain reasoning with real variables due to their closure property with respect to the ⊕244

operator, but they also have several limitations. In particular, the support of a GRFN is245

the whole real line, making it unsuitable for representing evidence about variables taking246

values in a strict subset of R. In this section, we overcome this limitation by considering247

bijective transformations of RFSs. The main result, stated in Section 3.1, is that the image248

of the orthogonal sum of two RFSs by a bijective mapping is the orthogonal sum of the249

images. Some useful transformations of GRFNs are studied in Section 3.2, and a particular250

transformation of GRFVs is considered in Section 3.3.251

3.1. Transformation of a random fuzzy set252

Let (Ω,ΣΩ, P,Θ,ΣΘ, X̃) be a RFS, and ψ : Θ → Λ a one-to-one mapping from Θ to253

some set Λ. Zadeh’s extension principle [29] allows us to extend mapping ψ to fuzzy subsets254

of Θ; specifically, we can define a mapping ψ̃ : [0, 1]Θ → [0, 1]Λ such that255

∀F̃ ∈ [0, 1]Θ, ψ̃(F̃ )(λ) = sup
λ=ψ(θ)

F̃ (θ) = F̃ (ψ−1(λ)). (13)
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Figure 2: Transformation of a random fuzzy set X̃ by a one-to-one mapping ψ : Θ→ Λ.

We note that mapping ψ̃ is also one-to-one, and its inverse is the extension of ψ−1: for any
F̃ ∈ [0, 1]Θ,

(ψ̃−1 ◦ ψ̃)(F̃ )(θ) = ψ̃−1(ψ̃(F̃ ))(θ)

= sup
θ=ψ−1(λ)

ψ̃(F̃ )(λ)

= sup
θ=ψ−1(λ)

F̃ (ψ−1(λ)) = F̃ (θ).

Similarly, (ψ̃ ◦ ψ̃−1)(F̃ ) = F̃ , so we can write ψ̃−1 = ψ̃−1.256

We now consider the composed mapping ψ̃ ◦ X̃ from Ω to [0, 1]Λ, such that (ψ̃ ◦ X̃)(ω) =257

ψ̃[X̃(ω)] (see Figure 2). To show that it is a RFS, we start by the following lemma.258

Lemma 1. The set ΣΛ containing the images of all elements of ΣΘ by ψ,259

ΣΛ = {ψ(B) : B ∈ ΣΘ},

is a σ-algebra on Λ.260

Proof. Since ΣΘ is a σ-algebra, it contains the empty set ∅; consequently, ψ(∅) = ∅ ∈ ΣΛ.261

Now, for any A ∈ ΣΛ, B = ψ−1(A) ∈ ΣΘ; hence, ψ(Θ \ B) = Λ \ ψ(B) ∈ ΣΛ. Finally, let262

(Ai), i ∈ I be a collection of elements of ΣΛ, and Bi = ψ−1(Ai), i ∈ I their inverse images.263

We have264

⋃

i∈I

Ai =
⋃

i∈I

ψ(Bi) = ψ

(⋃

i∈I

Bi

)
∈ ΣΛ.

265

Proposition 2. Let (Ω,ΣΩ, P,Θ,ΣΘ, X̃) be a RFS, ψ : Θ→ Λ a one-to-one mapping from266

Θ to Λ, and ΣΛ = {ψ(B) : B ∈ ΣΘ}. The tuple (Ω,ΣΩ, P,Λ,ΣΛ, ψ̃ ◦ X̃) is a RFS.267

Proof. We need to prove that, for any α ∈ [0, 1] the mapping α(ψ̃ ◦ X̃) is ΣΩ − ΣΛ strongly268

measurable [24], i.e., for any A ∈ ΣΛ,269

A∗ = {ω ∈ Ω : α(ψ̃ ◦ X̃)(ω) ∩ A 6= ∅} ∈ ΣΩ.
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Now,

α(ψ̃ ◦ X̃)(ω) = {λ ∈ Λ : (ψ̃ ◦ X̃)(ω)(λ) ≥ α}
= {λ ∈ Λ : X̃(ω)[ψ−1(λ)] ≥ α}
= {λ ∈ Λ : ψ−1(λ) ∈ αX̃(ω)}
= ψ[αX̃(ω)].

Consequently,

A∗ = {ω ∈ Ω : ψ[αX̃(ω)] ∩ A 6= ∅}
= {ω ∈ Ω : ψ

[
αX̃(ω) ∩ ψ−1(A)

]
6= ∅}

= {ω ∈ Ω : αX̃(ω) ∩ ψ−1(A) 6= ∅}.

As αX̃ is ΣΩ − ΣΘ strongly measurable and ψ−1(A) ∈ ΣΘ, it follows that A∗ ∈ ΣΩ.270

Example 1. Let Ω = {ω1, ω2}, P the probability measure on Ω defined by P ({ω1}) = 0.7,

P ({ω2}) = 0.3, and X̃ : Ω→ [0, 1]R a random fuzzy number with two fuzzy focal sets defined

by X̃(ω1) = F̃1 ∼ GFN(1, 1) and X̃(ω2) = F̃2 ∼ GFN(2, 0.5) (see Figure 3a). Let ψ the

bijection from Θ = R to Λ = R+ defined by ψ : θ 7→ exp(θ). From (13), the images of F̃1

and F̃2 by ψ̃ are, respectively, the following fuzzy subsets of R+:

ψ̃(F̃1)(λ) = F̃1(log λ) = exp

(
−1

2
(log λ− 1)2

)

and

ψ̃(F̃2)(λ) = F̃2(log λ) = exp

(
−1

4
(log λ− 2)2

)
.

They are plotted in Figure 3b. Let Ỹ = ψ̃ ◦ X̃ the transformation of X̃ by ψ̃; it is defined by271

Ỹ (ω1) = ψ̃(F̃1) and Ỹ (ω2) = ψ̃(F̃2).272

Belief and plausibility. Interestingly, the belief and plausibility functions induced by the273

transformed RFS ψ̃◦X̃ have a simple expression in terms of corresponding functions induced274

by X̃, as expressed by the following theorem.275

Theorem 1. Let (Ω,ΣΩ, P,Θ,ΣΘ, X̃) be a RFS, ψ : Θ→ Λ a one-to-one mapping from Θ276

to Λ, ΣΛ = {ψ(B) : B ∈ ΣΘ}, and ψ̃ ◦ X̃ the RFS resulting from the transformation of X̃277

by ψ. For any C ∈ ΣΛ,278

Belψ̃◦X̃(C) = BelX̃(ψ−1(C)), (14a)

and279

Plψ̃◦X̃(C) = PlX̃(ψ−1(C)). (14b)
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Figure 3: Focal fuzzy sets of X̃ (left) and Ỹ = ψ̃ ◦ X̃ (right) in Example 1. The vertical broken lines indicate
the intervals C = [1, 3] (right) and log(C) = [0, log(3)] (left).

Proof. From (1), for all C ∈ ΣΛ,

Π(ψ̃◦X̃)(ω)(C) = sup
λ∈C

(ψ̃ ◦ X̃)(ω)(λ)

= sup
λ∈C

X̃(ω)(ψ−1(λ))

= sup
θ∈ψ−1(C)

X̃(ω)(θ) = ΠX̃(ω)(ψ
−1(C)),

and, similarly,280

N(ψ̃◦X̃)(ω)(C) = NX̃(ω)(ψ
−1(C)).

The result follows directly using the definition of belief and plausibility function in (2).281

Example 2. Continuing Example 1, let C = [1, 3]. We can compute PlỸ (C) and BelỸ (C)282

in two ways (see Figure 3):283

1. Using the definitions (2):

PlỸ (C) = 0.7 sup
λ∈[1,3]

ψ̃(F̃1)(λ) + 0.3 sup
λ∈[1,3]

ψ̃(F̃2)(λ)

= 0.7× 1 + 0.3× exp

(
−1

4
(log(3)− 2)2

)
≈ 0.94

BelỸ (C) = 1−
(

0.7 sup
λ 6∈[1,3]

ψ̃(F̃1)(λ) + 0.3 sup
λ 6∈[1,3]

ψ̃(F̃2)(λ)

)

= 1−
(

0.7× exp

(
−1

2
(log(3)− 1)2

)
+ 0.3× 1

)
≈ 0.0034.
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2. Using Theorem 1:

PlỸ (C) = PlX̃(ψ−1(C))

= 0.7 sup
θ∈[0,log(3)]

F̃1(θ) + 0.3 sup
θ∈[0,log(3)]

F̃2(θ)

= 0.7× 1 + 0.3× exp

(
−1

4
(log 3− 2)2

)
≈ 0.94

BelỸ (C) = BelX̃(ψ−1(C))

= 1−
(

0.7 sup
θ 6∈[0,log(3)]

F̃1(θ) + 0.3 sup
θ 6∈[0,log(3)]

F̃2(θ)

)

= 1−
(

0.7× exp

(
−1

2
(log 3− 1)2

)
+ 0.3× 1

)
≈ 0.0034.

Combination. Let now consider the combination of two transformed RFSs ψ◦X̃1 and ψ◦X̃2284

with the same transformation ψ. The following lemma states that the image of the product285

intersection of two fuzzy subsets of Θ is equal to the product intersection of their images, and286

the degree of conflict (defined as the height of the product intersection before normalization)287

of the fuzzy subsets equals that of their images.288

Lemma 2. Let F̃ and G̃ be two fuzzy subsets of Θ. We have289

ψ̃(F̃ � G̃) = ψ̃(F̃ ) � ψ̃(G̃)

and290

hgt(ψ̃(F̃ ) · ψ̃(G̃)) = hgt(F̃ · G̃).

Proof. For any λ ∈ Λ,

ψ̃(F̃ � G̃)(λ) = (F̃ � G̃)[ψ−1(λ)] (15a)

=
F̃ [ψ−1(λ)]G̃[ψ−1(λ)]

supλ′ F̃ [ψ−1(λ′)]G̃[ψ−1(λ′)]
(15b)

=
ψ̃(F̃ )(λ)ψ̃(G̃)(λ)

supλ′ ψ̃(F̃ )(λ′)ψ̃(G̃)(λ′)
(15c)

= (ψ̃(F̃ ) � ψ̃(G̃))(λ). (15d)

Now, the degree of conflict between ψ̃(F̃ ) and ψ̃(G̃) is the denominator on the right-hand291

side of (15b). It is equal to292

sup
λ∈Λ

F̃ [ψ−1(λ)]G̃[ψ−1(λ)] = sup
θ∈Θ

F̃ (θ)G̃(θ).

293

14



We can now state the main result of this section.294

Theorem 2. Let (Ωi,Σi, Pi,Θ,ΣΘ, X̃i), i = 1, 2, be two RFSs representing independent295

evidence. We have296

ψ̃ ◦ (X̃1 ⊕ X̃2) = (ψ̃ ◦ X̃1)⊕ (ψ̃ ◦ X̃2).

Proof. As recalled in Section 2.1, the orthogonal sum of ψ̃ ◦ X̃1 and ψ̃ ◦ X̃2 is defined by297

mapping298

(ω1, ω2) 7→ (ψ̃ ◦ X̃1)(ω1) � (ψ̃ ◦ X̃2)(ω2),

and the joint probability measure P1 × P2 conditioned by the fuzzy subset of Ω1 × Ω2 with299

membership function300

Θ∗(ω1, ω2) = hgt
(

(ψ̃ ◦ X̃1)(ω1) · (ψ̃ ◦ X̃2)(ω2)
)
.

Now, from Lemma 2,301

(ψ̃ ◦ X̃1)(ω1) � (ψ̃ ◦ X̃2)(ω2) = ψ̃
[
X̃1(ω1) � X̃2(ω2)

]
.

Hence, the mappings from Ω to [0, 1]Λ associated to ψ̃ ◦ (X̃1 ⊕ X̃2) and (ψ̃ ◦ X̃1)⊕ (ψ̃ ◦ X̃2)302

are identical. Furthermore, from Lemma 2,303

hgt((ψ̃ ◦ X̃1)(ω1) · (ψ̃ ◦ X̃2)(ω2)) = hgt(X̃1(ω1) · X̃2(ω2)).

The fuzzy conditioning event in [0, 1]Ω1×Ω2 associated to X̃1 ⊕ X̃2 and (ψ̃ ◦ X̃1) ⊕ (ψ̃ ◦ X̃2)304

are, thus, also identical, which completes the proof.305

Example 3. Continuing Examples 1 and 2, let us consider another RFS defined by Ω′ =306

{ω′1, ω′2}, P ′({ω′1}) = 0.6, P ′({ω′2}) = 0.4, X̃ ′(ω′1) = F̃ ′1 ∼ GFN(0, 1), X̃ ′(ω′2) = F̃ ′2 ∼307

GFN(1.5, 1). Let Ỹ = ψ̃ ◦ X̃ and Ỹ ′ = ψ̃ ◦ X̃ ′ and assume that we want to compute their308

orthogonal sum Ỹ ⊕ Ỹ ′. From Theorem 2, we can first combine X̃ and X̃ ′, and then compose309

the result with ψ̃. Using (7), we obtain310

hgt(F̃1 · F̃ ′1) = 0.78, hgt(F̃1 · F̃ ′2) = 0.94
311

hgt(F̃2 · F̃ ′1) = 0.51, hgt(F̃2 · F̃ ′2) = 0.96

Consequently, from (6), the joint probability measure on Ω×Ω′ conditioned on fuzzy subset312

Θ̃ defined by (5) is313

P ′′({(ω1, ω
′
1)}) ∝ 0.7× 0.6× 0.78

314

P ′′({(ω1, ω
′
2)}) ∝ 0.7× 0.4× 0.94

315

P ′′({(ω2, ω
′
1)}) ∝ 0.3× 0.6× 0.51

316

P ′′({(ω2, ω
′
2)}) ∝ 0.3× 0.4× 0.96.
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After normalization, we get317

P ′′({(ω1, ω
′
1)}) ≈ 0.41, P ′′({(ω1, ω

′
2)}) ≈ 0.33

318

P ′′({(ω2, ω
′
1)}) ≈ 0.12, P ′′({(ω2, ω

′
2)}) ≈ 0.14.

Now, the combined mapping is X̃ ⊕ X̃ ′ is

(X̃ ⊕ X̃ ′)(ω1, ω
′
1) = F̃1 � F̃ ′1 ∼ GFN(0.5, 2)

(X̃ ⊕ X̃ ′)(ω1, ω
′
2) = F̃1 � F̃ ′2 ∼ GFN(1.25, 2)

(X̃ ⊕ X̃ ′)(ω2, ω
′
1) = F̃2 � F̃ ′1 ∼ GFN(2/3, 1.5)

(X̃ ⊕ X̃ ′)(ω1, ω
′
1) = F̃2 � F̃ ′2 ∼ GFN(5/3, 1.5).

Finally, we have319

(Ỹ ⊕ Ỹ ′)(ω1, ω
′
1) = ψ̃(F̃1 � F̃ ′1), (Ỹ ⊕ Ỹ ′)(ω1, ω

′
2) = ψ̃(F̃1 � F̃ ′2)

320

(Ỹ ⊕ Ỹ ′)(ω2, ω
′
1) = ψ̃(F̃2 � F̃ ′1), (Ỹ ⊕ Ỹ ′)(ω2, ω

′
2) = ψ̃(F̃2 � F̃ ′2).

3.2. Transformed Gaussian Random Fuzzy Numbers321

Applying the idea developed in Section 3.1 to GRFNs makes it possible to define a wide322

variety of parametric families of random fuzzy numbers and associated belief functions on323

the real line. Let X̃ ∼ Ñ(µ, σ2, h) be a GRFN, and ψ a one-to-one mapping from R to324

Λ ⊆ R. Let ψ̃ ◦ X̃ be the result of the transformation of X̃ by ψ. We will say that ψ̃ ◦ X̃ is325

a transformed GRFN (or t-GRFN) and we will write ψ̃ ◦ X̃ ∼ TÑ(µ, σ2, h, ψ−1). For any326

random fuzzy number Ỹ , it is clear that327

Ỹ ∼ TÑ(µ, σ2, h, ψ−1)⇔ ψ̃−1 ◦ Ỹ ∼ Ñ(µ, σ2, h). (16)

From Theorem 2, given two t-GRFNs Ỹi ∼ TÑ(µi, σ
2
i , hi, ψ

−1), i = 1, 2, we have Y1 ⊕ Y2 ∼328

TÑ(µ̃12, σ̃
2
21, h1 + h2, ψ

−1), where µ̃12 and σ̃2
21 are given by (11).329

Hereafter, we will consider three cases for the choice of function ψ allowing us to define330

belief functions on the positive real line, on a closed real interval, or on the whole real line.331

Lognormal random fuzzy numbers. Using a one-to-one mapping from R to (0,+∞) allows332

us to define a random fuzzy number with support equal to the positive real line. Choosing333

ψ = exp, we obtain a lognormal random fuzzy number (RFN) Ỹ ∼ TÑ(µ, σ2, h, log). From334

(16), Ỹ ∼ TÑ(µ, σ2, h, log) if and only if l̃og(Ỹ ) ∼ Ñ(µ, σ2, h). A lognormal random variable335

is recovered when h = +∞. From (8) and (14b), the contour function of Ỹ is336

plỸ (y) =
1√

1 + hσ2
exp

(
−h(log y − µ)2

2(1 + hσ2)

)
.
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Similarly, the lower and upper cdfs of Ỹ can easily be computed from (9) and (14) as

BelỸ ((−∞, y]) = Φ

(
log y − µ

σ

)
− plỸ (y)Φ

(
log y − µ
σ
√
hσ2 + 1

)
,

and PlỸ ((−∞, y]) = BelỸ ((−∞, y]) + plỸ (y).337

Expressions for the lower and upper expectations of a lognormal RFN are given in the338

following proposition.339

Proposition 3. The lower and upper expectation of a lognormal RFN Ỹ ∼ TÑ(µ, σ2, h, log)340

are given, respectively, by341

E∗(Ỹ ) =
√

2π exp

(
µ+

σ2

2
+

1

2h

)[
φ

(
1√
h

)
− 1√

h

(
1− Φ

(
1√
h

))]
(17a)

and342

E∗(Ỹ ) =
√

2π exp

(
µ+

σ2

2
+

1

2h

)[
φ

(
1√
h

)
+

1√
h

Φ

(
1√
h

)]
, (17b)

where φ is the standard normal probability density function.343

Proof. See Appendix B344

We note that the expectation of a lognormal random variable is recovered in the limit345

when h tends to infinity, as346

lim
h→+∞

E∗(Ỹ ) = lim
h→+∞

E∗(Ỹ ) = exp

(
µ+

σ2

2

)
.

Example 4. Figure 4 displays two lognormal RFNs347

Ỹ1 ∼ TÑ(1, 1, 5, log) and Ỹ2 ∼ TÑ(2, 0.1, 2, log),

as well as their orthogonal sum Ỹ1⊕ Ỹ2. For each RFN, we plot ten realizations, the contour348

function, the lower and upper expectations, as well as the lower and upper cdfs.349

Logit-normal random fuzzy numbers. Any cdf F can be used to define a RFN with support350

equal to interval [0, 1] (or more generally, using an additional affine transformation, an351

interval [a, b] with b > a). A natural choice is the cdf of the standard logistic distribution,352

FL(x) = [1 + exp(−x)]−1. The corresponding quantile function is the logit function,353

F−1
L (y) = logit(y) = log

y

1− y .

A RFN Ỹ ∼ TÑ(µ, σ, h, logit) will said to be logit-normal. A logit-normal random variable354

[1] is recovered when h = +∞. From (8) and (14b), the contour function of Ỹ is355

plỸ (y) =
1√

1 + hσ2
exp

(
−h(logit(y)− µ)2

2(1 + hσ2)

)
.
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Figure 4: (a) and (b): From left to right, two lognormal random fuzzy numbers Ỹ1 ∼ TÑ(1, 1, 5, log) and

Ỹ2 ∼ TÑ(2, 0.1, 2, log); (c): combined lognormal random fuzzy number Ỹ1 ⊕ Ỹ2. For each RFN, we plot
ten realizations (black dotted curves), the contour functions (red curve), the lower and upper expectations
(vertical broken lines), as well as the lower and upper cdfs (blue curves).

The lower and upper cdfs of Ỹ can be computed from (9) and (14) in a similar manner.356

The expectation of the logit-normal probability does not have any analytical expression.357

Consequently, this is also true for the lower and upper expectations of a logit-normal RFS.358

A multidimensional extension of logit-normal RFNs will be studied in Section 3.3.359

Example 5. Figure 5 shows representations of logit-normal RFNs Ỹ1 ∼ TÑ(1, 1, 5, logit)360

and Ỹ ∼ TÑ(−2, 0.1, 2, logit), as well as their orthogonal sum Y1 ⊕ Y2.361

Parameterized families of transformations. Whereas the fixed transformations considered362

above allow us to define RFNs with various supports, it may be useful to consider more363

general transformations belonging to parameterized families. We then obtain a parametrized364

family of RFNs with parameters µ, σ2, h, and the parameters of the transformation. Such365

flexible families may be useful, for instance, in a belief elicitation context where we attempt366

to fit an expert’s belief statements with a t-GRFN, as will be seen in Section 5.1. The idea367

of transforming the normal distribution to obtained parameterized families of distributions368

with varying skewness and kurtosis can be traced back, at least, to Ref. [20]. Johnson [20]369

actually considers the inverse problem of finding a transformation ψ−1 of a random variable370

Y such that X = ψ−1(Y ) has, approximately, a standard normal distribution. In addition to371

the logarithmic and logit transformations, he considers a “system SU” based on the following372

transformation:373

X = ψ−1(Y ) = γ + δ sinh−1 Y − ξ
λ

, (18)

where γ, δ, ξ and λ are four parameters, δ > 0, λ > 0, and X ∼ N(0, 1). Inverting (18), we374

get375

Y = ψ(X) = ξ + λ sinh
X − γ
δ

. (19)
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Figure 5: (a) and (b): From left to right, two logit-normal random fuzzy numbers Ỹ ∼ TÑ(1, 1, 5, logit)

and Ỹ ∼ TÑ(−2, 0.1, 2, logit); (c): combined lognormal random fuzzy number Ỹ1 ⊕ Ỹ2. For each RFN, we
plot ten realizations (black dotted curves), the contour function (red curve), as well as lower and upper cdfs
(blue curves).

To be consistent with our previous notations, we can rewrite (19) as376

Y = ψξ,λ(X) = ξ + λ sinhX, (20)

where X ∼ N(µ, σ2), and the four parameters are now: µ, σ2 defining the distribution of X377

on the one hand, and ξ and λ defining the transformation on the other hand. This transfor-378

mation makes it possible to define a four-parameter family of probability distributions on379

the whole real line, with varying skewness and kurtosis. The same transformation applied to380

GRFNs defines a parametric family of RFNs with different shapes. We note that Theorem381

2 allows us to combine two t-GRFNs Ỹ1 ∼ TÑ(µ1, σ
2
1, h1, ψ

−1
ξ,λ) and Ỹ2 ∼ TÑ(µ2, σ

2
2, h2, ψ

−1
ξ,λ)382

with different means, variances and precisions, but the same transformation ψξ,λ.383

Example 6. Figure 6 shows representations of RFNs Ỹ1 ∼ TÑ(1, 1, 5, ψ−1
ξ,λ) and Ỹ ∼384

TÑ(−2, 0.1, 2, ψ−1
ξ,λ) with ξ = 0 and λ = 1, as well as their orthogonal sum Y1 ⊕ Y2. We can385

see that the contour functions of Ỹ1 and Ỹ2 are, respectively, right-skewed and left-skewed,386

while the contour function of Ỹ1 ⊕ Ỹ2 is left-skewed. In general, the positive or negative387

skewness depends, for this transformation, on the sign of µ.388

An even more general approach to create parametric families of probability distributions389

was more recently proposed in [2]. Given three random variables X, T and R, Aljarrah et390

al. [2] define a new random variable391

Y = ψRT (X) = (F−1
R ◦ FT )(X),

where FR and FT are the cdfs of R and T . The cdf of Y is, thus,392

FY (y) = P (Y ≤ y) = P (FT (X) ≤ FR(y)) = P (X ≤ F−1
T (FR(y))) = (FX ◦ F−1

T ◦ FR)(y).
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Figure 6: (a) and (b): From left to right, two t-GRFNs Ỹ ∼ TÑ(1, 1, 5, ψ−1ξ,λ) and Ỹ ∼ TÑ(−2, 0.1, 2, ψ−1ξ,λ),

with ξ = 0 and λ = 1; (c): combined lognormal random fuzzy number Ỹ1 ⊕ Ỹ2. For each RFN, we plot ten
realizations (black dotted curves), the contour function (red curve), as well as lower and upper cdfs (blue
curves).

Taking X ∼ N(µ, σ2) it is possible, using this approach, to define infinitely many parametric393

families of probability distributions by choosing different parametric families for T and R.394

We note that the support of Y is included in the support of R. Also, choosing FT = FX gives395

us Y = R, while choosing FT = FR yields Y = X. By extension, we can define parametric396

families of RFNs Ỹ ∼ TÑ(µ, σ2, h, ψ−1
RT ) based on parametric families for R and T .397

3.3. Transformations of Gaussian Random Vectors398

The general approach introduced in Section 3.1 can also be applied to GRFVs. Of special399

interest is the multivariate extension of the notion of logit-normal RFNs, which is obtained400

from a multidimensional normal distributionX ∼ N(µ,Σ) in Rp−1 (p ≥ 2) and the following401

softmax transformation from Rp−1 to the simplex Sp of p-dimensional probability vectors:402

ψS(x) =

[
exp(x1)

1 +
∑p−1

j=1 exp(xj)
, . . . ,

exp(xp−1)

1 +
∑p−1

j=1 exp(xj)
,

1

1 +
∑p−1

j=1 exp(xj)

]T
, (21)

with inverse403

ψ−1
S (y) =

[
log

(
y1

yp

)
, . . . , log

(
yp−1

yp

)]T
. (22)

This transformation is used in [1] to define the multidimensional logistic-normal probability404

distribution. Here, given a GRVN X̃ ∼ Ñ(µ,Σ,H), we can define the random fuzzy vector405

Ỹ = ψ̃S ◦ X̃, where ψ̃S is the extension of the softmax transformation (21). We will say that406

Ỹ is a logistic-normal RFV, and we will write Ỹ ∼ TÑ(µ,Σ,H , ψ−1
S ). The domain of Ỹ is407

the simplex Sp. Such a RFV can be used to represent beliefs about a vector of probabilities408

or proportions.409

20



(0,0,1)

(1,0,0) (0,1,0)

(a)

(0,0,1)

(1,0,0) (0,1,0)

(b)

(0,0,1)

(1,0,0) (0,1,0)

(c)

(0,0,1)

(1,0,0) (0,1,0)

(d)

(0,0,1)

(1,0,0) (0,1,0)

(e)

(0,0,1)

(1,0,0) (0,1,0)

(f)

Figure 7: (a)-(e): Five focal fuzzy sets Ỹ (ω) for a logistic-normal RFV Ỹ ∼ Ñ(µ,Σ,H, ψ−1S ) (see Example
7); (f): corresponding contour function.

Example 7. Figures 7a-7e show five focal fuzzy sets Ỹ (ω) in barycentric coordinates for a410

logistic RFV Ỹ ∼ Ñ(µ,Σ,H , ψ−1
S ) with p = 3, µ = (2, 0)T ,411

Σ =

(
1.5 0.2
0.2 1

)
and H =

(
1 −0.2
−0.2 1.5

)
.

The corresponding contour function is displayed in Figure 7f.412

4. Mixtures of Gaussian random fuzzy variables413

In probability and statistics, finite mixtures of probability distributions and, in particu-414

lar, finite mixtures of Gaussians are commonly used to obtain distributions with arbitrarily415

complex shapes [23]. In this section, we extend this approach to define mixtures of (trans-416

formed) GRFNs and GRFVs. Mixtures of GRFNs and GRFVs will first be defined in417
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Section 4.1. Their properties will then be studied in Section 4.2, and their combination418

will be addressed in Section 4.3. A summarization procedure allowing us to approximate a419

mixture with a large number of components by a simpler one will be described in Section420

4.4. Finally, mixtures of transformed GRFNs and GRFVs will be introduced in Section 4.5.421

4.1. Definitions422

Mixture of GRFNs. We consider a pair of random variables (M,Z) from a probability space423

(Ω,ΣΩ, P ) to R×{1, . . . , K}, such that the marginal distribution of Z is defined by P (Z =424

k) = πk, k = 1, . . . , K, and the conditional distribution of M given Z = k is univariate425

normal:426

M | (Z = k) ∼ N(µk, σ
2
k).

The marginal distribution of M is, thus, a mixture of K normal distributions. Now, consider427

the random fuzzy set X̃ : Ω→ [0, 1]R defined as follows,428

X̃(ω) = GFN

(
M(ω),

K∏

k=1

h
Zk(ω)
k

)
,

where Zk(ω) = I(Z(ω) = k), and I(·) is the indicator function. Conditionally on Z = k, X̃429

is a GRFN with mean µk, variance σ2
k and precision hk:430

X̃ | (Z = k) ∼ Ñ(µk, σ
2
k, hk).

We denote this conditional GRFN by X̃k. We say that X̃ is a mixture GRFN (m-GRFN)431

and we write432

X̃ ∼
K∑

k=1

πkÑ(µk, σ
2
k, hk).

Mixture of GRFVs. Similarly, we can define a mixture of GRFVs by a mapping X̃ : Ω →433

[0, 1]R
p

with p ≥ 2 such that434

X̃(ω) = GFV(M (ω),
K∏

k=1

H
Zk(ω)
k ),

where, as usual, H0
k is the identity matrix, M is a random vector having a mixture of435

multivariate normal distributions,436

M ∼
K∑

k=1

πkN(µk,Σk),

and Hk, k = 1, . . . , K are positive definite precision matrices. We will use the following437

notation:438

X̃ ∼
K∑

k=1

πkÑ(µk,Σk,Hk).

22



4.2. Properties439

Belief and plausibility functions. The belief and plausibility functions associated with an440

m-GRFN are the weighted sums of, respectively, the belief and plausibility associated with441

the components of the mixture. This property is expressed by the following theorem.442

Theorem 3. Let B(R) be the Borel σ-algera on R, and A ∈ B(R) be a measurable subset of

R. The degrees of belief and plausibility of A induced by an m-GRFN X̃ ∼∑K
k=1 πkÑ(µk, σ

2
k, hk)

are

BelX̃(A) =
K∑

k=1

πkBelX̃k(A) (23a)

PlX̃(A) =
K∑

k=1

πkPlX̃k(A), (23b)

with X̃k ∼ Ñ(µk, σ
2
k, hk).443

Proof. Let us start with (23b). By definition, PlX̃(A) is defined as the following expectation,

PlX̃(A) = EM,Z

[
sup
u∈A

ϕ(u,M,
K∏

k=1

hZkk )

]

= EZEM |Z

[
sup
u∈A

ϕ(u,M,
K∏

k=1

hZkk )

]

=
K∑

k=1

πkEM |Z
[
sup
u∈A

ϕ(u,M, hk) | Z = k

]

=
K∑

k=1

πkPlX̃k(A).

Eq. (23a) can be proved in the same way, since BelX̃(A) is also defined as an expectation.444

Using Theorem 3 and the closed-form expressions given in [14], we can compute the445

degrees of belief and plausibility of any real interval [x, y]. In particular, setting x = y gives446

the following corollary:447

Corollary 1. The contour function of m-GRFN X̃ ∼∑K
k=1 πkÑ(µk, σ

2
k, hk) is448

plX̃(x) =
K∑

k=1

πk√
1 + hkσ2

k

exp

(
−hk(x− µk)

2

2(1 + hkσ2
k)

)
. (24)

Proof. Immediate from Theorem 3 and Eq. (8).449

Example 8. Figure 8 shows ten focal sets of an m-GRFN X̃ ∼ 0.4Ñ(−2, 1, 5)+0.6Ñ(2, 0.12, 1),450

its contour function as well as its lower and upper cfds.451
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Figure 8: Ten realizations (black dotted curves), contour function (red curve), and lower/upper cdfs (blue

curves) of an m-GRFN X̃ ∼ 0.4Ñ(−2, 1, 5) + 0.6Ñ(2, 0.12, 1).

Similar results can be obtained in the same way for mixtures of GRFVs. In particular,452

the contour function of a mixture of GRFVs is the weighted sum of the contour functions453

of its components, which is expressed by the following proposition.454

Proposition 4. The contour function of m-GRFV X̃ ∼∑K
k=1 πkÑ(µk,Σk,Hk) is455

plX̃(x) =
K∑

k=1

1

|Ip + ΣkHk|1/2
exp

(
−1

2
(x− µk)T (H−1

k + Σk)
−1(x− µk)

)
. (25)

Lower and upper expectations of an m-GRFN. The lower and upper expectations of an m-456

GRFN can easily be computed from those of its components, as stated in the following457

proposition.458

Proposition 5. The lower and upper expectations of m-GRFN X̃ ∼∑K
k=1 πkÑ(µk, σ

2
k, hk)

are given by

E∗(X̃) =
K∑

k=1

πkµk −
K∑

k=1

√
π

2hk
, and

E∗(X̃) =
K∑

k=1

πkµk +
K∑

k=1

√
π

2hk
.

Proof. The α-cut of X̃(ω) is the closed interval459

αX̃(ω) =

[
M(ω)−

√
−2 lnα

∏K
k=1 h

Zk(ω)
k

,M(ω) +

√
−2 lnα

∏K
k=1 h

Zk(ω)
k

]
.
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From (3), the lower expectation of X̃ is

E∗(X̃) =

∫ 1

0

EM,Z

[
M −

√
−2 lnα∏K
k=1 h

Zk
k

]
dα

=

∫ 1

0

EZEM |Z

[
M −

√
−2 lnα∏K
k=1 h

Zk
k

]
dα

=

∫ 1

0

K∑

k=1

πkEM |Z

[
M −

√
−2 lnα

hk
|Z = k

]
dα

=
K∑

k=1

πk

∫ 1

0

EM |Z

[
M −

√
−2 lnα

hk
|Z = k

]
dα

=
K∑

k=1

πk

(
µk −

√
π

2hk

)
,

where the last equality is derived from (10). The upper expectation of X̃ can be computed460

in the same way.461

4.3. Combination462

Combination of m-GRFNs. Let us now consider two independent m-GRFNs463

X̃1 ∼
K∑

k=1

π1kÑ(µ1k, σ
2
1k, h1k) and X̃2 ∼

L∑

`=1

π2`Ñ(µ2`, σ
2
2`, h2`).

The following theorem states that their orthogonal sum X̃1 ⊕ X̃2 is an m-GRFN.464

Theorem 4. Given two independent m-GRFNs X̃1 ∼
∑K

k=1 π1kÑ(µ1k, σ
2
1k, h1k) and X̃2 ∼465 ∑L

`=1 π2`Ñ(µ2`, σ
2
2`, h2`),466

1. The orthogonal sum of X̃1 and X̃2 is an m-GRFN,467

X̃1 ⊕ X̃2 ∼
K∑

k=1

L∑

`=1

π̃k`

[
Ñ(µ1k, σ

2
1k, h1k)⊕ Ñ(µ2`, σ

2
2`, h2`)

]
,

with468

π̃k` =
(1− κk`)π1kπ2`∑

k′`′(1− κk′`′)π1k′π2`′
,

κk` denoting the degree of conflict between X̃1k and X̃2` given by Proposition 1.469

2. The degree of conflict between X̃1 and X̃2 is470

κ =
K∑

k=1

L∑

`=1

κk`π1kπ2`.
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Figure 9: (a) and (b): From left to right, two m-GRFNs X̃1 ∼ 0.5Ñ(−2, 0.12, 5) + 0.5Ñ(0, 0.12, 2) and

X̃2 ∼ 0.5Ñ(0.1, 0.12, 2) + 0.5Ñ(2, 0.12, 0.1); (c): combined mGRFN X̃1 ⊕ X̃2. For each RFN, we plot ten
realizations (black dotted curves), the contour function (red curve), as well as the lower and upper cdfs (blue
curves).

Proof. See Section Appendix C.471

Example 9. Figure 9 displays two m-GRFNs X̃1 ∼ 0.5Ñ(−2, 0.12, 5) + 0.5Ñ(0, 0.12, 2) and

X̃2 ∼ 0.5Ñ(0.1, 0.12, 2) + 0.5Ñ(2, 0.12, 0.1), as well as their orthogonal sum

X̃1 ⊕ X̃2 ∼ 0.020Ñ(−1.38, 0.07672, 7) + 0.426Ñ(0.05, 0.07072, 4)+

0.197Ñ(−1.92, 0.09802, 5.1) + 0.357Ñ(0.0970, 0.09532, 2.1).

We note that X̃1⊕X̃2 has four components but the first one, resulting from the combination of472

X̃11 and X̃21, has a small proportion because of high conflict. When combining a large number473

of m-GRFNs, the number of components grows exponentially. However, the combined m-474

GRFN can be approximated by a simpler one, using a technique that will be introduced in475

Section 4.4.476

Combination of m-GRFVs. Theorem 4 can easily be generalized to GRFVs, using the re-477

sults in presented in [14, Proposition 13]. Basically, when combining two GRFVs, each478

component of the first GRFV is combined with each component of the second GRFV, and479

the proportions are adjusted based on degrees of conflict. This result is formally stated in480

the next theorem.481

Theorem 5. Let X̃1 ∼
∑K

k=1 π1kÑ(µ1k,Σ
2
1k,H1k), and X̃2 ∼

∑L
`=1 π2`Ñ(µ2`,Σ

2
2`,H2`) be482

two p-dimensional m-GRFVs and assume that the precision matrices H1k and H2` are all483

positive definite. Then:484
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1. The orthogonal sum of X̃1 and X̃2 is an m-GRFV,485

X̃1 ⊕ X̃2 ∼
K∑

k=1

L∑

`=1

π̃k`

[
Ñ(µ1k,Σ

2
1k,H1k)⊕ Ñ(µ2`,Σ

2
2`,H2`)

]
,

with486

π̃k` =
(1− κk`)π1kπ2`∑

k′`′(1− κk′`′)π1k′π2`′
,

where κk` is the degree of conflict between X̃1k and X̃2` given by (A.1).487

2. The degree of conflict between X̃1 and X̃2 is488

κ =
K∑

k=1

L∑

`=1

κk`π1kπ2`.

Proof. The theorem can be proved by following a similar line of reasoning as in the proofs489

of Lemma 3 and Theorem 4, using the results in Lemma 2 and Proposition 13 in [14].490

4.4. Summarization of an m-GRFN491

As already mentioned, the number of components grows exponentially when combining492

m-GRFNs: if all of N m-GRFNs have the same number K of components, the combined493

m-GRFN has, in general, KN components. However, components of a combined m-GRFN494

resulting from the combination of highly conflicting GRFNs have a very small proportion.495

When combining many m-GRFNs, we can expect to obtain a large number of components,496

many of which will have a proportion close to zero. A similar problem occurs when combining497

a large number of mass functions, in which case we often observe a proliferation of focal sets498

with very small masses. Several strategies have been proposed for controlling the number499

of focal sets by transferring some masses to supersets, resulting in an outer approximation500

of the original mass function [22, 6, 19]. The simplest approach is to transfer all masses501

less than some threshold to the union of the corresponding focal sets [22]. Here, we do not502

have a notion of “union” for GRFNs that would result in a GRFN, but we can transfer503

the small proportions to a vacuous GRFN X̃0 ∼ Ñ(µ, σ2, 0) with arbitrary µ and σ2. This504

procedure, formally described in Algorithm 1, yields a conservative approximation of the505

original m-GRFN. It is illustrated by the following example.506

Example 10. Consider the following three m-GRFNs, each one with three components:507

X̃1 ∼
1

3
Ñ(−2, (0.1)2, 2) +

1

3
Ñ(0, (0.1)2, 2) +

1

3
Ñ(2, (0.1)2, 2),

508

X̃2 ∼
1

3
Ñ(−2.1, (0.5)2, 2) +

1

3
Ñ(0.1, (0.5)2, 2) +

1

3
Ñ(1/9, (0.5)2, 2),

509

X̃3 ∼
1

3
Ñ(−1.9, (0.5)2, 5) +

1

3
Ñ(−0.1, (0.5)2, 5) +

1

3
Ñ(2.1, (0.5)2, 5).

27



Algorithm 1 Summarization of a m-GRFN.

Input: m-GRFN X̃ ∼∑K
k=1 πkÑ(µk, σ

2
k, hk), threshold ε < 1

Reorder the components of X̃ such that π(1) ≤ π(2) ≤ . . . ≤ π(K)

if π(1) ≥ ε then

X̃ ′ ← X̃
else

Find the largest k0 such that
∑k0

k=1 π(k) ≤ ε

π0 ←
∑k0

k=1 π(k)

X̃ ′ ← π0Ñ(0, 1, 0) +
∑K

k=k0+1 π(k)Ñ(µ(k), σ
2
(k), h(k))

end if
Output: Approximate m-GRFN X̃ ′
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Figure 10: Contour functions (red curves), and lower/upper cdfs (blue curves) of m-GRFN X̃ with 27

components in Example 10 (solid lines) and its approximation X̃ ′ with only 13 components (broken lines).

The combined m-GRFN X̃ = X̃1 ⊕ X̃2 ⊕ X̃3 has 27 components. Summarizing X̃ with a510

threshold ε = 0.05 yields an n-GRFN with 13 components. The contour function as well as511

the lower and upper cdfs of X̃ and X̃ ′ are shown in Figure 10. As we can see, X̃ ′ is a good512

conservative approximation of X̃, while having less than half as many components.513

4.5. Mixtures of transformed GRFNs514

Definition. The ideas developed in Section 3 and in the current section can naturally be515

combined to define mixtures of transformed fuzzy numbers. Let us consider a one-to-one516

mapping ψ from R to Λ ⊆ R and, as in Section 4.1, an m-GRFN X̃ ∼∑K
k=1 πkÑ(µk, σ

2
k, hk),517

originating from a pair of random variables (M,Z) from a probability space (Ω,ΣΩ, P ) to518

R × {1, . . . , K}, such that P (Z = k) = πk, k = 1, . . . , K, and M | (Z = k) ∼ N(µk, σ
2
k),519

k = 1, . . . , K. From Proposition 2, the composed mapping520

Ỹ (ω) = (ψ̃ ◦ X̃)(ω) = ψ̃

[
GFN(M(ω),

K∏

k=1

h
Zk(ω)
k )

]
,
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where Zk(ω) = I(Z(ω) = k), is a RFS. Conditionally on Z = k, Ỹ is a t-GRFN with mean521

µk, variance σ2
k and precision hk:522

Ỹ | (Z = k) ∼ TÑ(µk, σ
2
k, hk, ψ

−1).

We say that Ỹ is a mixture of transformed GRFNs (mt-GRFN) and we write523

Ỹ ∼
K∑

k=1

πkTÑ(µk, σ
2
k, hk, ψ

−1).

In a similar way, we can define a mixture of transformed GRFVs (mt-GRFV) as the trans-524

formation of an m-GRFV X̃ ∼∑K
k=1 πkÑ(µk,Σk,Hk) by a one-to-one mapping ψ from Rp

525

to Λ ⊆ Rp and write526

Ỹ = ψ̃ ◦ X̃ ∼
K∑

k=1

πkTÑ(µk,Σk,Hk, ψ
−1).

Properties. The properties of mt-GRFNs can be derived directly from those of m-GRFNs527

and t-GRFNs. Some of them are described in the following propositions. Similar properties528

hold for mt-GRFVs.529

Proposition 6. Let Ỹ ∼ ∑K
k=1 πkTÑ(µk, σ

2
k, hk, ψ

−1) be an mt-GRFN, where ψ is a one-530

to-one mapping from R to Λ ⊆ R. For any event A ∈ ΣΛ,531

Bel(A) =
K∑

k=1

πkBelX̃k(ψ
−1(A)), and Pl(A) =

K∑

k=1

πkPlX̃k(ψ
−1(A)),

where X̃k ∼ Ñ(µk, σ
2
k, hk). In particular the contour function of Ỹ is532

plỸ (y) =
K∑

k=1

πk√
1 + hkσ2

k

exp

(
−hk(ψ

−1(y)− µk)2

2(1 + hkσ2
k)

)
.

Proof. Immediate from Theorem 1, Theorem 3 and Corollary 1.533

Proposition 7. Let Ỹ1 ∼
∑K

k=1 π1kTÑ(µ1k, σ
2
1k, h1k, ψ

−1) and Ỹ2 ∼
∑L

k=1 π2`TÑ(µ2`, σ
2
2`, h2`, ψ

−1)534

be two mt-GRFNs, where ψ is a one-to-one mapping from R to Λ ⊆ R. Their orthogonal535

sum is the mt-GRFN536

Ỹ1 ⊕ Ỹ2 ∼
K∑

k=1

L∑

k=1

π̃k`TÑ(µ̃k`, σ̃
2
k`, h1k + h2`, ψ

−1),

where µ̃k` and σ̃2
k` are the mean and variance of the orthogonal sum Ñ(µ1k, σ

2
1k, h1k) ⊕537

Ñ(µ2`, σ
2
2`, h2`) given by (11), and538

π̃k` =
(1− κk`)π1kπ2`∑

k′`′(1− κk′`′)π1k′π2`′
,

where κk` is the degree of conflict between Ñ(µ1k, σ
2
1k, h1k) and Ñ(µ2`, σ

2
2`, h2`) given by Propo-539

sition 1.540
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Figure 11: (a) and (b): From left to right, two mixtures of logit-normal RFNs Ỹ1 ∼ 0.5TÑ(2, 1, 2, logit) +

0.5TÑ(−2, 1, 2, logit) and Ỹ2 ∼ 0.3TÑ(−1, 0.12, 1, logit)+0.7TÑ(1, 0.12, 1, logit); (c): orthogonal sum Ỹ1⊕Ỹ2.
For each RFN, we plot ten realizations (black dotted curves), the contour function (red curve), as well as
the lower and upper cdfs (blue curves).

Proof. Immediate from Theorems 2 and 4.541

Example 11. Figure 11 displays two mixtures of logit-normal RFNs Ỹ1 ∼ 0.5TÑ(2, 1, 2, logit)+542

0.5TÑ(−2, 1, 2, logit) and Ỹ2 ∼ 0.3TÑ(−1, 0.12, 1, logit) + 0.7TÑ(1, 0.12, 1, logit), as well as543

their orthogonal sum Ỹ1 ⊕ Ỹ2.544

5. Applications545

In this section, we will discuss two applications of the models introduced in this paper.546

Belief elicitation will first be addressed in Section 5.1. The use of m-GRFNs to represent547

weak prior knowledge in generalized Bayesian inference will then be discussed in Section 5.2.548

5.1. Elicitation549

According to Garthwaite et al. [17], “elicitation is the process of formulating a person’s550

knowledge and beliefs about one or more uncertain quantities into a (joint) probability dis-551

tribution for those quantities”. There is, however, no reason to limit oneself to probability552

distributions for representing a person’s beliefs. In this section, we briefly discuss the ap-553

plication of the RFN models introduced in this paper to represent expert beliefs about a554

numerical quantity. It is clear that an in-depth treatment of this topic would require to555

delve into complex methodological issues arising when interviewing human experts. Here,556

we will only be concerned with the use of already obtained plausibility assessments to fit557

the parameters of a RFN.558

For single-expert probabilistic elicitation, the two main approaches are the fixed interval559

method, in which the expert is asked to give his subjective probabilities for some fixed560

intervals, and the variable interval method in which the expert is invited to provide points561

30



corresponding to specified percentiles of his subjective probability distribution. Assuming562

the latter approach is used, a sequence of questions for eliciting an expert’s beliefs about a563

numerical quantity X could be the following:564

1. What is the most plausible value m0 of X?565

2. Given two numbers 0 < α < β < 1 (such as, e.g., α = 0.1 and β = 0.5), give values xα566

and xβ such that Pl(X ≤ xα) = α and Pl(X ≤ xβ) = β.567

3. Give values x′α and x′β such that Pl(X > x′α) = α and Pl(X > x′β) = β.568

This procedure yields a maximum-plausibility value m0 and the plausibility degrees of four569

intervals (−∞, xα], (−∞, xβ], [x′α,+∞) and [x′β,+∞). Whatever the details of the elicitation570

procedure, we can assume that we have obtained m0 and the plausibilities pl1, . . . , pln of n571

real intervals I1, . . . , In.572

Several parametric families of RFN proposed in Sections 3.3 and 4 could be fitted to573

such data. As the number n of intervals will typically be small, simpler models should be574

preferred. Mixture models may not be the most suitable because they depend on many575

parameters (at least seven for the simplest two-component case) and they can yield mul-576

timodal contour functions. Let us, thus, consider a parameterized family of t-GRFNs577

X̃θ ∼ TÑ(µ, σ2, h, ψ−1
η ), where η is a vector of parameters for the transformation func-578

tion ψ, and θ = (µ, σ2, h, η) is the vector of all parameters. We can then identify θ by579

minimizing the following mean squared error function:580

MSE(θ) =
n∑

i=1

(PlX̃θ(Ii)− pli)
2. (26)

subject to the constraint ψη(µ) = m0. The following example illustrate this approach with581

the family of t-GRFNs defined by transformation ψη = ψξ,λ given by (20).582

Example 12. Assume that an expert gives us m0 = 1 as the most plausible value of X, and583

the following plausibility assessments:584

Pl(X ≤ −7) = 0.1, P l(X ≤ −1) = 0.5, P l(X > 2) = 0.5, P l(X > 5) = 0.1.

The constraint ψξ,λ(µ) = m0 gives us µ = sinh−1
(
m0−ξ
λ

)
. Substituting µ by its expression585

as a function of ξ and λ and minimizing (26) w.r.t. σ2, h, ξ and λ yields the following586

estimates:587

σ̂2 = 0.73, ĥ = 10.90, ξ̂ = 3.37, λ̂ = 2.71,

and µ̂ = −0.79. Figure 12 shows of the lower and upper cdf of the fitted t-GRFN, as well588

as its contour function. By comparison, we also show the corresponding functions for a589

GRFN fitted on the same data. Obviously, a GRFN is a poor fit given the asymmetry of the590

plausibility assessments.591
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Figure 12: Contour functions (red curves), and lower/upper cdfs (blue curves) of the fitted t-GRFN X̃θ̂ ∼
TÑ(µ̂, σ̂2, ĥ, ψ−1

ξ̂,λ̂
) of Example 12 (solid lines) and a fitted GRFN (broken lines). The data points are shown

as black dots, and the vertical broken lines marks the most plausible value m0.

5.2. Generalized Bayesian inference592

Let us consider a statistical model in which observed data X are drawn randomly from
a probability distribution Pθ, where θ ∈ Θ is some unknown parameter. Having observed a
realization x of X, we define the likelihood function as the mapping

L(·;x) : Θ→ [0,+∞)

θ 7→ L(θ;x) = f(x; θ),

where f(x; θ) denotes the probability mass or density function ofX. Assuming supθ∈Θ L(θ;x) <
+∞, the relative likelihood function can be defined as

L̃x : Θ→ [0,+∞)

θ 7→ L̃x(θ) =
L(θ;x)

supθ′∈Θ L(θ′;x)
.

In [8], we showed that L̃x can be interpreted as the membership function of a fuzzy subset of593

Θ (the fuzzy subset of “likely” values of θ after observing x). Equivalently, L̃x can be seen594

as a constant RFS. As shown in [8], L̃x is, in some sense, the least committed RFS verifying595

the following two requirements:596

1. Compatibility with Bayesian inference: let P0 be a prior probability measure on Θ;597

combining it with L̃x using the product-intersection rule yields the Bayesian posterior598

distribution P (·|x):599

P0 ⊕ L̃x = P (·|x). (27)
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2. Combination of independent observations: if x and y are realizations of two indepen-600

dent observations X and Y , then the RFS induced by (x, y) is the orthogonal sum of601

the RFS induced by x, and that induced by y:602

L̃x ⊕ L̃y = L̃x,y.

From the perspective of a general theory of epistemic random fuzzy sets, there is no reason603

to limit oneself to probability distributions for representing prior information. Indeed, prior604

knowledge is often vague and the relevance of representing it by precise probabilities is605

questionable. Equation (27) can, thus, be generalized as606

θ̃0 ⊕ L̃x = θ̃x, (28)

where θ̃0 is a RFS representing weak prior information, and θ̃x is posterior RFS resulting from607

the combination of prior information with observations. Considering the case where Θ ⊆ R,608

(28) lends itself to easy computation if L̃x is a GFN: in this case, modeling prior information609

as a GRFN θ̃0 ∼ Ñ(µ0, σ
2
0, h0) or, more generally, an m-GRFN θ̃0 ∼

∑K
k=1 π0kÑ(µ0k, σ

2
0k, h0k)610

will result, respectively, in a posterior GRFN θ̃x ∼ Ñ(µx, σ
2
x, hx) or a posterior m-GRFN611

θ̃x ∼
∑K

k=1 πxkÑ(µxk, σ
2
xk, hxk).612

Except in a few simple cases, the relative likelihood function is not exactly a GFN,
but this model can be used as an approximation [7]. Indeed, a Taylor series expansion of

log L̃x(θ) about the maximum likelihood estimate (MLE) θ̂ up to the second order gives us
[28, p. 33]:

log L̃x(θ) = log L̃x(θ̂) + (θ − θ̂) ∂ log L̃x(θ)

∂θ

∣∣∣∣∣
θ=θ̂

+
1

2
(θ − θ̂)2 ∂

2 log L̃x(θ)

∂θ2

∣∣∣∣∣
θ=θ̂

+ · · ·

The first term on the right-hand is equal to zero by definition, and the second term is zero613

in the usual case where θ̂ is a stationary point of the likelihood function. Neglecting the614

higher-order terms, we get the approximation615

L̃x(θ) ≈ exp

[
−1

2
I(θ̂;x)(θ − θ̂)2

]
, (29)

i.e., L̃x ≈ GFN(θ̂, I(θ̂;x)), where the precision I(θ̂;x) is the observed Fisher information616

I(θ̂;x) = − ∂2 log L̃x(θ)

∂θ2

∣∣∣∣∣
θ=θ̂

= −∂
2 logL(θ;x)

∂θ2

∣∣∣∣
θ=θ̂

.

In the multidimensional case where Θ ⊆ Rp, the same line of reasoning as above yields617

L̃x ≈ GFV(θ̂, I(θ̂;x)), where I(θ̂;x) is the observed information matrix.618

As noted in [28], the quality of the normality assumption can sometimes be improved for
small samples by applying some transformation to the parameter. Let θ = ψ(δ) for some one-
to-one differentiable mapping ψ and alternative parameter δ, and assume that the relative
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likelihood as a function of δ, L̃
(δ)
x (δ), is approximately Gaussian, L̃

(δ)
x (δ) ≈ GFN(δ̂, I(δ̂, x)).

Then, the likelihood as a function of θ is L̃
(θ)
x (θ) = ψ̃(L̃

(δ)
x )(θ) = L̃

(δ)
x (ψ−1(θ)), and it can be

approximated by

L̃(δ)
x (ψ−1(θ)) ≈ exp

[
−1

2
I(δ̂;x)

(
ψ−1(θ)− ψ−1(θ̂)

)2
]

(30a)

≈ exp

[
−1

2
I(θ̂;x)[ψ′(δ̂)]2

(
ψ−1(θ)− ψ−1(θ̂)

)2
]
, (30b)

where we have used the equality I(δ̂;x) = I(θ̂;x)[ψ′(δ̂)]2 (see [28, p. 35]), and ψ′ denotes619

the first derivative of ψ. The fuzzy set L̃
(θ)
x can be combined with a t-GRFN prior θ̃0 ∼620

TÑ(µ0, σ
2
0, h0, ψ

−1) or, more generally, an mt-GRFN θ̃0 ∼
∑K

k=1 π0kTÑ(µ0k, σ
2
0k, h0k, ψ

−1) to621

obtain, respectively, a posterior t-GRFN θ̃x ∼ TÑ(µx, σ
2
x, hx, ψ

−1), or a posterior mt-GRFN622

θ̃x ∼
K∑

k=1

πxkTÑ(µxk, σ
2
xk, hxk, ψ

−1).

Example 13. Consider an iid sample x = (x1, . . . , xn) from a Poisson distribution with623

mean θ. Let t =
∑n

i=1 xi. The likelihood function is624

L(θ;x) =
n∏

i=1

θxi exp(−θ)
xi!

=
θt exp(−nθ)∏

xi!
,

and the MLE of θ is θ̂ = t/n, which gives us the following expression for the relative likeli-625

hood:626

L̃x(θ) =

(
θ

θ̂

)t
exp

[
n(θ̂ − θ)

]
.

It can easily be shown that I(θ̂;x) = n/θ̂, so that (29) yields627

L̃x(θ) ≈ exp

[
− n

2θ̂
(θ − θ̂)2

]
= exp

[
−n

2

(
θ

θ̂
− 1

)2
]
. (31)

Alternatively, let θ = exp(δ). Approximation (30) gives us628

L̃x(θ) ≈ exp

[
− n

2θ̂
exp(2θ̂)(log θ − log θ̂)2

]
. (32)

Figure 13 displays the exact relative likelihood L̃x(θ) for n = 10 and t = 30, as well as its629

approximations (31) and (32). As we can see, the lognormal approximation (32) is more630

accurate, and it takes into account the positivity of θ.631

Figure 14a shows two priors: a lognormal Bayesian prior θ̃0 ∼ TÑ(0.5, 0.1,+∞, log),632

represented by its cdf (blue dotted line) and a weaker lognormal t-GRFN prior633

θ̃′0 ∼ TÑ(0.5, 0.1, 10, log),
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Figure 13: Relative likelihood L̃x(θ) and its normal and lognormal approximations for an iid sample for the
Poisson distribution with mean θ, for n = 10 observations and t = 30.

represented by its contour function (red solid line), its upper and lower cdfs (blues solid634

lines) and 10 realizations (black dotted lines). We also show the lognormal approximation635

to the relative likelihood as a red broken line. Figure 14b shows the corresponding lognormal636

t-GRFN posteriors θ̃x = θ̃0 ⊕ L̃x (equal to the posterior probability distribution) and θ̃′x =637

θ̃′0⊕ L̃x, as well as the approximated relative likelihood. As expected, the posterior lognormal638

t-GRFN corresponding to the weaker prior is more imprecise, and closer to the relative639

likelihood. It is clear from Figure 14b that our approach is not a robust Bayes method:640

although the Bayes prior cdf is comprised between the lower and upper weak prior cdfs, this641

is not the case for the posteriors. In the extreme situation where the prior is vacuous,642

θ̃v0 ∼ TÑ(0, 1, 0, log), the posterior is the relative likelihood, as θ̃v0 ⊕ L̃x = L̃x. This is in643

contrast with the robust Bayes approach, which yields a (useless) vacuous posterior with the644

same vacuous prior information.645

To illustrate the possibility of taking into account more complex prior information, we646

show a bimodal mt-GRFN prior647

θ̃0 ∼ 0.5TÑ(0.5, 0.1, 30, log) + 0.5TÑ(1.5, 0.01, 20, log)

in Figure 15a, and the corresponding posterior mt-GRFN648

θ̃x = θ̃0 ⊕ L̃x = 0.29TÑ(0.84, 0.047, 60, log) + 0.71TÑ(1.26, 0.0040, 50, log).

in Figure 15b. In practice, the prior RFS could be elicited by a method similar to that649

proposed in Section 5.1.650
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Figure 14: (a) Lognormal Bayesian prior θ̃0 ∼ TÑ(0.5, 0.1,+∞, log) (blue dotted line), lognormal t-GRFN

prior θ̃′0 ∼ TÑ(0.5, 0.1, 10, log) (contour function: red solid line, upper and lower cdfs: blues solid lines, and

10 realizations: black dotted lines), and lognormal approximation to the relative likelihood L̃x (red broken

line); (b): Bayesian lognormal posterior distribution θ̃x = θ̃0 ⊕ L̃x (blue dotted line), lognormal t-GRFN

posterior θ̃′x = θ̃′0 ⊕ L̃x (contour function: red solid line, upper and lower cdfs: blues solid lines, and 10
realizations: black dotted lines), and lognormal approximation to the relative likelihood (red broken line).
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Figure 15: (a) Lognormal mt-GRFN prior θ̃0 ∼ 0.5TÑ(0.5, 0.1, 30, log) + 0.5TÑ(1.5, 0.01, 20, log) (contour
function: red solid line, upper and lower cdfs: blues solid lines, and 10 realizations: black dotted lines), and

lognormal approximation to the relative likelihood (red broken line); (b): mt-GRFN posterior θ̃′x = θ̃′0 ⊕ L̃x
(contour function: red solid line, upper and lower cdfs: blues solid lines, and 10 realizations: black dotted
lines), and lognormal approximation to the relative likelihood (red broken line).
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6. Conclusions651

Until recently, the application of evidential reasoning to problems involving continuous652

variables has been limited due to the lack of practical models of belief functions in Rp, p ≥ 1653

allowing for easy computation and combination. In [14], we have proposed a solution to this654

problem by considering “epistemic random fuzzy sets” as the basic construct, from which655

belief functions can be derived. In this framework, random fuzzy sets represent items of656

evidence and can be combined by a generalized product-intersection rule extending both the657

normalized product of possibility theory, and Dempster’s rule of Dempster-Shafer theory. In658

this framework, we have introduced in [14] simple models of random fuzzy sets based on the659

normal distribution. The proposed GRFN model and its multidimensional generalization660

define parameterized families of belief functions in Rp that can be easily used in calculations661

and combined using simple mathematical formulas. However, GRFNs, indexed by three662

parameters (mean, standard deviation and precision) are not flexible enough to represent663

the wide variety of belief functions needed in applications.664

In this paper, we have presented two extensions of the GRFN model. The first one665

consists in transforming a RFS X̃ defined in Rp by a bijective mapping ψ from Rp to666

Λ ⊆ Rp. Such a transformation allows us to define, e.g., belief functions on real intervals667

[a, b] with −∞ ≤ a < b ≤ +∞, or on the probability simplex Sp. The second extension668

consists in considering mixtures of (transformed) GRFNs, which make it possible to define669

belief functions of arbitrary “shape” and complexity. The rich families of generalized GRFNs670

introduced in this paper are closed under the product-intersection rule and can be used for671

a variety of evidential reasoning tasks involving real variables.672

We have discussed two important applications: the elicitation of expert beliefs about673

numerical quantities, and generalized Bayesian inference with weak priors defined as gener-674

alized GRFNs. Elicitation has been widely studied in the probabilistic context, much less675

in other settings such as possibility theory or belief functions. The new models introduced676

in this paper could be tested as representations of expert beliefs in real experiments. As677

for statistical inference, the epistemic random fuzzy set perspective provides a simple and678

consistent model in which data and prior knowledge are treated symmetrically as pieces679

of evidence represented by random fuzzy sets. The parametric families of random fuzzy680

numbers introduced in this paper can be used with a variety of statistical models without681

resorting to Monte Carlo simulation. It would be interesting to compare this approach682

with alternative methods such as, e.g., robust Bayesian analysis, both conceptually and683

practically.684

As another important application of the models introduced in this paper, we can mention685

the quantification of prediction uncertainty in machine learning, for regression problems686

characterized by asymmetric or heavy-tailed noise distributions, or in which target variables687

are subject to some constraints. The EVREG model, an evidential neural network model688

proposed in [9, 11] for “classical” regression problems, models prediction uncertainty using689

GRFNs. It could be adapted, for instance, to compositional regression tasks (in which690

target variables are proportions) by transforming its outputs to logistic normal random691

fuzzy vectors. This and other research directions will be investigated in future publications.692
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Appendix A. Combination of Gaussian Random Fuzzy vectors754

Let X̃1 ∼ Ñ(µ1,Σ1,H1) and X̃2 ∼ Ñ(µ2,Σ2,H2) be two independent GRFVs such755

that matrices Σ1, Σ2, H1 and H2 are all positive definite. We have756

X̃1 ⊕ X̃2 ∼ Ñ(µ̃12, Σ̃12,H12)

with757

H12 = H1 +H2, µ̃12 = Aµ̃, and Σ̃12 = AΣ̃AT ,

where A is the constant p× 2p matrix defined as758

A = H−1
12

(
H1 H2

)
,

759

Σ̃ =

(
Σ−1

1 +H −H
−H Σ−1

2 +H

)−1

,

µ̃ =

(
H
−1

Σ−1
1 + Ip −Ip
−Ip H

−1
Σ−1

2 + Ip

)−1(
H
−1

Σ−1
1 0

0 H
−1

Σ−1
2

)(
µ1

µ2

)
,

and760

H = (H−1
1 +H−1

2 )−1.

Furthermore, the degree of conflict between X̃1 and X̃2 is761

κ = 1−
√

|Σ̃|
|Σ1||Σ2|

exp

{
−1

2

[
µT1 Σ−1

1 µ1 + µT2 Σ−1
2 µ2 − µ̃T Σ̃

−1
µ̃
]}

. (A.1)

Appendix B. Proof of Proposition 3762

The membership function of Ỹ (ω) ∼ TÑ(µ, σ2, h, log) is763

Ỹ (ω)(y) = exp

(
−h

2
(log y −M(ω))2

)
,
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with M ∼ N(µ, σ2). The α-cut of Ỹ (ω) is764

αỸ (ω) =

[
exp

(
M(ω)−

√
−2 logα

h

)
, exp

(
M(ω) +

√
−2 logα

h

)]
. (B.1)

Now, M−
√
−2 logα

h
∼ N

(
µ−

√
−2 logα

h
, σ2

)
, hence the lower bound of (B.1) has a lognormal765

distribution LN

(
µ−

√
−2 logα

h
, σ2

)
and an expectation766

E∗(αỸ ) = exp

(
µ−

√
−2 logα

h
+
σ2

2

)
. (B.2)

Similarly,767

E∗(αỸ ) = exp

(
µ+

√
−2 logα

h
+
σ2

2

)
. (B.3)

The lower and upper expectations of Ỹ are, respectively, the integrals of (B.2) and (B.3)768

from α = 0 to α = 1. Let us start with769

E∗(Ỹ ) =

∫ 1

0

exp

(
µ−

√
−2 logα

h
+
σ2

2

)
dα.

By the change of variable β =
√
−2 logα

h
, we get770

E∗(Ỹ ) = h exp

(
µ+

σ2

2

)∫ +∞

0

β exp

(
−h

2
β2 − β

)
dβ.

Completing the square gives us771

E∗(Ỹ ) = h exp

(
µ+

σ2

2
+

1

2h

)∫ +∞

0

β exp

[
−h

2

(
β +

1

h

)2
]
dβ

︸ ︷︷ ︸
I

. (B.4)

Integral I is related to the mean of the left-truncated normal distribution on [0,+∞), with772

mean −1/h, standard deviation 1/h, and density773

f(y) =

√
h

√
2π
(

1− Φ
(

1√
h

)) exp

[
−h

2

(
β +

1

h

)2
]
.

The mean of this truncated normal distribution is774

−1

h
+

1√
h

φ(1/
√
h)

1− Φ(1/
√
h)
,
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where φ is the standard normal pdf. Consequently, we have775

I =
− 1
h

+ 1√
h

φ(1/
√
h)

1−Φ(1/
√
h)

√
h√

2π
(

1−Φ
(

1√
h

)) =
√

2π

[
−h−3/2

(
1− Φ

(
1√
h

))
+

1

h
φ

(
1√
h

)]
. (B.5)

From (B.4) and (B.5), we get (17a). Similar calculations starting from the upper bound of776

(B.1) yield (17b).777

Appendix C. Proof of Theorem 4778

We start by the following lemma, which generalizes Lemma 1 in [14].779

Lemma 3. Let (M1, Z1) and (M2, Z2) be two independent two-dimensional random vectors780

such that781

P (Z1 = k) = π1k, k = 1, . . . , K,
782

M1 | (Z1 = k) ∼ N(µ1k, σ
2
1k), k = 1, . . . , K

and783

P (Z2 = `) = π2`, ` = 1, . . . , L,
784

M2 | (Z2 = `) ∼ N(µ2`, σ
2
2`), ` = 1, . . . , L.

Let F̃ be the fuzzy subset of R2 × {1, . . . , K} × {1, . . . , L} with membership function

F̃ (m1,m2, y1, y2) = hgt (GFN(m1, h1(y1)) · GFN(m2, h2(y2)))

= exp

(
−h1(y1)h2(y2)(m1 −m2)2

2(h1(y1) + h2(y2))

)
,

where h1(y1) =
∏K

k=1 h
y1k
1k and h2(y2) =

∏L
`=1 h

y2k
2k and, as before, y1k = I(y1 = k) and785

y2k = I(y2 = `).786

The conditional probability distribution of (M1,M2, Z1, Z2) given F̃ can be described as787

follows:788

• The conditional probability distribution of (M1,M2) given F̃ and (Z1, Z2) = (k, `) is789

two-dimensional Gaussian with mean vector µ̃k` = (µ̃1k`, µ̃2k`)
T and covariance matrix790

Σ̃kl =

(
σ̃2

1k` ρk`σ̃1k`σ̃2kl

ρk`σ̃1k`σ̃2kl σ̃2
2k`

)
,

with

µ̃1k` =
µ1k(1 + hσ2

2`) + µ2`hk`σ
2
1k

1 + hk`(σ2
1k + σ2

2`)
, µ̃2k` =

µ2`(1 + hk`σ
2
1k) + µ1khk`σ

2
2

1 + hk`(σ2
1k + σ2

2`)
(C.1a)

σ̃2
1k` =

σ2
1k(1 + hklσ

2
2`)

1 + hkl(σ2
1k + σ2

2`)
, σ̃2

2` =
σ2

2`(1 + hk`σ
2
1k)

1 + hk`(σ2
1k + σ2

2`)
(C.1b)

ρk` =
hk`σ1kσ2`√

(1 + hk`σ2
1k)(1 + hk`σ2

2`)
, (C.1c)
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where791

hk` =
h1kh2`

h1k + h2`

. (C.1d)

• The conditional probability distribution of (Z1, Z2) given F̃ is792

P (Z1 = k, Z2 = ` | F̃ ) = π̃k` =
(1− κk`)π1kπ2`∑

k′`′(1− κk′`′)π1k′π2`′
, (C.2)

where κk` is the degree of conflict between two independent GRFNs X̃1k ∼ Ñ(µ1k, σ
2
1k, h1k)793

and X̃2` ∼ Ñ(µ2`, σ
2
2`, h2`) given by Proposition 1.794

Proof. Given (Z1, Z2), M1 and M2 have normal distributions. The conditional probability

distribution of (M1,M2) given F̃ and (Z1, Z2) = (k, `) results directly from Lemma 1 of [14].
Now, from Bayes’ theorem,

P (Z1 = k, Z2 = ` | F̃ ) =
P (F̃ | Z1 = k, Z2 = `)P (Z1 = k, Z2 = `)

P (F̃ )

=
P (F̃ | Z1 = k, Z2 = `)π1kπ2`∑

k′,`′ P (F̃ | Z1 = k′, Z2 = `′)π1k′π2`′
.

From Lemma 1 in [14], P (F̃ | Z1 = k, Z2 = `) = 1− κk`, where κk` is given by Proposition795

1, which completes the proof.796

We can now give the proof of Theorem 4.797

Proof of Theorem 4. Let (M1, Z1) and (M2, Z2) be pairs of random variables from (Ω1,Σ1, P1)798

and (Ω2,Σ2, P2) to (R,B(R)) corresponding, respectively, to m-GRFNs X̃1 and X̃2. The799

orthogonal sum of X̃1 and X̃2 is the RFS (Ω1 ×Ω2,Σ1 ⊗Σ2, P̃12,R,B(R), X̃�), where X̃� is800

the mapping801

X̃� : (ω1, ω2)→ GFN(M12(ω1, ω2), h1(ω) + h2(ω)),

with802

M12(ω1, ω2) =
h1(ω)M1(ω1) + h2(ω)M2(ω2)

h1(ω) + h2(ω)
,

and P̃12 is the probability measure on Ω1×Ω2 obtained by conditioning P1×P2 on the fuzzy
set Θ̃∗(ω1, ω2) = hgt (GFN(M1(ω1), h1(ω)),GFN(M2(ω2), h2(ω))). The pushforward measure

of P̃12 by the random vector (M1,M2, Z1, Z2) is the conditional distribution given F̃ described
in Lemma 3, with parameters (µ̃1k`, µ̃2k`, σ̃1k`, σ̃2k`, ρk`, π̃j`), k = 1, . . . , K, ` = 1, . . . , L. The

conditional expectation of M12 given (Z1, Z2) = (k, `) and F̃ is

E(M12|Z1 = k, Z2 = `, F̃ ) =
h1kE(M1|Z1 = k, Z2 = `, F̃ ) + h2`E(M2|Z1 = k, Z2 = `, F̃ )

h1k + h2`

=
h1kµ̃1k + h2`µ̃2`

h1k + h2`

,
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and its conditional variance is

Var(M12|Z1 = k, Z2 = `, F̃ ) =
1

(h1k + h2`)2
(h2

1Var(M1|Z1 = k, Z2 = `, F̃ )+

h2
2Var(M2|Z1 = k, Z2 = `, F̃ ) + 2h1kh2`Cov(M1,M2|Z1 = k, Z2 = `, F̃ )),

which gives803

Var(M12|Z1 = k, Z2 = `, F̃ ) =
h2

1kσ̃
2
1k + h2

2σ̃
2`
2 + 2ρk`h1kh2`σ̃1kσ̃2`

(h1k + h2`)2
.

Finally, P (Z1 = k, Z2 = `|F̃ ) = π̃k`, which completes the proof of the first part of the
theorem. The second part is obtained directly by noticing that

κ = 1− P (F̃ ) = 1−
K∑

k=1

L∑

`=1

P (F̃ | Z1 = k, Z2 = `)P (Z1 = k, Z2 = `)

= 1−
K∑

k=1

L∑

`=1

(1− κk`)π1kπ2` =
K∑

k=1

L∑

`=1

κk`π1kπ2`.
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