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Abstract

The theory of epistemic random fuzzy sets is a general theory of uncertainty encompassing
both possibility theory and the Dempster-Shafer theory of belief functions as special cases.
Within this framework, Gaussian random fuzzy numbers have recently been introduced as
a practical model of uncertainty about real variables. However, the limited flexibility of
this model does not allow it to represent all kinds of beliefs encountered in applications.
In this paper, it is extended in two ways. First, we study one-to-one transformations of
random fuzzy sets and show that such transformations commute with combination. This
property allows us to define parametric families of easily combinable random fuzzy numbers
and vectors on different frames based on the Gaussian model. We then go one step further
by studying mixtures of random fuzzy variables, which provide a very flexible model making
it possible to construct belief functions on continuous frames with arbitrary complexity.
To demonstrate the applicability and practical interest of these models, two applications
are studied: the elicitation of expert beliefs about numerical quantities, and generalized
Bayesian inference with weak prior information represented by random fuzzy numbers.

Keywords: Belief functions, evidence theory, possibility theory, random fuzzy sets,
uncertainty, statistical inference, elicitation.

1. Introduction

The Dempster-Shafer (DS) theory of belief functions [5, 24, 11] and possibility theory
[28, 14, 12] are two powerful frameworks for representing partial information and reasoning
with uncertainty. Whereas DS theory makes it possible to represent partially reliable evi-
dence, possibility theory allows us to express uncertainty based on vague information such
as conveyed by fuzzy sets. In [8, 13], we have argued that DS and possibility theories can
be viewed as two specializations of a more general theory of “epistemic random fuzzy sets”.
A random fuzzy set (RFS), also called “random fuzzy variable”, maps each element of a
probability space to a fuzzy subset of a set Θ. It is, thus, a model of evidence that can
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be both uncertain and fuzzy. In this framework, a possibility distribution can be viewed
as a constant RFS, while a random set (a notion underlying DS theory) corresponds to the
special case where all images are crisp. Random fuzzy sets induced by independent pieces of
evidence can be combined by the (generalized) product-intersection rule, which generalizes
both Dempster’s rule of combination and the normalized product intersection of possibility
distributions.

Whereas the theory of belief functions has been defined from the start in a very general
setting [25], most applications have used only belief functions on finite spaces. This limita-
tion was mainly due to the absence of general enough parametric families of belief functions
in continuous spaces that could easily be defined and combined by Dempster’s rule of com-
bination. In [9], we have proposed Gaussian Random Fuzzy Numbers (GRFNs) as a model
for defining belief functions on the real line. A GRFN is a “doubly Gaussian model”: it
can be seen either as a Gaussian possibility distribution whose mode is a Gaussian random
variable, or as a Gaussian probability distribution whose mean is a Gaussian fuzzy set. We
have also proposed Gaussian Random Fuzzy Vectors (GRFVs) as a multidimensional exten-
sion of GRFNs, which makes it possible to construct belief functions in Rp for p ≥ 1. The
families of GRFNs and GRFVs are closed under the product-intersection operation, which
makes them suitable for evidential reasoning with continuous variables. An application to
machine learning was presented in [9, 10].

Practical as it may be, the GRFN model is quite restricted. The domain of a GRFN is
the whole real line, making the model unsuitable for representing belief functions on a real
interval such as (0,+∞) or [a, b]. Furthermore, a GRFN is unimodal (the contour function
has a unique maximum) and symmetric about the mean µ, i.e., intervals of the form [µ−r, µ]
and [µ, µ+ r], for any r > 0, have the same degree of belief; these properties may not always
reflect an agent’s actual beliefs. The GRFV model is also inadequate for representing, e.g.,
beliefs on probabilities or proportions, for which the domain of interest is the probability
simplex. It is thus of interest to define more flexible parameterized families of random fuzzy
numbers and vectors with different supports and different “shapes”, while maintaining the
closure property under the product-intersection rule.

In this paper, the objective stated above is achieved in two ways. We first study bijective
transformations of RFSs and show that such transformations commute with combination,
i.e., applying the transformation before or after the combination yields the same result. This
property is exploited to define easily combinable random fuzzy numbers and vectors based
on GRFNs and GRFVs. We then go one step further by studying mixtures of RFSs, which
provide a very flexible model making it possible to construct belief functions on Rp with
virtually unlimited complexity. Finally, we combine the two ideas and propose mixtures of
transformed GRFNs and GRFVs as a very general model of RFSs (and associated belief
functions) easily combinable using the product-intersection rule.

To demonstrate the applicability and practical interest of the flexible models introduced
in this paper, two applications will be discussed. The first one concerns the elicitation
of expert beliefs about a numerical quantity of interest. Without getting into the delicate
methodological problems posed by real elicitation experiments, we will demonstrate how
the parameters of a random fuzzy number can be fitted to a small number of expert plau-
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sibility statements. The second application is related to generalized Bayesian inference. As
discussed in [8, 13], the relative likelihood function can be seen as possibility distribution
about the parameter of interest. This sample information can be combined with prior knowl-
edge expressed as a RFS, which constitutes a form of “weak prior”, ranging continuously
from precise knowledge represented by a probability distribution, to complete ignorance. In
many cases, the likelihood function (sometimes after transforming the parameter) is well ap-
proximated by a Gaussian possibility distribution and can easily be combined with a GRFN
or a mixture thereof to compute a posterior RFS.

The rest of this paper is organized as follows. The main definitions related to RFSs and
GRFNs are first recalled in Section 2. Transformations of RFSs and mixture models are
studied, respectively, in Section 3 and 4. The applications are then discussed in Section 5.
Finally, Section 6 concludes the paper.

2. Random fuzzy sets

To make the paper self-contained, the RFS setting and its relation with belief functions
will first be briefly reviewed in Section 2.1. The GRFN and GRFV models will then be
recalled, respectively, in Sections 2.2 and 2.3.

2.1. General definitions and results

Definition. Let us consider a probability space (Ω,ΣΩ, P ), a measurable space (Θ,ΣΘ), and

a mapping X̃ from Ω to the set [0, 1]Θ of fuzzy subsets of Θ (see Figure 1). For any α ∈ [0, 1],

let αX̃ be the mapping from Ω to 2Θ such that

αX̃(ω) = α[X̃(ω)],

where α[X̃(ω)] = {θ ∈ Θ : X̃(ω)(θ) ≥ α} is the weak α-cut of X̃(ω). If, for any α ∈ [0, 1],
αX̃ is ΣΩ−ΣΘ strongly measurable [22], the tuple (Ω,ΣΩ, P,Θ,ΣΘ, X̃) is said to be a random

fuzzy set (also called a fuzzy random variable) [4]. We define the support of X̃ as the union
of the supports of its images, i.e.,

supp(X̃) =
⋃

ω∈Ω

{θ ∈ Θ : X̃(ω)(θ) > 0}.

If Θ is equal to R or a real interval, and if the images X̃(ω) are fuzzy numbers (i.e., normal

and convex fuzzy subsets of R), X̃ is said to be a random fuzzy number (RFN). For any

α ∈ [0, 1], the mapping αX̃ is, then, a random interval.
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Figure 1: Definition of a random fuzzy set.
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Interpretation. In epistemic random fuzzy set (ERFS) theory, RFSs are used to represent
unreliable and fuzzy evidence: the set Ω is then seen as a set of interpretations of a piece
of evidence about a variable θ taking values in Θ. If interpretation ω ∈ Ω holds, we know
that “θ is X̃(ω)”, i.e., θ is constrained by the possibility distribution defined by fuzzy set

X̃(ω). Such RFSs encode a state of knowledge about some variable θ, hence the adjective
“epistemic”. This model should not be confused with alternative interpretations of RFSs as
describing a fuzzy data generation mechanism [23, 17], or as imprecise information about a
“true” random variable [19, 3].

Belief and plausibility functions. Just as a random set, a RFS induces a belief function,
which can be seen as quantifying one’s beliefs based on the available evidence. From now
on, we will assume any RFS X̃ to verifying the following normalization conditions:

1. For all ω ∈ Ω, the height of X̃(ω), defined as hgt(X̃(ω)) = supθ∈Θ X̃(ω)(θ) is either 0

or 1, i.e., X̃(ω) is either the empty set, or a normal fuzzy set;

2. The image X̃(ω) is almost surely nonempty, i.e., P ({ω ∈ Ω : X̃(ω) = ∅}) = 0.

For any ω ∈ Ω, let ΠX̃(ω) be the possibility measure on Θ quantifying our beliefs on θ
given that interpretation ω holds; it is defined ,for any B ∈ ΣΘ, as

ΠX̃(ω)(B) = sup
θ∈B

X̃(ω)(θ). (1a)

The dual necessity measure NX̃(ω) is

NX̃(ω)(B) =

{
1− ΠX̃(ω)(B

c) if X̃(ω) 6= ∅
0 otherwise,

(1b)

where Bc denotes the complement of B. For any B ∈ ΣΘ, let BelX̃(B) and PlX̃(B) denote,
respectively, the expected necessity and the expected possibility of B:

BelX̃(B) =

∫

Ω

NX̃(ω)(B)dP (ω), (2a)

PlX̃(B) =

∫

Ω

ΠX̃(ω)(B)dP (ω) = 1−BelX̃(Bc). (2b)

The mappings B 7→ BelX̃(B) and B 7→ PlX̃(B), are, respectively, belief and plausibility
functions [29, 4].

Lower and upper expectations of a RFN. Let X̃ be a RFN and assume for simplicity that,
for any ω ∈ Ω, the membership function X̃(ω) is upper-semicontinuous, so that for any

α ∈ (0, 1], αX̃(ω) = [αX̃−(ω), αX̃+(ω)] is a closed interval. The lower and upper expectations

of αX̃ are, respectively, the expectations of its lower and upper bounds. The lower and upper
expectations of X̃ [13] are then obtained by averaging these expectations with respect to α,
i.e.,

E∗(X̃) =

∫ 1

0

E(αX̃−)dα and E∗(X̃) =

∫ 1

0

E(αX̃+)dα. (3)
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Combination of RFSs. The combination of independent pieces of evidence by Dempster’s
rule [24] is a key component of DS theory. In possibility theory, conjunctive combination
operators are based on t-norms [15]. In ERFS theory, the product-intersection rule intro-
duced in [8, 13] extends these operators to the general case where evidence is represented
by RFSs.

Let (Ωi,Σi, Pi,Θ,ΣΘ, X̃i), i = 1, 2, be two RFSs encoding independent pieces of evidence.
The independence assumption means here that the relevant probability measure on the joint
measurable space (Ω1 × Ω2,Σ1 ⊗ Σ2) is the product measure P1 × P2. If interpretations

ω1 ∈ Ω1 and ω2 ∈ Ω2 both hold, θ is constrained by both X̃1(ω1) and X̃2(ω2). It is then
natural to combine these two fuzzy sets by an intersection operator. As argued in [15, 8],
the product t-norm is the most suitable for combining fuzzy information from independent
sources. Furthermore, the normalized product intersection operation is associative.

Conflict needs to be handled at two levels. First, the product intersection of fuzzy sets
X̃1(ω1) and X̃2(ω2) has to be normalized to obtain a normal fuzzy set, or the empty set
in case of total conflict. Let � denote the normalized product intersection, defined for any
fuzzy subsets F̃ and G̃ of Θ as

(F̃ � G̃)(θ) =





F̃ (θ)G̃(θ)

hgt(F̃ · G̃)
if hgt(F̃ · G̃) > 0

0 otherwise.

(4)

We consider the mapping X̃�(ω1, ω2) = X̃1(ω1) � X̃2(ω2) assumed to be Σ1 ⊗ Σ2-ΣΘ

strongly measurable. Secondly, the product probability measure P1 × P2 needs to be condi-
tioned to eliminate pairs of fully inconsistent interpretations (ω1, ω2) ∈ Ω1 × Ω2 such that

hgt(X̃1(ω1)X̃2(ω2)) = 0, but also to downweight pairs of partially inconsistent interpreta-

tions such that 0 < hgt(X̃1(ω1)X̃2(ω2)) < 1. This is achieved by soft normalization proposed
in [8, 13], which consists in conditioning the product probability P1×P2 by the fuzzy subset

Θ̃∗ of consistent pairs of interpretations, with membership function

Θ̃∗(ω1, ω2) = hgt
(
X̃1(ω1) · X̃2(ω2)

)
. (5)

The conditional probability measure P̃12 = (P1 × P2)(· | Θ̃∗) has the following expression,
for any B ∈ Σ1 ⊗ Σ2:

P̃12(B) =
(P1 × P2)(B ∩ Θ̃∗)

(P1 × P2)(Θ̃∗)
=

∫
Ω1

∫
Ω2
B(ω1, ω2)hgt

(
X̃1(ω1) · X̃2(ω2)

)
dP2(ω2)dP1(ω1)

∫
Ω1

∫
Ω2

hgt
(
X̃1(ω1) · X̃2(ω2)

)
dP2(ω2)dP1(ω1)

,

where B(·, ·) denotes the indicator function of B. The combined RFS, denoted by X̃1 ⊕ X̃2

and called the orthogonal sum of X̃1 and X̃2 is, thus, formally defined by the following tuple:

(Ω1 × Ω2,Σ1 ⊗ Σ2, P̃12,Θ,ΣΘ, X̃�).

The operator ⊕ is commutative and associative; it generalizes both Dempster’s rule and the
normalized product intersection of possibility distributions.
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2.2. Gaussian random fuzzy sets

The important role played by the Gaussian distribution in probability theory and statis-
tics is partly due to the fact that it is amenable to easy calculation. Until recently, such a
practical model was missing in DS theory, which hindered its application to uncertain rea-
soning with real variables. The GRFN model fills this gap by blending Gaussian possibility
distributions and Gaussian random variables.

Gaussian fuzzy number. Let us start by recalling the definition of a Gaussian Fuzzy Number
(GFN) as a fuzzy subset of R with membership function

x 7→ ϕ(x;m,h) = exp

(
−h

2
(x−m)2

)
,

where m ∈ R is the mode and h ∈ [0,+∞] is the precision. Such a fuzzy number will be
denoted by GFN(m,h). GFNs are easily combined by the normalized product intersection
operator (4), as the following property holds: GFN(m1, h1) �GFN(m2, h2) = GFN(m12, h1 +
h2), with m12 = (h1m1 + h2m2)/(h1 + h2).

Gaussian random fuzzy number. Let us now consider a probability space (Ω,ΣΩ, P ) and a
Gaussian random variable (GRV) M : Ω → R with mean µ and variance σ2. The random

fuzzy set X̃ : Ω→ [0, 1]R defined as

X̃(ω) = GFN(M(ω), h)

is called a Gaussian random fuzzy number (GRFN) with mean µ, variance σ2 and precision

h, which we write X̃ ∼ Ñ(µ, σ2, h). A GRFN can, thus, be seen as a GFN whose mode is
uncertain and described by a Gaussian probability distribution. It is defined by a location
parameter µ, and two parameters h and σ2 corresponding, respectively, to possibilistic and
probabilistic uncertainty. In the special case where the precision is infinite, X̃ becomes
equivalent to a GRV with mean µ and variance σ2, which we can write: Ñ(µ, σ2,+∞) =

N(µ, σ2). If σ2 = 0, M is constant and X̃ is equivalent to possibility distribution GFN(µ, h),

i.e., Ñ(µ, 0, h) = GFN(µ, h). Finally, when h = 0, we have X̃(ω)(x) = 1 for all ω ∈ Ω and
all x ∈ R: such a RFS represents total ignorance and the corresponding belief function is
said to be vacuous.

Belief and plausibility. Formulas to compute the plausibility and belief degrees of any real
interval [x, y] induced by a GRFN X̃ ∼ Ñ(µ, σ2, h) are given in [13]. In particular, the

contour function of X̃ is given by

plX̃(x) =
1√

1 + hσ2
exp

(
− h(x− µ)2

2(1 + hσ2)

)
. (6)

The lower and upper cumulative distribution functions defined, respectively, as the mappings
x 7→ Bel(−∞, x] and x 7→ Pl(−∞, x] have the following expressions:

BelX̃((−∞, x]) = Φ

(
x− µ
σ

)
− plX̃(x)Φ

(
x− µ

σ
√
hσ2 + 1

)
, (7a)
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where Φ is the standard normal cdf, and

PlX̃((−∞, x]) = BelX̃((−∞, x]) + plX̃(x). (7b)

Lower and upper expectations. Let X̃ ∼ Ñ(µ, σ2, h) be a GRFN with h > 0. As shown in
[13], its lower and upper expectations are, respectively,

E∗(X̃) = µ−
√

π

2h
and E∗(X̃) = µ+

√
π

2h
. (8)

Combination of GRFNs. Most importantly, as shown in [13], the family of GRFNs is closed

under the GPI combination operation ⊕: given two GRFNs X̃1 ∼ Ñ(µ1, σ
2
1, h1) and X̃2 ∼

Ñ(µ2, σ
2
2, h2), we have X̃1 ⊕ X̃2 ∼ Ñ(µ̃12, σ̃

2
12, h1 + h2), with

µ̃12 =
h1µ̃1 + h2µ̃2

h1 + h2

, σ̃2
12 =

h2
1σ̃

2
1 + h2

2σ̃
2
2 + 2ρh1h2σ̃1σ̃2

(h1 + h2)2
, (9a)

where

µ̃1 =
µ1(1 + hσ2

2) + µ2hσ
2
1

1 + h(σ2
1 + σ2

2)
, (9b)

µ̃2 =
µ2(1 + hσ2

1) + µ1hσ
2
2

1 + h(σ2
1 + σ2

2)
, (9c)

σ̃2
1 =

σ2
1(1 + hσ2

2)

1 + h(σ2
1 + σ2

2)
, σ̃2

2 =
σ2

2(1 + hσ2
1)

1 + h(σ2
1 + σ2

2)
, (9d)

ρ =
hσ1σ2√

(1 + hσ2
1)(1 + hσ2

2)
, (9e)

and h = h1h2/(h1 +h2). The degree of conflict between X̃1 and X̃2 is given by the following
proposition.

Proposition 1. The degree of conflict between X̃1 ∼ Ñ(µ1, σ
2
1, h1) and X̃2 ∼ Ñ(µ2, σ

2
2, h2)

is

κ =





1− σ̃1σ̃2
σ1σ2

√
1− ρ2 exp

{
−1

2

[
µ21
σ2
1

+
µ22
σ2
2

]
+ 1

2(1−ρ2)

[
µ̃21
σ̃2
1

+
µ̃22
σ̃2
2
− 2ρ µ̃1µ̃2

σ̃1σ̃2

]}
if σ1, σ2 > 0

1− 1√
1+hσ̃2

1

exp
(
− h

2(1+hσ̃2
1)

(µ̃1 − µ2)2
)

if σ1 ≥ 0, σ2 = 0,

where µ̃1, µ̃2, σ̃2
1, σ̃2

2, ρ are given by (9).

Proof. The formula for the case σ1 > 0, σ2 > 0 is proved in [13]. The case σ2 = 0 can be
treated by replacing µ̃1, µ̃2, σ̃2

1, σ̃2
2, by their expressions given by (9), and letting σ2 tend to

zero.
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2.3. Gaussian random fuzzy vectors

Gaussian random fuzzy vectors (GRFVs) are multidimensional extensions of GRFNs:
they are defined as Gaussian fuzzy vectors (GFVs), whose modes are random vectors with
a multidimensional Gaussian distribution. We start by giving the definition of GFVs, after
which we recall that of GRFVs as well as some properties.

Gaussian fuzzy vectors. A p-dimensional GFV with mode m ∈ Rp and p × p symmetric
and positive semidefinite precision matrix H is defined as the normalized fuzzy subset of
Rp with membership function

ϕ(x;m,H) = exp

(
−1

2
(x−m)TH(x−m)

)
.

It is denoted as GFV(m,H). The normalized product of two GFV’s is still a GFV; more
precisely, the following equality holds: GFV(m1,H1) � GFV(m2,H2) = GFV(m12,H12),
with m12 = (H1 +H2)−1(H1m1 +H2m2) and H12 = H1 +H2.

Gaussian random fuzzy vectors. Let (Ω,ΣΩ, P ) be a probability space, M : Ω → Rp a p-
dimensional Gaussian random vector with mean µ and variance matrix Σ, and H a p × p
symmetric and positive semidefinite real matrix. The random fuzzy set X̃ : Ω → [0, 1]R

p

defined as X̃(ω) = GFV(M(ω),H) is called a Gaussian random fuzzy vector (GRFV), which

we denote as X̃ ∼ Ñ(µ,Σ,H).
As shown in [13], the contour function of a GRFV is given by the following equation,

which generalizes (6):

plX̃(x) =
1

|Ip + ΣH|1/2 exp

(
−1

2
(x− µ)T (H−1 + Σ)−1(x− µ)

)
, (10)

where Ip is the p-dimensional identity matrix.
The orthogonal sum of two GRFVs is still a GRFV. Formulas for the mean, variance

matrix and precision matrix of the combined GRFV were derived in [13]. For completeness,
they are recalled in Appendix A.

3. Transformations of Gaussian random fuzzy variables

As mentioned in Section 1, the GRFN and GRFV models are very convenient for un-
certain reasoning with real variables due to their closure property with respect to the ⊕
operator, but they also have several limitations. In particular, the support of a GRFN is
the whole real line, making it unsuitable for representing evidence about variables taking
values in a strict subset of R. In this section, we overcome this limitation by considering
bijective transformations of RFSs. The main result, stated in Section 3.1, is that the image
of the orthogonal sum of two RFSs by a bijective mapping is the orthogonal sum of the
images. Some useful transformations of GRFNs are studied in Section 3.2, and a particular
transformation of GRFVs is considered in Section 3.3.
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Figure 2: Transformation of a random fuzzy set X̃ by a one-to-one mapping ψ : Θ→ Λ.

3.1. Transformation of a random fuzzy set

Let (Ω,ΣΩ, P,Θ,ΣΘ, X̃) be a RFS, and ψ : Θ → Λ be a one-to-one mapping from Θ to
some set Λ. Zadeh’s extension principle [27] allows us to extend mapping ψ to fuzzy subsets

of Θ; specifically, we can define a mapping ψ̃ : [0, 1]Θ → [0, 1]Λ such that

∀F̃ ∈ [0, 1]Θ, ψ̃(F̃ )(λ) = sup
λ=ψ(θ)

F̃ (θ) = F̃ (ψ−1(λ)).

We note that mapping ψ̃ is also one-to-one, and its inverse is the extension of ψ−1: for any
F̃ ∈ [0, 1]Θ,

(ψ̃−1 ◦ ψ̃)(F̃ )(θ) = ψ̃−1(ψ̃(F̃ ))(θ)

= sup
θ=ψ−1(λ)

ψ̃(F̃ )(λ)

= sup
θ=ψ−1(λ)

F̃ (ψ−1(λ)) = F̃ (θ).

Similarly, (ψ̃ ◦ ψ̃−1)(F̃ ) = F̃ , so we can write ψ̃−1 = ψ̃−1.

We now consider the composed mapping ψ̃ ◦ X̃ from Ω to [0, 1]Λ, such that (ψ̃ ◦ X̃)(ω) =

ψ̃[X̃(ω)] (see Figure 2). To show that it is a RFS, we start by the following lemma.

Lemma 1. The set ΣΛ containing the images of all elements of ΣΘ by ψ,

ΣΛ = {ψ(B) : B ∈ ΣΘ},

is a σ-algebra on Λ.

Proof. Since ΣΘ is a σ-algebra, it contains the empty set ∅; consequently, ψ(∅) = ∅ ∈ ΣΛ.
Now, for any A ∈ ΣΛ, B = ψ−1(A) ∈ ΣΘ; hence, ψ(Θ \ B) = Λ \ ψ(B) ∈ ΣΛ. Finally, let
(Ai), i ∈ I be a collection of elements of ΣΛ, and Bi = ψ−1(Ai), i ∈ I their inverse images.
We have

⋃

i∈I

Ai =
⋃

i∈I

ψ(Bi) = ψ

(⋃

i∈I

Bi

)
∈ ΣΛ.
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Proposition 2. Let (Ω,ΣΩ, P,Θ,ΣΘ, X̃) be a RFS, ψ : Θ→ Λ a one-to-one mapping from

Θ to Λ, and ΣΛ = {ψ(B) : B ∈ ΣΘ}. The tuple (Ω,ΣΩ, P,Λ,ΣΛ, ψ̃ ◦ X̃) is a RFS.

Proof. We need to prove that, for any α ∈ [0, 1] the mapping α(ψ̃ ◦ X̃) is ΣΩ − ΣΛ strongly
measurable [22], i.e., for any A ∈ ΣΛ,

A∗ = {ω ∈ Ω : α(ψ̃ ◦ X̃)(ω) ∩ A 6= ∅} ∈ ΣΩ.

Now,

α(ψ̃ ◦ X̃)(ω) = {λ ∈ Λ : (ψ̃ ◦ X̃)(ω)(λ) ≥ α}
= {λ ∈ Λ : X̃(ω)[ψ−1(λ)] ≥ α}
= {λ ∈ Λ : ψ−1(λ) ∈ αX̃(ω)}
= ψ[αX̃(ω)].

Consequently,

A∗ = {ω ∈ Ω : ψ[αX̃(ω)] ∩ A 6= ∅}
= {ω ∈ Ω : ψ

[
αX̃(ω) ∩ ψ−1(A)

]
6= ∅}

= {ω ∈ Ω : αX̃(ω) ∩ ψ−1(A) 6= ∅}.

As αX̃ is ΣΩ − ΣΘ strongly measurable and ψ−1(A) ∈ ΣΘ, it follows that A∗ ∈ ΣΩ.

Belief and plausibility. Interestingly, the belief and plausibility functions induced by the
transformed RFS ψ̃◦X̃ have a simple expression in terms of corresponding functions induced
by X̃, as expressed by the following theorem.

Theorem 1. Let (Ω,ΣΩ, P,Θ,ΣΘ, X̃) be a RFS, ψ : Θ→ Λ a one-to-one mapping from Θ

to Λ, ΣΛ = {ψ(B) : B ∈ ΣΘ}, and ψ̃ ◦ X̃ the RFS resulting from the transformation of X̃
by ψ. For any C ∈ ΣΛ,

Belψ̃◦X̃(C) = BelX̃(ψ−1(C)), (11a)

and
Plψ̃◦X̃(C) = PlX̃(ψ−1(C)). (11b)

Proof. From (1), for all C ∈ ΣΛ,

Π(ψ̃◦X̃)(ω)(C) = sup
λ∈C

(ψ̃ ◦ X̃)(ω)(λ)

= sup
λ∈C

X̃(ω)(ψ−1(λ))

= sup
θ∈ψ−1(C)

X̃(ω)(θ) = ΠX̃(ω)(ψ
−1(C)),

and, similarly,
N(ψ̃◦X̃)(ω)(C) = NX̃(ω)(ψ

−1(C)).

The result follows directly using the definition of belief and plausibility function in (2).
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Combination. Let now consider the combination of two transformed RFSs ψ◦X̃1 and ψ◦X̃2

with the same transformation ψ. The following lemma states that the image of the product
intersection of two fuzzy subsets of Θ is equal to the product intersection of their images, and
the degree of conflict (defined as the height of the product intersection before normalization)
of the fuzzy subsets equals that of their images.

Lemma 2. Let F̃ and G̃ be two fuzzy subsets of Θ. We have

ψ̃(F̃ � G̃) = ψ̃(F̃ ) � ψ̃(G̃)

and
hgt(ψ̃(F̃ ) · ψ̃(G̃)) = hgt(F̃ · G̃).

Proof. For any λ ∈ Λ,

ψ̃(F̃ � G̃)(λ) = (F̃ � G̃)[ψ−1(λ)] (12a)

=
F̃ [ψ−1(λ)]G̃[ψ−1(λ)]

supλ′ F̃ [ψ−1(λ′)]G̃[ψ−1(λ′)]
(12b)

=
ψ̃(F̃ )(λ)ψ̃(G̃)(λ)

supλ′ ψ̃(F̃ )(λ′)ψ̃(G̃)(λ′)
(12c)

= (ψ̃(F̃ ) � ψ̃(G̃))(λ). (12d)

Now, the degree of conflict between ψ̃(F̃ ) and ψ̃(G̃) is the denominator on the right-hand
side of (12b). It is equal to

sup
λ∈Λ

F̃ [ψ−1(λ)]G̃[ψ−1(λ)] = sup
θ∈Θ

F̃ (θ)G̃(θ).

We can now state the main result of this section.

Theorem 2. Let (Ωi,Σi, Pi,Θ,ΣΘ, X̃i), i = 1, 2, be two RFSs representing independent
evidence. We have

ψ̃ ◦ (X̃1 ⊕ X̃2) = (ψ̃ ◦ X̃1)⊕ (ψ̃ ◦ X̃2).

Proof. As recalled in Section 2.1, the orthogonal sum of ψ̃ ◦ X̃1 and ψ̃ ◦ X̃2 is defined by
mapping

(ω1, ω2) 7→ (ψ̃ ◦ X̃1)(ω1) � (ψ̃ ◦ X̃2)(ω2),

and the joint probability measure P1 × P2 conditioned by the fuzzy subset of Ω1 × Ω2 with
membership function

Θ∗(ω1, ω2) = hgt
(

(ψ̃ ◦ X̃1)(ω1) · (ψ̃ ◦ X̃2)(ω2)
)
.

11



Now, from Lemma 2,

(ψ̃ ◦ X̃1)(ω1) � (ψ̃ ◦ X̃2)(ω2) = ψ̃
[
X̃1(ω1) � X̃2(ω2)

]
.

Hence, the mappings from Ω to [0, 1]Λ associated to ψ̃ ◦ (X̃1 ⊕ X̃2) and (ψ̃ ◦ X̃1)⊕ (ψ̃ ◦ X̃2)
are identical. Furthermore, from Lemma 2,

hgt((ψ̃ ◦ X̃1)(ω1) · (ψ̃ ◦ X̃2)(ω2)) = hgt(X̃1(ω1) · X̃2(ω2)).

The fuzzy conditioning event in [0, 1]Ω1×Ω2 associated to X̃1 ⊕ X̃2 and (ψ̃ ◦ X̃1) ⊕ (ψ̃ ◦ X̃2)
are, thus, also identical, which completes the proof.

3.2. Transformed Gaussian Random Fuzzy Numbers

Applying the idea developed in Section 3.1 to GRFNs makes it possible to define a wide
variety of parametric families of random fuzzy numbers and associated belief functions on
the real line. Let X̃ ∼ Ñ(µ, σ2, h) be a GRFN, and ψ a one-to-one mapping from R to

Λ ⊆ R. Let ψ̃ ◦ X̃ be the result of the transformation of X̃ by ψ. We will say that ψ̃ ◦ X̃ is
a transformed GRFN (or t-GRFN) and we will write ψ̃ ◦ X̃ ∼ TÑ(µ, σ2, h, ψ−1). For any

random fuzzy number Ỹ , it is clear that

Ỹ ∼ TÑ(µ, σ2, h, ψ−1)⇔ ψ̃−1 ◦ Ỹ ∼ Ñ(µ, σ2, h). (13)

From Theorem 2, given two t-GRFNs Ỹi ∼ TÑ(µi, σ
2
i , hi, ψ

−1), i = 1, 2, we have Y1 ⊕ Y2 ∼
TÑ(µ̃12, σ̃

2
21, h1 + h2, ψ

−1), where µ̃12 and σ̃2
21 are given by (9).

Hereafter, we will consider three cases for the choice of function ψ allowing us to define
belief functions on the positive real line, on a closed real interval, or on the whole real line.

Lognormal random fuzzy numbers. Using a one-to-one mapping from R to (0,+∞) allows
us to define a random fuzzy number with support equal to the positive real line. Choosing
ψ = exp, we obtain a lognormal random fuzzy number (RFN) Ỹ ∼ TÑ(µ, σ2, h, log). From

(13), Ỹ ∼ TÑ(µ, σ2, h, log) if and only if l̃og(Ỹ ) ∼ Ñ(µ, σ2, h). A lognormal random variable

is recovered when h = +∞. From (6) and (11b), the contour function of Ỹ is

plỸ (y) =
1√

1 + hσ2
exp

(
−h(log y − µ)2

2(1 + hσ2)

)
.

Similarly, the lower and upper cdfs of Ỹ can easily be computed from (7) and (11) as

BelỸ ((−∞, y]) = Φ

(
log y − µ

σ

)
− plỸ (y)Φ

(
log y − µ
σ
√
hσ2 + 1

)
,

and PlỸ ((−∞, y]) = BelỸ ((−∞, y]) + plỸ (y).
Expressions for the lower and upper expectations of a lognormal RFN are given in the

following proposition.
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Figure 3: (a) and (b): From left to right, two lognormal random fuzzy numbers Ỹ1 ∼ TÑ(1, 1, 5, log) and

Ỹ2 ∼ TÑ(2, 0.1, 2, log); (c): combined lognormal random fuzzy number Ỹ1 ⊕ Ỹ2. For each RFN, we plot
ten realizations (black dotted curves), the contour functions (red curve), the lower and upper expectations
(vertical broken lines), as well as the lower and upper cdfs (blue curves).

Proposition 3. The lower and upper expectation of a lognormal RFN Ỹ ∼ TÑ(µ, σ2, h, log)
are given, respectively, by

E∗(Ỹ ) =
√

2π exp

(
µ+

σ2

2
+

1

2h

)[
φ

(
1√
h

)
− 1√

h

(
1− Φ

(
1√
h

))]
(14a)

and

E∗(Ỹ ) =
√

2π exp

(
µ+

σ2

2
+

1

2h

)[
φ

(
1√
h

)
+

1√
h

Φ

(
1√
h

)]
, (14b)

where φ is the standard normal probability density function.

Proof. See Appendix B

We note that the expectation of a lognormal random variable is recovered in the limit
when h tends to infinity, as

lim
h→+∞

E∗(Ỹ ) = lim
h→+∞

E∗(Ỹ ) = exp

(
µ+

σ2

2

)
.

Example 1. Figure 3 displays two lognormal RFNs

Ỹ1 ∼ TÑ(1, 1, 5, log) and Ỹ2 ∼ TÑ(2, 0.1, 2, log),

as well as their orthogonal sum Ỹ1⊕ Ỹ2. For each RFN, we plot ten realizations, the contour
function, the lower and upper expectations, as well as the lower and upper cdfs.
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Figure 4: (a) and (b): From left to right, two logit-normal random fuzzy numbers Ỹ ∼ TÑ(1, 1, 5, logit) and

Ỹ ∼ TÑ(−2, 0.1, 2, logit); (c): combined lognormal random fuzzy number Ỹ1 ⊕ Ỹ2. For each RFN, we plot
ten realizations (black dotted curves), contour function (red curve), lower and upper cdfs (blue curves).

Logit-normal random fuzzy numbers. Any cumulative distribution function (cdf) F can be
used to define a RFN with support equal to interval [0, 1] (or more generally, using an
additional affine transformation, an interval [a, b] with b > a). A natural choice is the cdf
of the standard logistic distribution, FL(x) = [1 + exp(−x)]−1. The corresponding quantile
function is the logit function,

F−1
L (y) = logit(y) = log

y

1− y .

A RFN Ỹ ∼ TÑ(µ, σ, h, logit) will said to be logit-normal. A logit-normal random variable

[1] is recovered when h = +∞. From (6) and (11b), the contour function of Ỹ is

plỸ (y) =
1√

1 + hσ2
exp

(
−h(logit(y)− µ)2

2(1 + hσ2)

)
.

The lower and upper cdfs of Ỹ can be computed from (7) and (11) in a similar manner.
The expectation of the logit-normal probability does not have any analytical expression.
Consequently, this is also true for the lower and upper expectations of a logit-normal RFS.
A multidimensional extension of logit-normal RFNs will be studied in Section 3.3.

Example 2. Figure 4 shows representations of logit-normal RFNs Ỹ1 ∼ TÑ(1, 1, 5, logit)

and Ỹ ∼ TÑ(−2, 0.1, 2, logit), as well as their orthogonal sum Y1 ⊕ Y2.

Parameterized families of transformations. Whereas the fixed transformations considered
above allow us to define RFNs with various supports, it may be useful to consider more
general transformations belonging to parameterized families. We then obtain a parametrized
family of RFNs with parameters µ, σ2, h, and the parameters of the transformation. Such

14



flexible families may be useful, for instance, in a belief elicitation context where we attempt
to fit an expert’s belief statements with a t-GRFN, as will be seen in Section 5.1. The idea
of transforming the normal distribution to obtained parameterized families of distributions
with varying skewness and kurtosis can be traced back, at least, to Ref. [18]. Johnson [18]
actually considers the inverse problem of finding a transformation ψ−1 of a random variable
Y such that X = ψ−1(Y ) has, approximately, a standard normal distribution. In addition to
the logarithmic and logit transformations, he considers a “system SU” based on the following
transformation:

X = ψ−1(Y ) = γ + δ sinh−1 Y − ξ
λ

, (15)

where γ, δ, ξ and λ are four parameters, δ > 0, λ > 0, and X ∼ N(0, 1). Inverting (15), we
get

Y = ψ(X) = ξ + λ sinh
X − γ
δ

. (16)

To be consistent with our previous notations, we can rewrite (16) as

Y = ψξ,λ(X) = ξ + λ sinhX, (17)

where X ∼ N(µ, σ2), and the four parameters are now: µ, σ2 defining the distribution of X
on the one hand, and ξ and λ defining the transformation on the other hand. This transfor-
mation makes it possible to define a four-parameter family of probability distributions on
the whole real line, with varying skewness and kurtosis. The same transformation applied to
GRFNs defines a parametric family of RFNs with different shapes. We note that Theorem
2 allows us to combine two t-GRFNs Ỹ1 ∼ TÑ(µ1, σ

2
1, h1, ψ

−1
ξ,λ) and Ỹ2 ∼ TÑ(µ2, σ

2
2, h2, ψ

−1
ξ,λ)

with different means, variances and precisions, but the same transformation ψξ,λ.

Example 3. Figure 5 shows representations of RFNs Ỹ1 ∼ TÑ(1, 1, 5, ψ−1
ξ,λ) and Ỹ ∼

TÑ(−2, 0.1, 2, ψ−1
ξ,λ) with ξ = 0 and λ = 1, as well as their orthogonal sum Y1 ⊕ Y2. We can

see that the contour functions of Ỹ1 and Ỹ2 are, respectively, right-skewed and left-skewed,
while the contour function of Ỹ1 ⊕ Ỹ2 is left-skewed. In general, the positive or negative
skewness depends, for this transformation, on the sign of µ.

An even more general approach to create parametric families of probability distributions
was more recently proposed in [2]. Given three random variables X, T and R, Aljarrah et
al. [2] define a new random variable

Y = ψRT (X) = (F−1
R ◦ FT )(X),

where FR and FT are the cdfs of R and T . The cdf of Y is, thus,

FY (y) = P (Y ≤ y) = P (FT (X) ≤ FR(y)) = P (X ≤ F−1
T (FR(y))) = (FX ◦ F−1

T ◦ FR)(y).

Taking X ∼ N(µ, σ2), it is possible using this approach to define infinitely many parametric
families of probability distributions by choosing different parametric families for T and R.
We note that the support of Y is included in the support of R. Also, choosing FT = FX gives
us Y = R, while choosing FT = FR yields Y = X. By extension, we can define parametric
families of RFNs Ỹ ∼ TÑ(µ, σ2, h, ψ−1

RT ) based on parametric families for R and T .
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Figure 5: (a) and (b): From left to right, two t-GRFNs Ỹ ∼ TÑ(1, 1, 5, ψ−1ξ,λ) and Ỹ ∼ TÑ(−2, 0.1, 2, ψ−1ξ,λ),

with ξ = 0 and λ = 1; (c): combined lognormal random fuzzy number Ỹ1 ⊕ Ỹ2. For each RFN, we plot ten
realizations (black dotted curves), contour function (red curve), lower and upper cdfs (blue curves).

3.3. Transformations of Gaussian Random Vectors

The general approach introduced in Section 3.1 can also be applied to GRFVs. Of special
interest is the multivariate extension of the notion of logit-normal RFNs, which is obtained
from a multidimensional normal distributionX ∼ N(µ,Σ) in Rp−1 (p ≥ 2) and the following
softmax transformation from Rp−1 to the simplex Sp of p-dimensional probability vectors:

ψS(x) =

[
exp(x1)

1 +
∑p

j=1 exp(xj)
, . . . ,

exp(xp−1)

1 +
∑p

j=1 exp(xj)
,

1

1 +
∑p

j=1 exp(xj)

]T
, (18)

with inverse

ψ−1
S (y) =

[
log

(
y1

yp

)
, . . . , log

(
yp−1

yp

)]T
. (19)

This transformation is used in [1] to define the multidimensional logistic-normal probability

distribution. Here, given a GRVN X̃ ∼ Ñ(µ,Σ,H), we can define the random fuzzy vector

Ỹ = ψ̃S ◦ X̃, where ψ̃S is the extension of the softmax transformation (18). We will say that

Ỹ is a logistic normal RFV, and we will write Ỹ ∼ TÑ(µ,Σ,H , ψ−1
S ). The domain of Ỹ is

the simplex Sp. Such a RFV can be used to represent beliefs about a vector of probabilities
or proportions.

Example 4. Figures 6a-6e show five focal fuzzy sets Ỹ (ω) in barycentric coordinates for a

logistic RFV Ỹ ∼ Ñ(µ,Σ,H , ψ−1
S ) with p = 3, µ = (2, 0)T ,

Σ =

(
1.5 0.2
0.2 1

)
and H =

(
1 −0.2
−0.2 1.5

)
.

The corresponding contour function is displayed in Figure 6f.
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Figure 6: (a)-(e): Five focal fuzzy sets Ỹ (ω) for a logistic RFV Ỹ ∼ Ñ(µ,Σ,H, ψ−1S ) (see Example 4); (f):
corresponding contour function.

17



4. Mixtures of Gaussian random fuzzy variables

In probability and statistics, finite mixtures of probability distributions and, in particu-
lar, finite mixtures of Gaussians are commonly used to obtain distributions with arbitrarily
complex shapes [21]. In this section, we extend this approach to define mixtures of (trans-
formed) GRFNs and GRFVs. Mixtures of GRFNs and GRFVs will first be defined in
Section 4.1. Their properties will then be studied in Section 4.2, and their combination
will be addressed in Section 4.3. A summarization procedure allowing us to approximate a
mixture with a large number of components by a simpler one will be described in Section
4.4. Finally, mixtures of transformed GRFNs and GRFVs will be introduced in Section 4.5.

4.1. Definitions

Mixture of GRFNs. We consider a pair of random variables (M,Z) from a probability space
(Ω,ΣΩ, P ) to R×{1, . . . , K}, such that the marginal distribution of Z is defined by P (Z =
k) = πk, k = 1, . . . , K, and the conditional distribution of M given Z = k is univariate
normal:

M | (Z = k) ∼ N(µk, σ
2
k).

The marginal distribution of M is, thus, a mixture of K normal distributions. Now, consider
the random fuzzy set X̃ : Ω→ R[0,1] defined as follows,

X̃(ω) = GFN

(
M(ω),

K∏

k=1

h
Zk(ω)
k

)
,

where Zk(ω) = I(Z(ω) = k), and I(·) is the indicator function. Conditionally on Z = k, X̃
is a GRFN with mean µk, variance σ2

k and precision hk:

X̃ | (Z = k) ∼ Ñ(µk, σ
2
k, hk).

We denote this conditional GRFN by X̃k. We say that X̃ is a mixture GRFN (m-GRFN)
and we write

X̃ ∼
K∑

k=1

πkÑ(µk, σ
2
k, hk).

Mixture of GRFVs. Similarly, we can define a mixture of GRFVs by a mapping X̃ : Ω →
(Rp)[0,1] with p ≥ 2 such that

X̃(ω) = GFV(M (ω),
K∏

k=1

H
Zk(ω)
k ),

where, as usual, H0
k is the identity matrix, M is a random vector having a mixture of

multivariate normal distributions,

M ∼
K∑

k=1

πkN(µk,Σk),
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and Hk, k = 1, . . . , K are positive definite precision matrices. We will use the following
notation:

X̃ ∼
K∑

k=1

πkÑ(µk,Σk,Hk).

4.2. Properties

Belief and plausibility functions. The belief and plausibility functions associated with an
m-GRFN are the weighted sums of, respectively, the belief and plausibility associated with
the components of the mixture. This property is expressed by the following theorem.

Theorem 3. Let B(R) be the Borel σ-algera on R, and A ∈ B(R) be a measurable subset of

R. The degrees of belief and plausibility of A induced by an m-GRFN X̃ ∼∑K
k=1 πkÑ(µk, σ

2
k, hk)

are

BelX̃(A) =
K∑

k=1

πkBelX̃k(A) (20a)

PlX̃(A) =
K∑

k=1

πkPlX̃k(A), (20b)

with X̃k ∼ Ñ(µk, σ
2
k, hk).

Proof. Let us start with (20b). By definition, PlX̃(A) is defined as the following expectation,

PlX̃(A) = EM,Z

[
sup
u∈A

ϕ(u,M,
K∏

k=1

hZkk )

]

= EZEM |Z

[
sup
u∈A

ϕ(u,M,
K∏

k=1

hZkk )

]

=
K∑

k=1

πkEM |Z
[
sup
u∈A

ϕ(u,M, hk) | Z = k

]

=
K∑

k=1

πkPlX̃k(A).

Eq. (20a) can be proved in the same way, as BelX̃(A) is also defined as an expectation.

Using Theorem 3 and the closed-form expressions given in [13], we can compute the
degrees of belief and plausibility of any real interval [x, y]. In particular, setting x = y gives
the following corollary:

Corollary 1. The contour function of m-GRFN X̃ ∼∑K
k=1 πkÑ(µk, σ

2
k, hk) is

plX̃(x) =
K∑

k=1

πk√
1 + hkσ2

k

exp

(
−hk(x− µk)

2

2(1 + hkσ2
k)

)
. (21)
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Figure 7: Ten realizations (black dotted curves), contour function (red curve), and lower/upper cdfs (blue

curves) of an m-GRFN X̃ ∼ 0.4Ñ(−2, 1, 5) + 0.6Ñ(2, 0.12, 1).

Proof. Immediate from Theorem 3 and Eq. (6).

Example 5. Figure 7 shows ten focal sets of an m-GRFN X̃ ∼ 0.4Ñ(−2, 1, 5)+0.6Ñ(2, 0.12, 1),
its contour function as well as its lower and upper cfds.

Similar results can be obtained in the same way for mixtures of GRFVs. In particular,
the contour function of a mixture of GRFVs is the weighted sum of the contour functions
of its components, which is expressed by the following proposition.

Proposition 4. The contour function of m-GRFV X̃ ∼∑K
k=1 πkÑ(µk,Σk,Hk) is

plX̃(x) =
K∑

k=1

1

|Ip + ΣkHk|1/2
exp

(
−1

2
(x− µk)T (H−1

k + Σk)
−1(x− µk)

)
. (22)

Lower and upper expectations of an m-GRFN. The lower and upper expectations of an m-
GRFN can easily be computed from those of its components, as stated in the following
proposition.

Proposition 5. The lower and upper expectations of m-GRFN X̃ ∼∑K
k=1 πkÑ(µk, σ

2
k, hk)

are given by

E∗(X̃) =
K∑

k=1

πkµk −
K∑

k=1

√
π

2hk
, and

E∗(X̃) =
K∑

k=1

πkµk +
K∑

k=1

√
π

2hk
.
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Proof. The α-cut of X̃(ω) is the closed interval

αX̃(ω) =

[
M(ω)−

√
−2 lnα

∏K
k=1 h

Zk(ω)
k

,M(ω) +

√
−2 lnα

∏K
k=1 h

Zk(ω)
k

]
.

From (3), the lower expectation of X̃ is

E∗(X̃) =

∫ 1

0

EM,Z

[
M −

√
−2 lnα∏K
k=1 h

Zk
k

]
dα

=

∫ 1

0

EZEM |Z

[
M −

√
−2 lnα∏K
k=1 h

Zk
k

]
dα

=

∫ 1

0

K∑

k=1

πkEM |Z

[
M −

√
−2 lnα

hk
|Z = k

]
dα

=
K∑

k=1

πk

∫ 1

0

EM |Z

[
M −

√
−2 lnα

hk
|Z = k

]
dα

=
K∑

k=1

πk

(
µk −

√
π

2hk

)
,

where the last equality is derived from (8). The upper expectation of X̃ can be computed
in the same way.

4.3. Combination

Combination of m-GRFNs. Let us now consider two independent m-GRFNs

X̃1 ∼
K∑

k=1

π1kÑ(µ1k, σ
2
1k, h1k) and X̃2 ∼

L∑

`=1

π2`Ñ(µ2`, σ
2
2`, h2`).

The following theorem states that their orthogonal sum X̃1 ⊕ X̃2 is an m-GRFN.

Theorem 4. Given two independent m-GRFNs X̃1 ∼
∑K

k=1 π1kÑ(µ1k, σ
2
1k, h1k) and X̃2 ∼∑L

`=1 π2`Ñ(µ2`, σ
2
2`, h2`),

1. The orthogonal sum of X̃1 and X̃2 is an m-GRFN,

X̃1 ⊕ X̃2 ∼
K∑

k=1

L∑

`=1

π̃k`

[
Ñ(µ1k, σ

2
1k, h1k)⊕ Ñ(µ2`, σ

2
2`, h2`)

]
,

with

π̃k` =
(1− κk`)π1kπ2`∑

k′`′(1− κk′`′)π1k′π2`′
,

where κk` is the degree of conflict between X̃1k and X̃2` given by Proposition 1.
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Figure 8: (a) and (b): From left to right, two m-GRFNs X̃1 ∼ 0.5Ñ(−2, 0.12, 5) + 0.5Ñ(0, 0.12, 2) and

X̃2 ∼ 0.5Ñ(0.1, 0.12, 2) + 0.5Ñ(2, 0.12, 0.1); (c): combined mGRFN X̃1 ⊕ X̃2. For each RFN, we plot ten
realizations (black dotted curves), contour function (red curve), lower and upper cdfs (blue curves).

2. The degree of conflict between X̃1 and X̃2 is

κ =
K∑

k=1

L∑

`=1

κk`π1kπ2`.

Proof. See Section Appendix C.

Example 6. Figure 8 displays two m-GRFNs X̃1 ∼ 0.5Ñ(−2, 0.12, 5) + 0.5Ñ(0, 0.12, 2) and

X̃2 ∼ 0.5Ñ(0.1, 0.12, 2) + 0.5Ñ(2, 0.12, 0.1), and well as their orthogonal sum

X̃1 ⊕ X̃2 ∼ 0.020Ñ(−1.38, 0.07672, 7) + 0.426Ñ(0.05, 0.07072, 4)+

0.197Ñ(−1.92, 0.09802, 5.1) + 0.357Ñ(0.0970, 0.09532, 2.1).

We note that X̃1⊕X̃2 has four components but the first one, resulting from the combination of
X̃11 and X̃21, has a small proportion because of high conflict. When combining a large number
of m-GRFNs, the number of components grows exponentially. However, the combined m-
GRFN can be approximated by a simpler one, using a technique that will be introduced in
Section 4.4.

Combination of m-GRFVs. Theorem 4 can easily be generalized to GRFVs, using the re-
sults in presented in [13, Proposition 13]. Basically, when combining two GRFVs, each
component of the first GRFV is combined with each component of the second GRFV, and
the proportions are adjusted based on degrees of conflict. This result is formally stated in
the next theorem.
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Theorem 5. Let X̃1 ∼
∑K

k=1 π1kÑ(µ1k,Σ
2
1k,H1k), and X̃2 ∼

∑L
`=1 π2`Ñ(µ2`,Σ

2
2`,H2`) be

two p-dimensional m-GRFVs and assume that the precision matrices H1k and H2` are all
positive definite. Then:

1. The orthogonal sum of X̃1 and X̃2 is an m-GRFV,

X̃1 ⊕ X̃2 ∼
K∑

k=1

L∑

`=1

π̃k`

[
Ñ(µ1k,Σ

2
1k,H1k)⊕ Ñ(µ2`,Σ

2
2`,H2`)

]
,

with

π̃k` =
(1− κk`)π1kπ2`∑

k′`′(1− κk′`′)π1k′π2`′
,

where κk` is the degree of conflict between X̃1k and X̃2` given by (A.1).

2. The degree of conflict between X̃1 and X̃2 is

κ =
K∑

k=1

L∑

`=1

κk`π1kπ2`.

Proof. The theorem can be proved by following a similar line of reasoning as in the proofs
of Lemma 3 and Theorem 4, using the results in Lemma 2 and Proposition 13 in [13].

4.4. Summarization of an m-GRFN

As already mentioned, the number of components grows exponentially when combining
m-GRFNs: if all of N m-GRFNs have the same number K of components, the combined
m-GRFN has, in general, KN components. However, components of a combined m-GRFN
resulting from the combination of highly conflicting GRFNs have a very small proportion.
When combining many m-GRFNs, we can expect to obtain a large number of components,
many of which will have a proportion close to zero. A similar problem occurs when combining
a large number of mass functions, in which case we often observe a proliferation of focal sets
with very small masses. A simple strategy introduced in [20] to control the number of focal
sets is to transfer all masses less than some threshold to the union of the corresponding
focal sets, resulting in an outer approximation of the original mass function [6]. Here, we do
not have a notion of “union” for GRFNs that would result in a GRFN, but we can transfer
the small proportions to a vacuous GRFN X̃0 ∼ Ñ(µ, σ2, 0) with arbitrary µ and σ2. This
procedure, formally described in Algorithm 1, yields a conservative approximation of the
original m-GRFN. It is illustrated by the following example.

Example 7. Consider the following three m-GRFNs, each one with three components:

X̃1 ∼
1

3
Ñ(−2, (0.1)2, 2) +

1

3
Ñ(0, (0.1)2, 2) +

1

3
Ñ(2, (0.1)2, 2),

X̃2 ∼
1

3
Ñ(−2.1, (0.5)2, 2) +

1

3
Ñ(0.1, (0.5)2, 2) +

1

3
Ñ(1/9, (0.5)2, 2),
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Algorithm 1 Summarization of a m-GRFN.

Input: m-GRFN X̃ ∼∑K
k=1 πkÑ(µk, σ

2
k, hk), threshold ε < 1

Reorder the components of X̃ such that π(1) ≤ π(2) ≤ . . . ≤ π(K)

if π(1) ≥ ε then

X̃ ′ ← X̃
else

Find the largest k0 such that
∑k0

k=1 π(k) ≤ ε

π0 ←
∑k0

k=1 π(k)

X̃ ′ ← π0Ñ(0, 1, 0) +
∑K

k=k0+1 π(k)Ñ(µ(k), σ
2
(k), h(k))

end if
Output: Approximate m-GRFN X̃ ′

-4 -2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

B
e
lie
f/
p
la
u
s
ib
ili
ty

Figure 9: Contour functions (red curves), and lower/upper cdfs (blue curves) of m-GRFN X̃ with 27

components in Example 7 (solid lines) and its approximation X̃ ′ with only 13 components (broken lines).

X̃3 ∼
1

3
Ñ(−1.9, (0.5)2, 5) +

1

3
Ñ(−0.1, (0.5)2, 5) +

1

3
Ñ(2.1, (0.5)2, 5).

The combined m-GRFN X̃ = X̃1 ⊕ X̃2 ⊕ X̃3 has 27 components. Summarizing X̃ with a
threshold ε = 0.05 yields an n-GRFN with 13 components. The contour function as well as
the lower and upper cdfs of X̃ and X̃ ′ are shown in Figure 9. As we can see, X̃ ′ is a good
conservative approximation of X̃, while having less than half as many components.

4.5. Mixtures of transformed GRFNs

Definition. The ideas developed in Section 3 and in the current section can naturally be
combined to define mixtures of transformed fuzzy numbers. Let us consider a one-to-one
mapping ψ from R to Λ ⊆ R and, as in Section 4.1, an m-GRFN X̃ ∼∑K

k=1 πkÑ(µk, σ
2
k, hk),

originating from a pair of random variables (M,Z) from a probability space (Ω,ΣΩ, P ) to
R × {1, . . . , K}, such that P (Z = k) = πk, k = 1, . . . , K, and M | (Z = k) ∼ N(µk, σ

2
k),
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k = 1, . . . , K. From Proposition 2, the composed mapping

Ỹ (ω) = (ψ̃ ◦ X̃)(ω) = ψ̃

[
GFN(M(ω),

K∏

k=1

h
Zk(ω)
k )

]
,

where Zk(ω) = I(Z(ω) = k), is a random fuzzy set. Conditionally on Z = k, Ỹ is a t-GRFN
with mean µk, variance σ2

k and precision hk:

Ỹ | (Z = k) ∼ TÑ(µk, σ
2
k, hk, ψ

−1).

We say that Ỹ is a mixture of transformed GRFNs (mt-GRFN) and we write

Ỹ ∼
K∑

k=1

πkTÑ(µk, σ
2
k, hk, ψ

−1).

In a similar way, we can define a mixture of transformed GRFVs (mt-GRFV) as the transfor-

mation of an m-GRFV X̃ ∼∑K
k=1 πkÑ(µk,Σk,Hk) by a one-to-one mapping from ψ = Rp

to Λ ⊆ Rp and write

Ỹ = ψ̃ ◦ X̃ ∼
K∑

k=1

πkTÑ(µk,Σk,Hk, ψ
−1).

Properties. The properties of mt-GRFNs can be derived directly from those of m-GRFNs
and t-GRFNs. Some of them are described in the following propositions. Similar properties
hold for mt-GRFVs.

Proposition 6. Let Ỹ ∼ ∑K
k=1 πkTÑ(µk, σ

2
k, hk, ψ

−1) be an mt-GRFN, where ψ is a one-
to-one mapping from R to Λ ⊆ R. For any event A ∈ ΣΛ,

Bel(A) =
K∑

k=1

πkBelX̃k(ψ
−1(A)), and Pl(A) =

K∑

k=1

πkPlX̃k(ψ
−1(A)),

where X̃k ∼ Ñ(µk, σ
2
k, hk). In particular the contour function of Ỹ is

plỸ (y) =
K∑

k=1

πk√
1 + hkσ2

k

exp

(
−hk(ψ

−1(y)− µk)2

2(1 + hkσ2
k)

)
.

Proof. Immediate from Theorem 1, Theorem 3 and Corollary 1.

Proposition 7. Let Ỹ1 ∼
∑K

k=1 π1kTÑ(µ1k, σ
2
1k, h1k, ψ

−1) and Ỹ2 ∼
∑L

k=1 π2`TÑ(µ2`, σ
2
2`, h2`, ψ

−1)
be two mt-GRFNs, where ψ is a one-to-one mapping from R to Λ ⊆ R. Their orthogonal
sum is the mt-GRFN

Ỹ1 ⊕ Ỹ2 ∼
K∑

k=1

L∑

k=1

π̃k`TÑ(µ̃k`, σ̃
2
k`, h1k + h2`, ψ

−1),
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Figure 10: (a) and (b): From left to right, two mixtures of logit-normal RFNs Ỹ1 ∼ 0.5TÑ(2, 1, 2, logit) +

0.5Ñ(−2, 1, 2, logit) and Ỹ2 ∼ 0.3TÑ(−1, 0.12, 1, logit) + 0.7Ñ(1, 0.12, 1, logit); (c): orthogonal sum Ỹ1 ⊕ Ỹ2.
For each RFN, we plot ten realizations (black dotted curves), contour function (red curve), lower and upper
cdfs (blue curves).

where µ̃k` and σ̃2
k` are the mean and variance of the orthogonal sum Ñ(µ1k, σ

2
1k, h1k) ⊕

Ñ(µ2`, σ
2
2`, h2`) given by (9), and

π̃k` =
(1− κk`)π1kπ2`∑

k′`′(1− κk′`′)π1k′π2`′
,

where κk` is the degree of conflict between Ñ(µ1k, σ
2
1k, h1k) and Ñ(µ2`, σ

2
2`, h2`) given by Propo-

sition 1.

Proof. Immediate from Theorems 2 and 4.

Example 8. Figure 10 displays two mixtures of logit-normal RFNs Ỹ1 ∼ 0.5TÑ(2, 1, 2, logit)+

0.5Ñ(−2, 1, 2, logit) and Ỹ2 ∼ 0.3TÑ(−1, 0.12, 1, logit) + 0.7Ñ(1, 0.12, 1, logit), and well as

their orthogonal sum Ỹ1 ⊕ Ỹ2.

5. Applications

In this section, we will discuss two applications of the models introduced in this paper.
Belief elicitation will first be addressed in Section 5.1. The use of m-GRFNs to represent
weak prior knowledge in generalized Bayesian inference will then be discussed in Section 5.2.

5.1. Elicitation

According to Garthwaite et al. [16], “elicitation is the process of formulating a person’s
knowledge and beliefs about one or more uncertain quantities into a (joint) probability dis-
tribution for those quantities”. There is, however, no reason to limit oneself to probability
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distributions for representing a person’s beliefs. In this section, we briefly discuss the ap-
plication of the RFN models introduced in this paper to represent expert beliefs about a
numerical quantity. It is clear that an in-depth treatment of this topic would require to
delve into complex methodological issues arising when interviewing human experts. Here,
we will only be concerned with the use of already obtained plausibility assessments to fit
the parameters of a RFN.

For single-expert probabilistic elicitation, the two main approaches are the fixed interval
method, in which the expert is asked to give his subjective probabilities for some fixed
intervals, and the variable interval method in which the expert is invited to provide points
corresponding to specified percentiles of his subjective probability distribution. Assuming
the latter approach is used, a sequence of questions for eliciting an expert’s beliefs about a
numerical quantity X could be the following:

1. What is the most plausible value m0 of X?

2. Given two numbers 0 < α < β < 1 (such as, e.g., α = 0.1 and β = 0.5), give values xα
and xβ such that Pl(X ≤ xα) = α and Pl(X ≤ xβ) = β.

3. Give values x′α and x′β such that Pl(X > x′α) = α and Pl(X > x′β) = β.

This procedure yields a maximum-plausibility value m0 and the plausibility degrees of four
intervals (−∞, xα], (−∞, xβ], [x′α,+∞) and [x′β,+∞). Whatever the details of the elicitation
procedure, we can assume that we have obtained m0 and the plausibilities pl1, . . . , pln of n
real intervals I1, . . . , In.

Several parametric families of RFN proposed in Sections 3.3 and 4 could be fitted to
such data. As the number n of intervals will typically be small, simpler models should be
preferred. Mixture models may not be the most suitable because they depend on many
parameters (at least seven for the simplest two-component case) and they can yield mul-
timodal contour functions. Let us, thus, consider a parameterized family of t-GRFNs
X̃θ ∼ TÑ(µ, σ2, h, ψ−1

η ), where η is a vector of parameters for the transformation func-
tion ψ, and θ = (µ, σ2, h, η) is the vector of all parameters. We can then identify θ by
minimizing the following mean squared error function:

MSE(θ) =
n∑

i=1

(PlX̃θ(Ii)− pli)
2. (23)

subject to the constraint ψη(µ) = m0. The following example illustrate this approach with
the family of t-GRFNs defined by transformation ψη = ψξ,λ given by (17).

Example 9. Assume that an expert gives us m0 = 1 as the most plausible value of X, and
the following plausibility assessments:

Pl(X ≤ −7) = 0.1, P l(X ≤ −1) = 0.5, P l(X > 2) = 0.5, P l(X > 5) = 0.1.

The constraint ψξ,λ(µ) = m0 gives us µ = sinh−1
(
m0−ξ
λ

)
. Substituting µ by its expression

as a function of ξ and λ and minimizing (23) w.r.t. σ2, h, ξ and λ yields the following
estimates:

σ̂2 = 0.73, ĥ = 10.90, ξ̂ = 3.37, λ̂ = 2.71,
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Figure 11: Contour functions (red curves), and lower/upper cdfs (blue curves) of the fitted t-GRFN X̃θ̂ ∼
TÑ(µ̂, σ̂2, ĥ, ψ−1

ξ̂,λ̂
) of Example 9 (solid lines) and a fitted GRFN (broken lines). The data points are shown

as black dots, and the vertical broken lines marks the most plausible value m0.

and µ̂ = −0.79. Figure 11 shows of the lower and upper cdf of the fitted t-GRFN, as well
as its contour function. By comparison, we also show the corresponding functions for a
GRFN fitted on the same data. Obviously, a GRFN is a poor fit given the asymmetry of the
plausibility assessments.

5.2. Generalized Bayesian inference

Let us consider a statistical model in which observed data X are drawn randomly from
a probability distribution Pθ, where θ ∈ Θ is some unknown parameter. Having observed a
realization x of X, we define the likelihood function as the mapping

L(·;x) : Θ→ [0,+∞)

θ 7→ L(θ;x) = f(x; θ).

Assuming supθ∈Θ L(θ;x) < +∞, the relative likelihood function can be defined as

L̃ : Θ→ [0,+∞)

θ 7→ L̃x(θ) =
L(θ;x)

supθ′∈Θ L(θ′;x)
.

In [8], we showed that L̃x can be interpreted as the membership function of a fuzzy subset of

Θ (the fuzzy subset of “likely” values of θ after observing x). Equivalently, L̃x can be seen

as a constant RFS. As shown in [8], L̃x is, in some sense, the least committed RFS verifying
the following two requirements:
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1. Compatibility with Bayesian inference: let P0 be a prior probability measure on Θ;
combining it with L̃x using the product-intersection rule yields the Bayesian posterior
distribution P (·|x):

P0 ⊕ L̃x = P (·|x). (24)

2. Combination of independent observations: if x and y are realizations of two indepen-
dent observations X and Y , then the RFS induced by (x, y) is the orthogonal sum of
the RFS induced by x, and that induced by y:

L̃x ⊕ L̃y = L̃x,y.

From the perspective of a general theory of epistemic random fuzzy sets, there is no reason
to limit oneself to probability distributions for representing prior information. Indeed, prior
knowledge is often vague and the relevance of representing it by precise probabilities is
questionable. Equation (24) can, thus, be generalized as

θ̃0 ⊕ L̃x = θ̃x, (25)

where θ̃0 is a RFS representing weak prior information, and θ̃x is posterior RFS resulting from
the combination of prior information with observations. Considering the case where Θ ⊆ R,
(25) lends itself to easy computation if L̃x is a GFN: in this case, modeling prior information

as a GRFN θ̃0 ∼ Ñ(µ0, σ
2
0, h0) or, more generally, an m-GRFN θ̃0 ∼

∑K
k=1 π0kÑ(µ0k, σ

2
0k, h0k)

will result, respectively, in a posterior GRFN θ̃x ∼ Ñ(µx, σ
2
x, hx) or a posterior m-GRFN

θ̃x ∼
∑K

k=1 πxkÑ(µxk, σ
2
xk, hxk).

Except in a few simple cases, the relative likelihood function is not exactly a GFN,
but this model can be used as an approximation [7]. Indeed, a Taylor series expansion of

log L̃x(θ) about the maximum likelihood estimate (MLE) θ̂ up to the second order gives us
[26, p. 33]:

log L̃x(θ) = log L̃x(θ̂) + (θ − θ̂) ∂ log L̃x(θ)

∂θ

∣∣∣∣∣
θ=θ̂

+
1

2
(θ − θ̂)2 ∂

2 log L̃x(θ)

∂θ2

∣∣∣∣∣
θ=θ̂

+ · · ·

The first term on the right-hand is equal to zero by definition, and the second term is zero
in the usual case where θ̂ is a stationary point of the likelihood function. Neglecting the
higher-order terms, we get the approximation

L̃x(θ) ≈ exp

[
−1

2
I(θ̂;x)(θ − θ̂)2

]
, (26)

i.e., L̃x ≈ GFN(θ̂, I(θ̂;x)), where the precision I(θ̂;x) is the observed Fisher information

I(θ̂;x) = − ∂2 log L̃x(θ)

∂θ2

∣∣∣∣∣
θ=θ̂

= −∂
2 logL(θ;x)

∂θ2

∣∣∣∣
θ=θ̂

.
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In the multidimensional case where Θ ⊆ Rp, the same line of reasoning as above yields
L̃x ≈ GFV(θ̂, I(θ̂;x)), where I(θ̂;x) is the observed information matrix.

As noted in [26], the quality of the normality assumption can sometimes be improved for
small samples by applying some transformation to the parameter. Let θ = ψ(δ) for some one-
to-one differentiable mapping ψ and alternative parameter δ, and assume that the relative
likelihood as a function of δ, L̃

(δ)
x (δ), is approximately Gaussian, L̃

(δ)
x (δ) ≈ GFN(δ̂, I(δ̂, x)).

Then, the likelihood as a function of θ is L̃
(θ)
x (θ) = ψ̃(L̃

(δ)
x )(θ) = L̃

(δ)
x (ψ−1(θ)), and it can be

approximated by

L̃(δ)
x (ψ−1(θ)) ≈ exp

[
−1

2
I(δ̂;x)

(
ψ−1(θ)− ψ−1(θ̂)

)2
]

(27a)

≈ exp

[
−1

2
I(θ̂;x)[ψ′(δ̂)]2

(
ψ−1(θ)− ψ−1(θ̂)

)2
]
, (27b)

where we have used the equality I(δ̂;x) = I(θ̂;x)[ψ′(δ̂)]2 (see [26, p. 35]), and ψ′ denotes

the first derivative of ψ. The fuzzy set L̃
(θ)
x can be combined with a t-GRFN prior θ̃0 ∼

TÑ(µ0, σ
2
0, h0, ψ

−1) or, more generally, an mt-GRFN θ̃0 ∼
∑K

k=1 π0kTÑ(µ0k, σ
2
0k, h0k, ψ

−1) to

obtain, respectively, a posterior t-GRFN θ̃x ∼ TÑ(µx, σ
2
x, hx, ψ

−1), or a posterior mt-GRFN

θ̃x ∼
K∑

k=1

πxkTÑ(µxk, σ
2
xk, hxk, ψ

−1).

Example 10. Consider an iid sample x = (x1, . . . , xn) from a Poisson distribution with
mean θ. Let t =

∑n
i=1 xi. The likelihood function is

L(θ;x) =
n∏

i=1

θxi exp(−θ)
xi!

=
θt exp(−nθ)∏

xi!
,

and the MLE of θ is θ̂ = t/n, which gives us the following expression for the relative likeli-
hood:

L̃x(θ) =

(
θ

θ̂

)t
exp

[
n(θ̂ − θ)

]
.

It can easily be shown that I(θ̂;x) = n/θ̂, so that (26) yields

L̃x(θ) ≈ exp

[
− n

2θ̂
(θ − θ̂)2

]
= exp

[
−n

2

(
θ

θ̂
− 1

)2
]
. (28)

Alternatively, let θ = exp(δ). Approximation (27) gives us

L̃x(θ) ≈ exp

[
− n

2θ̂
exp(2θ̂)(log θ − log θ̂)2

]
. (29)
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Figure 12: Relative likelihood L̃x(θ) and its normal and lognormal approximations for an iid sample for the
Poisson distribution with mean θ, for n = 10 observations and t = 30.

Figure 12 displays the exact relative likelihood L̃x(θ) for n = 10 and t = 30, as well as its
approximations (28) and (29). As we can see, the lognormal approximation (29) is more
accurate, and it takes into account the positivity of θ.

Figure 13a shows two priors: a lognormal Bayesian prior θ̃0 ∼ TÑ(0.5, 0.1,+∞, log),
represented by its cdf (blue dotted line) and a weaker lognormal t-GRFN prior

θ̃′0 ∼ TÑ(0.5, 0.1, 10, log),

represented by its contour function (red solid line), its upper and lower cdfs (blues solid
lines) and 10 realizations (black dotted lines). We also show the lognormal approximation
to the relative likelihood as a red broken line. Figure 13b shows the corresponding lognormal
t-GRFN posteriors θ̃x = θ̃0 ⊕ L̃x (equal to the posterior probability distribution) and θ̃′x =

θ̃′0⊕ L̃x, as well as the approximated relative likelihood. As expected, the posterior lognormal
t-GRFN corresponding to the weaker prior is more imprecise, and closer to the relative
likelihood. It is clear from Figure 13b that our approach is not a robust Bayes method:
although the Bayes prior cdf is comprised between the lower and upper weak prior cdfs, this
is not the case for the posteriors. In the extreme situation where the prior is vacuous,
θ̃v0 ∼ TÑ(0, 1, 0, log), the posterior is the relative likelihood, as θ̃v0 ⊕ L̃x = L̃x. This is in
contrast with the robust Bayes approach, which yields a (useless) vacuous posterior with the
same vacuous prior information.

To illustrate the possibility of taking into account more complex prior information, we
show a bimodal mt-GRFN prior

θ̃0 ∼ 0.5TÑ(0.5, 0.1, 30, log) + 0.5TÑ(1.5, 0.01, 20, log)

in Figure 14a, and the corresponding posterior mt-GRFN

θ̃x = θ̃0 ⊕ L̃x = 0.29TÑ(0.84, 0.047, 60, log) + 0.71TÑ(1.26, 0.0040, 50, log).
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Figure 13: (a) Lognormal Bayesian prior θ̃0 ∼ TÑ(0.5, 0.1,+∞, log) (blue dotted line), lognormal t-GRFN

prior θ̃′0 ∼ TÑ(0.5, 0.1, 10, log) (contour function: red solid line, upper and lower cdfs: blues solid lines, and

10 realizations: black dotted lines), and lognormal approximation to the relative likelihood L̃x (red broken

line); (b): Bayesian lognormal posterior distribution θ̃x = θ̃0 ⊕ L̃x (blue dotted line), lognormal t-GRFN

posterior θ̃′x = θ̃′0 ⊕ L̃x (contour function: red solid line, upper and lower cdfs: blues solid lines, and 10
realizations: black dotted lines), and lognormal approximation to the relative likelihood (red broken line).

in Figure 14b. In practice, the prior RFS could be elicited by a method similar to that
proposed in Section 5.1.
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Figure 14: (a) Lognormal mt-GRFN prior θ̃0 ∼ 0.5TÑ(0.5, 0.1, 30, log) + 0.5TÑ(1.5, 0.01, 20, log) (contour
function: red solid line, upper and lower cdfs: blues solid lines, and 10 realizations: black dotted lines), and

lognormal approximation to the relative likelihood (red broken line); (b): mt-GRFN posterior θ̃′x = θ̃′0 ⊕ L̃x
(contour function: red solid line, upper and lower cdfs: blues solid lines, and 10 realizations: black dotted
lines), and lognormal approximation to the relative likelihood (red broken line).

6. Conclusions

Until recently, the application of evidential reasoning to problems involving continuous
variables has been limited due to the lack of practical models of belief functions in Rp, p ≥ 1
allowing for easy computation and combination. In [13], we have proposed a solution to this
problem by considering “epistemic random fuzzy sets” as the basic construct, from which
belief functions can be derived. In this framework, random fuzzy sets represent items of
evidence and can be combined by a generalized product-intersection rule extending both the
normalized product of possibility theory, and Dempster’s rule of Dempster-Shafer theory. In
this framework, we have introduced in [13] simple models of random fuzzy sets based on the
normal distribution. The proposed GRFN model and its multidimensional generalization
define parameterized families of belief functions in Rp that can be easily used in calculations
and combined using simple mathematical formulas. However, GRFNs, indexed by three
parameters (mean, standard deviation and precision) are not flexible enough to represent
the wide variety of belief functions needed in applications.

In this paper, we have presented two extensions of the GRFN model. The first one
consists in transforming a RFS X̃ defined in Rp by a bijective mapping ψ from Rp to
Λ ⊆ Rp. Such a transformation allows us to define, e.g., belief functions on real intervals
[a, b] with −∞ ≤ a < b ≤ +∞, or on the probability simplex Sp. The second extension
consists in considering mixtures of (transformed) GRFNs, which make it possible to define
belief functions of arbitrary “shape” and complexity. The rich families of generalized GRFNs
introduced in this paper are closed under the product-intersection rule and can be used for
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a variety of evidential reasoning tasks involving real variables.
We have discussed two important applications: the elicitation of expert beliefs about

numerical quantities, and generalized Bayesian inference with weak priors defined as gener-
alized GRFNs. Elicitation has been widely studied in the probabilistic context, much less
in other settings such as possibility theory or belief functions. The new models introduced
in this paper could be tested as representations of expert beliefs in real experiments. As
for statistical inference, the epistemic random fuzzy set perspective provides a simple and
consistent model in which data and prior knowledge are treated symmetrically as pieces
of evidence represented by random fuzzy sets. The parametric families of random fuzzy
numbers introduced in this paper can be used with a variety of statistical models without
resorting to Monte Carlo simulation. It would be interesting to compare this approach
with alternative methods such as, e.g., robust Bayesian analysis, both conceptually and
practically.

As another important application of the models introduced in this paper, we can mention
the quantification of prediction uncertainty in machine learning, for regression problems
characterized by asymmetric or heavy-tailed noise distributions, or in which target variables
are subject to some constraints. The EVREG model, an evidential neural network model
proposed in [9, 10] for “classical” regression problems, models prediction uncertainty using
GRFNs. It could be adapted, for instance, to compositional regression tasks (in which
target variables are proportions) by transforming its outputs to logistic normal random
fuzzy vectors. This and other research directions will be investigated in future publications.
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Appendix A. Combination of Gaussian Random Fuzzy vectors

Let X̃1 ∼ Ñ(µ1,Σ1,H1) and X̃2 ∼ Ñ(µ2,Σ2,H2) be two independent GRFVs such
that matrices Σ1, Σ2, H1 and H2 are all positive definite. We have

X̃1 ⊕ X̃2 ∼ Ñ(µ̃12, Σ̃12,H12)

with
H12 = H1 +H2, µ̃12 = Aµ̃, and Σ̃12 = AΣ̃AT ,

where A is the constant p× 2p matrix defined as

A = H−1
12

(
H1 H2

)
,

Σ̃ =

(
Σ−1

1 +H −H
−H Σ−1

2 +H

)−1

,
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µ̃ =

(
H
−1

Σ−1
1 + Ip −Ip
−Ip H

−1
Σ−1

2 + Ip

)−1(
H
−1

Σ−1
1 0

0 H
−1

Σ−1
2

)(
µ1

µ2

)
,

and
H = (H−1

1 +H−1
2 )−1.

Furthermore, the degree of conflict between X̃1 and X̃2 is

κ = 1−
√

|Σ̃|
|Σ1||Σ2|

exp

{
−1

2

[
µT1 Σ−1

1 µ1 + µT2 Σ−1
2 µ2 − µ̃T Σ̃

−1
µ̃
]}

. (A.1)

Appendix B. Proof of Proposition 3

The membership function of Ỹ (ω) ∼ TÑ(µ, σ2, h, log) is

Ỹ (ω)(y) = exp

(
−h

2
(log y −M(ω))2

)
,

with M ∼ N((µ, σ2). The α-cut of Ỹ (ω) is

αỸ (ω) =

[
exp

(
M(ω)−

√
−2 logα

h

)
, exp

(
M(ω) +

√
−2 logα

h

)]
. (B.1)

Now, M−
√
−2 logα

h
∼ N

(
µ−

√
−2 logα

h
, σ2

)
, hence the lower bound of (B.1) has a lognormal

distribution LN

(
µ−

√
−2 logα

h
, σ2

)
and an expectation

E∗(αỸ ) = exp

(
µ−

√
−2 logα

h
+
σ2

2

)
. (B.2)

Similarly,

E∗(αỸ ) = exp

(
µ+

√
−2 logα

h
+
σ2

2

)
. (B.3)

The lower and upper expectations of Ỹ are, respectively, the integrals of (B.2) and (B.3)
from α = 0 to α = 1. Let us start with

E∗(Ỹ ) =

∫ 1

0

exp

(
µ−

√
−2 logα

h
+
σ2

2

)
dα.

By the change of variable β =
√
−2 logα

h
, we get

E∗(Ỹ ) = h exp

(
µ+

σ2

2

)∫ +∞

0

β exp

(
−h

2
β2 − β

)
dβ.
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Completing the square gives us

E∗(Ỹ ) = h exp

(
µ+

σ2

2
+

1

2h

)∫ +∞

0

β exp

[
−h

2

(
β +

1

h

)2
]
dβ

︸ ︷︷ ︸
I

. (B.4)

Integral I is related to the mean of the left-truncated normal distribution on [0,+∞), with
mean −1/h, standard deviation 1/h, and density

f(y) =

√
h

√
2π
(

1− Φ
(

1√
h

)) exp

[
−h

2

(
β +

1

h

)2
]
.

The mean of this truncated normal distribution is

−1

h
+

1√
h

φ(1/
√
h)

1− Φ(1/
√
h)
,

where φ is the standard normal pdf. Consequently, we have

I =
− 1
h

+ 1√
h

φ(1/
√
h)

1−Φ(1/
√
h)

√
h√

2π
(

1−Φ
(

1√
h

)) =
√

2π

[
−h−3/2

(
1− Φ

(
1√
h

))
+

1

h
φ

(
1√
h

)]
. (B.5)

From (B.4) and (B.5), we get (14a). Similar calculations starting from the upper bound of
(B.1) yield (14b).

Appendix C. Proof of Theorem 4

We start by the following lemma, which generalizes Lemma 1 in [13].

Lemma 3. Let (M1, Z1) and (M2, Z2) be two independent two-dimensional random vectors
such that

P (Z1 = k) = π1k, k = 1, . . . , K,

M1 | (Z1 = k) ∼ N(µ1k, σ
2
1k), k = 1, . . . , K

and
P (Z2 = `) = π2`, ` = 1, . . . , L,

M2 | (Z2 = `) ∼ N(µ2`, σ
2
2`), ` = 1, . . . , L.

Let F̃ be the fuzzy subset of R2 × {1, . . . , K} × {1, . . . , L} with membership function

F̃ (m1,m2, y1, y2) = hgt (GFN(m1, h1(y1)) · GFN(m2, h2(y2)))

= exp

(
−h1(y1)h2(y2)(m1 −m2)2

2(h1(y1) + h2(y2))

)
,
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where h1(y1) =
∏K

k=1 h
y1k
1k and h2(y2) =

∏L
`=1 h

y2k
2k and, as before, y1k = I(y1 = k) and

y2k = I(y2 = `).

The conditional probability distribution of (M1,M2, Z1, Z2) given F̃ can be described as
follows:

• The conditional probability distribution of (M1,M2) given F̃ and (Z1, Z2) = (k, `) is
two-dimensional Gaussian with mean vector µ̃k` = (µ̃1k`, µ̃2k`)

T and covariance matrix

Σ̃kl =

(
σ̃2

1k` ρk`σ̃1k`σ̃2kl

ρk`σ̃1k`σ̃2kl σ̃2
2k`

)
,

with

µ̃1k` =
µ1k(1 + hσ2

2`) + µ2`hk`σ
2
1k

1 + hk`(σ2
1k + σ2

2`)
, µ̃2k` =

µ2`(1 + hk`σ
2
1k) + µ1khk`σ

2
2

1 + hk`(σ2
1k + σ2

2`)
(C.1a)

σ̃2
1k` =

σ2
1k(1 + hklσ

2
2`)

1 + hkl(σ2
1k + σ2

2`)
, σ̃2

2` =
σ2

2`(1 + hk`σ
2
1k)

1 + hk`(σ2
1k + σ2

2`)
(C.1b)

ρk` =
hk`σ1kσ2`√

(1 + hk`σ2
1k)(1 + hk`σ2

2`)
, (C.1c)

where

hk` =
h1kh2`

h1k + h2`

. (C.1d)

• The conditional probability distribution of (Z1, Z2) given F̃ is

P (Z1 = k, Z2 = ` | F̃ ) = π̃k` =
(1− κk`)π1kπ2`∑

k′`′(1− κk′`′)π1k′π2`′
, (C.2)

where κk` is the degree of conflict between two independent GRFNs X̃1k ∼ Ñ(µ1k, σ
2
1k, h1k)

and X̃2` ∼ Ñ(µ2`, σ
2
2`, h2`) given by Proposition 1.

Proof. Given (Z1, Z2), M1 and M2 have normal distributions. The conditional probability

distribution of (M1,M2) given F̃ and (Z1, Z2) = (k, `) results directly from Lemma 1 of [13].
Now, from Bayes’ theorem,

P (Z1 = k, Z2 = ` | F̃ ) =
P (F̃ | Z1 = k, Z2 = `)P (Z1 = k, Z2 = `)

P (F̃ )

=
P (F̃ | Z1 = k, Z2 = `)π1kπ2`∑

k′,`′ P (F̃ | Z1 = k′, Z2 = `′)π1k′π2`′
.

From Lemma 1 in [13], P (F̃ | Z1 = k, Z2 = `) = 1− κk`, where κk` is given by Proposition
1, which completes the proof.

We can now give the proof of Theorem 4.
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Proof of Theorem 4. Let (M1, Z1) and (M2, Z2) be pairs of random variables from (Ω1,Σ1, P1)

and (Ω2,Σ2, P2) to (R,B(R)) corresponding, respectively, to m-GRFNs X̃1 and X̃2. The

orthogonal sum of X̃1 and X̃2 is the random fuzzy set (Ω1 ×Ω2,Σ1 ⊗Σ2, P̃12,R,B(R), X̃�),

where X̃� is the mapping

X̃� : (ω1, ω2)→ GFN(M12(ω1, ω2), h1(ω) + h2(ω)),

with

M12(ω1, ω2) =
h1(ω)M1(ω1) + h2(ω)M2(ω2)

h1(ω) + h2(ω)
,

and P̃12 is the probability measure on Ω1×Ω2 obtained by conditioning P1×P2 on the fuzzy
set Θ̃∗(ω1, ω2) = hgt (GFN(M1(ω1), h1(ω)),GFN(M2(ω2), h2(ω))). The pushforward measure

of P̃12 by the random vector (M1,M2, Z1, Z2) is the conditional distribution given F̃ described
in Lemma 3, with parameters (µ̃1k`, µ̃2k`, σ̃1k`, σ̃2k`, ρk`, π̃j`), k = 1, . . . , K, ` = 1, . . . , L. The

conditional expectation of M12 given (Z1, Z2) = (k, `) and F̃ is

E(M12|Z1 = k, Z2 = `, F̃ ) =
h1kE(M1|Z1 = k, Z2 = `, F̃ ) + h2`E(M2|Z1 = k, Z2 = `, F̃ )

h1k + h2`

=
h1kµ̃1k + h2`µ̃2`

h1k + h2`

,

and its conditional variance is

Var(M12|Z1 = k, Z2 = `, F̃ ) =
1

(h1k + h2`)2
(h2

1Var(M1|Z1 = k, Z2 = `, F̃ )+

h2
2Var(M2|Z1 = k, Z2 = `, F̃ ) + 2h1kh2`Cov(M1,M2|Z1 = k, Z2 = `, F̃ )),

which gives

Var(M12|Z1 = k, Z2 = `, F̃ ) =
h2

1kσ̃
2
1k + h2

2σ̃
2`
2 + 2ρk`h1kh2`σ̃1kσ̃2`

(h1k + h2`)2
.

Finally, P (Z1 = k, Z2 = `|F̃ ) = π̃k`, which completes the proof of the first part of the
theorem. The second part is obtained directly by noticing that

κ = 1− P (F̃ ) = 1−
K∑

k=1

L∑

`=1

P (F̃ | Z1 = k, Z2 = `)P (Z1 = k, Z2 = `)

= 1−
K∑

k=1

L∑

`=1

(1− κk`)π1kπ2` =
K∑

k=1

L∑

`=1

κk`π1kπ2`.
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