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Abstract 

The design of photoinitiating systems activable in the visible range and under low light 

intensity is an active research field supported by the vast applications of photopolymerization. 

In the search for dyes that can exhibit panchromatic absorptions, anthraquinone has been 

identified as a promising scaffold. Over the years, numerous modifications have been carried 

out on this scaffold by molecular engineering, enabling to design water-soluble, panchromatic 

or photobleachable dyes. In this review, an overview of the recent advances concerning 

photopolymerization with anthraquinone-based photoinitiating systems is given.   
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 1. Introduction 

 During the past decades, photopolymerization has been the focus of intense research 

efforts, resulting from the wide of applications using photopolymerization.[1–5] Notably, 

photopolymerization is commonly used for applications ranging from solvent-free paints, 

microelectronics,  adhesives, dentistry, coatings and varnishes, and 3D and 4D printing to 

name but a few.[4,6–18] This intense research activity is also supported by the recent safety 

concerns raised by the use of UV light in industry. Notably, UV light can cause skin cancers 

and eye damages. Ozone can also be produced by UV light, constituting another drawback of 

UV photopolymerization. However, nowadays, the main concern that will end UV 

photopolymerization is the high energy consumption combined with the elevated costs of the 

UV irradiation setups. Considering that in the coming years, energy sobriety will be the main 

focus of numerous countries, this historical polymerization technique is now totally 

disconnected with the present preoccupation of our societies. Shift of the irradiation 

wavelength from the UV range towards the visible range exhibit several advantages. Notably, 

a higher light penetration can be achieved in the visible range, rendering visible light 

photopolymerization more attractive than UV photopolymerization. Indeed, use of UV 

photopolymerization was restricted to the polymerization of thin films and coatings. By 

polymerizing under visible light, a light penetration ranging between a few millimetres up to 
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a few centimetres can be obtained, enabling to polymerize thick samples and samples 

containing fillers (See Figure 1).[19]  

 
Figure 1. Light penetration in a polystyrene latex with an average diameter of 112 nm. 

Reprinted with permission from Ref.[19] 

As other advantages, an excellent spatial and temporal control of the polymerization 

process can be obtained, what cannot be achieved by the classical thermal polymerization in 

solution. However, if numerous advantages can be cited for visible light photopolymerization, 

the disadvantages can’t be denied. Thus, visible light photoinitiators strongly absorb in the 

visible range, providing an undesired colour to the final coating. A lack of reactivity can also 

be mentioned. Indeed, visible light photons are less energetic than UV photons so that a 

reduction of the monomer conversions is often observed. Additionally, with aim at using 

energy-saving polymerization conditions, light-emitting diodes (LEDs) are now commonly 

used for photopolymerization. As the main advantages, these devices are cheap, compact and 

exhibit long operating lifetimes. Ideally, highly reactive photoinitiating systems could even be 

activated with daylight or sunlight.[20] However, availability of sunlight photoinitiators is still 

scarce in the literature. Face to these considerations, the search for dyes capable to bleach is 

still an active research field, only few visible light photoinitiating systems exhibiting this 

highly researched property.[21] With aim at developing highly reactive photoinitiating 

systems, an extensive screening has been developed during the last decades. A wide range of 

structures have been examined, as exemplified by dihydroanthraquinones,[22] N-heterocyclic 

carbene boranes,[3] curcumin,[23–26] benzylidene ketones,[27–34] cyclohexanones,[35–38] 

perovskites,[39,40] iron complexes,[41–48] diketopyrrolopyrroles,[49–51] viologen 

derivatives,[52–54] naphthoquinones,[55] porphyrins,[56–58] dithienophospholes,[59,60] 

thiophene derivatives,[61] 2,3-diphenylquinoxaline derivatives,[62,63] benzophenones,[64–

71] carbazoles,[72–87] silyl glyoximides,[88] Bodipy,[89–94] imidazole derivatives,[95] truxene 

derivatives,[96] cyanines,[97–103] naphthalimides,[104–122] Schiff bases,[123] 

triphenylamines,[124,125] anthracene,[126] metal organic framework (MOFs),[41,127,128] 

furan derivatives,[129] benzylidene ketones,[27,28] push-pull dyes,[42,130–144] 

perylenes,[145–148] quinoxalines,[62,149–161] pyrenes,[162–170] polyoxometalates,[171–173] 

chromones and flavones,[174–176] pyridinium salts,[177,178] phenothiazines,[179–189] 

coumarins,[190–203] camphorquinones,[204,205] iodonium salts,[89,104,206–214] iridium 

complexes,[215–222] thioxanthones,[89,223–237] chalcones,[14,238–253] gold complexes,[254] 



copper complexes,[255–272] helicenes,[273,274] zinc complexes,[275] squaraines, [276–280] 

pyrrole derivatives,[281,282] conjugated polymers,[283] acridones,[284,285] acridine-1,8-

diones,[286–288] bisacylphenylphosphine oxide,[289] and phenazines.[290] Among structures 

that have been investigated for the design of photoinitiators, anthraquinone can be cited as a 

scaffold that was under-investigated compared to other structures. Besides, anthraquinone 

was extensively used for the design of various semi-conductors, chromophores and light-

emitting materials for organic electronics.[291–294] Anthraquinone was also employed for the 

design of various laxatives, antimicrobial and anti-inflammatory agents.[295–297] As far as 

photopolymerization is concerned, the first report mentioning the use of anthraquinone as 

photoinitiator of polymerization was reported as soon as 1957 by Tordoff and coworkers.[298] 

In this pioneering work, the polymerization of acrylamide in aqueous solution sensitized by 

hydrogen peroxide and 9,10-anthraquinone-2,6-disulfonic acid disodium salt was examined. 

Besides, upon irradiation with a 366 nm light, the reaction proved to be too complex to be 

controlled. In 1960, Hermans and coworkers examined the grafting of various monomers on 

the cellulose backbone using 9,10-anthraquinone-2,6-disulfonic acid disodium salt as the 

photosensitizer.[299] Noticeably, presence of oxygen was determined as enhancing the 

grafting efficiency on cellulose, resulting from the in-situ formation of hydroperoxyl radicals. 

A systematic study was proposed in 1968 by Anwaruddin and coworkers in which 9,10-

anthraquinone-2,6-disulfonic acid disodium salt, 9,10-anthraquinone-2,7-disulfonic acid 

disodium salt and 9,10-anthraquinone-2-sulfonic acid sodium salt were used as 

photosensitizers for the aqueous polymerization of acrylamide under inert atmosphere.[300] 

Interestingly, addition of sodium chloride in water totally suppressed the induction time, 

which varied between 2 and 3 hours without NaCl. A photoinduced electron transfer between 

the chlorine anion and the excited anthraquinone derivative was proposed as the initiating 

step. A similar reduction of the inhibition time could be demonstrated using 9,10-

anthraquinone-2,7-disulfonic acid disodium salt and ferric chloride during the photoinduced 

grafting of methyl methacrylate (MMA) on cellulose.[301] However, this approach proved to 

be ineffective to form hydrogels with poly(N-isopropylacrylamide).[302] By using the water-

soluble two-component 9,10-anthraquinone-2-sulfonic acid sodium salt/(4-benzoylbenzyl) 

trimethylammonium chloride system, grafting of acrylamide and N-isopropylacrylamide on 

polyethylene was obtained, enabling an efficient surface modification.[303] Thus, the 

hydrophobic nature of the poly(ethylene) surface could be converted as a hydrophilic one. 

Photocrosslinking of polyethylene was also investigated by Kachan and coworkers in 1986 and 

investigation of the photochemical mechanism with 9,10-anthraquinone as the photoinitiator  

revealed photocrosslinking to occur during photoreduction of the dye.[304] In 1975, Taylor 

and coworkers reported  the photopolymerization of methyl methacrylate (MMA) in THF 

under aerobic and anaerobic conditions using anthraquinone and 2-tert-

butylanthraquinone.[305] Photolysis experiments done in THF as the solvent revealed the 

mechanism to involve a hydrogen abstraction from THF by the excited anthraquinone, 

generating THF radicals (THF•). A similar mechanism of hydrogen abstraction was also 

evidenced with other solvents such as cyclohexane or isopropanol,[306] but also with 

triethylamine, generating α-aminoalkyl radicals.[307] Extractability of photoinitiators can 

drastically limit the potential use of polymers and this issue was examined with the design of 



anthraquinone-based macrophotoinitiators.[308,309] By introducing an acrylamide group on 

anthraquinone, the anthraquinone chromophore could serve as a photosensitizer for its own 

polymerization using lauroyl peroxide. In the presence of MMA, copolymer could be prepared 

with different 2-substituted amido and acryloxy-anthraquinones.[310] By use of water-soluble 

co-monomers such as acrylamide, 2-acrylamido-2-methylpropane sulphonic acid and 2-

acryloxyethyl trimethylammonium iodide, water-soluble copolymers comprising 

anthraquinone units could be obtained.[311] By the presence of crosslinkable groups on 

anthraquinones, grafting of anthraquinones onto nylon-6,6-polymer could also be successfully 

obtained.[312,313]  Positions of the lowest singlet excited state π-π* relative to the triplet nπ* 

state was determined as playing an important role in photopolymerization.[314,315] Thus, 

without amine, all anthraquinone derivatives bearing electron-withdrawing groups proved to 

be more reactive than those bearing electron-donating groups. A different situation was found 

in the presence of amine. In this case, halogenated anthraquinones proved to the more reactive 

than the others. Anthraquinones were not only used for initiating the polymerization of 

acrylates and epoxides. The polymerization of styrene was notably examined in 2009 by 

Sakurai and coworkers with a series of 1-(arylmethyloxy)-9,10-anthraquinones.[316] Here 

again, a strong influence of the substitution pattern of anthraquinones was evidenced during 

the polymerization of styrene, and better monomer conversions were obtained for the 

naphthalene-substituted anthraquinones compared to the phenyl-substituted ones. Hybrid 

polymerizations of styrene and epoxides was also examined in this work and could be possible 

due to the concomitant formation of arylmethyloxyl radicals and arylmethyl carbocations. 

Photodegradation of polymers was also another major concern of polymerists and the 

photodegradation of poly(styrene) was notably examined.[317–319] Use of anthraquinone as 

a photosensitizer capable to initiate the crosslinking of alkali-soluble polymers bearing double 

bonds from both acrylate and maleic acid monoester groups was also examined. By using 

trimethylolpropane trimethacrylate  (TMPTMA) as a diluent monomer, hydrogels containing 

up to 85% water could be prepared.[320] Finally, investigations of anthraquinones as 

photosensitizers was not limited to one-photon polymerization and the first examples of two-

photon photosensitizers based on anthraquinone were reported in 2007 by Kawata and 

cowokers.[321] In order to get a large two-photon absorption cross-section, an 

oligo(phenylene-vinylene)-type structure was used for the design of the two photosensitizers, 

enabling to get two-photon absorption cross-sections of 1635GM and 995GM at 800 nm. The 

design of pressure sensitive adhesives using an anthraquinone-based photoinitiator was also 

recently reported in the literature. Influence of the photoinitiator concentration, the UV dose 

used for polymerization, and the rate of crosslinking was determined as impacting the 

mechanical properties of the pressure-sensitive adhesives.[322]   

In this review, the different anthraquinone derivatives that have been developed since 

2010 are presented. A wide range of structures have been proposed in light of the rich history 

concerning the design of anthraquinone-based photoinitiators. Notably, metal complexes, 

phthalocyanine, water-soluble dyes or biosourced anthraquinones have been investigated for 

photopolymerization. In these different works, comparisons have been established to evidence 

the interest of these structures.      



2. Anthraquinone-based photoinitiators of polymerization 

2.1. Biosourced anthraquinones. 

 Investigations of natural dyes as photoinitiators of polymerization is an active research 

field, supported by the fact that these dyes are often abundant and exhibit only a low 

toxicity.[323] In this field, one of the most popular natural dye in photopolymerization is 

undoubtedly curcumin which was at the basis of numerous photoinitiating systems.[23–

26,324–326] By polymerizing polymethacrylates, biocompatible polymers could be obtained, 

the resulting polymers being not toxic for fibroblast HS-26 cells.[23] 9,10-Anthraquinone 

derivatives can also be extracted from numerous plants and four derivatives, namely 1,8-

dihydroxyanthraquinone (18-DHAQ, chrysazine), 1,2-dihydroxyanthraquinone (12-DHAQ), 

1,4-dihydroxyanthraquinone (14-DHAQ, quinizarin) and 1,5-dihydroxyanthraquinone (15-

DHAQ) were tested as photoinitiators for the free radical photopolymerization (FRP) of 

multifunctional monomers, reversible addition-fragmentation chain transfer (RAFT) 

polymerization of monofunctional monomers and the cationic polymerization of epoxides 

(See Figure 2).[22] Notably, chrysazine and hypericin can be both extracted from a flowering 

plant named Hypericum genus. Hypericin is notably used in the photodynamical therapy of 

cancer[327] and chrysazine as a laxative.[328] On their sides, 12-DHAQ, 14-DHAQ 

(quinizarin) also exhibit biological activities as anticancer drugs by their remarkable abilities 

to bind to DNA.[329] Concerning 15-DHAQ, this molecule is used since 1916 as an 

antipsoriasis drug.[330] 

 

Figure 2. Chemical structures of 12-DHAQ, 14-DHAQ, 15-DHAQ, 18-DHAQ, different 

monomers and additives. 

 In 2016, Xiao and coworkers investigated the four dyes as blue light sensitive 

photoinitiators. Indeed, as shown in the Figure 3 and Table 1, UV-visible absorption spectra in 

acetonitrile revealed 15-DHAQ and 18-DHAQ to absorb at the same positions, in the 350-500 



nm range whereas a redshift of the absorption was detected for 14-DHAQ (375-550 nm range). 

In the case of 12-DHAQ, its absorption spectrum could not be acquired in acetonitrile due to 

its insolubility. It therefore clearly evidenced the crucial influence of the substitution pattern 

on the solubilities of dyes but also on their absorption properties.  

 

Figure 3. UV-visible absorption spectra of three dihydroxyanthraquinones 14-DHAQ, 15-

DHAQ, 18-DHAQ recorded in acetonitrile. Reproduced with permission from Ref. [22]. 

 

Table 1. Light absorption properties of the studied anthraquinone derivatives: absorption 

maxima λmax, extinction coefficients at λmax and at the maximum emission wavelengths of the 

different LED bulbs 

compounds λmax (nm) εmax (M-1.cm-1) ε455 nm (M-1.cm-1) ε518 nm (M-1.cm-1) 

14-DHAQ 477 7200 7000 3000 

15-DHAQ 417 7000 3500 150 

18-DHAQ 426 6700 3900 50 

 

Theoretical calculations done on the different dyes revealed the electronic distribution 

to be totally different between dyes (See Figure 4). Thus, the highest occupied molecular orbital 

(HOMO) was determined to be located onto the polyphenol moieties whereas the lowest 

unoccupied molecular orbital (LUMO) was centered onto the quinone moiety. Especially, the 

two hydroxy groups of 14-DHAQ contribute to the HOMO orbital, supporting its redshifted 

absorption compared to 15-DHAQ and 18-DHAQ for which a weaker contribution to the 

HOMO orbital was found. 

 

Figure 4. Contour plots of the HOMO and LUMO energy levels of dihydroxyanthraquinone 

using DFT at the UB3LYP/6-31G* level. Reproduced with permission from Ref. [22]. 



 In order to investigate their photoinitiating abilities during the FRP of a blend of 

multifunctional methacrylate monomers i.e. bisphenol A-glycidyl methacrylate 

(BisGMA)/triethyleneglycol dimethacrylate (TEGDMA), two different three-component 

systems were examined. First, by using the three-component dye/Iod/NVK (0.5%/2%/3%, 

wt%) system (where Iod and NVK respectively stand for diphenyliodonium 

hexafluorophosphate and N-vinylcarbazole), the highest monomer conversion was obtained 

with 18-DHAQ, furnishing 56% conversion after 300 s of irradiation at 455 nm with a LED. 

This value is close to that obtained with the second three-component dye/TEAOH/R-Br 

(0.5%/2%/3%, wt%) system (where TEAOH and R-Br respectively stand for triethanolamine 

and phenacyl bromide) for which a conversion of 55% was determined. Following 18-DHAQ 

in terms of reactivity, 14-DHAQ was the second most efficient photoinitiator of the series (40 

and 48% for the dye/Iod/NVK (0.5%/2%/3%, wt%) system and dye/TEAOH/R-Br (0.5%/2%/3%, 

wt%) system respectively) (See Figure 5). Comparison with camphorquinone (CQ) which a 

benchmark photoinitiator revealed 18-DHAQ to outperform camphorquinone, irrespective of 

the photoinitiating system used. Interestingly, photopolymerization experiments could be 

successfully done at 518 nm with 14-DHAQ and 18-DHAQ, despites the weak molar extinction 

coefficient of 18-DHAQ at 518 nm (See Figure 6). 

 

 

Figure 5. Monomer conversions obtained during the FRP of Bis-GMA/TEGDMA blend 

(70%/30%, w/w) in laminate in the presence of (a) dye/Iod/NVK (0.5%/2%/3%, wt%) and 

CQ/Iod (0.5%/2%, wt%) as the reference. (b) Dye/TEAOH/R-Br (0.5%/2%/3%, wt%) and 

CQ/TEAOH (0.5%/2%, wt%) as the reference, irradiation at 455 nm. Reproduced with 

permission from ref. [22] 

 

Figure 6. Monomer conversions obtained during the FRP of Bis-GMA/TEGDMA blend 

(70%/30%, w/w) in laminate in the presence of dye/Iod/NVK (0.5%/2%/3%, wt%), irradiation 

at 518 nm. Reproduced with permission from ref. [22] 



To support the remarkable photoinitiating abilities of 14-DHAQ and 18-DHAQ, 

photochemical mechanism was investigated by mean of complementary techniques including 

photolysis experiments, electron spin resonance (ESR) experiments and cyclic voltammetry. 

The following mechanism was proposed by the authors. Thus, upon photoexcitation of the 

dye, a photoinduced electron transfer between the excited dye and the iodonium salt can occur 

(see r2 and r3, Scheme 1), producing initiating aryl radicals (Ph•) by decomposition of the 

unstable iodine radical. Reactivity of the aryl radicals can be improved upon introduction of 

NVK, generating the highly reactive Ph-NVK• (see r4). Parallel to this, cations can also be 

formed by equation (r5), enabling to initiate the cationic polymerization of epoxides. In the 

case of the second photoinitiating system, a different mechanism takes place, based on a 

photoinduced electron transfer followed by a hydrogen abstraction process, enabling to 

generate DHAQ-H● and TEAOH●(-H) radicals (See equation r6). By reaction with phenacyl 

bromide, initiating radicals R• can be formed (See equation r7). Noticeably, no direct 

correlation between the molar extinction coefficient and the monomer conversion could be 

evidenced, 15-DHAQ and 18-DHAQ exhibiting similar absorption properties, but also the 

lowest and the highest monomer conversions. Therefore, it was concluded that other 

parameters such as the solubility in resins, the rate constant of electron transfer were 

governing the polymerization efficiency. Occurrence of a back electron transfer between 15-

DHAQ and TEAOH or Iod was suggested as a plausible explanation supporting the lower 

polymerization efficiency of this dye. 

 

DHAQ →1DHAQ (hν)  and 1DHAQ → 3DHAQ     (r1) 
1,3DHAQ + Ph2I+ → DHAQ●+ + Ph2I●       (r2) 

Ph2I● → Ph● + Ph-I         (r3) 

Ph● + NVK → Ph-NVK●        (r4) 

Ph-NVK● + Ph2I+ → Ph-NVK+ + Ph● + Ph-I      (r5) 

 
1,3DHAQ + TEAOH → DHAQ●- + TEAOH●+ → DHAQ-H● + TEAOH●(-H)  (r6) 

DHAQ●- + R-Br → DHAQ + (R-Br)●- → DHAQ + R● + Br-    (r7) 

Scheme 1. Chemical mechanism involved with the first (eq. r1-r5) and the second (eq. r6-r7) 

three-component photoinitiating systems. 

 

Interestingly, promising results were obtained during photoRAFT experiments with a 

monofunctional monomer. By using di(ethylene glycol) methyl ether methacrylate 

(DEGMEMA) as the monomer and 4-cyanopentanoic acid dithiobenzoate (CPADB) as the 

RAFT agent, polymers of controlled size could be obtained (Mn = 7500 g/mol, D = 1.14) after 

four hours of irradiation at 455 nm using the three-component 18-DHAQ/Iod/CPADB 

(0.2%/0.8%/1% w/w/w) system. In the absence of the RAFT agent, a lower control of the 

polymerization process was obtained and a higher polydispersity was determined (Mn = 31100 

g/mol, D = 1.75). Finally, the possibility of initiating the cationic polymerization of epoxides 

was examined during the CP of (3,4-epoxycyclohexane)methyl 3,4- 

epoxycyclohexylcarboxylate (EPOX). Here again, the trend of reactivity previously established 

was confirmed, with 18-DHAQ outperforming the other dyes (See Figure 7). 



 

Figure 7. Monomer conversions obtained during the CP of EPOX using different three-

component photoinitiating systems. Reproduced with permission from ref. [22] 

 In 2020, Versace and coworkers revisited quinizarin (i.e. 18-DHAQ) in the context of 

crosslinkable photoinitiators.[331] Two polymerizable groups were introduced, namely an 

epoxide and an allyl group (See Figure 8). In 2022, the methacrylated version Q1Ac and Q2Ac 

were proposed by the same authors.[332] Parallel to quinizarin, Versace and coworkers also 

developed the photopolymerizable version of purpurin (1,2,4-trihydroxyanthraquinone, 124-

THAQ) and introduced one or three allyl groups (PmA and PA respectively).[333] It has to be 

noticed that the introduction of polymerizable units on anthraquinones has previously been 

reported in the literature by Ritter and coworkers in 2013.[334] In that work, by 

copolymerizing blue, green and red-absorbing dyes, copolymers with broad absorption could 

be obtained.  

 
Figure 8. Chemical structures of crosslinkable quinizarin derivatives QA and QE. 



Noticeably, upon alkylation of the phenol groups, a significant blueshift of the 

absorption maxima was found for ZA and ZE in acetonitrile (λmax = 415 and 407 nm 

respectively) compared to the parent structure quinizarin (QZ) (λmax = 477 nm) (See Figure 9). 

Molar extinction coefficients of 6000 and 5530 M-1.cm-1 were also determined for the two dyes, 

greatly higher than that of camphorquinone (66 M-1.cm-1 at 466 nm). Based on their 

absorptions, polymerization experiments could be carried out at 405, 455 and 470 nm. 

 

Figure 9. UV-visible absorption spectra of QA, QE and quinizarin (QZ) in acetonitrile. 

Reproduced with permission of Ref. [331] 

 During the CP of EPOX, the higher photoinitiating ability of the quinizarin derivatives 

(ZA and ZE) compared to the parent structure was demonstrated. Thus, if no monomer 

conversion could be detected with QZ and camphorquinone with the two-component 

dye/Iod1 system (where Iod1 stands for 4-(2-methylpropyl)phenyliodonium 

hexafluorophosphate), irrespective of the irradiation conditions, a conversion of 76% could be 

evidenced with ZA after 800 s of irradiation with a Xe lamp, higher than that obtained with 

ZE (57%). For all the other irradiation conditions, ZE greatly outperformed ZA in terms of 

monomer conversion (See Table 2). The same trend of reactivity was demonstrated during the 

FRP of TMPTA. If ZA could outperform ZE upon irradiation with a Xe lamp, a different 

situation was found with LEDs of narrower emission. Noticeably, good monomer conversions 

could be obtained with two different two-component systems based on MDEA or Iod1. 

However, a higher polymerization efficiency was determined with Iod1, evidencing the higher 

reactivity of the oxidative pathway. Here again, all photoinitiating systems based on QZ were 

less efficient than those based on ZA and ZE, attributable to the presence of phenolic groups 

on QZ acting as termination agents quenching the chain growth but also to the ability of 

phenols to act as inhibitors of polymerization.[335,336] 

 

Table 2. EPOX and TMPTA conversions obtained with the two-component dye/Iod1 

(0.5%/2.0%, wt%) or the two-component dye/MDEA (0.5%/2%, wt%) systems upon irradiation 

at different wavelengths for 800 s. 

EPOX conversion under air 

 Xenon lamp LED@405 nm LED@455 nm LED@470 nm 



CQ/Iod1 n.p. n.p. n.p. n.p. 

QZ/Iod1 n.p. n.p. n.p. n.p. 

QA/Iod1 76% 56% 43% 52% 

QE/Iod1 57% 72% 58% 50% 

TMPTA conversion in laminate 

 Xenon lamp LED@405 nm LED@455 nm LED@470 nm 

CQ/MDEA 39 - 40 44 

QZ/MDEA 30 37 28 12 

QA/MDEA 55 69 54 44 

QE/MDEA 57 57 55 50 

CQ/Iod1 45 - 50 32 

QZ/Iod1 n.p. 15 n.p. n.p. 

QA/Iod1 70 77 65 50 

QE/Iod1 75 80 66 36 

n.p. no polymerization. 

 

 Finally, the concomitant polymerization of TMPTA and EPOX was examined, enabling 

to access to interpenetrated polymer networks (IPNs). Due to oxygen inhibition, higher 

TMPTA conversions were obtained in laminate than under air.[337] Conversely, due to the 

higher polymerization rate of TMPTA, a decrease of the EPOX conversion was determined in 

laminate compared to that determined under air (See Table 3). 

Table 3. Monomer conversions obtained during the photopolymerization of an EPOX/TMPTA 

(50/50 w/w) blend upon irradiation at 455 nm for 800 s. 

QA/Iod (0.5/2.0%, w/w) QE/Iod (0.5/2.0%, w/w) 

under air 72 48 49 50 

in laminate 52 76 39 87 

  

The most interesting result of this study concerned the antibacterial properties 

provided to IPNs by the presence of quinizarin derivatives. Indeed, the design of antibacterial 

materials is an active research field.[338] Due to the presence of the dyes within the polymer 

films, singlet oxygen could be produced at the surface of the irradiated films, enabling to 

provide antibacterial properties to the polymer films. Indeed, singlet oxygen formed by 

photosensitization with quinizarin can oxidize the olefinic double bonds of bacteria, leading 

to their deaths.[339,340] 

 Inspired by the photoinitiating abilities of natural anthraquinones, a series of three 

poly(hydroxy)anthraquinones was investigated by Xiao and coworkers, differing by the 

number of hydroxy groups but also by the substituent positions (See Figure 10).[341] 



 

Figure 10. Chemical structures of different poly(hydroxy)anthraquinones. 

 In this series, 1,2,4-trihydroxyanthraquinone (124-THAQ, purpurin) is also a natural 

product that can be extracted from the roots of a madder plant (Rubia cordifolia), a plant which 

is of the same family from which quinizarin (1,4-dihydroxyanthraquinone) is extracted (Rubia 

tinctorum). For comparison, other non-natural poly(hydroxy)anthraquinone were 

investigated, namely 1,2,7-trihydroxyanthraquinone (127-THAQ), anthrapurpurin) and 

1,2,5,8-tetrahydroxyanthraquinone (1258-THAQ, quinalizarin). In this series of dyes, all 

anthraquinones bearing hydroxy groups in para-position exhibited the most redshifted 

absorptions. Thus, 124-THAQ and 1258-THAQ exhibited absorption maxima at 477 and 480 

nm contrarily to 411 nm for 127-THAQ that does not comprise two hydroxy groups in para-

position to each other (See Figure 11). Based on their absorptions, polymerization experiments 

could be carried out at 518 nm (i.e. with green light) with all dyes. 

 

 

Figure 11. UV-visible absorption spectra of different poly(hydroxy)anthraquinones in 

acetonitrile. Reproduced with permission of Ref.[341] 

 Fluorescence quenching experiments done with Iod revealed the photobleaching to be 

very fast for 124-THAQ and 127-THAQ whereas almost no quenching was detected with 1258-

THAQ, indicative of an inefficient electron transfer. A lower reactivity during FRP 

experiments can be thus anticipated for 1258-THAQ. During steady state photolysis 

experiments done in acetonitrile, if a decrease of the light absorption was detected for the two-

component 124-THAQ and 1258-THAQ/Iod systems, no modification of the absorption 

properties was detected for the two-component system based on 127-THAQ, demonstrating 



the non-reactivity of this system. Based on the fluorescence and steady state photolysis 

experiments, the following order of reactivity could be established: 124-THAQ, then 1258-

THAQ and 127-THAQ. This trend of reactivity determined in solution was confirmed during 

the FRP experiments. Thus, during the FRP of a BisGMA/TEGDMA blend, monomer 

conversions of 41% could be determined with the two-component 124-THAQ/Iod (0.5%/2%, 

w/w) system, consistent with the aforementioned higher photochemical reactivity of 124-

THAQ compared to the other dyes (36% with 1258-THAQ and no monomer conversion with 

127-THAQ). 

2.2. Amino-substituted anthraquinones. 

Natural anthraquinones are mainly substituted with hydroxy groups and their 

photoinitiating abilities have been clearly demonstrated in the different aforementioned 

works. Inspired by these results, a series of amino-substituted anthraquinones was designed 

and examined as photoinitiators of polymerization. A series of three amino-substituted 

anthraquinones (DB1, DB3 and OBN) was reported in 2013 by Lalevée and coworkers (See 

Figure 12).[342] In this series of commercially dyes, various applications have been reported. 

Notably, aside from photopolymerization disperse blue 1 (DB1) and disperse blue 3 (DB3) are 

primarily used in hair colour formulations whereas oil blue N (OBN) is used for staining fatty 

substances in animal tissues. As the main interest of introducing amino groups on 

anthraquinones, absorptions at long wavelengths can be obtained. As shown in the Figure 13, 

DB1, DB2 and OBN exhibited absorption maxima located at 635 nm, therefore significantly 

red-shifted compared to that of the hydroxy-substituted quinizarin (477 nm). Benefiting from 

this redshifted absorption, polymerization experiments could be performed at 536 nm with a 

laser diode and at 630 nm with a LED. 

 

Figure 12. Chemical structures of different amino-substituted anthraquinones. 

 

Figure 13. UV-visible absorption spectra of different amino-substituted anthraquinones 

recorded in acetonitrile. Reproduced with permission of Ref.[342] 
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Thiol-ene photopolymerization experiments done with trimethylolpropane tris(3-

mercaptopropionate) (trithiol)/DVE (57%/43% w/w) blend revealed the two-component 

OBN/Iod (0.5%/2%, w/w) system to be remarkably performant upon irradiation with a laser 

diode (98% DVE conversion) or with a LED (68% conversion). However, a low trithiol 

conversion could also be determined (35 and 20% conversions), evidencing that DVE was also 

polymerizing with mean of a cationic process in competition with the thiol-ene polymerization 

(See Figure 14). 

  
Figure 14. Polymerization profiles obtained during the thiol-ene polymerization of a 

Trithiol/DVE-3 (57%/43%, w/w) blend   in laminate using the two-component OBN/Iod 

(0.5%/2%, w/w) system upon irradiation with (a) Laser diode at 635 nm (b) LED at 630 nm. 

Red curve: DVE-3 conversion, blue curve: trithiol conversion. Reproduced with permission of 

Ref.[342] 

The two competing mechanisms are depicted in the Scheme 2, in equations r8-r15. 

AQD  → 1AQD (hν)   and   1AQD  → 3AQD (r8)  

1,3AQD + Ph2I+  →  AQD●+ + Ph2I● (r9) 

AQD●+ + Ph2I●  →   AQD●+ + Ph● + Ph-I                                                     (r10) 

Ph● + RS-H → Ph-H + RS● (r11) 

RS•   +   R’-CH=CH2 → R’-CH•-CH2SR (r12) 

R’-CH•-CH2SR  +   RSH   →   R’-CH2-CH2SR  +  RS• (r13) 

Ph● + VE → Ph-VE●           (r14) 

Ph-VE● + Ph2I+ → Ph-VE+  + Ph● + Ph-I         (r15) 

Scheme 2. Photochemical mechanisms involved in the thiol-ene polymerization and the 

cationic polymerization of DVE-3. 

Cationic polymerization of EPOX with the different two-component dyes/Iod (0.5%/2% 

w/w) system revealed QA, DB1 and DB3 to be ineffective. Upon introduction of N-

vinylcarbazole (NVK) to the photoinitiating system (3 wt%), only low EPOX conversions were 

obtained after 800 s of irradiation with a halogen lamp. Thus, conversions of 28, 38 and 59% 

were respectively obtained with the three-component OBN/Iod/NVK (0.5%/2%/3% w/w/w) 
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systems. The same trend of reactivity was confirmed during the FRP of TMPTA, OBN 

outperforming DB1 and DB3. For comparison, no polymerization could be detected with QA 

due to the insufficient absorption at these wavelengths, irrespective of the photoinitiating 

systems (See Table 4). To support the higher reactivity of the photoinitiating systems in the 

presence of NVK, the formation of Ph-NVK● radicals exhibiting a higher reactivity than the 

Ph● radicals was proposed (See Scheme 3). 

 

Ph● + NVK → Ph-NVK●       (r16) 

Ph-NVK● + Ph2I+ → Ph-NVK+  + Ph● + Ph-I     (r17) 

Scheme 3. Mechanism of radical and cation generation occuring upon addition of NVK 

to the formulation. 

 

Table 4. EPOX or TMPTA final conversions obtained upon exposure to the halogen 

lamp and the laser diode at 635 nm in the presence of anthraquinone derivative based PISs. 

PISs 
Halogen lamp Laser diode at 635 nm 

EPOXa TMPTAb EPOXa TMPTAb 

Iod 0  0 - 

QA/Iod (0.5%/2%) 0  - - 

QA/Iod/NVK (0.5%/2%/3%) 0  - - 

DB1/Iod (0.5%/2%) 0  - - 

DB1/Iod/NVK (0.5%/2%/3%) 28%  - - 

DB3/Iod (0.5%/2%) 0  - - 

DB3/Iod/NVK (0.5%/2%/3%) 38%  - - 

OBN/Iod (0.5%/2%) 53%  12% 10% 

OBN/Iod/NVK (0.5%/2%/3%) 59%  24% 13% 

OBN/MDEA (0.5%/2%) -  27% 22% 

OBN/MDEA/R-Br (0.5%/2%/3%) -  28% 25% 

OBN (2%) -  22% 6% 

OBN/R-Br (2%/3%) -  25% 8% 

a photopolymerization under air for 800 s; b photopolymerization in laminate for 400 s. 

 

 If the polymerization efficiency is the focus of numerous studies, an interesting work 

done by Versace and coworkers on diaminoanthraquinone also focused on an application for 

the final polymers. In the present case, the design of antifouling and biocide coatings were 

examined.[343] In this work, 2,6-diaminoanthraquinone (AQD) was examined as a 

photoinitiator of polymerization in combination with Iod and benzyl alcohol for the cationic 

polymerization of epoxides (See Figure 15). 



 

Figure 15. Chemical structure of AQD. 

By electron spin resonance spin-trapping (ESR ST) experiments, a mechanism of 

hydrogen abstraction between AQD and benzyl alcohol (DH) could be evidenced, occurring 

directly from the excited dye or by mean of the phenyl radicals (See Scheme 4, equations r18-

r24). As a result of this, HPF6 and D+ cations could be generated, improving the polymerization 

efficiency. 

AQD → 1AQD (hν) and 1AQD → 3AQD      (r18) 
1,3 AQD + Ph2I+ + PF6- → AQD ●+ + Ph2I● + PF6-     (r19) 

Ph2I● → Ph● + Ph-I         (r20) 

AQD ●+ + PF6- + DH → AQD + PF6- + DH●+      (r21) 

DH●+ + PF6- → H+ + PF6- + DH(-H)●       (r22) 

AQD-H● + Ph2I+ + PF6- → AQD + H+ + PF6- + Ph2I●     (r23) 

D● + Ph2I+ + PF6- → D+ + Ph2I● + PF6-       (r24) 

Scheme 4. Mechanism involved in the cationic polymerization of epoxides. 

Due to the in-situ liberation of protic acid, 3-glycidyloxypropyltrimethoxysilane 

(GPTMS) could be hydrolyzed, enabling the formation of Si-O-Si bond between silane groups 

and thus the formation of a silica network concomitant to the formation of the polymer. By the 

presence of the GPTMS coating, anti-adhesion properties but also a biocide activity could be 

demonstrated for the epoxy-based polymers against Gram-negative bacteria (E. coli) and 

Gram-positive bacteria (S. aureus). Conversely, control experiments done for epoxy-based 

polymers not containing GPTMS coating did not exhibit any antibacterial or anti-adhesion 

properties. 

On his side, Xiao and coworkers investigated a series of diamino-substituted 

anthraquinones (AHAQ, 14-DAAQ and 15-DAAQ) differing from AQD by the substitution 

pattern (See Figure 16).[344] 

 

Figure 16. Chemical structures of AHAQ, 14-DAAQ and 15-DAAQ. 

Here again, a strong influence of the substitution pattern could be evidenced, the 

absorption maxima varying from 479 nm for 15-DAAQ to 544 nm for 14-DAAQ and 522 nm 



for AHAQ. As previously observed, the most redshifted absorption was found for 14-DAAQ 

bearing two amino groups in para-position from each other (See Figure 17). 

 

Figure 17. UV-visible absorption spectra of AHAQ, 14-DAAQ and 15-DAAQ in acetonitrile. 

Reproduced with permission of Ref. [344] 

Photopolymerization experiments done at 455, 518, 594 and 636 nm evidenced the 

perfect adequation between absorption and reactivity. Thus, if a higher polymerization ability 

was found for 15-DAAQ at 455 and 518 nm, 14-DAAQ outperformed 15-DAAQ at 594 and 636 

nm due to a better adequation of its absorption spectrum with the emission of the light sources. 

Functionalization of the amino groups of anthraquinone by different structures was 

also investigated as a tool enabling to improve the solubility of dyes in resins, finely tune the 

absorption properties of anthraquinones but also to improve the free radical efficiency. Indeed, 

if OBN proved to be an efficient photoinitiator to promote the CP of EPOX in combination 

with Iod and NVK, the ability to initiate the FRP of TMPTA remained low. In 2019, Xiao and 

coworkers examined a series of diaminoanthraquinones bearing different groups as versatile 

multicolor photoinitiators activable under blue, green and red LED irradiations (See Figure 

18), and capable to promote FRP, CP and even thiol-ene polymerizations.[345,346] As 

previously observed for DB1, DB3 and OBN, an absorption centered in the 500-700 nm range 

could be determined for SB36, SB68 and SG3 (See Figure 19). Absorption maxima at 638, 606 

and 635 nm could be measured for SB36, SB68 and SG3, close to that of OBN (638 nm). It was 

thus determined that the functionalization of the amino groups of anthraquinone did not 

significantly affect the position of the absorption maxima. 

 



Figure 18. Chemical structures of SB36, SB68 and SG3. 

 

 

Figure 19. UV-visible absorption spectra of SB36, SB68 and SG3 in acetonitrile. Reproduced 

with permission of Ref.[345]  

Noticeably, cationic polymerization of EPOX revealed the newly designed 

anthraquinone derivatives to give lower monomer conversions than OBN in three-component 

dye/Iod/NVK (0.5%/2%/3%, w/w/w) systems, except SB36 that could compete with OBN (56% 

conversion vs. 62% conversion with OBN (See Figure 20). To support this result, the higher 

reactivity of OBN●+ compared to SB36●+ was proposed. Noticeably, an improvement of the 

EPOX conversion could be obtained with OBN upon irradiation with a LED at 636 nm (62% 

conversion) compared to a laser diode at 635 nm (54% conversion) and this unexpected result 

was assigned to a better overlap of the absorption spectrum of OBN with the emission of LED 

compared to the laser diode. Investigation of SB36 during the FRP of TMPTA with the three-

component SB36/Iod/NVK (0.5%/2%/3% w/w/w) systems revealed the TMPTA conversion to 

be lower than that obtained with OBN (18% conversions after 300 s of irradiation at 636 nm vs. 

28% for OBN). Besides, by modifying the additives and by using the three-component 

dye/TEAOH/R-Cl system (where R-Cl stands for 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-

1,3,5-triazine), the conversion could be increased up to 42% in the same irradiation conditions.   

 



Figure 20. Polymerization profiles obtained during the CP of EPOX using different three-

component AAQs/Iod(/NVK) (0.5%/2%/3%, w/w/w) systems upon irradiation with a LED at 

636 nm. Reproduced with permission of Ref.[345]. 

 Considering the high reactivity of SB36, thiol-ene polymerization with this dye was 

also studied with a wide range of monomers.[346] Finally, a series of mono-amino substituted 

anthraquinones (AAQ, MAAQ, and BAAQ) was studied by the same authors (See Figure 

21).[347,348] As observed for the disubstituted ones, the CP of EPOX or the FRP of TMPTA 

could be efficiently promoted upon irradiation at shorter wavelengths compared to that used 

for the disubstituted ones (455 nm vs 635 nm), due to blue-shifted absorptions standing in the 

350-600 nm range.  

 

Figure 21. Chemical structures of AAQ, MAAQ and BAAQ. 

2.3. Water-soluble anthraquinones. 

 The design of water-soluble photoinitiators constitutes one of the main challenges of 

the coming decades.[349] Indeed, with aim at developing polymerization processes more 

respectful from the environment, polymerization in water offers the possibility to polymerize 

in safer conditions. In order to provide water solubility, different approaches can be used. The 

first one consists in the chemical modification of water insoluble dyes. However, the main 

drawback of this approach is the number of synthetic steps that are required in order to access 

to the desired structures. With aim at developing water soluble dyes without extensive 

synthetic steps, an efficient strategy consisted in forming charge transfer complexes with a 

water-soluble molecule and in this field, the electron-donating triethanolamine has been 

extensively studied.[247,349] Encapsulation of organic dyes in cavities such as cyclodextrins 

or cucurbiturils constitutes another efficient strategy enabling to minimize the synthetic 

steps.[111,118] This strategy is notably based on a host-guest interaction between a 

hydrophobic cavity and a water-insoluble dye. In 2014, Duan and coworkers proposed a water 

soluble two-photon polymerization (TPP) initiator, namely 2,7-bis(2-(4-

pentaneoxyphenyl)vinyl)anthraquinone (N) with a C2v symmetry[350]  whose structure was 

strongly inspired by his previous works done in 2007 on the same scaffold.[321] As the main 

difference, two pentoxy chains were introduced on N to improve the solubility in organic 

solvent but also improve its hydrophobicity (See Figure 22). In the present case, 2-

hydroxypropyl-β-cyclodextrins (2-Hp-β-CDs) was used as the host for N, producing the 

water-soluble supramolecular structure WI. Upon encapsulation of N in 2-Hp-β-CDs, a 

blueshift of the absorption was detected, shifting from 328 nm in chloroform to 290 nm in 

water. A long tail extending up to 600 nm for WI was found, making this dye an interesting 



photoinitiator under visible light. Examination of their optical properties in chloroform for N 

and water for WI revealed the two-absorption cross-section δTPA values to be of 600 GM at 820 

nm and 300 GM at 770 nm respectively. Especially, for WI, a δTPA value of 200 GM at 780 nm 

could be determined in water, greatly higher than that of commercial photoinitiators.[351] 

 

Figure 22. Chemical structure of N and DBMP. 

Two-photon polymerization experiments done on poly(ethylene glycol) diacrylate 

(PEGDA) in water using WI as the initiator and 2-benzyl-2-(dimethylamino)-4’-

morpholinobutyrophenone (DBMP) as the photosensitizer revealed the threshold energy to be 

of 8.6 mW at the scanning rate of 10 µm/s. This value increased to 10.2 mW at the scanning 

rate of 50 µm/s. As shown in the Figure 23, smooth and continuous lines could be obtained 

while using 0.03 wt% of WI. 

 

Figure 23. SEM images of TPP microfabrications using WI as the initiator. Reproduced with 

permission of Ref. [350] 

2.4. Anthraquinone-based phthalocyanines 

 The design of panchromatic photoinitiators is an active research field supported by the 

fact that such photoinitiators are easier to excite with light than dyes exhibiting a narrower 

absorption.[49,89,120,229,264,277,285] Indeed, these dyes can be excited at different 

wavelengths while maintaining an excellent monomer conversion. Considering that 

anthraquinone exhibits an absorption centered in the 300-450 nm range, absorption spectra of 

anthraquinone could be extended by its covalent linkage to phthalocyanine.[352] Choice of 

phthalocyanine was also motivated by the ability of phthalocyanine to reduce oxygen 

inhibition during FRP experiments upon irradiation in the B band of phthalocyanines with a 

UV light.[353]  Despites the wide range of phthalocyanines reported in the literature, use of 

phthalocyanines as photoinitiators remains scarce and attributable to the low solubility of 



these structures.[354,355] In 2020, the functionalization of a zinc phthalocyanine (Zn-Pc) by 

peripheral anthraquinone units was examined by Versace and coworkers (See Figure 24).[352] 

 

Figure 24. Chemical structures of AQ-Zn-Pc, ZnPc, HAQ and camphorquinone. 

 By attaching four anthraquinone units onto the phthalocyanine core, AQ-Zn-Pc could 

exhibit a molar extinction coefficient of 44 000 M-1.cm-1 at 342 nm and 38 000 M-1.cm-1 at 650 nm 

respectively in DMSO (See Figure 25), greatly higher than that of anthraquinone (6 000 M-1.cm-

1 at 325 nm). Considering the broad absorption of AQ-Zn-Pc, photopolymerization 

experiments could be carried out at 385, 405, 455 and 470 nm with LEDs. 

 

Figure 25. UV-visible absorption spectra of AQ-Zn-Pc in DMSO (red line) and anthraquinone 

(black line). Reproduced with permission of Ref.[352] 

 Among the different two-component systems used for the FRP of TMPTA, almost 

similar monomer conversions were obtained with the two-component AQ-Zn-PC/TT system 

(where TT stands for trimethylolpropane tris(3-mercaptopropionate)), the well-established 

AQ-Zn-PC/Iod2 system (where Iod2 stands for bis(4-methylphenyl)iodonium 

hexafluorophosphate) and the two-component AQ-Zn-PC /MDEA system (See Tables 5, 6 and 



7). Especially, the highest monomer conversions were obtained at 385 and 405 nm, due to the 

high molar extinction coefficient of AQ-Zn-PC in the 300-400 nm range. Interest of the 

anthraquinone-phthalocyanine combination was demonstrated by comparing the 

photoinitiating abilities of AQ, HAQ and ZnPc. Thus, if the anthraquinone-phthalocyanine 

combination was capable to initiate a polymerization in the 385-530 nm range, this ability was 

considerably reduced for AQ, HAQ and ZnPC, the dyes considered separately being only able 

to initiate a polymerization between 385 and 405 nm.  

Table 5. TMPTA conversions obtained in laminate using different two-component dye/TT 

(0.25%/5% w/w) photoinitiating systems based on AQ-Zn-Pc, AQ, CQ, 2-

hydroxyanthraquinone (HAQ) and ZnPc upon irradiation with different LEDs and a Xenon 

lamp for 800 s. 

 385 nm 405 nm 455 nm 470 nm 530 nm Xe lamp 

AQ-Zn-Pc/TT 40% 45% 21% 15% 18% 20% 

AQ/TT 50% 33% np np np 27% 

CQ/TT  40% 39%   40% 

HAQ/TT 50% 60% 33% 10% np 40% 

ZnPc/TT 22% 35% np np np np 

np: no polymerization 

Table 6. TMPTA conversions obtained in laminate using different two-component dye/MDEA 

(0.25%/5% w/w) photoinitiating systems based on AQ-Zn-Pc, AQ, CQ, 2-

hydroxyanthraquinone (HAQ) and ZnPc upon irradiation with different LEDs and a Xenon 

lamp for 800 s. 

 385 nm 405 nm 455 nm 470 nm 530 nm Xe lamp 

AQ-Zn-Pc/MDEA 50% 50% 25% 20% 20% 50% 

AQ/ MDEA 50% 40% np np np 42% 

CQ/ MDEA  55% 50%   40% 

HAQ/ MDEA 45% 55% 25% np np 30% 

ZnPc/ MDEA 7% 21% np np np np 

np: no polymerization 

 

Table 7. TMPTA conversions obtained in laminate using different two-component dye/Iod2 

(0.25%/5% w/w) photoinitiating systems based on AQ-Zn-Pc, AQ, CQ, 2-

hydroxyanthraquinone (HAQ) and ZnPc upon irradiation with different LEDs and a Xenon 

lamp for 800 s. 

 385 nm 405 nm 455 nm 470 nm 530 nm Xe lamp 

AQ-Zn-Pc/ Iod2 42% 44% 20% 20% 20% 45% 

AQ/ Iod2 55% 59% np np np 34% 

CQ/ Iod2  40% 50%   38% 

HAQ/ Iod2 60% 60% np np np np 

ZnPc/ Iod2 np 25% np np np np 



np: no polymerization 

Comparison with reference systems based on camphorquinone revealed 

camphorquinone to outperform AQ-Zn-Pc at 455 nm due to the lack of absorption of AQ-Zn-

Pc at this wavelength. Conversely, at 405 nm, similar monomer conversions were obtained 

with AQ-Zn-Pc and CQ. Besides, interest for AQ-Zn-Pc as photoinitiators still exists, 

polymerization experiments being possible at five different wavelengths. By combining the 

photolysis, fluorescence quenching and EPR experiments, the photochemical mechanism 

involved in the three different conditions could be established and are detailed in the Scheme 

5. 

AQ-Zn-Pc →1 AQ-Zn-Pc (hν) and 1 AQ-Zn-Pc → 3 AQ-Zn-Pc   (r8) 
1,3AQ-Zn-Pc + Ph2I+ → AQ-Zn-Pc●+ + Ph2I●      (r9) 

Ph2I● → Ph● + Ph-I         (r10) 

 
1,3AQ-Zn-Pc + MDEA → AQ-Zn-Pc●- + MDEA●+ → AQ-Zn-Pc-H● + MDEA●(-H) (r11) 

 
1,3AQ-Zn-Pc + R-SH → AQ-Zn-Pc●(+H) + RS●      (r12) 

 

Scheme 5. Chemical mechanism involved with the three two-component systems comprising 

AQ-Zn-Pc as the photoinitiator. 

 

 2.5. Anthraquinone-based metal complexes 

 Oxygen inhibition and extractability of photoinitiators are two major drawbacks 

numerous photoinitiating systems are facing. An interesting study was notably recently 

devoted to investigate the migratability of a series of 14 benchmark photoinitiators in 

food.[356] With aim at addressing these two drawbacks, a series of zirconium-based 

complexes was proposed by Allonas and coworkers, bearing benzophenone or 

anthraquinone-based ligands (See Figure 26).[357] 

 

 

Figure 26. Chemical structures of zirconium-based complexes. 

 In terms of absorption properties, formation of the metal complexes contributed to 

improve the molar extinction coefficients, compared to the ligands considered alone. In the 

case of Zr-OAQ, a fourfold enhancement of the molar extinction coefficient can be evidenced, 

compared to the ligand AQ-N-OH (32400 M-1.cm-1 vs. 7400 M-1.cm-1 for AQ-N-OH). Noticeably, 

a similar absorption maximum was found between the metal complex and the free ligand (388 

nm). A different situation was found for Zr-OBP for which a blue shift by ca. 35 nm was found 



between the ligand and the corresponding metal complex (325 nm vs 360 nm for BP-OH). 

Photopolymerization tests done on a bisphenol A diacrylate/1-6-hexanediol diacrylate 

(HDDA) blend (80/20) using the two-component dye/EDB systems revealed the two ligands 

to furnish low monomer conversions at low photoinitiator content. This issue could be 

addressed by increasing the concentration up to 2 mol%, enabling to get a final conversion 

around 60% with BP-OH and only 50% with AQ-N-OH, due to its low solubility in monomers. 

By using the corresponding complexes as photosensitizers, a significant increase of the 

monomer conversion could be detected, attributable to the simultaneous presence of four 

benzophenone and anthraquinone units capable to react with EDB (See Figure 27). By 

determining the depth conversion profile of the different samples, a significant reduction of 

the inhibited layer was determined for all samples polymerized with Zr-OAQ. The higher 

polymerization rates of the inhibited layer were assigned in the case of metal complexes used 

as photoinitiators to the ability of zirconium complexes to convert peroxyl radicals as initiating 

radicals. This ability was notably previously demonstrated with a type I photoinitiator, namely 

diphenyl(2,4,6-trimethylbenzoyl)-phosphine oxide (TPO).[358] By ligand exchange with 

peroxyl radicals, new initiating radicals could be produced according to the mechanism 

depicted in the Scheme 6.[358]  

  

 

Figure 27. polymerization profiles obtained with different two-component dye/EDB systems 

upon irradiation by a UV light. Reproduced with permission of Ref. [357]   

 



 

Scheme 6. mechanism enabling to overcome oxygen inhibition with zirconium complexes. 

 As shown in the Figure 28, an increase of the monomer conversion by going far from 

the surface could be evidenced. 

 

Figure 28. Monomer conversion determined as a function of the distance from the surface of 

the samples exposed to air. Reproduced with permission of Ref. [357] 

 

2.6. Anthraquinone derivatives as monocomponent photoinitiating systems 

 As stated above, all anthraquinone derivatives have been investigated in combination 

with different additives, anthraquinones considered alone being unable to initiate any 

polymerization processes. This point was addressed in 2021 with the development of Q3 and 

Q4 that could act as monocomponent photoinitiators (See Figure 29).[359] Their 

photoinitiating abilities were notably examined with the previously reported allyl quinizarin 

QA and Q3 bearing allyl groups. Interestingly, Q4 exhibited an absorption maximum at 368 



nm (ε = 5893 M-1.cm-1), with a tail extending up to 450 nm. Compared to QA and Q3, a blue 

shift of the absorption of Q4 was found (λmax (QA) = 413 nm, λmax (Q3) = 487 nm), evidencing 

the crucial importance of unsubstituted phenol groups to get an absorption centered in the 

visible range (See Figure 30). Photolysis experiments done in acetonitrile and under air 

revealed the photolysis process to be very fast at 365 nm but slow at 405 nm (See Figure 31), 

indicating the low photochemical activity of this dye at 405 nm. A different situation was 

found for the two-component Q4/Iod combination for which an efficient photobleaching of the 

solutions could be demonstrated both at 365 and 405 nm.  

 

Figure 29. Chemical structure of Q4. 

 

Figure 30. UV-visible absorption spectra of QA, Q3 and Q4 in acetonitrile. Reproduced with 

permission of Ref. [359] 

 

 

Figure 31. Steady state photolysis experiments done at 365 nm (A) and 405 nm (B) for Q4 in 

acetonitrile under air. Reproduced with permission of Ref. [359] 

QA
Q3
Q4



  To support the efficient photobleaching detected in solution but also its ability to act 

as monocomponent system, the following mechanism was proposed, based on theoretical 

calculations (See Scheme 7). 

 

Scheme 7. Mechanism of photoinitiation proposed with Q4. 

 Notably, upon photoexcitation of Q4, an intermolecular hydrogen abstraction process 

in the excited state can occur, producing two initiating radicals [Q4+H]● and [Q4-H]●. 

Theoretical calculations also revealed [Q4-H]● radicals to be less reactive than [Q4+H]● radicals 

due to a more localized single electron and a higher steric hindrance around the odd electron. 

Comparison of the photoinitiating abilities of QA, Q3 and Q4 during the FRP of TPGDA and 

HDDA used as monocomponent systems revealed QA and Q4 to exhibit similar reactivities in 

TPGDA and HDDA both at 365 and 405 nm. A lower reactivity of QA compared to Q4 could 

however be evidenced at 405 nm in HDDA, even if a similar monomer conversion could be 

obtained after 800 s of irradiation. Due to a low absorption of Q3, a lower monomer conversion 

was obtained in both monomers irrespective of the irradiation wavelength (See Figure 32). 

 

Figure 32. TPGDA (A, B) and HDDA (C, D) conversions determined upon excitation at 365 

nm (A, C) and 405 nm (B, D) and by using the different dyes as monocomponent systems (1 

wt%). Reproduced with permission of Ref. [359] 



 Interestingly, during the FRP of TMPTA, similar monomer conversions could be 

obtained for the different dyes used alone (1 wt%) or in combination with Iod (3 wt%)., 

evidencing the dominant role of hydrogen abstraction mechanism in the polymerization 

process. Considering that the thiol-ene reaction is also promoted by free radical species, the 

polymerization of a trithiol/TMPTA (50%/50% w/w) blend was also examined, enabling to get 

TMPTA conversions higher than 84% and trithiol conversions higher than 44% (See Table 8). 

 

Table 8. Monomer conversions obtained during the thiol-ene polymerization of a 

TMPTA/trithiol (50%/50% v/v) blend) upon irradiation at 365 and 405 nm using 1 wt% of dyes. 

 LED at 365 nm LED at 405 nm 

QA Q3 Q4 QA Q3 Q4 

TMPTA 93 90 86 86 84 92 

Trithiol 59 54 46 44 47 51 

 

Finally, the possibility to initiate the cationic polymerization of EPOX with the two-

component dye/Iod (1%/3% w/w) system was also examined as well as the concomitant 

polymerization of a TMPTA/EPOX blend with these systems at 365 and 405 nm. In these 

different experiments, the lowest monomer conversions were obtained with Q3, in accordance 

with the lower molar extinction coefficients of Q3 at these two irradiation wavelengths.  

2.6. Iodonium salt based on anthraquinone 

Still with aim at developing mono-component systems, in 2021, Xiao and coworkers 

prepared an iodonium salt bearing an anthraquinone as the chromophore (Ant-Iod) (See 

Figure 33). For comparison, another iodonium salt was also prepared with a natural dye, 

namely a flavone (Flav-Iod).[360] 

 

Figure 33. Chemical structure of Ant-Iod and Flav-Iod. 

By introducing a flavone or an anthraquinone moiety as the chromophores, an 

absorption extending until 425 nm could be detected in acetonitrile whereas no absorption 

after 300 nm could be detected for the parent Iod1 (See Figure 34). Absorption maxima located 

at 336 nm for Ant-Iod and 344 nm for Flav-Iod were respectively determined. The red-shifted 

absorption of Flav-Iod compared to Ant-Iod is directly related to its more extended π-

conjugation. Considering that Iod1 was used as a reference iodonium salt, polymerization 



experiments were carried out by irradiating in the 250-650 nm range but also in the 320-480 

nm range.  

 

Figure 34. UV-visible absorption spectra of Iod1, Ant-Iod and Flav-Iod. Reproduced with 

permission of Ref. [360] 

 

As shown in the Figure 35 during the FRP of TMPTA, Ant-Iod and Flav-Iod could act 

as mono-component systema and outperform Iod1 due to higher molar extinction coefficients 

in the visible range and thus a better adequation with the light source (250-650 nm range). This 

trend was confirmed by irradiating in the 320-480 nm range. In this spectral range, Flav-Iod 

clearly outperformed Ant-Iod and Iod1. TMPTA conversions of 46% (250-650 nm range) and 

41% (320-480 nm range) were obtained with Flav-Iod. 

 

 

Figure 35. TMPTA conversions obtained with the different iodonium salts (C = 29.6 µmol/g) 

used as mono-component photoinitiating systems in different irradiation conditions. 

Reproduced with permission of Ref. [360] 

 The monomer conversions could be improved upon addition of EDB, assigned to the 

formation of charge transfer complex (CTC) with EDB, improving the light absorption 

properties.[129,207,361–363] Using the two-component dye/EDB system, TMPTA conversions 

Iod1
Ant-Iod
Flav-Iod

Iod1
Ant-Iod
Flav-Iod

Iod1
Ant-Iod
Flav-Iod



of 25, 30 and 40 % could be obtained while reducing the iodonium concentration to only 8.4 

µmol/g (and [EDB] = 103.5 µmol/g) (See Figure 36). Considering the Iod1/EDB combination is 

considered as a reference system, the two newly developed iodonium salts therefore exhibited 

higher monomer conversions than Iod1 due to improved light absorption properties. 

 

Figure 36. TMPTA conversions obtained with the iodonium salt/EDB combinations. 

Reproduced with permission of Ref. [360] 

 

2.7. Anthraquinones of extended aromaticities 

One of the key-element to get high molar extinction coefficients in the visible range 

consists in extending the aromaticity of the dyes. This point was examined by Sokołowska in 

2012 and two benzo[2,3-b]phenazine derived anthraquinones were proposed, namely dyes IIIa 

and IIIc (See Figure 37). To investigate their photoinitiating abilities, different electron donors 

and acceptors were used, as shown in Figure 37. By extending the conjugation in IIIa and IIIc, 

absorption maxima located at 288 and 370 nm were respectively found in 1-methyl-2-

pyrrolidinone. Noticeably, by introducing the electron-donating methoxy group, a red-shift of 

the absorption by ca 82 nm was detected for IIIc compared to IIIa, resulting from an 

intramolecular charge transfer. Among electron donors and acceptors tested during the FRP 

of TMPTA, the best monomer conversions were obtained with A2 and D2. Concerning the 

polymerization rates, this is with A1 and D1 that the polymerizations were the fastest at the 

beginning of the polymerization. Parallel to the FRP of TMPTA, the cationic polymerization of 

cyclohexane oxide was also examined with IIIa and IIIc. With the two dyes, high monomer 

conversions could be obtained using A3 and A4 as the additives i.e. the iodonium salts. 

Iod1
Ant-Iod
Flav-Iod



 

Figure 37. Chemical structures of IIIa and IIIc, different electron donors and acceptors. 

 

Conclusion 

 To conclude, anthraquinones have been introduced as the chromophore in a wide 

range of photoinitiators so that polymerization experiments could be carried out from the UV 

range up to 700 nm. By connecting anthraquinones to phthalocyanine, panchromatic 

photoinitiators could even be obtained. At present, the design of water-soluble 

anthraquinones is still lacking and only one supramolecular architecture based on 

cyclodextrin has been reported to date. Besides, polymerization in water offers a unique 

opportunity to polymerize in conditions more respectful from the environment. To date, no 

Type I photoinitiators have been designed with anthraquinone. Besides, a significant 

simplification of the composition of the resin could be obtained with these structures. Indeed, 

only multicomponent systems have been reported at a few exceptions. Considering the 

remarkable light absorption properties of anthraquinones, and in light of the numerous 

structures that have been developed, the future challenge of photoinitiators (water-solubility, 

migratability, simplification of the photocurable resins with the design of monocomponent 



systems) will be certainly addressed in the coming years.  Another major focus of future works 

will also consist in designing photobleachable photoinitiators. Indeed, if the possibility of 

designing highly efficient photoinitiating systems with anthraquinone has been demonstrated, 

none of them have been reported to be capable to bleach at present. Future works will also 

consist in developing anthraquinones for photocontrolled/living radical polymerization. At 

present, this aspect of photopolymerization has not been investigated yet.  
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