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Abstract

The aim of this paper is to study the null controllability of a class of quasilinear parabolic equations. In a
first step we prove that the associated linear parabolic equations with non-constant diffusion coefficients
are approximately null controllable by the means of regular controls and that these controls depend
continuously to the diffusion coefficient. A fixed-point strategy is employed in order to prove the null
approximate controllability for the considered quasilinear parabolic equations. We also show the exact
null controllability in arbitrary small time for a class of parabolic equations including the parabolic p-
Laplacian with 3

2 ă p ă 2. The theoretical results are numerically illustrated combining a fixed point
algorithm and a reformulation of the controllability problem for linear parabolic equation as a mixed-
formulation which is numerically solved using a finite elements method.

1 Introduction

This paper consider the approximate null controllability of quasilinear equations of the following form:
$

&

%

Bty ´ div pF p|∇y|q∇yq “ χωϕ in QT
y “ 0 on ΣT

yp0q “ y0 in Ω,
(1.1)

where Ω Ă RN is an open bounded domain with a smooth boundary BΩ, QT “ p0, T qˆΩ, ΣT “ p0, T qˆBΩ,
the initial data y0 belongs to L2pΩq, and there exists p ą 1 such that the function F : R` Ñ R˚` verifies the
following assumptions:

(A1) F PW 1,8pR`q X C8pR`q X L2pR`q X L
p
p´1 pR`q;

(A2) The potential defined for every t P R` by Φptq “
şt
0 sF psq ds is convex and satisfies Φ PW

1, p
p´1 pR`q;

(A3) There exists C1, C2, µ, ν ą 0 and k1, k2 ě 0 such that for every t P R`, we have that

k1 ` C1pµ` t
2q

p´2
2 ď F ptq ď k2 ` C2pν ` t

2q
p´2
2 .

The control ϕ acts in the open and non empty set ω Ă Ω. More precisely, we denote by χω P C8pΩq a
regular function such that
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χωpxq “

"

1 for x P ωδ
0 for x P Ωzω,

where ωδ “ tx P ω such that distpx, Bωq ą δu for a given δ ą 0 small enough. We also denote qT “ p0, T qˆω.

Let us underline that assumption (A2) means that Φ̃puq “ Φp|u|q is a convex potential and thus the operator
A : X Ñ X˚ defined for every φ P X by

Aφ “ ´div pF p|∇φ|q∇φq (1.2)

is monotone (see [37, Chapitre 2, Définition 1.2.]), where X is a reflexive Banach space compactly and
densely embedded in L2pΩq and X˚ is its dual with respect to the pivot space L2pΩq. Having this in mind,
we point out that the existence of a unique weak solution to equation (1.1) is a direct consequence of [37,
Chapitre 2, Section 1, Théorème 1.2.- bis] applied to the nonlinear monotone operator A given by (1.2),
when F is chosen such that it leads to the monotonicity of the operator A. From a historic point of view,
the analysis of quasilinear parabolic equations and the properties of their solutions took off in the 1960’s,
with the pioneering works [33, 37, 3]. Quasilinear equations as (1.1) are to be compared to the regularized
parabolic p-Laplacian from which it derived their study. Such equations have been the source of a large
number of publications in the last decades. As in the case of linear parabolic equations, the question of the
boundedness of the solution or its gradient arises naturally. Such results are now well known and have been
established for large classes of quasilinear systems, we can refer to [42, 20, 3, 12, 11, 19, 7, 44] in the case of a
bounded domain with a regular boundary. However, this remains a source of an important research activity,
especially for the study of singular or degenerate systems. Examples include recent second-order regular-
ity results for the parabolic p-Laplacian (see e.g. [17, 22]) and its alternative in the symmetrized gradient
framework with the A-approximation method (see [6]). In the case of (1.1) whose nonlinearity satisfies the
assumptions (A1)-(A3), which give rise to a nondegenerate, nonsingular quasilinear equation, it is well known
that smooth solutions are obtained (we refer e.g. to [16, Theorem 3.4.1., Sections 3.1.4. and 0.10.]). Note
that this fact is used, for example, to approximate the solution of the parabolic p-Laplacian equation (see
e.g. [22, Section 4] or [35]). In our study, we voluntarily set aside the p “ 1 case, which is more difficult, but
for which it is still possible to show interesting existence and regularity properties (see e.g. [43, 48, 21]); in
this last case, we underline that smoothness of viscosity solutions have been proved in [31], this can be linked
to reasoning such as that presented in [30]. We should also point out that the smoothing effect of quasilinear
parabolic equations is known in many cases (see e.g. [28, Chapter IV] or [43]). The literature on the subject
of quasilinear parabolic equations and systems is extremely vast, so we we mainly refer the interested reader
to monographs [37, 33, 36, 47, 45, 50, 16, 32, 1] for the study of the properties of these equations and systems.

The controllability of quasilinear equations has been recently studied, as in [13, 15, 14], in the framework of
optimal control, or [40, 39, 23] in the framework of exact controllability. In these last papers, the results for
exact controllability hold for systems where the nonlinear term depends on the solution of the system, but
not on its gradient. The local controllability of quasilinear equations with a gradient dependent term has
been studied in the recent paper [25]. At our knowledge, the global controllability of such equations remains
open and is the main purpose of the present work.

With the objective of applying a fixed point method in order to control the quasilinear equation, we first
investigate the existence of smooth distributed controls for the following linear heat equation in divergence
form with a space and time dependent diffusion coefficient:

$

&

%

Btu´ div papt, xq∇uq “ χωϕ in QT
u “ 0 on ΣT

up0q “ y0 in Ω
(1.3)

in which we consider diffusion coefficients a P C8pQT q satisfying:

0 ă ρ‹ ď apt, xq ppt, xq P QT q, (1.4)

where ρ‹ ą 0 is a constant.

2 Null controllability for quasilinear parabolic equations



The distributed controllability of equation (1.3) is a well studied subject (see for example [26] or the more
recent review paper [24]). The existence of an optimal distributed control, in the sense of minimal L2-norm,
can be obtained by applying the Hilbert Uniqueness Method (HUM) introduced in [38]. The main idea of
the method is to consider the dual final boundary value problem of (1.3) given by:

$

&

%

Btϕ` div papt, xq∇ϕq “ 0 in QT
ϕ “ 0 on ΣT

ϕpT q “ ϕ0 in Ω
(1.5)

for some ϕ0 P L2pΩq and then to deduce the (exact or approximate) controllability of (1.3). For fixing the
notation, we denote Sapϕ0q :“ ϕ the solution of (1.5) associated to the final data ϕ0. Remark that using
this notation we enhance the dependence of solutions of (1.5) on the diffusion coefficient a. The existence
of approximate controls for linear parabolic equations by the use of this approach, even regular, is now well
known (see [27, 8, 5]). However, in order to apply a fixed-point theorem, it is necessary to establish the
continuity of the controls with respect to the diffusion coefficient.

Theorem 1.1. Let Ω be an open bounded subset of RN with Lipschitz boundary, y0 P L2pΩq, a P C8pQT q
satisfying (1.4) and T ą 0. Then, for every ε ą 0 there exists an approximate control ϕ P C8pQT q in the
sense that the corresponding solution u of (1.3) verifies

‖upT q‖ ă ε. (1.6)

Moreover, the control ϕ depends Lipschitz continuously to the diffusion coefficient a for the norm ‖¨‖L2pQT q.

Here and henceforth we denote by p¨, ¨q the inner product in L2pΩq and by } ¨ } the associated norm. The
main result of the paper is a consequence of Theorem 1.1 and provides the approximate null controllability
of quasilinear equation (1.1).

Theorem 1.2. Assume that F satisfies assumption (A1)–(A3) and y0 belongs to L2pΩq are chosen such that
there exists a unique solution of (1.1). Then, there exists a distributed control ϕ, whose regularity is given by
Theorem 1.1, such that (1.1) is approximately null controllable in any time T ą 0, i.e., for every y0 P L2pΩq
and every ε ą 0 there exists a control ϕ P C8pQT q such that the solution y of (1.1) satisfies

}ypT q} ď ε.

In particular, Theorem 1.2 implies the approximate null controllability of the so-called parabolic p-Laplacian:

$

&

%

Btv ´ div
`

|∇v|p´2∇v
˘

“ χωϕ in QT
v “ 0 on ΣT

vp0q “ y0 in Ω.
(1.7)

with 3
2 ă p ă 3.

More exactly, we prove the following corollary.

Corollary 1.1. Let y0 P L2pΩq and 3
2 ă p ă 3. Then (1.7) is approximate null controllable in any time

T ą 0, i.e., for every ε ą 0 there exists a control ϕ P C8pQT q such that the solution v of (1.7) verifies

}vpT q} ď ε.

In fact, in the case where the solution stops in finite time, and where this stopping time is well controlled
by the norm of the initial data, we can show the global exact controllability of (1.1). More precisely, the
following result holds.

Theorem 1.3. Assume that F satisfies assumptions (A1)–(A3), and that y is the solution of (1.1) associated
to an initial data y0 P L2pΩq. Moreover, let us consider that y stops in finite time, which is that, if ϕ “ 0
then, there exists Ts P p0, T q, γ ą 0 and µ ą 0 such that:

‖ypTsq‖ “ 0 and Ts ď µ‖y0‖γ . (1.8)

Then, one can choose the force term ϕ such that y is exactly null controllable in any time T ‹ P p0, T q.

Null controllability for quasilinear parabolic equations 3



Applying the results in [18, Proposition 2.1.], the following corollary is a direct consequence of Theorem 1.3
and [37, Exemple 1.5.2 and Théorème 1.2 bis], setting X “W 1,p

0 pΩq X L2pΩq.

Corollary 1.2. Let y0 P L8pΩq and 3
2 ă p ă 2. Then, by always choosing a non-negative solution to (1.7),

the problem (1.7) is null controllable in any time T ą 0, i.e., there exists a control ϕ P C8pQT q such that
the solution v of (1.7) verifies

vpT q “ 0.

Also, another example is given by the following equation:

$

&

%

Btu´∆u´ div
`

|∇u|p´2∇u
˘

“ χωϕ in QT
u “ 0 on ΣT

up0q “ y0 in Ω
(1.9)

with 3
2 ă p ă 2. We point out that the operator A : u ÞÑ ´∆u ´ div

`

|∇u|p´2∇u
˘

is well-defined and
monotone over X :“ H2pΩq XH1

0 pΩq (see e.g. [4, Section 4.3.]).

Then, we have the following result.

Corollary 1.3. Let y0 P L2pΩq, and 3
2 ă p ă 2. Then (1.9) is null controllable in any time T ą 0, i.e.,

there exists a control ϕ P C8pQT q such that the solution u of (1.9) verifies

upT q “ 0.

For the sake of clarity, we will omit throughout the article the dependence of the constants and will generically
denote positive constants by C.

The remaining part of this paper is structured as follows. Section 2 is dedicated to the existence of smooth
Lipschitz continuous in L2 approximate null control for the linear equation (1.3). In order to prove the
Theorem 1.2 we employ a fixed point strategy described in Section 3. Finally, Section 4 numerically illustrate
the computation of controls in both the linear and non-linear frameworks.

2 Approximate controllability of the linear equation

Let ε ą 0. For every δ ą 0 we denote Mδpϕ
0q P C8pΩq a mollification of some ϕ0 P L2pΩq (see [10]) such

that }Mδpϕ
0q ´ ϕ0} Ñ 0 when δ Ñ 0. Following this notation we set M0pϕ

0q :“ ϕ0. For every δ ě 0 we
consider the functional:

Jaδ pϕ
0q “

1

2

ĳ

qT

χω|SapMδpϕ
0qq|2 dx dt` ε

2
‖ϕ0‖2 ` pSapMδpϕ

0qqp0q, y0q, (2.1)

where Sapϕ0q is the solution of (1.5) with a diffusion coefficient a satisfying (1.4). Let us point out that
the standard HUM functional is nothing else than Ja0 given by (2.1). Following the classical arguments as
presented in [8, Sections 1.2. and 1.3.] or in [27, Chapter 1], minimizers of Ja0 can give rise to approximate
controls ϕ P C8pr0, T q ˆ Ωq of (1.3), i.e., the corresponding solution of (1.3) verifies

}upT q} ă ε. (2.2)

More exactly, we have the following observability inequality which is the key ingredient of the proof of the
null approximate controllability of (1.3).

Let us recall the following result.

Proposition 2.1 (Observability inequality [24, Theorem 1.5.]). There exists a constant C0 ą 0, depending
of Ω, T , ω, and ‖a‖L8pQT q, such that the following inequality holds:

‖SapMδpϕ
0qqp0q‖2 ď C0

ĳ

qT

χω|SapMδpϕ
0qq|2 dx dt pϕ0 P L2pΩqq. (2.3)

4 Null controllability for quasilinear parabolic equations



We aim to show here that minimizing Jaδ over L2pΩq for δ ą 0 we obtain a control ϕδ which is now in C8pQT q
which is close to the one obtained by minimizing Ja0 , so, for δ ą 0 small enough and for this regular control,
the solution u of (1.3) still verifies (2.2). For every δ ą 0 we denote ϕ0

δ the minimum of Jaδ . Therefore, for
every ψ0 P L2pΩq we have

ĳ

qT

χωSapMδpϕ
0
δqqS

apMδpψ
0qq dx dt` εpϕ0

δ , ψ
0q ` pSapMδpψ

0qqp0q, y0q “ 0 (2.4)

ĳ

qT

χωSapϕ0qSapψ0q dx dt` εpϕ0, ψ0q ` pSapψ0qp0q, y0q “ 0. (2.5)

Lemma 2.1. With the above notation, there exists a constant C0 ą 0 such that

}ϕ0
δ} ď C0}y

0} (2.6)

and for every f P Cpr0, T s, L2pΩqq the following convergences occur

pf,SapMδpϕ
0
δqq ´ Sapϕ0

δqqL2pQT q Ñ 0,

when δ Ñ 0

Proof. Remark that Jaδ pϕ
0
δq ď Jaδ p0q “ 0. This implies that pϕ0

δqδą0 verifies (2.6). Then we can extract a
subsequence, still denoted pϕ0

δqδą0, weakly converging to ϕ0 in L2pΩq. Let us observe that SapMδpϕ
0
δq´ϕ

0
δq “

SapMδpϕ
0
δq ´Mδpϕ

0qq ` SapMδpϕ
0q ´ ϕ0

δq.

Now, in the weak formulation of SapMδpϕ
0
δq ´Mδpϕ

0qq, one can write for the final datum term:

pSapMδpϕ
0
δq ´Mδpϕ

0qqpT q, fpT qqL2pΩq “ pϕ
0
δ ,MδpfpT qqqL2pΩq ´ pMδpϕ

0q, fpT qqL2pΩq ÝÑ
δÑ0

0. (2.7)

Hence, lim
δÑ0

SapMδpϕ
0
δq ´Mδpϕ

0qq is the weak solution of (1.5) associated to the null final datum, namely

arguing by uniqueness SapMδpϕ
0
δq ´ Mδpϕ

0qq á
δÑ0

Sap0q “ 0. Using a similar argument, we get that

SapMδpϕ
0q ´Mδpϕ

0
δqq áδÑ0

0 and the result follows.

More exactly, we aim to prove the following result.

Proposition 2.2. With the above notation, we have
ĳ

qT

χω

ˇ

ˇ

ˇ
SapMδpϕ

0
δqq ´ Sapϕ0q

ˇ

ˇ

ˇ

2
dx dt` ε}ϕ0

δ ´ ϕ
0}2 Ñ 0

when δ Ñ 0.

Proof. We choose ψ0 “ ϕ0
δ ´ ϕ

0 in (2.4)-(2.5) and we subtract these relations:
ĳ

qT

χωSapMδpϕ
0
δqqS

apMδpϕ
0
δ ´ ϕ

0qq dx dt´

ĳ

qT

χωSapϕ0qSapϕ0
δ ´ ϕ

0q dx dt

`ε}ϕ0
δ ´ ϕ

0}2 ` pSapMδpϕ
0
δ ´ ϕ

0qqp0q ´ Sapϕ0
δ ´ ϕ

0qp0q, y0q “ 0.

Using the linearity of the equation (1.5) (hence of Sa) and of Mδ, the above equality writes as follows:
ĳ

qT

χω|SapMδpϕ
0
δqq|

2 dx dt`

ĳ

qT

χω|Sapϕ0q|2 dx dt´

ĳ

qT

χωSapMδpϕ
0
δqqS

apMδpϕ0qq dx dt

´

ĳ

qT

χωSapϕ0
δqS

apϕ0q dx dt` ε}ϕ0
δ ´ ϕ

0}2 ` pSapMδpϕ
0
δ ´ ϕ

0q ´ pϕ0
δ ´ ϕ

0qqp0q, y0q “ 0.

Null controllability for quasilinear parabolic equations 5



Finally, we get
ĳ

qT

χω|SapMδpϕ
0
δqq ´ Sapϕ0q|2 dx dt´

ĳ

qT

χωSapMδpϕ
0
δqqS

apMδpϕ0q ´ ϕ0q dx dt

`

ĳ

qT

χωSapϕ0qSapMδpϕ
0
δq ´ ϕ

0
δq dx dt` ε}ϕ

0
δ ´ ϕ

0}2 ` pSapMδpϕ
0
δ ´ ϕ

0q ´ pϕ0
δ ´ ϕ

0qqp0q, y0q “ 0.

The result follows applying Lemma 2.1.

We now give the proof of Theorem 1.1.

Proof of Theorem 1.1. The existence of approximate controls ϕ P C8pQT q is obtained by minimizing the
functional Jaδ applying the standard HUM method, the regularity being derived from the usual regularity in
the linear parabolic case (see, for example, [10, Theorem 10.1]). We therefore focus on proving the Lipschitz
L2 continuity with respect to the diffusion coefficient a.

Let us consider two diffusion coefficients a and b in C8pQT q verifying (1.4). Then, we denote ϕa “

SapMδpϕ
0
a,δqq and ϕb “ SbpMδpϕ

0
b,δqq with ϕ0

a,δ being the minimum of Jaδ and ϕ0
b,δ being the minimum

of Jbδ . Writing w :“ ϕa ´ ϕb, we get that w satisfies the following equation:

$

&

%

Btw ` div papt, xq∇wq “ ´div ppa´ bq∇ϕbq in QT
w “ 0 on ΣT

wpT q “Mδpϕ
0
a,δ ´ ϕ

0
b,δq in Ω.

(2.8)

An energy estimate over (2.8) leads:

1

2
‖wpT q‖2 ` pρ‹ ´ sq‖w‖2

L2pp0,T q,H1
0 pΩqq

ď
1

4s
‖ϕb‖2

W 1,8pΩq‖a´ b‖
2
L2pQT q

`
1

2
‖Mδpϕ

0
a,δ ´ ϕ

0
b,δq‖

2. (2.9)

According to the Young’s inequality for convolution (see [10, Theorem 4.15.]):

‖Mδpϕ
0
a,δ ´ ϕ

0
b,δq‖ ď ‖ρδ‖L1pΩq‖ϕ0

a,δ ´ ϕ
0
b,δ‖ ď ‖ϕ0

a,δ ´ ϕ
0
b,δ‖ (2.10)

where pρδqδą0 is the mollifier used to define Mδ. Then, we get from Euler-Lagrange formula:

ĳ

qT

χωϕaSapMδpψ
0qq dx dt` εpϕ0

a,δ, ψ
0q ` pSapMδpψ

0qqp0q, y0q “ 0 (2.11)

ĳ

qT

χωϕbSbpMδpψ
0qq dx dt` εpϕ0

b,δ, ψ
0q ` pSbpMδpψ

0qqp0q, y0q “ 0. (2.12)

Subtracting the relations (2.11)-(2.12), we obtain:

ĳ

qT

χωpϕaSapMδpψ
0qq ´ ϕbSbpMδpψ

0qqq dx dt` εpϕ0
a,δ ´ ϕ

0
b,δ, ψ

0q

`pSapMδpψ
0qqp0q ´ SbpMδpψ

0qqp0q, y0q “ 0. (2.13)

Now, one can write:
ĳ

qT

χωpϕaSapMδpψ
0qq ´ ϕbSbpMδpψ

0qqq dx dt “

ĳ

qT

χω|ϕa ´ ϕb|2 dx dt

`

ĳ

qT

χωpϕa ´ ϕbqpSapMδpψ
0qq ´ ϕa ` ϕbq dx dt`

ĳ

qT

χωϕbpSapMδpψ
0qq ´ SbpMδpψ

0qqq dx dt. (2.14)

6 Null controllability for quasilinear parabolic equations



Setting ψ0 :“ ϕ0
a,δ ´ ϕ

0
b,δ into (2.13) and using (2.14) leads to:

ĳ

qT

χω|ϕa ´ ϕb|2 dx dt` ε‖ϕ0
a,δ ´ ϕ

0
b,δ‖

2 ` pSapMδpϕ
0
a,δ ´ ϕ

0
b,δqqp0q ´ SbpMδpϕ

0
a,δ ´ ϕ

0
b,δqqp0q, y

0q “

´

ĳ

qT

χωpϕa ´ ϕbqpSapMδpϕ
0
a,δ ´ ϕ

0
b,δqq ´ ϕa ` ϕbq dx dt

´

ĳ

qT

χωϕbpSapMδpϕ
0
a,δ ´ ϕ

0
b,δqq ´ SbpMδpϕ

0
a,δ ´ ϕ

0
b,δqqq dx dt. (2.15)

Here, writing β :“ SapMδpϕ
0
a,δ ´ ϕ

0
b,δqq ´ SbpMδpϕ

0
a,δ ´ ϕ

0
b,δqq, we have that it solves:

$

’

&

’

%

Btβ ` div pa∇βq “ div
´

pa´ bq∇SbpMδpϕ
0
a,δ ´ ϕ

0
b,δq

¯

in QT

β “ 0 on ΣT

βpT q “ 0 in Ω.

(2.16)

Testing against β into the weak formulations of (2.16) leads to, after applying Hölder’s and Young’s inequality
for 0 ă s ă ρ‹, we get:

1

2
‖βp0q‖2 ` pρ‹ ´ sq

ĳ

QT

|∇β|2 dx dt ď 1

4s
‖SbpMδpϕ

0
a,δ ´ ϕ

0
b,δq‖

2
W 1,8pQT q

‖a´ b‖2
L2pQT q

. (2.17)

From Poincaré’s inequality (2.17) leads to:

‖β‖L2pQT q ď

ˆ

λ1pΩq
´1

4spρ‹ ´ sq

˙

1
2

‖SbpMδpϕ
0
a,δ ´ ϕ

0
b,δq‖W 1,8pQT q‖a´ b‖L2pQT q, (2.18)

where λ1pΩq
´1 is the sharp Poincaré constant, and ρ‹ comes from (1.4). Using (2.18) into (2.15), then

Young’s inequality and an energy estimate, we then get for 0 ă s ă 1:

p1´ sq

ĳ

qT

χω|ϕa ´ ϕb|2 dx dt` ε‖ϕ0
a,δ ´ ϕ

0
b,δ‖

2 ď
1

4s
‖SapMδpϕ

0
a,δ ´ ϕ

0
b,δqq ´ ϕa ` ϕb‖

2
L2pqT q

`‖ϕb‖L2pqT q‖S
apMδpϕ

0
a,δ ´ ϕ

0
b,δqq ´ SbpMδpϕ

0
a,δ ´ ϕ

0
b,δqq‖L2pqT q

`‖y0‖
ˆ

λ1pΩq
´1

4spρ‹ ´ sq

˙

1
2

‖SbpMδpϕ
0
a,δ ´ ϕ

0
b,δq‖W 1,8pQT q‖a´ b‖L2pQT q. (2.19)

Now, setting W “ SapMδpψ
0qq ´ϕa`ϕb and w “ SapMδpψ

0qq ´SbpMδpψ
0qq, we get that these respectively

solve:

$

&

%

BtW ` div pa∇Wq “ divppa´ bq∇ϕbq in QT
W “ 0 on ΣT

WpT q “ 0 in Ω
(2.20)

$

&

%

Btw ` div pa∇wq “ ´divppa´ bq∇Sbpψ0qq in QT
w “ 0 on ΣT

wpT q “ 0 in Ω
(2.21)

and following exactly the same argument as for (2.18) leads to, for some 0 ă s ă ρ‹:
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$

’

’

’

&

’

’

’

%

‖W‖L2pqT q ď

´

λ1pΩq´1

4ρ‹p1´sqs

¯
1
2 ‖ϕb‖2

W 1,8pΩq‖a´ b‖
2
L2pQT q

‖w‖L2pqT q ď

´

λ1pΩq´1

4ρ‹p1´sqs

¯
1
2 ‖Sbpψ0q‖2

W 1,8pΩq‖a´ b‖
2
L2pQT q

.

(2.22)

Combining (2.19) to (2.22), finally leads to the existence of a positive constant C ą 0 such that:

ε‖ϕ0
a,δ ´ ϕ

0
b,δ‖

2 ď p1´ sq

ĳ

qT

χω|ϕa ´ ϕb|2 dx dt` ε‖ϕ0
a,δ ´ ϕ

0
b,δ‖

2

ď Cp‖a´ b‖2
L2pQT q

` ‖a´ b‖L2pQT qq. (2.23)

By dividing each member of (2.23) by ε ą 0 and combining this with (2.10) and (2.9), we deduce the
result.

At this point, it is worth noting that the Lipschitz constant in L2 of the control is strongly dependent on the
parameter ε ą 0. Indeed, the Lipschitz constant thus obtained explodes as ε tends towards 0. Consequently,
there is no reason to conclude that the exact control, of minimal L2 norm, depends continuously in the L2

sense on the diffusion coefficient.

Remark 2.1. Following [24], one can build exact control for a slightly modified functional given by

Jεpϕ
0q “

1

2

ĳ

qT

χω|ϕ|2 dx dt` ε‖ϕ0‖` pϕp0q, y0q.

However, this method fails to build approximate controls which are Lipschitz continuous in the L2 sense. This
being due to the lack of monotonicity of the sign function obtained in the associated Euler-Lagrange equality.

3 Controllability of the quasilinear equation

In order to extend the controllability properties of the linear equation (1.3) to the quasilinear equation (1.1),
we aim to apply a fixed point theorem. In this purpose, we first consider the strategy proposed in Section 2,
which allows to obtain regular approximate controls for the equation (1.3) which are Lipschitz continuous
with respect to the diffusion coefficient a. The existence of approximate regular controls for the linear
equation (1.3) makes possible to define an application associating to the diffusion coefficient a the quantity
Fδp|∇ua,δ|q from a bounded closed convex set with values in itself, ua,δ being the controlled solution of
the regularized version of (1.3) and Fδ being a regularization of the function F still verifying hypotheses
(A1)–(A3). The objective is then to show the continuity of such applications on some weakly sequentially
compact sets, in order to apply a suitable fixed point theorem. Remark that, since we aim to prove only a
null approximate controllability result, it is not necessary to take the limit with respect to the regularization
parameter δ. Here and henceforth we denote by “˚” the convolution product.

We define a regularisation process Rδ : L1pQT q Ñ C8pQT q. More exactly, for every g P L1pQT q we define
Rδpgq by

Rδpgq “ νδ ˚ pχδgq ` δ, (3.1)

where pνδqδ is a mollifier, χδ : RN`1 Ñ R is a smooth cutoff function with supppχδq “ QT . We can see that
Rδpgq ÝÑ

δÑ0
g in L1pQT q for every g P L1pQT q.

From now on, we should denote L2
`pQT q the subspace of non negative functions in L2pQT q. Then, we consider

the following bounded convex closed set

Kδ “

"

f P L2
`pQT q satisfying }f}

2
L2pQT q

ď 2pCL ` 1q

ˆ

1

δ
`
C0

2δ2

˙

‖y0‖2 ` δ|Ω|T
*

, (3.2)
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where CL is the Lipschitz constant of F from assumption (A1) and C0 is the observability constant given
in (2.3). Moreover, let us observe that Rδ is continuous over L2

`pQT q. Taking a P Kδ and h P L2pQT q such
that a` h P Kδ, we can write:

Rδpa` hq ´Rδpaq “ νδ ˚ pχδhq (3.3)

and the continuity of Rδ follows from Hölder’s inequality.

Let us now define the function Gδ : Kδ Ñ L2pQT q by

Gδpaq “ F p|∇va,δ|q, (3.4)

where va,δ is the weak solution to:

$

&

%

Btva,δ ´ div pRδpaqpt, xq∇va,δq “ χωϕa in QT
va,δ “ 0 on ΣT

va,δp0q “Mδpy
0q in Ω,

(3.5)

with ϕa P C8pQT q being the approximate control provided by Theorem 1.1 applied to (3.5) which is nothing
else than an alternative version of (1.3) with a regularised operator Lδ : u ÞÑ ´div pRδpaq∇uq.
Let us recall the following fixed point theorem (see [34] for a proof).

Theorem 3.1 ([34, Theorem 2.1]). Let K be a closed convex subset of a Banach space Y . Let us consider
G : K Ñ K such that for all sequence panqn Ă K which converges weakly toward a, then pGpanqqn admits a
subsequence which converges strongly toward Gpaq. Hence, if G is continuous and GpKq is weakly compact,
G admits a fixed point.

Before proving the Theorem 1.2, let us prove the following lemma.

Lemma 3.1. For every δ ą 0 the application Gδ : Kδ Ñ L2pQT q defined by (3.4) is continuous and verifies
GpKδq Ă Kδ.

Proof. First, let us show the fact that GδpKδq Ă Kδ. Since Kδ contains 0L2pQT q, from (A1) one can write:

‖Gδpaq ´Gδp0q‖2
L2pQT q

“ ‖F p|∇va,δ|q ´ F p|∇v0,δ|q‖2
L2pQT q

ď CL‖va,δ ´ v0,δ‖2
L2pp0,T q,H1

0 pΩqq
. (3.6)

Now, we point out that for every a P Kδ, ‖va,δ‖L2pp0,T q,H1
0 pΩqq

is bounded by ‖Mδpy
0q‖

b

1
δ `

C0
2δ2

, this bound
following from the energy estimate:

1

2
‖va,δ‖2

L2pQT q
`
δ

2
‖va,δ‖2

L2pp0,T q,H1
0 pΩqq

ď
1

2
‖Mδpy

0q‖2 `
1

4δ
‖χωϕa‖2

L2pqT q
, (3.7)

since testing against ϕ0 into the Euler-Lagrange equation associated to (2.1), then applying the observability
inequality as given in Proposition 2.1 and Young’s inequality leads to the inequality:

‖χωϕa‖2
L2pqT q

ď C0‖Mδpy
0q‖2 , (3.8)

and combining (3.7) together with (3.8) implies

‖va,δ‖2
L2pp0,T q,H1

0 pΩqq
ď

1

δ
‖Mδpy

0q‖2 `
1

2δ2
‖χωϕa‖2

L2pqT q
ď

ˆ

1

δ
`
C0

2δ2

˙

‖Mδpy
0q‖2. (3.9)

Now, from (3.6), we can write:
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‖Gδpaq‖2
L2pQT q

ď CL

´

‖va,δ‖2
L2pp0,T q,H1

0 pΩqq
` ‖v0,δ‖2

L2pp0,T q,H1
0 pΩqq

¯

` ‖Gδp0q‖2
L2pQT q

. (3.10)

On the other hand, we have:

‖Gδp0q‖2
L2pQT q

ď ‖v0,δ‖2
L2pp0,T q,H1

0 pΩq
` δ|Ω|T. (3.11)

Hence, combining (3.11), (3.10) and (3.9), we get that GδpKδq Ă Kδ.

Let us now show that Gδ is continuous. Since F is globally Lipschitz from assumption (A1), one have:

‖Gδpa` hq ´Gδpaq‖2
L2pQT q

“ }F p|∇va`h,δ|q ´ F p|∇va,δ|q}2L2pQT q
ď CL‖∇va`h,δ ´∇va,δ‖2

L2pQT q
. (3.12)

Then, we have that wa,h :“ va`h,δ ´ va,δ solves:

$

&

%

Btwa,h ´ div pRδpa` hq∇wa,hq “ χω pϕa`h ´ ϕaq ´ div ppRδpa` hq ´Rδpaqq∇va`hq in QT
wa,h “ 0 on ΣT

wa,hp0q “ 0 in Ω.
(3.13)

Hence, an energy estimate over (3.13) leads to, using parametrized Young’s inequality and Poincaré’s in-
equality:

1

2
‖wa,h‖2

L8pp0,T q,L2pΩqq `
δ

2
‖wa,h‖2

L2pp0,T q,H1
0 pΩqq

ď
1

δ
‖ϕa`h ´ ϕa‖2

L2pQT q

`
1

δ
‖∇va`h‖2

L8pQT q
‖Rδpa` hq ´Rδpaq‖2

L2pQT q
.

Using Theorem 1.1 combined to (3.12), and since, for a k large enough with respect to N , Hk
0 pΩq is continuous

embedded in W 1,8
0 pΩq, we get that:

‖Gδpa` hq ´Gδpaq‖2
L2pQT q

ď
Cpδq

δ2

´

‖h‖2
L2pQT q

` ‖Mδpy
0q‖2

k‖Rδpa` hq ´Rδpaq‖2
L2pQT q

¯

, (3.14)

which proves the lemma.

Remark 3.1. We can avoid the global regularity assumptions over F as in (A1) by considering that

F PW 1,8
loc pR`q X L

2
locpR`q X L

p
p´1

loc pR`q.

It is then necessary to introduce an additional regularization process. First, for every δ ą 0 we define a
regularisation process rδ : L1

locpR`q XW
1,8
loc pR`q Ñ C8pR`q XW 1,8pR`q by:

rδpF q :“ ζδ ˚ pσδF q ` δ , (3.15)

for every F P L1pR`q XW 1,8pR`q, where pζδqδ is a mollifier and σδ : R Ñ R is the smooth cutoff function
satisfying:

σδ “

"

1 in
“

δ, 1
δ

‰

0 in p´8, 0s Y
“

1
δ ` δ,`8

˘

.
(3.16)

Then, we see that such a regularization process also holds over L1
locpR`q XW

1,8pR`zt0uq, in the sense that
for every F P L1

locpR`qXW
1,8pR`zt0uq, such an rδpF q leads to a globally Lipschitz function, i.e., there exists

CL,δ ą 0 such that
|rδpF qptq ´ rδpF qpsq| ď CL,δ|t´ s|, (3.17)

for every t, s ą 0.
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Remark 3.2. We point out that is essential here to consider solutions to the regularized equation (3.5), since
the space of functions which are essentially positively lower and upper bounded do not give rise to regular
enough solutions of (1.3) (namely, at least Hölder continuous) since we can construct discontinuous solutions
with respect to the space variable of (1.3) for some diffusion coefficient in this space, given by Serrin’s example
(see [46]).

We are now able to prove Theorem 1.2.

Proof of Theorem 1.2. Let δ ą 0 to choose later. In order to apply Theorem 3.1, we first show that if panqn
is a sequence which converges weakly toward a, then Gδpanq converges weakly, up to a subsequence, toward
Gδpaq. First, let us observe that the weak convergence of panqn implies that Rδpanq ÝÑ

nÑ`8
Rδpaq strongly in

Kδ, by definition of Rδ. Also, arguing by continuity, one can see that the associated controls provided by
Theorem 1.1 in (3.5) leads to

‖χωϕRδpanq ´ χωϕRδpaq‖L2pQT q ÝÑnÑ`8
0.

From this, an energy estimate leads to, setting wn :“ va,δ ´ van,δ, where va,δ and van,δ are respectively
solutions to (3.5) associated to the diffusion coefficient Rδpaq and Rδpanq and to the controls ϕRδpaq and
ϕRδpanq, respectively:

1

2
‖wn‖2

L8pp0,T q,L2pΩqq `
δ

2
‖wn‖2

L2pp0,T q,H1
0 pΩqq

ď
1

δ
‖χωpϕRδpaq ´ ϕRδpanqq‖

2
L2pqT q

`
C‖y0‖k

δ
‖Rδpanq ´Rδpaq‖2

L2pQT q
. (3.18)

Then, we can write, from (3.12):

‖Gδpanq ´Gδpaq‖2
L2pQT q

“ }F p|∇van,δ|q ´ F p|∇va,δ|q}2L2pQT q
ď CL‖wn‖2

L2p0,T,H1
0 pΩqq

. (3.19)

Then, (3.18) combined with (3.19) leads to the fact that ‖Gδpanq ´ Gδpaq‖L2pQT q ÝÑ
nÑ`8

0. Applying now
Lemma 3.1, we get from Theorem 3.1 that Gδ admits a unique fixed point in Kδ. Namely, we get that in
the solution to the equation

$

&

%

Btvδ ´ div pRδ pF p|∇vδ|qq∇vδq “ χωϕ in QT
vδ “ 0 on ΣT

vδp0q “Mδpy
0q in Ω.

(3.20)

ϕ can be chosen as an approximate control of (3.20), from Theorem 1.1. For the sake of simplicity, we denote
RδpF p|¨|qq as Fδp|¨|q. Next, we denote w :“ y ´ vδ with y the solution to (1.1). Writing:

F p|∇y|q∇y ´ Fδp|∇vδ|q∇vδ “ F p|∇y|q∇y ´ F p|∇vδ|q∇vδ ` pF p|∇vδ|q ´ Fδp|∇vδ|qq∇vδ, (3.21)

an energy estimate leads to:

1

2
‖wpT q‖2 `

ĳ

QT

pF p|∇y|q∇y ´ F p|∇vδ|q∇vδq ¨ p∇y ´∇vδq dxdt

`

ĳ

QT

pF p|∇vδ|q∇vδ ´ Fδp|∇vδ|q∇vδq ¨ p∇y ´∇vδq dx dt “
1

2
‖Mδpy

0q ´ y0‖2. (3.22)

Then, (3.22) leads, using the monotonicity of the operator (assumption (A3) see [37, Chapitre 2, section 1.3.]
and [49, section 25.3]) to:
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1

2
‖wpT q‖2 ď

1

2
‖wpT q‖2 `

ĳ

QT

pF p|∇y|q∇y ´ F p|∇vδ|q∇vδq ¨ p∇y ´∇vδq dxdt

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

QT

pF p|∇vδ|q∇vδ ´ Fδp|∇vδ|q∇vδq ¨ p∇y ´∇vδq dx dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`
1

2
‖Mδpy

0q ´ y0‖2

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

QT

p∇Φp|∇vδ|q ´∇Φδp|∇vδ|qq ¨∇py ´ vδq dx dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`
1

2
‖Mδpy

0q ´ y0‖2. (3.23)

It remains to prove that the first term in the right hand side goes to zero as δ does. First, let us remark that
we can write:

∇Φδp|x|q :“ Fδp|x|qx
“ RδpF qp|x|qx
“ pνδ ˚ pχδF qp|x|q ` δqx
“ νδ ˚ pχδF qp|x|qx` δx
“ νδ ˚ pχδF p|x|qxq ` δx
“ ∇pΦqδp|x|q ` δx.

(3.24)

Here, we denoted by pΦqδ a regularization (by mollification) of Φ. Combining (3.23) and (3.24), we easily
get:

1

2
‖wpT q‖2 ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

QT

p∇Φp|∇vδ|q ´∇pΦqδp|∇vδ|qq ¨∇py ´ vδq dx dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

QT

δ∇vδ ¨ p∇y ´∇vδq dx dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`
1

2
‖Mδpy

0q ´ y0‖2. (3.25)

Evaluating the second integral term in (3.25), we obtain:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

QT

δ∇vδ ¨ p∇y ´∇vδq dx dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď δ‖y ´ vδ‖2
L2pp0,T q,H1

0 pΩq

` δ‖y‖
L

p
p´1

ˆ

p0,T q,W
1,

p
p´1

0 pΩq

˙‖y ´ vδ‖Lppp0,T q,W 1,p
0 pΩqq

. (3.26)

We get, since the solutions are regular enough, that the term present in (3.26) goes to zero as δ does. Now,
from assumption (A2), then using (3.1) and (3.15), we get the following estimate for the first integral term
in (3.25):

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

QT

p∇Φp|∇vδ|q ´∇pΦqδp|∇vδ|qq ¨∇py ´ vδq dx dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

›

›

›
∇Φp|∇vδ|q ´∇pΦqδp|∇vδ|q

›

›

›

L
p
p´1 pQT q

}y ´ vδ}Lpp0,T,W 1,p
0 pΩqq

. (3.27)

Let us now formally denote ∇v “ lim
δÑ0

∇vδ (which leads to a term that can be estimated even if this limit was

infinite, thanks to assumptions (A1)–(A3), even if it can be proven that it is finite under suitable assumptions,
see e.g. [45, Theorem 5.2.1.] or [50, Theorem 2.3.1. and Theorem 2.4.1.]). Then, we can write:
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∇Φp|∇vδ|q ´∇pΦqδp|∇vδ|q “ ∇Φp|∇vδ|q ´∇Φp|∇v|q
`∇Φp|∇v|q ´ p∇Φqδp|∇v|q
`p∇Φqδp|∇v|q ´∇pΦqδp|∇v|q
`∇pΦqδp|∇v|q ´∇pΦqδp|∇vδ|q.

(3.28)

Integrating the left-hand side in (3.28), we get by definition that the first and the fourth term in the obtained
right-hand side goes to zero as δ does thanks to assumptions (A1)–(A3), the second term does too using
assumption (A2) and since it is a classical mollification. It remains to deal with the third term, but it still
goes to zero as δ does applying Friedrich’s Lemma (see e.g. [16, Section 1.5.4.], [29, Lemma 17.1.5] or [9,
Section 2.2.]).

Moreover, an energy estimate leads to, testing against vδ into the weak formulation:

1

2
‖vδ‖2

L8pp0,T q,L2pΩqq `

ĳ

QT

Fδp|∇vδ|q|∇vδ|2 dx dt “
ĳ

qT

χωϕ∇vδ dx dt`
1

2
‖Mδpy

0q‖2
L2pΩq. (3.29)

We get from assumptions (A1)–(A2), using Young’s inequality for 0 ă s ă 1 and the fact that ‖Mδpy
0q‖L2pΩq ď

‖y0‖L2pΩq:

1
2‖vδ‖

2
L8pp0,T q,L2pΩqq ` 2δ‖vδ‖2

L2pp0,T q,H1
0 pΩqq

`
ť

QT
F p|∇vδ|q|∇vδ|2 dx dt

ď

ˆ

p´1

p
p
p´1 s

1
p´1

˙

‖χωϕ‖
p
p´1

L
p
p´1 pqT q

` s‖vδ‖pLppp0,T q,W 1,p
0 pΩq

`‖∇Φp|∇vδ|q ¨∇vδ ´ p∇Φqδ p|∇vδ|q ¨∇vδ‖L1pQT q

`1
2‖y

0‖2
L2pΩq.

(3.30)

We point out that from assumptions (A2)–(A3), the product ∇Φp|∇vδ|q¨∇vδ involved in the above inequality
is non negative. Let us focus ourselves to the case 1 ă p ă 2, the case p ě 2 being rather direct. From
assumption (A4), since we get:

ť

QT
F p|∇vδ|q|∇vδ|2 dx dt ě

ť

QT
pµ`∇v2

δq
p´2
2 |∇vδ|2 dx dt

“
ť

QT
pµ` |∇vδ|2q

p
2 dx dt´

ť

QT
µpµ` |∇vδ|2q

p´2
2 dx dt

ě ‖vδ‖pLppp0,T q,W 1,p
0 pΩqq

´ |Ω|Tµ
p
2 .

, (3.31)

then one can write from (3.30) and (3.31) for 0 ă s ă 1
2 :

p1´ sq‖vδ‖pLppp0,T q,W 1,p
0 pΩqq

ď

ˆ

p´1

p
p
p´1 s

1
p´1

˙

‖χωϕ‖
p
p´1

L
p
p´1 pqT q

`‖∇Φp|∇vδ|q ¨∇vδ ´ p∇Φqδ p|∇vδ|q ¨∇vδ‖L1pQT q

`1
2‖y

0‖2
L2pΩq ` |Ω|Tµ

p
2 .

(3.32)

Using Young’s inequality, we then get from (3.32):
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p1´ 2sq‖vδ‖pLppp0,T q,W 1,p
0 pΩqq

ď

ˆ

p´1

p
p
p´1 s

1
p´1

˙

‖χωϕ‖
p
p´1

L
p
p´1 pqT q

`

ˆ

p´1

p
p
p´1 s

1
p´1

˙

‖∇Φp|∇vδ|q ´ p∇Φqδ p|∇vδ|q‖
p
p´1

L
p
p´1 pQT q

`1
2‖y

0‖2
L2pΩq ` |Ω|Tµ

p
2 .

(3.33)

And so the uniform bound over δ of ‖vδ‖Lppp0,T q,W 1,p
0 pΩqq

follows since every term in the right-hand side of
(3.33) is uniformly bounded over δ (this last being chosen small enough). Combining this fact with (3.27), we
get that the left-hand side of (3.27) goes to zero as δ does. Thus, up to take δ small enough, from (3.25)–(3.27)
combined to (3.33), we obtain the wished approximate controllability.

Remark 3.3. Thanks to Remark 3.1, we can make the observation that the previous reasoning still works
when considering only local regularity on the function F , by considering the double regularization RδprδpF qp|¨|qq.
The term associated to the potential is then estimated using the following identity.

∇Φδp|x|q :“ Fδp|x|qx
:“ Rδ prδpF qp|x|qqx
“ Rδ pζδ ˚ pσδF q|x|` δqx
“ pνδ ˚ χδ pζδ ˚ pσδF q|x|` δq ` δqx
“ νδ ˚ χδ pζδ ˚ pσδF q|x|` δqx` δx
“ νδ ˚ χδζδ ˚ pσδF q|x|x` pνδ ˚ δqx` δx
“ νδ ˚ χδζδ ˚ pσδF p|x|qxq ` 2δx
“ ∇pΦqδp|x|q ` 2δx.

(3.34)

Let us now consider Theorem 1.3 and Corollary 1.2. In fact, when the solution stops in finite time, it is
enough to bring its energy to be almost null so that it becomes null in an arbitrarily short time. In other
words, the global approximate controllability implies the global exact controllability, as soon as the stopping
time is controlled by the energy of the initial data via a relation as in (1.8).

Proof of Theorem 1.3. Let T ‹ P p0, T q and ε “
´

T ‹

2µ

¯
1
γ . Applying Theorem 1.2 for an approximate control

in time T ‹

2 there exists a control ϕc P L2pp0, T
˚

2 qˆΩq such that the solution y of (1.1) with the control given
by

ϕptq “

"

ϕcptq for t P
`

0, T
‹

2

˘

0 for t ě T ‹

2

verifies
›

›

›

›

y

ˆ

T ‹

2

˙›

›

›

›

ď ε.

Combining the above inequality to the estimate (1.8) we obtain that ypT ‹q “ 0, which is the desired result.

The case of the parabolic p-Laplacian is not directly taken into account directly by Theorem 1.2 (see e.g.
[49, Example 25.5.]) setting Φptq “ 1

p t
p, and thus we immediately get the Corollary 1.1. However, as is

customary and as we mentioned in our introduction its solutions can be approximated by solutions of

$

’

’

&

’

’

%

Bty ´ µ∆y ´ div

ˆ

`

µ` |∇y|2
˘

p´2
2 ∇y

˙

“ χωϕ in QT

y “ 0 on ΣT

yp0q “ y0 in Ω.

(3.35)

(see e.g. [35]) which is approximately controllable according to Theorem 1.2. It is possible to see that,
for example, by observing that the approximation operator in µ ą 0 has the so-called M-property (see
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[50, Lemma 3.2.2.], [37, Chapitre 2 Remarque 2.1.], and [49, Proposition 31.5.]) and converges in the
sense of Lppp0, T q,W 1,p

0 pΩqq to the p-Laplacian operator. As previously mentioned, Corollary 1.2 is an
immediate consequence of Theorem 1.3 applied to [18, Proposition 2.1.] and [37, Exemple 1.5.2.], setting
X :“ W 1,p

0 pΩq X L2pΩq. Corollary 1.3 is also a direct consequence of [2, Theorem 2.1.], setting X :“
H1

0 pΩq XH
2pΩq.

4 Numerical simulations

The aim of this section is to propose a numerical strategy for the computation of an approximate null control
for quasilinear equations (1.1). In a first step we approach an approximate control ϕ for the linear equa-
tion (1.3) by solving a mixed formulation in order to approach the solution of the optimality condition (2.5).
In [41] the authors propose to approach an approximated control by solving the following mixed formulation:
find pϕ, λq P Φˆ L2pQT q solution to

"

apϕ,ϕq ` bpϕ, λq “ lpϕq pϕ P Φq

bpϕ, λq “ 0 pλ P L2pQT qq,
(4.1)

where

a : Φˆ Φ Ñ R, apϕ,ϕq “
ĳ

qT

χωϕϕdx dt` εpϕpT q, ϕpT qq (4.2)

b : Φˆ L2pQT q Ñ R, bpϕ, λq “ ´
ĳ

QT

pBtϕ` divpa∇ϕqqλ dx dt (4.3)

l : Φ Ñ R, lpϕq “ ´pϕp0q, y0q. (4.4)

The space Φ appearing in the above relations is the completion with respect to the norm

~ϕ~2 “

ĳ

qT

χω|ϕ|
2 dx dt` ε}ϕpT q}2 ` η}Btϕ` divpa∇ϕq}2L2pQT q

of the following space:
W “

 

ϕ P C2pQT q, ϕpT q P C
8pΩq, ϕ “ 0 on ΣT

(

.

We mention that in [41] it was shown that the mixed formulation (4.1) is wellposed, ϕ is the solution of (1.5)
corresponding to the final data obtained as the minimum of the functional Ja0 given by (2.1).

In order to numerically compute an approximate control for the quasilinear equation (1.1) we employ the
mixed formulation of the control proble combined to a fixed point strategy. This approach is illustrated by
several examples in dimension one of the space. For the remaining part of this section we consider Ω “ p0, 1q,
ω “ p0.1, 0.5q and T “ 0.5.

From a practical point of view, the proposed strategy needs to efficiently compute the solutions of mixed
formulations of the form (4.1). In order to numerically approach the solutions of such mixed formulations, we
consider structured triangulations Th of the domain QT with h ą 0 being the diameter of triangles forming
Th. Then we define the finite dimensional sub-spaces Φh Ă Φ and Λh Ă L2pQT q as follows:

Φh “
 

φh P C
1pQT q : φh|K P PpKq @K P Th, φh “ 0 on ΣT

(

, (4.5)

where PpT q denotes the reduced Hsieh-Clough-Tocher (HCTr for short) C1 finite element space, and

Λh “
 

λh P CpQT q : λh|K P P1pKq @K P Th
(

, (4.6)

with P1pT q being the space of affine functions with respect to both x and t. We then approach the mixed
formulation (4.1) by its following discrete version: find pϕh, λhq P Φh ˆ Λh solution to

"

apϕh, ϕhq ` bpϕh, λhq “ lpϕhq pϕh P Φhq

bpϕh, λhq “ 0 pλh P Λhq.
(4.7)
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Remark that for every h ą 0 the mixed-formulation (4.7) is well posed. Nevertheless, in order to have
a convergence of the solutions pϕh, λhq to the solution pϕ, λq a discrete inf-sup should be verified for the
discrete mixed-formulation (4.7) with a inf-sup constant uniform with respect to h. Proving such a uniform
inf-sup condition is generally a difficult question. An alternative avoiding the necessity of this condition is
to stabilize the mixed formulation (4.7) by an appropriate term.

We denote by Nx the number of right triangles in the triangulation Th having one side on the boundary
Ωˆ t0u and by Ny the number of right triangles having one side on the boundary t0u ˆ p0, T q. We take Ny

such that the vertical side hy of every triangle in Th is much smaller than hx where hx is the length of the
horizontal side of the triangle. Then hx “ 1{Nx and Ny “ Nxγ

´1T with γ P p0, 1s being such that Ny is an
integer. Two such triangulations are represented in Figure 1.

QT

x = 0 x = 1

T = 0.5

QT

x = 0 x = 1

T = 0.5

(a) (b)

Figure 1: Two structured triangulations of QT with Nx “ 10. (a) γ “ 1. (b) γ “ 0.25.

Since the controls of minimal L2 norm for the heat equation oscillate in time near the control time T , for all
the simulations discussed in this work we consider meshes that are finer in time than in space. More exactly,
we take Ny “ 320 and Nx P t20, 40, 80, 160u.

4.1 Approximation of controls for linear parabolic equations

In this section we consider a non-homogeneuous diffusion coefficient given by

apt, xq “
1

10

`

1` x2 ` t
˘

. (4.8)

In order to compute an approximate control for the equation (1.3) we numerically aproach the minima of
the functional Ja0 by solving the mixed formulation (4.7).

In what follows, we consider two examples of regular initial data to control.

4.1.1 Example 1: linear equation with y0pxq “ sinpπxq

As a first example we consider the approximate control of the linear equation (1.3) with initial data given by

y0pxq “ sinpπxq. (4.9)

In Table 1 we gather the L2 norm of the approximate control χωϕ obtained for different meshes and three
different values of ε. We observe that the norm of the control converges with respect to the size of the mesh
for each value of ε P t10´2i with 1 ď i ď 6u. We observe that norm of the control are larger for smaller valuer
of ε and they seem to converge with respect to Nx and ε. The control χωϕ and its associated controlled
solution λ computed for Nx “ 160 and ε “ 10´12 are displayed in Figure 2.
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ε 10´2 10´4 10´6 10´8 10´10 10´12

Nx “ 20 0.943 1.946 2.495 2.690 2.698 2.698
Nx “ 40 0.930 1.895 2.422 2.659 2.678 2.678
Nx “ 80 0.935 1.905 2.437 2.690 2.717 2.718
Nx “ 160 0.936 1.908 2.442 2.699 2.730 2.730

Table 1: Example 1: L2pqT q norm of the control of the linear equation (1.3) with a diffusion coefficient a
given by (4.8) and initial data (4.9) as a function of ε and Nx.

(a) (b)

Figure 2: Example 1: (a) Control χωϕ for the linear equation (1.3) with a given by (4.8) and initial data (4.9)
computed for Nx “ 160 and ε “ 10´12. (b) The corresponding controlled solution λ.

4.1.2 Example 2: linear equation with y0pxq “ χp0.6,0.9qpxq

As a second example we consider a localized but still regular initial data to control:

y0pxq “ χp0.6,0.9qpxq “

$

’

’

’

’

&

’

’

’

’

%

1, if x P r0.6` δ, 0.9´ δs
0, if x P p0, 1qzp0.6, 0.9q

e
α
´

1
δ2
´ 1
px´0.6qp0.6`2δ´xq

¯

if x P p0.6, 0.6` δq

e
α
´

1
δ2
´ 1
px´0.9`2δqp0.9´xq

¯

if x P p0.9´ δ, 0.9q,

(4.10)

with δ “ 0.1 and α “ 0.02.

We obtain results similar to the ones in the Example 1 described in Section 4.1.1. The L2 norm of the
obtained control are listed in Table 2. We also depict the control and corresponding controlled solution
computed on the mesh with Nx “ 160 and ε “ 10´6 in Figure 3.

ε 10´2 10´4 10´6 10´8 10´10 10´12

Nx “ 20 0.250 0.615 0.854 0.947 0.950 0.950
Nx “ 40 0.242 0.591 0.820 0.931 0.941 0.941
Nx “ 80 0.244 0.595 0.826 0.946 0.959 0.959
Nx “ 160 0.244 0.596 0.827 0.950 0.964 0.965

Table 2: Example 2: L2pqT q norm of the control of the linear equation (1.3) with a diffusion coefficient a
given by (4.8) and initial data (4.10) as a function of ε and Nx.

4.2 Approximation of controls for quasilinear equations

For the remaining part of this section we consider the following non-linearity:

F pXq “
1

10

´

1` p1`X2q´
1
2

¯

. (4.11)

Remark that this nonlinear function F verifies the hypotheses (A1)–(A3).
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(a) (b)

Figure 3: Example 2: (a) Control χωϕ for the linear equation (1.3) with a given by (4.8) and initial data (4.10)
computed for Nx “ 160 and ε “ 10´12. (b) The corresponding controlled solution λ.

In order to numerically approach the control and the corresponding controlled solution we employ a fixed-
point algorithm combined to the strategy proposed in Section 4.1 for the approximation of controls for
linear parabolic equations. More exactly, the following algorithm is employed for the computation of an
approximate null control for the quasilinear equation (1.1):

Algorithm 1 Fixed point algorithm for the approximation of the control and the controlled solution for the
quasilinear problem
Require: F , y0, T , ε, imax Ź imax is the maximal number of iterations
aÐ 1
iÐ 0
errÐ `8

Compute the control and controlled solution pϕ0, λ0q for the linear problem.
while i ď imax and err ą tol do Ź The tolerance tol is taken equal to h2

aÐ F p|∇λi|q
iÐ i` 1
Compute the control and controlled solution pϕi, λiq for the linear problem.
errÐ }χωpϕi ´ ϕi´1q}L2pqT q

end while
if err ď tol then

The algorithm converged.
The control and solution of the quasiliinear problem are pϕ, λq Ð pϕi, λiq.

end if

In what follows we consider the same initial data as in Section 4.1 for the control of the quasilinear equa-
tion (1.1) corresponding to this choice of F . We consider different levels of meshes and several values of the
penalization parameter ε. For each mesh of the domain QT and every value of ε we compute the L2 norm
of the control provided by Algorithm 1 and we report the number of iterations needed for its convergence.

4.2.1 Example 3: quasilinear equation with y0pxq “ sinpπxq

In this section we consider again the control of initial data (4.9) in the case of the quasilinear equation (1.1)
with F given by (4.11). The first question we would want to investigate is related to the convergence of
Algorithm 1. In this purpose we list in Table 3 the number of iterations needed for the convergence of the
fixed point algorithm for four levels of meshes and for four different values of the penalization parameter ε.
We observe that, for every ε P t10´2i with 1 ď i ď 6u the number of iterations needed for the convergence
slightly increases with Nx. This is probably due to the fact that tolerance parameter in the algorithm is
smaller for larger values of Nx. The second observation is that the fixed point algorithm does not converge
for small values of ε and fine enough meshes.

In Table 4 we gather the norm of the approximate control computed for different of values of Nx and ε. As
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ε 10´2 10´4 10´6 10´8 10´10 10´12

Nx “ 20 4 5 6 6 6 7
Nx “ 40 4 6 7 7 8 8
Nx “ 80 5 7 8 9 9 -
Nx “ 160 5 8 9 - - -

Table 3: Example 3: The number of iterations needed for the convergence of Algorithm 1 as a function of ε
and Nx for the control of quasilinear equation (1.1) whith F given by (4.11) and initial data (4.9).

for the control of the linear equation we observe a convergence of the norm of the control with respect to
h. The control obtained for Nx “ 160 and ε “ 10´6 and its associated controlled solution are illustrated in
Figure 4.

ε 10´2 10´4 10´6 10´8 10´10 10´12

Nx “ 20 0.485 1.423 2.366 3.011 3.356 3.389
Nx “ 40 0.486 1.390 2.301 2.931 3.317 3.402
Nx “ 80 0.488 1.395 2.316 2.956 3.359 -
Nx “ 160 0.489 1.396 2.319 - - -

Table 4: Example 3: L2pqT q norm of the control of the quasilinear equation (1.1) with F given by (4.11) and
initial data (4.9) as a function of ε and Nx.

(a) (b)

Figure 4: Example 3: (a) Control χωϕ of the quasilinear equation (1.1) with F given by (4.11), initial data
given by (4.9) and for Nx “ 160, ε “ 10´6. (b) The corresponding controlled solution λ.

4.2.2 Example 4: quasilinear equation with y0pxq “ χp0.6,0.9qpxq

This last example consider the numerical approximation of the approximate null control for equation (1.1)
with F given by (4.11) and initial data (4.10). For this choice of initial data we conduct the same experiments
as for Example 3. We obtain similar results with the difference that Algorithm 1 has a better convergence
for this initial data. As reported in Table 5 the fixed point algorithm converge for ε “ 10´12 and for all the
values of the discretization parameter Nx. Nevertheless, the number of iterations augment for Nx “ 160 and
the convergence will probably deteriorate for smaller values of ε.

ε 10´2 10´4 10´6 10´8 10´10 10´12

Nx “ 20 4 5 6 6 6 6
Nx “ 40 4 5 6 7 7 7
Nx “ 80 5 6 7 8 8 8
Nx “ 160 6 7 8 9 9 -

Table 5: Example 4: the number of iterations needed for the convergence of Algorithm 1 as a function of ε
and Nx for the control of quasilinear equation (1.1) whith F given by (4.11) and initial data (4.10).

Null controllability for quasilinear parabolic equations 19



The values of the L2 norm of the computed controls, reported in Table 6, indicate that controls converge
with respect to Nx for fixed values of ε. This convergence seems faster for larger value of the penalization
parameter ε. The control and the corresponding controlled solution associated to the initial data (4.10) are
displayed in Figure 5.

ε 10´2 10´4 10´6 10´8 10´10 10´12

Nx “ 20 0.127 0.419 0.748 1.013 1.166 1.181
Nx “ 40 0.124 0.405 0.720 0.976 1.147 1.185
Nx “ 80 0.124 0.406 0.723 0.983 1.161 1.213
Nx “ 160 0.124 0.406 0.723 0.984 1.163 -

Table 6: Example 4: L2pqT q norm of the control of the quasilinear equation (1.1) with F given by (4.11) and
initial data (4.10) as a function of ε and Nx.

(a) (b)

Figure 5: Example 4. (a) Control χωϕ of the quasilinear equation (1.1) with F given by (4.11), initial data
given by (4.10) and for Nx “ 160, ε “ 10´10. (b) The corresponding controlled solution λ.

5 Conclusion and perspectives

In this paper, we proved the approximate null controllability in arbitrarily small time of quasilinear equations
with a gradient dependent viscosity coefficients. This class of equation includes the parabolic p-Laplacian
equation with 3

2 ă p ă 3. Moreover, for equations, such the parabolic p-Laplacian with 3
2 ă p ă 2, having

a finite stopping time without control, we prove the null controllability in arbitrary small time. Numerical
simulations illustrate the proposed control strategy.

A first open question is that, under the hypothesis of showing the Lipschitz continuity of the control associated
to the linear problem in the Lq frame for some q ą 2, it is possible to extend our controllability result for
the Lq controllability of the parabolic p-Laplacian. We could then obtain the exact controllability of the
parabolic p-Laplacian for some p‹ ď p ă 2, where 1 ă p‹ ă

3
2 , still applying [18, Proposition 2.1.].

Another interesting question is that the results presented in this paper could be extended to the controllability
of non-Newtonian fluid flows, e.g. of power law or Carreau-Yasuda type. More precisely, the issue is that for
a system with solutions being divergence free in the weak L2 sense, the addition of the nonlinear quadratic
term will probably cause some difficulties. Our results adapt, under a few additional assumptions, to the
controllability framework in the case of a system (i.e. in the non-scalar case), but it may then be necessary
to regularize further in order to obtain satisfactory regularity properties (see for example [6] or [17] for recent
results in this framework).
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