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Abstract

The aim of this paper is to study the null controllability of a class of quasilinear parabolic equations. In a
first step we prove that the associated linear parabolic equations with non-constant diffusion coefficients
are approximately null controllable by the means of regular controls and that these controls depend
continuously to the diffusion coefficient. A fixed-point strategy is employed in order to prove the null
approximate controllability for the considered quasilinear parabolic equations. We also show the exact
null controllability in arbitrary small time for a class of parabolic equations including the parabolic p-
Laplacian with % < p < 2. The theoretical results are numerically illustrated combining a fixed point
algorithm and a reformulation of the controllability problem for linear parabolic equation as a mixed-
formulation which is numerically solved using a finite elements method.

1 Introduction

This paper consider the approximate null controllability of quasilinear equations of the following form:

Oy — div (F(|Vy)Vy) = xop in Qr
y=0 on X (1.1)
y(0) = y* in €,

where Q < RY is an open bounded domain with a smooth boundary 0Q, Q7 = (0,T) x Q, X7 = (0,T) x 09,
the initial data y° belongs to L?(£2), and there exists p > 1 such that the function F : Ry — R* verifies the
following assumptions:

(A1) Fe Wh(Ry) n C*(Rs) n L*(Ry) N Lﬁ(RH;

(A2) The potential defined for every ¢ € R} by ®(t) = Sé sF(s) ds is convex and satisfies ¢ € wheT (Ry);
(A3) There exists C1,Co, u, v > 0 and ki, ky = 0 such that for every ¢t € Ry, we have that

p—2
2 .

ki+ Ci(p+ t2)p772 < F(t) < kg + Co(v + %)

The control ¢ acts in the open and non empty set w = Q. More precisely, we denote by x, € C*(Q) a
regular function such that
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(z) — 1 for xz € ws
XA =10 forze Qw,

where ws = {z € w such that dist(x, dw) > J} for a given § > 0 small enough. We also denote gr = (0,7") xw.

Let us underline that assumption means that ®(u) = ®(|u|) is a convex potential and thus the operator
A: X — X* defined for every ¢ € X by

Ag = —div (F(|[V¢[) V) (1.2)

is monotone (see [37, Chapitre 2, Définition 1.2.]), where X is a reflexive Banach space compactly and
densely embedded in L?(Q2) and X* is its dual with respect to the pivot space L?(§2). Having this in mind,
we point out that the existence of a unique weak solution to equation is a direct consequence of [37,
Chapitre 2, Section 1, Théoréme 1.2.- bis| applied to the nonlinear monotone operator A given by ,
when F' is chosen such that it leads to the monotonicity of the operator A. From a historic point of view,
the analysis of quasilinear parabolic equations and the properties of their solutions took off in the 1960’s,
with the pioneering works [33], 37, B]. Quasilinear equations as are to be compared to the regularized
parabolic p-Laplacian from which it derived their study. Such equations have been the source of a large
number of publications in the last decades. As in the case of linear parabolic equations, the question of the
boundedness of the solution or its gradient arises naturally. Such results are now well known and have been
established for large classes of quasilinear systems, we can refer to [42] 20, [3, 12, 1T}, 19} [7, 44] in the case of a
bounded domain with a regular boundary. However, this remains a source of an important research activity,
especially for the study of singular or degenerate systems. Examples include recent second-order regular-
ity results for the parabolic p-Laplacian (see e.g. [17, 22]) and its alternative in the symmetrized gradient
framework with the A-approximation method (see [6]). In the case of whose nonlinearity satisfies the
assumptions [(A1){(A3), which give rise to a nondegenerate, nonsingular quasilinear equation, it is well known
that smooth solutions are obtained (we refer e.g. to [16, Theorem 3.4.1., Sections 3.1.4. and 0.10.]). Note
that this fact is used, for example, to approximate the solution of the parabolic p-Laplacian equation (see
e.g. [22 Section 4] or [35]). In our study, we voluntarily set aside the p = 1 case, which is more difficult, but
for which it is still possible to show interesting existence and regularity properties (see e.g. [43] 48|, 21]); in
this last case, we underline that smoothness of viscosity solutions have been proved in [31], this can be linked
to reasoning such as that presented in [30]. We should also point out that the smoothing effect of quasilinear
parabolic equations is known in many cases (see e.g. [28, Chapter IV] or [43]). The literature on the subject
of quasilinear parabolic equations and systems is extremely vast, so we we mainly refer the interested reader
to monographs [37, [33], 136}, (47, 45] 50}, [16], 32} 1] for the study of the properties of these equations and systems.

The controllability of quasilinear equations has been recently studied, as in [13| [I5] [14], in the framework of
optimal control, or [40, 39 23] in the framework of exact controllability. In these last papers, the results for
exact controllability hold for systems where the nonlinear term depends on the solution of the system, but
not on its gradient. The local controllability of quasilinear equations with a gradient dependent term has
been studied in the recent paper [25]. At our knowledge, the global controllability of such equations remains
open and is the main purpose of the present work.

With the objective of applying a fixed point method in order to control the quasilinear equation, we first
investigate the existence of smooth distributed controls for the following linear heat equation in divergence
form with a space and time dependent diffusion coefficient:

Opu — div (a(t,x)Vu) = xup in Qr
u=20 on X (1.3)
u(0) = ¢° in Q

in which we consider diffusion coefficients a € C®(Qr) satisfying:

0<pe<alt,z) ((t,z)eQr), (1.4)

where p, > 0 is a constant.
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The distributed controllability of equation is a well studied subject (see for example [26] or the more
recent review paper [24]). The existence of an optimal distributed control, in the sense of minimal L2-norm,
can be obtained by applying the Hilbert Uniqueness Method (HUM) introduced in [38]. The main idea of
the method is to consider the dual final boundary value problem of given by:

Orp +div (a(t,z)Ve) =0 in Qr

=0 on X (1.5)

p(T) = ¢° in O
for some ¢° € L?(Q) and then to deduce the (exact or approximate) controllability of (1.3). For fixing the
notation, we denote S%(¢°) := ¢ the solution of associated to the final data ¢°. Remark that using
this notation we enhance the dependence of solutions of on the diffusion coefficient a. The existence
of approximate controls for linear parabolic equations by the use of this approach, even regular, is now well
known (see |27, [8, [5]). However, in order to apply a fixed-point theorem, it is necessary to establish the
continuity of the controls with respect to the diffusion coefficient.

Theorem 1.1. Let Q be an open bounded subset of RN with Lipschitz boundary, y° € L*(Q), a € C*(Qr)
satisfying (1.4) and T > 0. Then, for every € > 0 there exists an approzimate control ¢ € C*(Qr) in the
sense that the corresponding solution u of (1.3)) verifies

lu(T)| < e. (1.6)
Moreover, the control ¢ depends Lipschitz continuously to the diffusion coefficient a for the norm H'HL2(QT)-

Here and henceforth we denote by (-, -) the inner product in L?(Q) and by | - | the associated norm. The
main result of the paper is a consequence of Theorem [I.] and provides the approximate null controllability
of quasilinear equation (|1.1]).

Theorem 1.2. Assume that F' satisfies assumption and y° belongs to L*(Q) are chosen such that
there exists a unique solution of . Then, there exists a distributed control @, whose reqularity is given by
Theorem such that is approzimately null controllable in any time T > 0, i.e., for every y° € L%(Q)
and every € > 0 there exists a control ¢ € C®(Qr) such that the solution y of satisfies

ly(D)] < e.

In particular, Theorem [I.2]implies the approximate null controllability of the so-called parabolic p-Laplacian:

ov — div (|[VvP2VV) = xup  in Qp
v=20 on X (1.7)
v(0) = ¢° in Q.

with % <p<3.
More exactly, we prove the following corollary.

Corollary 1.1. Let y° € L?(Q) and % <p < 3. Then (L.7) is approzimate null controllable in any time
T >0, i.e., for every e > 0 there exists a control ¢ € C*(Qr) such that the solution v of (1.7) verifies

V(T < e
In fact, in the case where the solution stops in finite time, and where this stopping time is well controlled

by the norm of the initial data, we can show the global exact controllability of (L.1). More precisely, the
following result holds.

Theorem 1.3. Assume that F' satisfies assumptions|(A1){(A3), and thaty is the solution of (1.1)) associated
to an initial data y° € L*(QY). Moreover, let us consider that y stops in finite time, which is that, if ¢ = 0

then, there exists Ts € (0,T), v > 0 and u > 0 such that:
ly(TH =0 and Ty < plly°|. (1.8)

Then, one can choose the force term ¢ such that y is exactly null controllable in any time T* € (0,T).
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Applying the results in [I8, Proposition 2.1.|, the following corollary is a direct consequence of Theorem
and [37, Exemple 1.5.2 and Théoréme 1.2 bis|, setting X = Wol’p(Q) N L2(9).

Corollary 1.2. Let y° € L®() and % <p < 2. Then, by always choosing a non-negative solution to (1.7)),
the problem (1.7)) is null controllable in any time T > 0, i.e., there exists a control ¢ € C*(Qr) such that

the solution v of (1.7)) verifies
v(T) = 0.

Also, another example is given by the following equation:

Oiu — Au — div (|Vu|p_2Vu) =Xup InQr
u=0 on X (1.9)
u(0) =¢° in Q
with % < p < 2. We point out that the operator A : u > —Au — div (|Vu|P"2Vu) is well-defined and
monotone over X := H2(Q) n H}(Q) (see e.g. [4, Section 4.3.]).

Then, we have the following result.

Corollary 1.3. Let y° € L?(Q), and % < p < 2. Then (1.9) is null controllable in any time T > 0, i.e.,
there exists a control ¢ € C*(Qr) such that the solution u of (1.9) verifies

u(T) = 0.
For the sake of clarity, we will omit throughout the article the dependence of the constants and will generically

denote positive constants by C'.

The remaining part of this paper is structured as follows. Section [2]is dedicated to the existence of smooth
Lipschitz continuous in L? approximate null control for the linear equation (T.3). In order to prove the
Theorem we employ a fixed point strategy described in Section[3] Finally, Section [ numerically illustrate
the computation of controls in both the linear and non-linear frameworks.

2 Approximate controllability of the linear equation

Let € > 0. For every § > 0 we denote Ms(¢?) € C®(9) a mollification of some ©° € L?(Q2) (see [10]) such
that |Ms(¢%) — ¢°| — 0 when § — 0. Following this notation we set Mq(") := ©°. For every 6 > 0 we
consider the functional:

T = 5 [ el s ot + S0P + (S (Ma(e)(0).4°), (21)

where S%(°) is the solution of (1.5) with a diffusion coefficient a satisfying (1.4). Let us point out that
the standard HUM functional is nothing else than J§ given by (2.1). Following the classical arguments as
presented in [§, Sections 1.2. and 1.3.] or in [27, Chapter 1|, minimizers of J§ can give rise to approximate

controls ¢ € C*([0,T") x Q) of (1.3)), i.e., the corresponding solution of ([1.3) verifies
[u(T)| < e. (2.2)

More exactly, we have the following observability inequality which is the key ingredient of the proof of the
null approximate controllability of (|1.3)).

Let us recall the following result.

Proposition 2.1 (Observability inequality |24, Theorem 1.5.]). There exists a constant Cy > 0, depending
of Q, T, w, and ||a| (@), such that the following inequality holds:

1S (M) ()12 < Co j j Xl SUMs ()2 dudt (90 € LA(Q). (2.3)
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We aim to show here that minimizing J¢ over L?(12) for § > 0 we obtain a control ¢4 which is now in C*(Qr)
which is close to the one obtained by minimizing J§, so, for 6 > 0 small enough and for this regular control,

the solution w of (1.3)) still verifies (2.2). For every § > 0 we denote 978 the minimum of J§'. Therefore, for
every ¢¥ € L?(Q) we have

j j N SH M5 (P0)SH(Ms(0°)) da dt + (2, ¥°) + (S (Mg(49))(0),5°) = 0 (2.4)

f f NeSU NS (40) dr dt + £(0,0°) + (S(¥°)(0),4°) = 0. (2.5)

Lemma 2.1. With the above notation, there exists a constant Cy > 0 such that

|31 < Colly°| (2.6)

and for every f € C([0,T], L*(Q)) the following convergences occur
(£,8*(Ms(£9)) = S*(¥])r2(@r) = 0
when § — 0

Proof. Remark that J§ (gplg) J§(0) = 0. This implies that (907%)5>0 verifies (2.6). Then we can extract a
subsequence, still denoted ()s=0, weakly converging to " in L?(€2). Let us observe that S*(Ms(3) —¢3) =

Sa(MtS(‘P(;) M;(%) + S*(Ms(°) — S%)

Now, in the weak formulation of S*(Ms (gpig) — Ms(")), one can write for the final datum term:

(S (M5(09) — Ms()(T), F(T)) r2(2) = (9% Ms(f(T))) 20y — (Ms(2°), £(T)) 120 0 (2.7)

Hence, %in(l) SG(M(;(;S) — Ms(¢)) is the weak solution of (I.5) associated to the null final datum, namely
arguing by uniqueness S“(M(;(g?g) — Ms(°)) o S§%(0) = 0. Using a similar argument, we get that
S (M5 (") — Mg(goé)) — O and the result follows. O

More exactly, we aim to prove the following result.
Proposition 2.2. With the above notation, we have

ﬂx

P 2 J— JE—
S*(Ms(#3)) = S*(#0)| do dt + el — PP -0

when 6 — 0.

Proof. We choose 9° = gpig —¢0in (2.4)-(2.5) and we subtract these relations:
Jf XwS*(Ms(p )Sa(Mg( ) dx dt — Jj XS4 (0 o) d dt

el el — 7 + (S (Ms(9] — 29)(0) — 8§ — ¢°)(0),4°) = 0.

Using the linearity of the equation (1.5 (hence of §%) and of Mj, the above equality writes as follows:

JJXW|S (Ms(9))|? da dt+HXw\3a ) da dt — JJXWS“ M;5(£9))S(M;5(9)) da dt

wa (GD)SU0) da dt + e[ p] — PO + (S*(Ms(2] — ) — (20 — 29))(0), 4°) = 0.
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Finally, we get

walé’“ Ms(9)) — S“(p dedt—ﬂXw (M5(£9))S*(M;5(0) — ¢0) dx dt

JJ NeSU)SU(M5(20) — 20) dar dt + £l — O + (S (Ms(2l — &%) — (20 — 29))(0),4°) = 0.

The result follows applying Lemma [2.1}

We now give the proof of Theorem [I.1]

Proof of Theorem[1.1] The existence of approximate controls ¢ € C*(Qr) is obtained by minimizing the
functional J§ applying the standard HUM method, the regularity being derived from the usual regularity in
the linear parabolic case (see, for example, [10, Theorem 10.1]). We therefore focus on proving the Lipschitz

L? continuity with respect to the diffusion coefficient a.

Let us consider two diffusion coefficients a and b in C(Qr) verifying (1.4)). Then, we denote ¢, =
S“(M(;(cpa 5)) and ¢ = Sb(M(;(cpbé)) with ¢? ¢ being the minimum of J¢ and ) ; being the minimum

of J? 5. Writing w := ¢, — ¢p, we get that w satisfies the following equation:

orw + div (a(t, z)Vw) = —div ((a — b)Vep) in Qr
w=20 L on X
w(T) = M&(@g’g - 9025) in €.

)

An energy estimate over (12.8)) leads:

1 1 1
in(T)HQ + (o — 5)Hw”%2((o,T),H3(Q)) S g”@bH%/VLOC(Q)Ha - bH%2(QT) + §||M6(<P25 by, @05

According to the Young’s inequality for convolution (see [10, Theorem 4.15.]):

M5 (99 5 — op )l < llpsllLry e s — wsll < el s — @Dl

where (ps)s=o is the mollifier used to define Ms. Then, we get from Euler-Lagrange formula:

[ pase s dode -+ (a0 ) + (5 (Ls()(0).4°) = 0

qr

[ rns? (0150 da e+ <R, 0%) + (S"(Ms0)0),5°) =01

qr

Subtracting the relations (2.11)-(2.12), we obtain:

[[ relas?atswo) - o s(0%) o + (o5 — o050 0°)

+(S*(M5(4"))(0) — S*(M5(4))(0),4°) = 0.

Now, one can write:

j j Yoo (S (M5(1%)) — pS*(M5(4°))) dz dt = f j Yol o — ol du dt

ﬂ o (e — 06) (S (M5(®°)) — u + 3) der dt + H X ph(S (M5 (1)) — S (M (4°))) da d.

6 Null controllability for quasilinear parabolic equations
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Setting 40 := apg 5 gobé into and using ) leads to:

[ elia = oul dode + <l — I + (S5 — FENNO) - S (M55 — N(0).4°) =

qr

f f Yo (Pa — 20) (ST (Ms(20, — 903)) — ¢ + ) dadt

- f f VoS My (0, — A0)) = S' My, — 20,)) dudt. (2.15)

ar
Here, writing (3 := S“(M(;( <pb5)) - Sb(Mg(@ - %)), we have that it solves:
0,5 + div (aV5) = div ((a — B)VSH(M;(20 ; — 5)) in Qr
f=0 on X (2.16)
B(T) =0 in Q.

Testing against /3 into the weak formulations of (2.16)) leads to, after applying Holder’s and Young'’s inequality
for 0 < s < px, we get:

1
SIBOI + (. = 5) [[1V8P dede < LIS OO - Alniople — gy (217)
Qr

From Poincaré’s inequality (2.17)) leads to:

/\19_1 —
Blran < (s ) 101678, = W)l la — Hlzacan, (215)

where A\;(Q)~! is the sharp Poincaré constant, and p, comes from (T.4). Using (2.18) into , then
Young’s inequality and an energy estimate, we then get for 0 < s < 1:

R - 1 - -
(1= ) [ xuloa = l? dmt + el — P51 < LIS (s = #3)) = 0+l

qr
Hloall 200 1S (M50 = 95)) = S M5 (o0 5 = ) (e
1
AL(Q)71 2 —
0 1 b
1 () IS s — A lweianlle - Hlasp (219

Now, setting W = S M5 (¢°)) — @4 + @p and w = S M5 (¢°)) — SP(M5(y?)), we get that these respectively
solve:

oW + div (aVW) = div((a — b)Vyp) in Qr

W =0 on Xp (2.20)
W(T)=0 in
oyw + div (aVw) = —div((a — b)VS*(¥°)) in Qr
w =20 on X (2.21)
w(T)=0 in Q

and following exactly the same argument as for (2.18)) leads to, for some 0 < s < p,:
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1
M)~ 2
IWlzeger) < (25255 ) ullnmey lla = Bli22q,

(2.22)
1
()~ 2

HW||L2(qT) < (M) HSb(QZJO)H%{/I,o@(Q)Ha - bH%Q(QT)
Combining ([2.19) to (2.22), finally leads to the existence of a positive constant C' > 0 such that:
el — Tl < (1= 9) | [ xulon = f? dwdt + <l - Bl
ar
< C(lla = bll72igp) + lla = bllL2q))- (2.23)

By dividing each member of (2.23) by ¢ > 0 and combining this with (2.10) and (2.9), we deduce the
result. O

At this point, it is worth noting that the Lipschitz constant in L? of the control is strongly dependent on the
parameter € > 0. Indeed, the Lipschitz constant thus obtained explodes as € tends towards 0. Consequently,
there is no reason to conclude that the exact control, of minimal L? norm, depends continuously in the L?
sense on the diffusion coefficient.

Remark 2.1. Following [24)], one can build exact control for a slightly modified functional given by

1
T(6%) = 5 || xalel? dadt + ) + (0(0).4°).
qr

However, this method fails to build approzimate controls which are Lipschitz continuous in the L? sense. This
being due to the lack of monotonicity of the sign function obtained in the associated Fuler-Lagrange equality.

3 Controllability of the quasilinear equation

In order to extend the controllability properties of the linear equation to the quasilinear equation ,
we aim to apply a fixed point theorem. In this purpose, we first consider the strategy proposed in Section 2]
which allows to obtain regular approximate controls for the equation which are Lipschitz continuous
with respect to the diffusion coefficient a. The existence of approximate regular controls for the linear
equation ((1.3)) makes possible to define an application associating to the diffusion coefficient a the quantity
F5(|Vugs]) from a bounded closed convex set with values in itself, u,s being the controlled solution of
the regularized version of and Fj being a regularization of the function F' still verifying hypotheses
(A3)l The objective is then to show the continuity of such applications on some weakly sequentially
compact sets, in order to apply a suitable fixed point theorem. Remark that, since we aim to prove only a
null approximate controllability result, it is not necessary to take the limit with respect to the regularization
parameter §. Here and henceforth we denote by “*” the convolution product.

We define a regularisation process Rs : L'(Qr) — C®(Qr). More exactly, for every g € L'(Qr) we define
Rs(g) by
Rs(g) = vs = (xs9) + 6, (3.1)

where (v5)s is a mollifier, xs : R¥*! — R is a smooth cutoff function with supp(xs) = Q. We can see that
Rs(9) 09 in L'(Qr) for every g € L' (Qr).

From now on, we should denote L2 (Q7) the subspace of non negative functions in L*(Q7). Then, we consider
the following bounded convex closed set

e 1 C
Ko = { 1€ I2(Qa) satisying | Taq) <2000+ 1) (5 + 55 ) WP v ooz}, 2)

8 Null controllability for quasilinear parabolic equations



where C7, is the Lipschitz constant of F' from assumption [(Al)[ and Cp is the observability constant given
in (2.3)). Moreover, let us observe that Rs is continuous over L2 (Q7). Taking a € K5 and h € L*(Qr) such
that a + h € K, we can write:

Rs(a+ h) — Rs(a) = vs = (xsh) (3.3)
and the continuity of R; follows from Holder’s inequality.

Let us now define the function Gs : K5 — L*(Qr) by

Gs(a) = F(|Vvas). (3.4)
where v, 5 is the weak solution to:

Orva,s — div (Rs(a)(t, 2)Vues) = Xwpa in Qr
Va5 =0 on X (3.5)
Va,5(0) = M;s(y°) in Q,

with ¢, € C®(Qr) being the approximate control provided by Theorem applied to (3.5)) which is nothing
else than an alternative version of (|1.3) with a regularised operator Ls : u — —div (Rs(a)Vu).

Let us recall the following fixed point theorem (see [34] for a proof).

Theorem 3.1 (|34, Theorem 2.1]). Let K be a closed convex subset of a Banach space Y. Let us consider
G : K — K such that for all sequence (an), < K which converges weakly toward a, then (G(ay)), admits a
subsequence which converges strongly toward G(a). Hence, if G is continuous and G(K) is weakly compact,
G admits a fized point.

Before proving the Theorem let us prove the following lemma.

Lemma 3.1. For every § > 0 the application G5 : K5 — L*(Qr) defined by (3.4)) is continuous and verifies
G(Ks) c K.

Proof. First, let us show the fact that G5(Ks) c K. Since Ky contains 0r2(¢Q,), from one can write:

IGs(a) = Gs(0) 172 (g = I1F(IVvasl) = F(IVvoshl72qp

< Cllvas = w05l o0, m 0 (3:6)
Now, we point out that for every a € K, ((0,7),H2 () 18 bounded by | M5 (y°)|| 262, this bound
following from the energy estimate:
1 4] 1 1
5””:1,6\’%2(%) + §Hva,é\|i2((o,T),Hg(Q)) < QHMS(QO)HZ + @HXM%H%%C,T) ; (3.7)

since testing against ¢ into the Euler-Lagrange equation associated to (2.1)), then applying the observability
inequality as given in Proposition and Young’s inequality leads to the inequality:

IXwPallZ2(gpy < CollMs(y°)II?, (3.8)
and combining (3.7)) together with (3.8]) implies

1 C
0 2 0 0y12
len o gy < FIVBEON + g asalary < (5+ 3 ) NGO (39)

Now, from (3.6]), we can write:
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1Gs(@)IB2ap) < Cr (IlaslZagory my + 10sl22q0my oy ) +IGsOBagy:  (310)

On the other hand, we have:

HGJ(O)H%?(QT) < HUO,(SH%Z((07T)7H3(Q) + 5|Q‘T- (3-11)

Hence, combining (3.11]), (3.10) and (3.9)), we get that Gs(Ks) < K.
Let us now show that Gy is continuous. Since F' is globally Lipschitz from assumption (A1), one have:

IGs(a+h) = Gs(a)l 2oy = IF(IVVarnsl) = F(IVvasDIZ2iqr) < CLlVtatns — Voaslizg,)-  (312)

Then, we have that w,p := vaqn,s — Va5 solves:

Orwa,p, — div (Rs(a + h)Vwan) = Xw (Path — @a) — div (Rs(a + h) — Rs(a)) Vugyn)  in Qr
Wo,p =0 on ¥r  (3.13)
wWe,n(0) =0 in Q.

Hence, an energy estimate over (3.13) leads to, using parametrized Young’s inequality and Poincaré’s in-
equality:

1 2 5 2 1 2
Slwanllieeqo,r),200)) + Sl1wanllze .0y 2 () <5H%+h — ?allz2 (@)

1
+ g”vva-i-hH%OC(QT)HRz?(a +h) = Rs(a)[|72(g,)-
Using Theorem 1.1|combined to (3.12)), and since, for a k large enough with respect to N, H}(€2) is continuous
embedded in W, (2), we get that:

c(o
[Gota+h) ~ Ga@) gy < 2 (IhlZaiqy) + M) RIRsa + )~ Rs(@)Zaqy) - (814

which proves the lemma. O

Remark 3.1. We can avoid the global reqularity assumptions over F as in|(A1) by considering that

_Dp
FeW, (Ry) n LE,(Ry) n Lp (Ry).

loc

It is then necessary to introduce an additional regularization process. First, for every 6 > 0 we define a
reqularisation process rs : L}, (R4) N Wli’COO(RJr) — CP(Ry) n WH®(R,) by:

r5(F) = G * (05F) + 9, (3.15)

for every F e L'(Ry) n WY®(R,), where ((5)s is a mollifier and o5 : R — R is the smooth cutoff function

satisfying: [ X ]
7= { 0 in(—0,0]uU[5+6,+m0). (3.16)

Then, we see that such a reqularization process also holds over L (Ry) n Wh®(R4\{0}), in the sense that

loc
for every F e L _(Ry) nWh®(RL\{0}), such an rs(F) leads to a globally Lipschitz function, i.e., there exists
Crs > 0 such that
r5(F) () = rs(F)(3)] < Cgft — 51, (3.17)

for every t, s > 0.
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Remark 3.2. We point out that is essential here to consider solutions to the reqularized equation (3.5)), since
the space of functions which are essentially positively lower and upper bounded do not give rise to reqular
enough solutions of (namely, at least Holder continuous) since we can construct discontinuous solutions
with respect to the space variable of for some diffusion coefficient in this space, given by Serrin’s example

(see [40]]).
We are now able to prove Theorem [I.2]

Proof of Theorem[I.3 Let 6 > 0 to choose later. In order to apply Theorem we first show that if (ay),

is a sequence which converges weakly toward a, then Gs(a,) converges weakly, up to a subsequence, toward

Gs(a). First, let us observe that the weak convergence of (a,,), implies that Rs(ay) - Rs(a) strongly in
n—-+ao0

K, by definition of Rs. Also, arguing by continuity, one can see that the associated controls provided by

Theorem in (3.5) leads to

HXwSORL;(an)_Xw@R(;(a)HLZ(QT) — 0.

n—+00
From this, an energy estimate leads to, setting w, := v45 — vq, 5, Where v, s and v,, 5 are respectively
solutions to (3.5)) associated to the diffusion coefficient Rs(a) and Rs(a,) and to the controls ¢p; () and
©Rj(an)» TeSPectively:

1 2 2 1 2
§”wnHLOC((o,T),L2(Q)) + §HwnHL2((0,T),H3(Q)) <5‘|Xw(%0R5(a) - @Rg(an))||L2(qT)
Clly°llx
e O R0, - Bof) g,y 319
Then, we can write, from ([3.12]):
IGs(an) — Ga(@22(ar) = (V00 al) — F(V0usDBaom < Collwnlaormpy  (319)

Then, (3.18) combined with (3.19) leads to the fact that ||Gs(an) — Gs(a)llz2(p) e 0. Applying now

Lemma we get from Theorem that G5 admits a unique fixed point in K. Namely, we get that in
the solution to the equation

Orvs — div (Rs (F([Vvs])) Vvs) = xwp  in Qr
vs =0 on Xr (3.20)
vs(0) = Ms(y°) in Q.
 can be chosen as an approximate control of (3.20]), from Theorem . For the sake of simplicity, we denote
R5(F(]-])) as F5(|-|). Next, we denote w := y — vs with y the solution to (1.1f). Writing:

F(IVy)Vy = F5([Vvs|)Vvs = F(IVy|)Vy — F(IVvs|)Vvs + (F([Vvs]) = F5(IVvs])) Vs, (3.21)

an energy estimate leads to:

eI + | [ (V)T = P99 9v0) - (Ty = Tvy) dad
Qr
+ H(F(an\)v\/é — F5(|Vvs)Vvs) - (Vy — Vvs) d dt = %HM(;(yO) — Y2 (3.22)
Qr

Then, (3.22)) leads, using the monotonicity of the operator (assumption (A3) see [37, Chapitre 2, section 1.3.]
and [49, section 25.3]) to:

Null controllability for quasilinear parabolic equations 11



S0 @I < 3@ + [ [ (F(Va)Vy ~ F(Tvsl)Vv8) - (V= Vvs) dde
Qr
1 0 012
< ||| (F v Vs — Es(9vsl)Vvs) - (V= Vos) da] + 5 1005(6°) ~ o]
Qr
= |[[ (20w = VsVl - T - vi) dod] + 5104506°%) — 1P (323)
Qr

It remains to prove that the first term in the right hand side goes to zero as § does. First, let us remark that
we can write:

Vos(|z]) = Fs(|z|)z
= Rs(F)(|z[)z
= (vs * (o F)(|z]) +6) x
= vs * (XoF)(|z])z + 0z
= v5 * (xoF'(|2])x) + o
= V(®)(|z]) + 6.

(3.24)

Here, we denoted by (®)° a regularization (by mollification) of ®. Combining (3.23) and (3.24), we easily
get:

Sl < f f (Vo(IVvs]) — V(@) (|Ts)) - Vi(y — vg) dardi] + f 55 - (Vy — Vvg) dedt
QT QT

1
+ 5 1Ms(y°) = o°I1% (3.25)

Evaluating the second integral term in (3.25]), we obtain:

f dVvs - (Vy — Vvs) drdt| < 0|y — V5H%2(((),T),Hé(9)
Qr

+ 5”9”12% <(0,T),Wol’p%f(9)> ly — Vé”LP((O,T),W&vﬂQ))- (3.26)

We get, since the solutions are regular enough, that the term present in (3.26)) goes to zero as ¢ does. Now,
from assumption then using (3.1) and (3.15]), we get the following estimate for the first integral term

in (529):

[ vatvvsh) = V@ (vush) - o~ o) e at) < |[ve(VusD - V(@ (P52,
Qr
ly — V5‘|LP(0,T7W0177‘(Q)) . (3.27)

Let us now formally denote Vv = lim Vvs (which leads to a term that can be estimated even if this limit was

0—0
infinite, thanks to assumptions|(A1)H(A3)} even if it can be proven that it is finite under suitable assumptions,
see e.g. |45, Theorem 5.2.1.] or [50, Theorem 2.3.1. and Theorem 2.4.1.]). Then, we can write:
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O(|Vvs|) = V(@) (IVvs]) = V&(|Vvs|) — VE(|Vv])
+VO(|Vv]) — (V2)°(|Vv])
+(V®)°(|Vv]) = V(2)°(|Vv])
+V(2)°(|Vv]) = V(@)°(|Vvs]).-

(3.28)

Integrating the left-hand side in , we get by definition that the first and the fourth term in the obtained
right-hand side goes to zero as § does thanks to assumptions |(A1)H(A3), the second term does too using
assumption and since it is a classical mollification. It remains to deal with the third term, but it still
goes to zero as ¢ does applying Friedrich’s Lemma (see e.g. [16, Section 1.5.4.], [29] Lemma 17.1.5] or [9,
Section 2.2.]).

Moreover, an energy estimate leads to, testing against vs into the weak formulation:

1 1
sl sz + || ST F? dwdt = ([ xuo¥vs dode 4 IO By (320

We get from assumptions|(A1)H(A2)| using Young’s inequality for 0 < s < 1 and the fact that || Ms(y°) | 12q) <
19°0l 22 ()

2HV5”L00( (0,7),L2()) + 25||V5HL2 (0,7),H}(Q SSQ \Vv(;] |VV5‘2 dx dt

N

p—1 p—1 p
o LN 7 .

+HVE(Vvs]) - Vvs — (V®)° (IVvs]) - Vvsl| 110y

315002 0
(3.30)

We point out that from assumptions|(A2)H(A3)} the product V& (|Vvs|)- Vvs involved in the above inequality
is non negative. Let us focus ourselves to the case 1 < p < 2, the case p = 2 being rather direct. From
assumption (A4), since we get:

p—2
g, PVvsl) [Vosf? dod > §i, 1+ Vo2) 5 Vs dad

= §§g, (1 + V6|28 dadt — §5, p(p+ [Vvel?) 2 dadt (3.31)

b
> VI oyt oy — [ UTHE-

then one can write from (3.30) and (3.31)) for 0 < s < &:

1— p < _ p—1 » pl
(U= Nl oo < (s ) Il

pP
+|[VO(|Vvs]) - Vvs — (V) (|Vvs]) - Wl (or) (3.32)

P
01 + 12UTHE.
Using Young’s inequality, we then get from (3.32)):
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1—2 p < p w p— 1
(U= 290081y oy ey < (i ) Il

pP*l sP

p— v v P (3.33)
+ (=t ) Vo9 - (7o) (TIPS,

P*lsP

b
2

302 g + IQITHE.

And so the uniform bound over § of ||vs|| Lo((0,7),WhP () follows since every term in the right-hand side of

(3.33)) is uniformly bounded over § (this last being chosen small enough). Combining this fact with (3.27)), we
get that the left-hand side of (3.27)) goes to zero as § does. Thus, up to take § small enough, from (3.25))—(3.27)
combined to ([3.33)), we obtain the wished approximate controllability. O

Remark 3.3. Thanks to Remark we can make the observation that the previous reasoning still works
when considering only local regularity on the function F', by considering the double regularization Rs(rs(F)(|-])).
The term associated to the potential is then estimated using the following identity.

Vos(|z|) = Fs(|lz])x

= R (rs(F)(|z]) x

= Rs (¢s * (osF)|x| +0) x
(vs * x5 (G5 * (05 F)|x| +6) + 0) x
=Us*Xs (Cg * ((75F)‘:U| + (5)33 + dx
=5 % xsC5 * (05F)|x|z + (vs * 0)x + dz
= 5 * X5Cs * (05 F (|2])z) + 202

V(®)0(|x|) + 26

(3.34)

Let us now consider Theorem and Corollary In fact, when the solution stops in finite time, it is
enough to bring its energy to be almost null so that it becomes null in an arbitrarily short time. In other
words, the global approximate controllability implies the global exact controllability, as soon as the stopping
time is controlled by the energy of the initial data via a relation as in .

Proof of Theorem@ Let T* € (0,T) and € = (ﬂ) Applying Theorem [1.2] for an approximate control

in time L= there exists a control ¢, € L%((0, *) x ) such that the solution y of ([1.1]) with the control given

by
[ pe(t) forte (O7 TT*)
‘p(t)_{o for t > L

il‘* <
X E.
y 2

Combining the above inequality to the estimate (|1.8) we obtain that y(7™) = 0, which is the desired result. [

verifies

The case of the parabolic p-Laplacian is not directly taken into account directly by Theorem (see e.g.
[49, Example 25.5.]) setting ®(t) = %tp, and thus we immediately get the Corollary However, as is

customary and as we mentioned in our introduction its solutions can be approximated by solutions of

Oty — pAy — div <(u +Vy]2) 7 Vy) = Xwp InQr

y=0 on X
y(0) = 3° in Q.

(3.35)

(see e.g. [35]) which is approximately controllable according to Theorem It is possible to see that,
for example, by observing that the approximation operator in p > 0 has the so-called M-property (see

14 Null controllability for quasilinear parabolic equations



[50, Lemma 3.2.2.], [37, Chapitre 2 Remarque 2.1.], and [49] Proposition 31.5.]) and converges in the
sense of U’((O,T),VVO1 P(Q)) to the p-Laplacian operator. As previously mentioned, Corollary is an
immediate consequence of Theorem applied to [I8, Proposition 2.1.] and [37, Exemple 1.5.2.|, setting
X = Wol’p(Q) n L?(Q). Corollary is also a direct consequence of [2, Theorem 2.1.], setting X :=
HE(Q) n H%(Q).

4 Numerical simulations

The aim of this section is to propose a numerical strategy for the computation of an approximate null control
for quasilinear equations . In a first step we approach an approximate control ¢ for the linear equa-
tion by solving a mixed formulation in order to approach the solution of the optimality condition ([2.5)).
In [41] the authors propose to approach an approximated control by solving the following mixed formulation:
find (¢, A) € ® x L?(Qr) solution to

{ a(@v@) + b(@v )‘> = I(@) (? € (I)) (4 1)
b(907 )‘) =0 (>‘ € LQ(QT))’ '
where
a: 0 xR, ale.p) = || uppdedt + (D)D) (42)
b:®x L*Qr) =R, b(p,\)=— ff(&tgo + div(aVe)) N dx dt (4.3)
Qr
11 =R, 1(g) = —(2(0),5°). (4.4

The space ¢ appearing in the above relations is the completion with respect to the norm

lll? = j j Nolpl dadt + ()2 + o + div(aVe) 20,

qr

of the following space: o
W ={peC*@Qr), ¢(T) e C*(Q), p =0 on Xr}.

We mention that in [4I] it was shown that the mixed formulation (4.1)) is wellposed, ¢ is the solution of ([1.5])
corresponding to the final data obtained as the minimum of the functional J§ given by ([2.1]).

In order to numerically compute an approximate control for the quasilinear equation we employ the
mixed formulation of the control proble combined to a fixed point strategy. This approach is illustrated by
several examples in dimension one of the space. For the remaining part of this section we consider 2 = (0,1),
w = (0.1,0.5) and T' = 0.5.

From a practical point of view, the proposed strategy needs to efficiently compute the solutions of mixed
formulations of the form . In order to numerically approach the solutions of such mixed formulations, we
consider structured triangulations 7, of the domain Qr with A > 0 being the diameter of triangles forming
Th. Then we define the finite dimensional sub-spaces ®;, = ® and Aj, = L?(Q7) as follows:

O = {¢n e C'(Qr) : énlx € P(K) VK €Ty, ¢y =0on Sr}, (4.5)
where P(T') denotes the reduced Hsieh-Clough-Tocher (HCTr for short) C? finite element space, and
AhZ{)\hGC(@) : )\h|K€P1(K) VKE'HL}, (4.6)

with P1(7") being the space of affine functions with respect to both x and ¢. We then approach the mixed
formulation (4.1)) by its following discrete version: find (pp, A\p) € @5 x Aj solution to

{ a(on, @n) + b(@n, An) = (@) (#n € n) (4.7)
b(¢n, An) =0 (X € Ap). :
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Remark that for every h > 0 the mixed-formulation is well posed. Nevertheless, in order to have
a convergence of the solutions (¢p, Ap) to the solution (p,\) a discrete inf-sup should be verified for the
discrete mixed-formulation with a inf-sup constant uniform with respect to h. Proving such a uniform
inf-sup condition is generally a difficult question. An alternative avoiding the necessity of this condition is
to stabilize the mixed formulation by an appropriate term.

We denote by N, the number of right triangles in the triangulation 7; having one side on the boundary
2 x {0} and by N, the number of right triangles having one side on the boundary {0} x (0,7"). We take N,
such that the vertical side h, of every triangle in 7 is much smaller than h, where h; is the length of the
horizontal side of the triangle. Then h, = 1/N, and N, = N,y 1T with v € (0, 1] being such that N, is an
integer. Two such triangulations are represented in Figure [}

T =0.5 T =0.5

x =0 r=1 =0 r=1
(a) (b)
Figure 1: Two structured triangulations of Q7 with N, = 10. (a) v = 1. (b) v = 0.25.

Since the controls of minimal L? norm for the heat equation oscillate in time near the control time 7, for all
the simulations discussed in this work we consider meshes that are finer in time than in space. More exactly,
we take Ny, = 320 and N, € {20, 40, 80, 160}.

4.1 Approximation of controls for linear parabolic equations

In this section we consider a non-homogeneuous diffusion coefficient given by

a(t,r) = 11—0 (L+2%+1). (4.8)

In order to compute an approximate control for the equation (|1.3)) we numerically aproach the minima of
the functional J§ by solving the mixed formulation (4.7]).

In what follows, we consider two examples of regular initial data to control.

4.1.1 Example 1: linear equation with y%(x) = sin(mwx)

As a first example we consider the approximate control of the linear equation (|1.3) with initial data given by

y°(x) = sin(rz). (4.9)

In Table |1 we gather the L? norm of the approximate control y. ¢ obtained for different meshes and three
different values of £. We observe that the norm of the control converges with respect to the size of the mesh
for each value of € € {1072 with 1 <4 < 6}. We observe that norm of the control are larger for smaller valuer
of € and they seem to converge with respect to N, and €. The control y,p and its associated controlled
solution A computed for N, = 160 and ¢ = 1072 are displayed in Figure
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€ 1072 107* 10°% 10°® 10710 10712
N, =20 0943 1.946 2.495 2.690 2.698 2.698
N, =40 0930 1.895 2422 2.659 2.678 2.678
N, =80 00935 1.905 2437 2.690 2.717 2.718
N, =160 0.936 1.908 2.442 2.699 2.730 2.730

Table 1: Example 1: L?(g7) norm of the control of the linear equation (1.3) with a diffusion coefficient a

given by and initial data (4.9)) as a function of € and N,.

1.3e+01
10

8

6

4

-2

—0

-2

-4

-6

-8

-10

-12
-1.5e+01

(a) (b)

1.0e+00

-6.4e-01

Figure 2: Example 1: (a) Control x,¢ for the linear equation (1.3|) with a given by and initial data (4.9))

computed for N, = 160 and ¢ = 1072, (b) The corresponding controlled solution \.

4.1.2 Example 2: linear equation with y°(z) = Xx(0.6,0.9)(%)
As a second example we consider a localized but still regular initial data to control:

1, if 2 € [0.6 4+ 6,0.9 — 4]
0, if 2 € (0,1)\(0.6,0.9)

[

. (
V@) =X0s09)@) =3 (G wmmmsmm) it e (06,06 1 6)

(

o (F - =mmema) g e (09 5,0.9),

with § = 0.1 and o = 0.02.

(4.10)

We obtain results similar to the ones in the Example 1 described in Section The L? norm of the
obtained control are listed in Table 2] We also depict the control and corresponding controlled solution

computed on the mesh with N, = 160 and € = 1076 in Figure

z 1072 107* 107% 107® 10710 10712
N, =20 0250 0.615 0.854 0.947 0.950 0.950
N, =40 0242 0.591 0.820 0.931 0.941 0.941
N, =80 0244 0.595 0.826 0.946 0.959 0.959
N, =160 0.244 0.596 0.827 0.950 0.964 0.965

Table 2: Example 2: L2(gr) norm of the control of the linear equation (1.3) with a diffusion coefficient a

given by and initial data (4.10) as a function of € and N, .

4.2 Approximation of controls for quasilinear equations

For the remaining part of this section we consider the following non-linearity:
1 oy _1
F(X)=—<1+(1+X) 2).
10
Remark that this nonlinear function F' verifies the hypotheses [(A1)|

Null controllability for quasilinear parabolic equations

(4.11)

17



1.0e+00
0.8
0.6

—04
02

(\ [

-6.4e-01

(a) (b)

Figure 3: Example 2: (a) Control y,,¢ for the linear equation (|1.3) with a given by (4.8 and initial data (4.10))
computed for N, = 160 and ¢ = 10712, (b) The corresponding controlled solution \.

In order to numerically approach the control and the corresponding controlled solution we employ a fixed-
point algorithm combined to the strategy proposed in Section for the approximation of controls for
linear parabolic equations. More exactly, the following algorithm is employed for the computation of an
approximate null control for the quasilinear equation :

Algorithm 1 Fixed point algorithm for the approximation of the control and the controlled solution for the
quasilinear problem

Require: F, yo, T, €, tmax > imax 1S the maximal number of iterations

a<—1

10

err < +00

Compute the control and controlled solution (g, Ag) for the linear problem.

while 7 < i, and err > tol do = The tolerance tol is taken equal to h?
a— F(|[VAi])
t—1+1

Compute the control and controlled solution (p;, A;) for the linear problem.
err < [xw (i — vi-1)[L2(4r)
end while
if err < tol then
The algorithm converged.
The control and solution of the quasiliinear problem are (¢, A) < (i, \;).
end if

In what follows we consider the same initial data as in Section [£.] for the control of the quasilinear equa-
tion corresponding to this choice of F'. We consider different levels of meshes and several values of the
penalization parameter . For each mesh of the domain Q7 and every value of ¢ we compute the L? norm
of the control provided by Algorithm [1| and we report the number of iterations needed for its convergence.

4.2.1 Example 3: quasilinear equation with y°(x) = sin(mx)

In this section we consider again the control of initial data in the case of the quasilinear equation
with F' given by . The first question we would want to investigate is related to the convergence of
Algorithm [I} In this purpose we list in Table [3] the number of iterations needed for the convergence of the
fixed point algorithm for four levels of meshes and for four different values of the penalization parameter e.
We observe that, for every e € {1072 with 1 < i < 6} the number of iterations needed for the convergence
slightly increases with N,. This is probably due to the fact that tolerance parameter in the algorithm is
smaller for larger values of N,. The second observation is that the fixed point algorithm does not converge
for small values of € and fine enough meshes.

In Table 4] we gather the norm of the approximate control computed for different of values of NV, and . As
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€ 1072 107* 107% 107® 10710 1012
N, =20 4 5 6 6 6 7
N, =40 4 6 7 7 8 8
N, = 80 5 7 8 9 9 -
N, =160 5 8 9 - - -

Table 3: Example 3: The number of iterations needed for the convergence of Algorithm [I] as a function of e
and N, for the control of quasilinear equation (|1.1)) whith F' given by (4.11) and initial data (4.9)).

for the control of the linear equation we observe a convergence of the norm of the control with respect to
h. The control obtained for N, = 160 and ¢ = 107% and its associated controlled solution are illustrated in

Figure [4

€ 1072 107* 10°% 10°% 10710 10712
N, =20 0485 1.423 2.366 3.011 3.356 3.389
N, =40 0.486 1.390 2.301 2931 3.317 3.402
N, =80 0.488 1.395 2.316 2.956 3.359 -
N, =160 0.489 1.396 2.319 - - -

Table 4: Example 3: L?(gr) norm of the control of the quasilinear equation (1.1]) with F given by (.11)) and
initial data as a function of € and N,.

9.0e+00
6
4

I
I

.2e+01

(a) (b)

Figure 4: Example 3: (a) Control x,¢ of the quasilinear equation (1.1)) with F given by (4.11]), initial data
given by and for N, = 160, ¢ = 107%. (b) The corresponding controlled solution \.

Ll bS5 AN

4.2.2 Example 4: quasilinear equation with y°(z) = X(0.6,0.9)(T)

This last example consider the numerical approximation of the approximate null control for equation (|1.1))
with F' given by and initial data . For this choice of initial data we conduct the same experiments
as for Example 3. We obtain similar results with the difference that Algorithm [I| has a better convergence
for this initial data. As reported in Table |5| the fixed point algorithm converge for e = 107'2 and for all the
values of the discretization parameter N,. Nevertheless, the number of iterations augment for N, = 160 and
the convergence will probably deteriorate for smaller values of €.

€ 1072 107* 107% 107® 10710 1012
N, =20 4 5 6 6 6 6
N, =40 4 5 6 7 7 7
N, = 80 5 6 7 8 8 8
N, =160 6 7 8 9 9 -

Table 5: Example 4: the number of iterations needed for the convergence of Algorithm [I] as a function of
and N, for the control of quasilinear equation (|1.1)) whith F' given by (4.11)) and initial data (4.10]).
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The values of the L? norm of the computed controls, reported in Table I@ indicate that controls converge
with respect to N, for fixed values of . This convergence seems faster for larger value of the penalization
parameter €. The control and the corresponding controlled solution associated to the initial data are
displayed in Figure

E 1072 107* 106 10°®% 10710 1012
N, =20 0.127 0.419 0.748 1.013 1.166 1.181
N, =40 0.124 0.405 0.720 0.976 1.147 1.185
N,=80 0.124 0.406 0.723 0.983 1.161 1.213
N, =160 0.124 0.406 0.723 0.984 1.163 -

Table 6: Example 4: L?(gr) norm of the control of the quasilinear equation (1.1)) with F' given by (#.11)) and
initial data (4.10)) as a function of € and N,.

6.8e+00

-3
-4
-5
-6.1e+00

(a) (b)

Figure 5: Example 4. (a) Control x,¢ of the quasilinear equation (1.1)) with F' given by (4.11]), initial data
given by (.10 and for N, = 160, e = 107'°. (b) The corresponding controlled solution \.

5 Conclusion and perspectives

In this paper, we proved the approximate null controllability in arbitrarily small time of quasilinear equations
with a gradient dependent viscosity coefficients. This class of equation includes the parabolic p-Laplacian
equation with % < p < 3. Moreover, for equations, such the parabolic p-Laplacian with % < p < 2, having
a finite stopping time without control, we prove the null controllability in arbitrary small time. Numerical
simulations illustrate the proposed control strategy.

A first open question is that, under the hypothesis of showing the Lipschitz continuity of the control associated
to the linear problem in the L? frame for some ¢ > 2, it is possible to extend our controllability result for
the L? controllability of the parabolic p-Laplacian. We could then obtain the exact controllability of the
parabolic p-Laplacian for some p, < p < 2, where 1 < p, < %, still applying I8, Proposition 2.1.].

Another interesting question is that the results presented in this paper could be extended to the controllability
of non-Newtonian fluid flows, e.g. of power law or Carreau-Yasuda type. More precisely, the issue is that for
a system with solutions being divergence free in the weak L? sense, the addition of the nonlinear quadratic
term will probably cause some difficulties. Our results adapt, under a few additional assumptions, to the
controllability framework in the case of a system (i.e. in the non-scalar case), but it may then be necessary
to regularize further in order to obtain satisfactory regularity properties (see for example [6] or [17] for recent
results in this framework).
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