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Abstract

The aim of this paper is to study the null controllability of a large class of quasilinear parabolic equations.
In a first step we prove that the associated linear parabolic equations with non-constant diffusion coeffi-
cients are approximately null controllable by the means of regular controls and that these controls depend
continuously to the diffusion coefficient. A fixed-point strategy is employed in order to prove the null ap-
proximate controllability for the considered quasilinear parabolic equations. We also show the exact null
controllability in arbitrary small time for a class of parabolic equations including the parabolic p-Laplacian
with 3

2 ă p ă 2. The theoretical results are numerically illustrated combining a fixed point algorithm and
a reformulation of the controllability problem for linear parabolic equation as a mixed-formulation which
is numerically solved using a finite elements method.

1 Introduction

This paper consider the approximate null controllability of quasilinear equations of the following form:
$

&

%

Bty ´ div pF p|∇y|q∇yq “ χωϕ in QT
y “ 0 on ΣT

yp0q “ u0 in Ω,
(1.1)

where Ω Ă RN is an open bounded domain with a smooth boundary BΩ, QT “ p0, T q ˆ Ω, ΣT “ p0, T q ˆ
BΩ, the initial data u0 belongs to L2pΩq, and the function F : p0,`8q Ñ p0,`8q verifies the following
assumptions:

(A1) for every a ą 0, F is a globally Lipschitz function over ra,`8q;

(A2) F belongs to L2
locpr0,`8qq

(A3) the operator A : H1
0 pΩq Ñ H´1pΩq defined for every φ P H1

0 pΩq by

Aφ “ ´div pF p|∇φ|q∇φq (1.2)

is monotone (see [21, Chapitre 2, Définition 1.2.]).
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The control ϕ acts in the open and non empty set ω Ă Ω. More precisely, we denote by χω P C8pΩq a
regular function such that

χωpxq “

"

1 for x P ωδ
0 for x P Ωzω,

where ωδ “ tx P ω such that distpx, Bωq ą δu for a given δ ą 0 small enough. We also denote qT “ p0, T qˆω.

We point out that the existence of a unique weak solution to equation (1.1) is a direct consequence of [21,
Chapitre 2, Section 1, Théorème 1.2.- bis] applied to the nonlinear monotone operator A given by (1.2),
when F is chosen such that it leads to the monotonicity of the operator A. From a historic point of view,
the analysis of quasilinear parabolic equations and the properties of their solutions took off in the 1960’s,
with the pioneering works [18, 21, 1]. Quasilinear equations as (1.1) are to be compared to the parabolic
p-Laplacian from which it derived their study. Such equations have been the source of a large number of
publications in the last decades. As in the case of linear parabolic equations, the question of the boundedness
of the solution or its gradient arises naturally. Such results are now well known and have been established
for large classes of quasilinear systems, we can refer to [28, 12, 1, 6, 5, 11, 2, 29] in the case of a bounded
domain with a regular boundary.

The controllability of quasilinear equations has been recently studied, as in [7, 9, 8], in the framework of
optimal control, or [26, 25, 15] in the framework of exact controllability. In these last papers, the results for
exact controllability hold for systems where the nonlinear term depends on the solution of the system, but
not on its gradient. At our knowledge, the controllability of quasilinear systems with a gradient dependent
term remains open and is the main purpose of the present work.

With the objective of applying a fixed point method in order to control the quasilinear equation, we first
investigate the existence of smooth distributed controls for the following linear heat equation in divergence
form with a space and time dependent diffusion coefficient:

$

&

%

Btu´ div papt, xq∇uq “ χωϕ in QT
u “ 0 on ΣT

up0q “ u0 in Ω
(1.3)

in which we consider diffusion coefficients a P C8pQT q satisfying:

0 ă ρ‹ ď apt, xq ppt, xq P QT q, (1.4)

where ρ‹ ą 0 is a constant.

The distributed controllability of equation (1.3) is a well studied subject (see for example [17] or the more
recent review paper [16]). The existence of an optimal distributed control, in the sense of minimal L2-
norm, can be obtained by applying the Hilbert Uniqueness Method (HUM) introduced in [22]. This classical
approach allows to show the existence of an exact distributed control whose regularity is a priori only L2pqT q.
The main idea of the method is to consider the dual final boundary value problem of (1.3) given by:

$

&

%

Btϕ` div papt, xq∇ϕq “ 0 in QT
ϕ “ 0 on ΣT

ϕpT q “ ϕ0 in Ω
(1.5)

for some ϕ0 P L2pΩq and then to deduce the controllability of (1.3), as long as ϕ is regular enough, by the
existence of a suitable observability inequality. More precisely, the following observability inequality holds.

Proposition 1.1 (Observability inequality [16, Theorem 1.5.]). There exists a constant C0 ą 0, depending
of Ω, T , ω, and ‖a‖L8pQT q, such that the following inequality holds:

‖ϕp0q‖2 ď C0

ĳ

qT

χω|ϕ|2 dx dt pϕ0 P L2pΩqq, (1.6)

where ϕ is the solution to (1.5).
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Here and henceforth we denote by p¨, ¨q the inner product in L2pΩq and by }¨} the associated norm. Moreover,
by p¨, ¨qk we denote the inner product in Hk

0 pΩq and by } ¨ }k its corresponding norm.

Let us recall the relation between the observability inequality and the exact distributed controllability.
Consider the following continuous and coercive convex functional Gn : L2pΩq Ñ R defined by

Gnpϕ
0q “

1

2

ĳ

qT

χω|ϕ|2 dx dt`
1

n
‖ϕ0‖` pϕp0q, u0q pϕ0 P L2pΩqq,

where n P N‹ is a penalization parameter and ϕ is the unique solution to the dual problem (1.5). It is then
a matter of minimizing the above functional and extracting a subsequence of minimizers to obtain a unique
control. The uniqueness of the control is given by the coercivity of the family of penalized functionals pGnqn.
Let us quickly give some more details about this method. First, Gn admits a unique minimum denoted ϕ0

n.
This minimum is a critical point of Gn, namely:

ĳ

qT

χωϕnϕ dx dt`
1

n
‖ϕ0

n‖´1
`

ϕ0
n, ϕ

0
˘

` pϕp0q, u0q “ 0 pϕ0 P L2pΩqq, (1.7)

where ϕn is the solution of (1.5) associated to the final data ϕ0
n and ϕ is the solution of the same problem

associated to the final data ϕ0. We also recall the definition of weak solutions of (1.3).

Definition 1.1 (Weak solution of (1.3)). Let u0 P L2pΩq and ϕ P L2pQT q. We say that a function u P
L2

`

p0, T q, H1
0 pΩq

˘

X L8pp0, T q, L2pΩqq such that u1 P L2
`

p0, T q, H´1pΩ
˘

q is a weak solution of (1.3) if and
only if up0q “ u0, and for every φ P L2

`

p0, T q, H1
0 pΩ

˘

q and for almost all t P p0, T q:

ż t

0
xu1, φy´1,1 ds`

ĳ

p0,tqˆΩ

aps, xq∇u ¨∇φ dx ds “
ĳ

p0,tqˆΩ

χωϕφ dx ds. (1.8)

The existence and the uniqueness of weak solutions in the sense of Definition 1.1 is classical and it is not
discussed here (see e.g. [14] for a proof). Let us denote by un and ψn the solutions of the following equations:

$

&

%

Btun ´ div papt, xq∇unq “ χωϕn in QT
un “ 0 on ΣT

unp0q “ u0 in Ω,

$

&

%

Btψn ` div papt, xq∇ψnq “ 0 in QT
ψn “ 0 on ΣT

ψnpT q “ unpT q in Ω,

where ϕn is the solution of (1.5) with final data ϕ0
n. Up to make the change of variables in time t ÞÑ t´ T ,

ψn is a weak solution of (1.3) in the sense of Definition 1.1 in the homogeneous setting. Then, we can write:

ĳ

QT

Btunψn dx dt`

ĳ

QT

apt, xq∇un ¨∇ψn dx dt “
ĳ

qT

χωϕnun dx dt (1.9)

ĳ

QT

unBtψn dx dt´

ĳ

QT

apt, xq∇un ¨∇ψn dx dt “ 0. (1.10)

Summing relations (1.9)-(1.10), we get:

‖unpT q‖2 “

ĳ

qT

χωϕnun dx dt` pψnp0q, u
0q. (1.11)
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Combining (1.7), Cauchy-Schwarz’s inequality and a standard energy estimate, we obtain:

‖unpT q‖2 ď
1

n
‖unpT q‖ ď

C‖u0‖
n

. (1.12)

If we can pass to the limit for nÑ `8 in (1.12), we would have that:

un á
nÑ`8

u in L2pQT q, (1.13)

with upT q “ 0. This is made possible by using the observability inequality (1.6), since, testing against ϕ0
n

into (1.7), we get:

‖χωϕn‖L2pqT q ď ‖ϕn‖L2pqT q ď
a

C0‖u0‖. (1.14)

We point out that the control ϕ obtained as the weak limit of ϕn is a priori just belonging to L2pQT q.
Nevertheless, as mentioned in [13], it is interesting to improve the regularity of the obtained control, since if
one wants to achieve exact controllability of some nonlinear system, for example by a fixed point result, it is
in general necessary to have a more regular control. We point out that we can obtain a smooth approximate
control of (1.3) by mollifying the classical exact control. Nevertheless, this non-constructive method does not
lend itself well to numerical simulations and is expensive in terms of computing time. The first aim of the
present work is to modify the standard HUM method as presented in [16] by introducing a nonlinear double-
penalization term, which leads to the existence of a regular control providing the approximate controllability
of the system (1.3).

More precisely, we consider the functional Jα,n : Hk
0 pΩq Ñ R defined by

Jα,npϕ
0q “

1

2

ĳ

qT

χω|ϕ|2 dx dt`
1

neαn
‖ϕ0‖nk ` pϕp0q, u0q, (1.15)

where ϕ is the solution to (1.5) associated to the final data ϕ0 and α ą 0, n ě 2. Since there are two
penalization parameters α and n in the expression of Jα,n, we call this functional a double-penalized HUM
functional. As usual in HUM-like methods, we are interested to use the minimizer of Jα,n. More precisely,
it is clear that for every α ą 0 pJα,nqně2 is a family of convex, continuous, and coercive functionals over
Hk

0 pΩq with k ą 0. Then, there exists a sequence of associated minimizers pϕ0
α,nqně2 in Hk

0 pΩq satisfying the
Euler-Lagrange equality:

ĳ

qT

χωϕα,nψ dx` e
´αn‖ϕ0

α,n‖n´2
k

`

ϕ0
α,n, ψ

0
˘

k
`
`

ψp0q, u0
˘

“ 0 pψ0 P Hk
0 pΩqq. (1.16)

As usual, we denote by ψ the solution of (1.5) associated to the final data ψ0 and by ϕα,n the solution of (1.5)
associated to the final data ϕ0

α,n. Also, we are able to prove that the controls thus obtained depend L2-
continuously on the diffusion coefficient. This is summarized in the first result of the paper, given thereafter.

Theorem 1.1. Let u0 P Hk
0 pΩq, a P C

8pQT q satisfying (1.4) and T ą 0. Then, for every ε ą 0 there
exists a regular control ϕ P L2pp0, T q, Hk

0 pΩqq X Cpr0, T s, Hk´1
0 pΩqq XH

k
2 pr0, T s, L2pΩqq such that for every

µ P p0, T q, we have ϕ P C8prµ, T s ˆ Ωq and the corresponding solution u of (1.3) verifies

‖upT q‖ ă ε. (1.17)

Moreover, if k ą N`4
2 the control ϕ depends Lipschitz continuously to the diffusion coefficient a for the norm

‖¨‖L2pQT q.

The main result of the paper is a consequence of Theorem 1.1 and provides the approximate null controllability
of quasilinear equation (1.1).
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Theorem 1.2. Assume that F satisfies assumption (A1)-(A3) and u0 belongs to L2pΩq are chosen such that
there exists a unique solution of (1.1). Then, there exists a distributed control ϕ, whose regularity is given by
Theorem 1.1, such that (1.1) is approximately null controllable in any time T ą 0, i.e., for every u0 P L2pΩq
and every ε ą 0 there exists a control ϕ P HkpqT q such that the solution u of (1.1) satisfies

}upT q} ď ε.

In particular, Theorem 1.2 implies the approximate null controllability of the so-called parabolic p-Laplacian:

$

&

%

Btv ´ div
`

|∇v|p´2∇v
˘

“ χωϕ in QT
v “ 0 on ΣT

vp0q “ u0 in Ω.
(1.18)

with 3
2 ă p ă 8.

More exactly, we prove the following corollary.

Corollary 1.1. Let u0 P L2pΩq and 3
2 ă p ă 8. Then (1.18) is approximate null controllable in any time

T ą 0, i.e., for every ε ą 0 there exists a control ϕ P HkpqT q such that the solution v of (1.18) verifies

}vpT q} ď ε.

In fact, in the case where the solution stops in finite time, and where this stopping time is well controlled
by the norm of the initial data, we can show the global exact controllability of (1.1). More precisely, the
following result holds.

Theorem 1.3. Assume that F satisfies assumptions (A1)-(A3), and that y is the solution of (1.1) associated
to an initial data u0 P L2pΩq. Moreover, let us consider that y stops in finite time, which is that, if ϕ “ 0
then, there exists Ts P p0, T q, γ ą 0 and µ ą 0 such that:

‖ypTsq‖ “ 0 and Ts ď µ‖u0‖γ . (1.19)

Then, one can choose the force term ϕ such that y is exactly null controllable in any time T ‹ P p0, T q.

Applying the results in [10, Proposition 2.1.], the following corollary is a direct consequence of Theorem 1.3.

Corollary 1.2. Let u0 P L8pΩq, u ě 0 and 3
2 ă p ă 2. Then (1.18) is null controllable in any time T ą 0,

i.e., there exists a control ϕ P HkpqT q such that the solution v of (1.18) verifies

vpT q “ 0.

For the sake of clarity, we will omit throughout the article the dependence of the constants and will generically
denote positive constants by C.

The remaining part of this paper is structured as follows. Section 2 is dedicated to the existence of approx-
imate null control in HkpqT q for the linear equation (1.3). These controls are obtained as the minima of a
well chosen functional. In Section 3 the minimization of the functional is replaced by a mixed formulation
which will be particularly useful for the numerical approximation of the controls. In order to prove the The-
orem 1.2 we employ a fixed point strategy described in Section 4. Finally, Section 5 numerically illustrate
the computation of controls in both the linear and non-linear frameworks.

2 Approximate controllability of the linear equation

This section is devoted to the study of the approximate controllability of the equation (1.3) by the double
penalization method stated previously. First, we have the following result.

Null controllability for quasilinear parabolic equations 5



Proposition 2.1. For every α ą 0 there exists ϕ0
α P H

k
0 pΩq such that the minimizers ϕ0

α,n of the functional
Jα,n satisfy:

ϕ0
α,n á

nÑ`8
ϕ0
α in Hk

0 pΩq. (2.1)

Moreover, χωϕα,n á
nÑ`8

χωϕα in L2pqT q, where ϕα is the solution of (1.5) associated to the final data ϕ0
α

and ϕα,n is the solution of (1.5) associated to the final data ϕ0
α,n.

Proof. Setting ψ0 “ ϕ0
α,n in (1.16), we get:

ĳ

qT

χω|ϕα,n|2 dx dt` e´αn‖ϕ0
α,n‖nk ` pϕα,np0q, u0q “ 0. (2.2)

From (2.2) we deduce that
ĳ

qT

χω|ϕα,n|2 dx dt` pϕα,np0q, u0q ď 0. (2.3)

Then, from (2.3) and (1.6), we get, following the same argument as for the classical HUM (see, for in-
stance, [16] or Section 1):

‖χωϕα,n‖2
L2pqT q

ď
a

C0‖u0‖‖χωϕα,n‖L2pqT q (2.4)

which gives
‖χωϕα,n‖L2pqT q ď

a

C0‖u0‖. (2.5)

Using the reflexivity of L2pqT q, since the sequence pχωϕα,nqně2 is uniformly bounded in L2pqT q, we get that
this sequence converges in L2pqT q.

Moreover, (2.2) combined to (1.6) and (2.5) leads to:

‖ϕ0
α,n‖nk ď

C0}u
0}2

2
eαn (2.6)

and, therefore,

}ϕ0
α,n}k ď

ˆ

C0}u
0}2

2

˙

1
n

eα ď maxtC0}u
0}2, 1ueα pn ě 2q. (2.7)

Then the sequence pϕ0
α,nqně2 is uniformly bounded with respect to n in Hk

0 pΩq. Hence, using Eberlein-
Smŭlyan’s theorem and the reflexivity of Hk

0 pΩq there exists ϕ0
α P H

k
0 pΩq such that (2.1) holds.

Now, from (2.5), we can use once again Eberlein-Smŭlyan’s theorem to get that ϕα,n á v in L2pqT q. Since
ϕα,n is a solution of (1.5) with initial data ϕ0

α,n, we get, after passing to the weak limit, that for every test
function φ:

´

ż

ω
χωvptqφptq dx`

ż

ω
χωϕ

0
αφp0q dx`

ĳ

QT

a∇v ¨∇φdx dt “ 0.

Hence, v is the weak solution of (1.5) associated to the initial data ϕ0
α P H

k
0 pΩq. We deduce that v “

ϕα. Then, it follows from Rellich-Kondrachov’s theorem and [23, Theorem 4.1.] that ϕα belongs to
Cpr0, T s, Hk´1

0 pΩqq. Then, from [24, Theorem 6.2.], we get that ϕα P L2pp0, T q, Hk
0 pΩqqXH

k
2 pr0, T s, L2pΩqq.

Finally, [4, Théorème X.10.] implies that ϕα belongs to C8prµ, T s ˆ Ωq for every µ ą 0.

Proof of Theorem 1.1. The proof of the theorem will be divided in two steps. First, we are going to show
the continuity of minimizers ϕ0

α,n of functionals Jα,n with respect to the diffusion coefficient a. Then, we will
prove that these minimizers are providing approximate null controls for equation (1.3).

6 Null controllability for quasilinear parabolic equations



First step: Lipschitz continuity of the minimizers ϕ0
α,n

First, we define ϕα,n as being the solution of (1.5) with the final data ϕ0
α,n and the solution ϕ̃α,n of (1.5) for

the coefficient of diffusion pa` hq:
$

&

%

Btϕ̃α,n ` div ppa` hq∇ϕ̃α,nq “ 0 in QT
ϕ̃α,n “ 0 on ΣT

ϕ̃α,npT q “ ϕ̃0
α,n in Ω,

(2.8)

where ϕ0
α,n is the minimizer of Jα,n and ϕ̃0

α,n is the minimizer of a similar functional J̃α,n but with ϕ̃α,n
solving (2.8). One can check that:

J 1α,npϕ
0
α,nqψ

0 ´ J̃ 1α,npϕ̃
0
α,nqψ

0 “

ĳ

qT

χω

´

ϕα,nψ ´ ϕ̃α,nψ̃
¯

dx dt

` ne´αn
`

‖ϕ0
α,n‖n´2

k pϕ0
α,n, ψ

0qk ´ ‖ϕ̃0
α,n‖n´2

k pϕ̃0
α,n, ψ

0qk
˘

´ pψp0q ´ ψ̃p0q, u0q

“

ĳ

qT

χω

´

pϕα,n ´ ϕ̃α,nqψ ` ϕ̃α,npψ ´ ψ̃q
¯

dx dt

` ne´αn
`

‖ϕ0
α,n‖n´2

k pϕ0
α,n, ψ

0qk ´ ‖ϕ̃0
α,n‖n´2

k pϕ̃0
α,n, ψ

0qk
˘

´ pψp0q ´ ψ̃p0q, u0q

“

ĳ

qT

χω|ϕα,n ´ ϕ̃α,n|2 dx dt

`

ĳ

qT

χωpϕα,n ´ ϕ̃α,nqpψ ´ ϕα,n ` ϕ̃α,nq dx dt

`

ĳ

qT

χωϕ̃α,npψ ´ ψ̃q dx dt

` ne´αn
`

‖ϕ0
α,n‖n´2

k pϕ0
α,n, ψ

0qk ´ ‖ϕ̃0
α,n‖n´2

k pϕ̃0
α,n, ψ

0qk
˘

´ pψp0q ´ ψ̃p0q, u0q. (2.9)

We recall that ψ is the solution of (1.5) with final data ψ0 and ψ̃ is the solution of (2.8) with final data
ψ̃0. Then, since ϕ0

α,n and ϕ̃0
α,n are respectively the minima of Jα,n and J̃α,n, the left-hand side of the above

equality (2.9) is null. Also, (2.9) leads to, Hölder’s and parametrized Young’s inequalities, for 0 ă s ă 1

p1´ sq

ĳ

qT

χω|ϕα,n ´ ϕ̃α,n|2 dx dt ď
1

4s
‖ψ ´ ϕα,n ` ϕ̃α,n‖2

L2pqT q
` ‖ϕ̃α,n‖L2pqT q‖ψ ´ ψ̃‖L2pqT q

` ne´αn
`

‖ϕ0
α,n‖n´2

k pϕ0
α,n, ψ

0qk ´ ‖ϕ̃0
α,n‖n´2

k pϕ̃0
α,n, ψ

0qk
˘

` ‖ψp0q ´ ψ̃p0q‖L2pQT q‖u
0‖. (2.10)

From now on, we set ψ0 :“ ϕ0
α,n ´ ϕ̃0

α,n. We recall that ψ, ϕα,n, and ϕ̃α,n are all solutions to (1.5) corre-
sponding to final data ψ0, ϕ0

α,n and ϕ̃0
α,n respectively. We point out that, in view of Proposition 2.1 and

some standard energy estimates, all the terms in the right-hand side of (2.10) go to 0 or are bounded (up to
a multiplicative constant) by ‖h‖2

L2pQT q
as n Ñ `8, except eventually ‖ψ ´ ϕα,n ` ϕ̃α,n‖2

L2pqT q
. Denoting

W :“ ψ ´ ϕα,n ` ϕ̃α,n, we get that W solves:

$

&

%

BtW ` div pa∇W q “ ´divph∇ϕ̃α,nq in QT
W “ 0 on ΣT

W pT q “ 0 in Ω.
(2.11)

Null controllability for quasilinear parabolic equations 7



A classical energy estimate over (2.11) leads, if s ą 0 is small enough, to:

1

2
‖W‖2

L8pp0,T q,L2pΩqq ` pρ‹ ´ sq‖W‖2
L2pp0,T q,H1

0 pΩqq
ď

1

s
‖∇ϕ̃α,n‖2

L8pQT q
‖h‖2

L2pQT q
, (2.12)

where ρ‹ is as in (1.4). As already mentioned, the same kind of estimate holds for ‖ψ ´ ψ̃‖L2pQT q. Also, we
get from a classical energy estimate:

‖ψp0q ´ ψ̃p0q‖L2pQT q ď 2‖ψ̃‖
W 1,8

0 pΩq
‖ψ ´ ψ̃‖L2pp0,T q,H1

0 pΩqq
‖h}L2pQT q. (2.13)

Since ϕ̃α,n belongs to Cppr0, T s, Hk´1
0 pΩqq, we can combine now the Sobolev embbedding Hk´1

0 pΩq ãÑ

W 1,8
0 pΩq (since k ą N`4

2 , see [14, Theorem 6.(ii), section 5.6.3.]), and using [20, Theorem 5.7.], we get
the estimate:

‖∇ϕ̃α,n‖L8pQT q ď C‖ϕ̃α,n‖HkpQT q
ď C‖ϕ̃0

α,n‖k.

From the above estimate and (2.12) it follows:

1

2
‖W‖2

L8pp0,T q,L2pΩqq ` pρ‹ ´ sq‖W‖2
L2pp0,T q,H1

0 pΩqq
ď
C

s
‖ϕ̃0

α,n‖2
k‖h‖2

L2pQT q
. (2.14)

Combining now (2.14) together with (2.10) and (2.13) leads to:

p1´ sq

ĳ

qT

χω|ϕα,n ´ ϕ̃α,n|2 dx dt ď
C

4s2pρ‹ ´ sq
‖ϕ̃0

α,n‖2
k‖h‖2

L2pQT q

` ne´αn
`

‖ϕ0
α,n‖n´2

k pϕ0
α,n, ψ

0qk ´ ‖ϕ̃0
α,n‖n´2

k pϕ̃0
α,n, ψ

0qk
˘

. (2.15)

From (2.15), we get:

‖χωpϕα,n ´ ϕ̃α,nq‖2
L2pqT q

ď
C

4s2pρ‹ ´ sq2
‖ϕ̃0

α,n‖2
k‖h‖2

L2pQT q

`
ne´αn

ρ‹ ´ s

`

‖ϕ0
α,n‖n´2

k pϕ0
α,n, ψ

0qk ´ ‖ϕ̃0
α,n‖n´2

k pϕ̃0
α,n, ψ

0qk
˘

. (2.16)

From Proposition 2.1 and since χωpϕα,n ´ ϕ̃α,nq á
nÑ`8

χωpϕ ´ ϕ̃q in L2pqT q, we get making n Ñ `8 and

using (2.16), that:

‖χωpϕ´ ϕ̃q‖L2pqT q ď C‖h‖L2pQT q, (2.17)

which is the desired result. Moreover, we point out that ϕ is a weak solution of (1.3) with final data in
Hk

0 pΩq. Hence, it belongs to C8prε, T s ˆ Ωq for all ε ą 0 (see, e.g. [4, Théorème X.10.]).

Second step: Proof of the existence of an approximate control ϕ

We can follow here the usual method presented in Section 1 or in [16, Section 1.1.]. First, let us consider the
solution φn of (1.5) with final data φnpT q :“ uα,npT q. Then, one can set ψ0 :“ uα,npT q into (1.16) to get:

ĳ

qT

χωϕα,nφα,n dx dt` e
´αn‖ϕ0

α,n‖n´2
k

`

ϕ0
α,n, φ

0
α,n

˘

k
`
`

φα,np0q, u
0
˘

“ 0, (2.18)

and, testing against φα,n and uα,n (which is the solution of (1.3)) respectively into the weak formulations of
(1.3) and (1.5), we get:
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$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ĳ

QT

Btuα,nφα,n dx dt`

ĳ

QT

a∇uα,n ¨∇φα,n dx dt “
ĳ

qT

χωϕα,nφα,n dx dt

ĳ

QT

Btφα,nuα,n dx dt´

ĳ

QT

a∇φα,n ¨∇uα,n dx dt “ 0.

(2.19)

Summing the two equations in (2.19), we get:

‖uα,npT q‖2 “

ĳ

qT

χωϕα,nφα,n dx dt`
`

φα,np0q, u
0
˘

(2.20)

which, from (2.18), leads to:

‖uα,npT q‖2 ď e´αn‖ϕ0
α,n‖n´2

k

ˇ

ˇ

ˇ

`

ϕ0
α,n, φ

0
α,n

˘

k

ˇ

ˇ

ˇ

ď e´αn‖ϕ0
α,n‖n´2

k ‖uα,npT q‖k
ď e´αn‖ϕ0

α,n‖n´2
k ‖uα,n‖L8pp0,T q,Hk

0 pΩqq
. (2.21)

From (2.6) we deduce that

}ϕ0
α,n}

n´2
k ď

ˆ

C0}u
0}2

2

˙

n´2
n

eαpn´2q ď maxtC0}u
0}2, 1ueαpn´2q.

Therefore,
e´αn}ϕ0

α,n}
n´2
k ď maxtC0}u

0}2, 1ue´2α pn ě 2q.

Combining (2.21) and the previous estimate, we get

}uα,npT q}
2 ď maxtC0}u

0}2, 1ue´2α‖uα,n‖L8pp0,T q,Hk
0 pΩqq

. (2.22)

Using a standard estimate for parabolic equations with smooth coefficients (see e.g. [20, Theorem 5.7.]),
there exists a constant C ą 0 independent of n such that

‖uα,n‖L8pp0,T q,Hk
0 pΩqq

ď C
`

}u0}k ` }ϕ
0
α,n}k

˘

.

Putting together this estimate and (2.7) we obtain:

‖uα,n‖L8pp0,T q,Hk
0 pΩqq

ď C
`

}u0}k `maxtC0}u
0}2, 1ueα

˘

. (2.23)

Finally, from (2.22) and (2.23) there exists a constant C ą 0 independent of α and N such that

}uα,npT q} ď Ce´α pn ě 2q.

Now, setting α “ logpCq ´ logpεq and letting n Ñ `8 in the weak limit, leads to, up to extracting a
subsequence:

}upT q} ď ε

and the conclusion of the theorem follows.
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3 Controllability of the linear equation as a mixed formulation

We consider W the space of functions defined over QT by

W “

!

ϕ P C2pQT q, ϕpT q P H
k
0 pΩq, ϕ “ 0 on ΣT

)

and we define Φ as the completion of W with respect to the norm ~ ¨ ~ defined by

~ϕ~2 “

ĳ

qT

χω|ϕ|
2 dx dt` ε}ϕpT q}2k ` η}Btϕ` divpa∇ϕq}2L2pQT q

,

for ε ě 0 and η ą 0. Indeed, using the unique continuation property for the heat equation and the
observability inequality (1.6), one can check that the seminorm ~ ¨ ~ is a norm for every ε ě 0 and η ą 0.
Moreover, Φ is a Hilbert space with respect to the inner product

xϕ,ϕy “

ĳ

qT

χωϕϕdx dt` εpϕpT q, ϕpT qqk ` η

ĳ

QT

pBtϕ` divpa∇ϕqqpBtϕ` divpa∇ϕqq dx dt.

We also denote Φ0 “ tϕ P Φ such that ϕ verifies the first equation in (1.5)u and we consider the following
minimization problems:

min
ϕPΦ0

Jnpϕq :“
1

2

ĳ

qT

χω|ϕ|2 dx dt`
ε

2
‖ϕpT q‖nk ` pϕp0q, u0q, (3.1)

n ě 2 being an integer. Remark that the minimization problem (3.1) is equivalent to the minimization of
Jα,n in the case where ε “ 2ne´αn. We consider the following mixed formulation: find pϕ, λq P Φˆ L2pQT q
solution to

"

apϕ,ϕq ` bpϕ, λq “ lpϕq pϕ P Φq

bpϕ, λq “ 0 pλ P L2pQT qq,
(3.2)

where

a : Φˆ Φ Ñ R, apϕ,ϕq “
ĳ

qT

χωϕϕdx dt` εpϕpT q, ϕpT qqk (3.3)

b : Φˆ L2pQT q Ñ R, bpϕ, λq “ ´
ĳ

QT

pBtϕ` divpa∇ϕqqλ dx dt (3.4)

l : Φ Ñ R, lpϕq “ ´pϕp0q, u0q. (3.5)

We also set:

b : Φ Ñ L2pQT q, bpϕq “ bpϕ, ¨q (3.6)

First of all, let us recall the following result.

Theorem 3.1 ([3, Theorem 4.2.3. and Remark 4.2.1.]). Let a : Φ ˆ Φ Ñ R be a symetric, bilinear, and
continuous map over Φ ˆ Φ, coercive over Kerpbq, where b : Φ ˆ L2pQT q Ñ R is a bilinear and continuous
map over Φˆ L2pQT q satisfying the so-called Ladyzhenskaya-Babus̆ka-Brezzi condition (or again called, the
inf-sup condition):

Dδ ą 0 such that inf
λPL2pQT q

sup
ϕPΦ

bpϕ, λq
~ϕ~‖λ}

ě δ, (3.7)

l : Φ Ñ R is a linear and continuous map over Φ and b is defined by (3.6). Then, there exists a unique
solution to (3.2) being the (unique) saddle point of the Lagrangian:

Lpϕ, λq “ 1

2
apϕ,ϕq ` bpϕ, λq ´ lpϕq. (3.8)
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Thereafter, we prove the next result, following the arguments in [27, Theorem 1].

Theorem 3.2. Let a, b and l be as in (3.3)-(3.5). The mixed formulation (3.2) is well-posed and its unique
solution pϕ, λq P ΦˆL2pQT q is the unique saddle-point of the Lagrangian L given by (3.8). Moreover ϕ is the
minimizer of the functional J2 defined by (3.1) and the multiplier λ is the corresponding controlled solution
of (1.3) in the sense of transposition.

Proof. In order to apply Theorem 3.1, we first prove the continuity of the considered mappings. Using the
definition of Φ and its norm, one can see that:

|apϕ,ϕq| “ |xϕ,ϕy ´ η
ĳ

QT

pBtϕ` divpa∇ϕqq pBtϕ` divpa∇ϕqq dx dt|. (3.9)

Then, we check that pϕ, ϕq ÞÑ η
ť

QT
pBtϕ` divpa∇ϕqq pBtϕ` divpa∇ϕqq dx dt is bilinear, symmetric and

continuous over Φˆ Φ. More precisely, we can write, arguing by positivity:

|η
ĳ

QT

pBtϕ` divpa∇ϕqq pBtϕ` divpa∇ϕqq dx dt| ď η‖Btϕ` divpa∇ϕq‖L2pQT q‖Btϕ` divpa∇ϕq‖L2pQT q

ď
1

η
~ϕ~~ϕ~. (3.10)

Combining (3.9) and (3.10), we get:

|apϕ,ϕq| ď
ˆ

1`
1

η

˙

~ϕ~~ϕ~

which proves the continuity of the positive and symmetric bilinear map a. Then, a is clearly coercive over
Kerpbq since we get for every ϕ P Kerpbq:

apϕ,ϕq “ ~ϕ~.

It is clear that b is bilinear and continuous over Φˆ L2pQT q. Indeed,

|bpϕ, λq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

QT

pBtϕ` divpa∇ϕqqλ dx dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď η´1~ϕ~}λ}L2pQT q.

Then, the continuity of l over Φ can be obtained as follows. First, by Cauchy-Schwarz’s inequality, we get:

|lpϕq| “ |pu0, ϕp0qq| ď ‖u0‖‖ϕp0q‖. (3.11)

Let us now denote f “ Btϕ` divpa∇ϕq P L2pQT q. Then, we can write ϕ “ ϕ1 ` ϕ2 where ϕ1 and ϕ2 solve
the following boundary final value problems:

$

&

%

Btϕ1 ` divpa∇ϕ1q “ 0, in QT
ϕ1 “ 0, on ΣT

ϕ1pT q “ ϕpT q, in Ω,
and

$

&

%

Btϕ2 ` divpa∇ϕ2q “ f, in QT
ϕ2 “ 0, on ΣT

ϕ2pT q “ 0, in Ω.

Since ϕ P Φ, applying the observability inequality (1.6) for estimating }ϕ1p0q} and the standard energy
estimate for }ϕ2p0q}, there exists C1 ą 0 such that:

}ϕp0q}2 ď 2}ϕ1p0q}
2 ` 2}ϕ2p0q}

2 ď 2C0

ĳ

qT

χω|ϕ1|
2 dx dt` C1}Btϕ` divpa∇ϕq}2L2pQT q

ď 2C0

ĳ

qT

χω|ϕ|
2 dx dt` 2C0

ĳ

qT

χω|ϕ2|
2 dx dt` C1}Btϕ` divpa∇ϕq}2L2pQT q

.
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Applying the standard energy estimate for ϕ2, there exists a positive C ą 0 such that the above estimate
reads:

}ϕp0q}2 ď C

ĳ

qT

χω|ϕ|
2 dx dt` C}Btϕ` divpa∇ϕq}2L2pQT q

ď C maxp1, η´1q~ϕ~2.

Finally, combining (3.11) and the above inequality, we get the continuity of l. For applying Theorem 3.1,
it remains to check that b satisfies the Ladyzhenskaya-Babus̆ka-Brezzi condition (3.7) over Φˆ L2pQT q. In
this aim, we consider for λ0 P L

2pQT q the solution ϕ0 to the equation:

$

&

%

Btϕ0 ` divpa∇ϕ0q “ ´λ0 in QT
ϕ0 “ 0 on ΣT

ϕ0pT q “ 0 in Ω.

From a classical energy estimate for the last system, and using its associated weak formulation, we get that
there exists a positive constant C depending of Ω and ρ such that:

‖ϕ0‖2
L2pQT q

ď C‖λ0‖2
L2pQT q

and bpϕ0, λ0q “ ‖λ0‖2
L2pQT q

. (3.12)

Therefore, using (3.12), we can write:

sup
ϕPΦ

bpϕ, λ0q

~ϕ~‖λ0}L2pQT q
ě

bpϕ0, λ0q

~ϕ0~‖λ0}L2pQT q
ě

‖λ0‖2
L2pQT q

p‖ϕ0‖2
L2pQT q

` η‖λ0‖2
L2pQT q

q
1
2 ‖λ0‖L2pQT q

ě
1

?
C ` η

.

Then the existence and the uniqueness of solutions to (3.2) follows from Theorem 3.1. Let us now prove the
second point of the present theorem. First, let us point out that if pϕ, λq P Φ ˆ L2pQT q solves the mixed
problem (3.2), then bpϕ, λq “ 0 for every λ P L2pQT q, that is Btϕ ` divpa∇ϕq “ 0 in the transposition’s
sense in L2pQT q. Also, the solution pϕ, λq P Φˆ L2pQT q of (3.2) satisfies ϕ P Kerpbq and Lpϕ, λq “ J2pϕq.
Moreover, from (3.2) we have that for every ϕ P Φ:

ĳ

qT

χωϕϕ dx dt` εpϕpT q, ϕpT qqk ´

ĳ

QT

pBtϕ` divpa∇ϕqqλ dx dt “ ´pϕp0q, u0q (3.13)

Using the uniqueness of solution to (1.3), we deduce that λ is the unique solution of (1.3) and satisfies
λp¨, T q “ ´εϕp¨, T q, and the result follows.

Remark 1. From the point of view of numerical analysis, it is convenient to augment the Lagrangian in the
following way, defining (for some r ą 0) Lr as:

Lrpϕ, λq “
1

2

¨

˚

˝

apϕ,ϕq ` r
ĳ

QT

|Btϕ` divpa∇ϕq|2 dx dt

˛

‹

‚

` bpϕ, λq ´ lpϕq

This new formulation makes sense because the saddle point of Lr is identical to that of L, taking into account
that for every ϕ P Kerpbq, we have:

1

2

¨

˚

˝

apϕ,ϕq ` r
ĳ

QT

|Btϕ` divpa∇ϕq|2 dx dt

˛

‹

‚

“
1

2
apϕ,ϕq

and that the saddle point of L belongs to Kerpbq.
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Remark 2. In order to approach the minimum of the non-quadratic functional Jn for n ą 2 we propose an
iterative method. More exactly, for every integer m ą 2 we define

J̃mpϕq “
ĳ

qT

χω|ϕ|
2 dx dt`

ε

2
}ϕpT q}2k}ϕ

‹
m´1pT q}

n´2
k ` pϕp0q, u0q, (3.14)

where

ϕ‹m “

$

&

%

arg min
ϕPΦ

J2pϕq, if m “ 2

arg min
ϕPΦ

J̃mpϕq, if m ą 2.
(3.15)

Remark that, for every value of m, J̃m is nothing else than J2 with an adapted value of ε. Then, the
results of Theorem 3.2 can be applied for this functional and therefore, the definition of the sequence of
minimizers pϕ‹mqmě2 is well-posed and its terms can be computed as solutions of the corresponding mixed
formulation (3.2). Moreover, if the sequence pϕ‹mqmě2 converges its limit is the minimum of the functional Jn.

4 Controllability of the quasilinear equation

In order to extend the controllability properties of the linear equation (1.3) to the quasilinear equation (1.1),
we aim to apply a fixed point theorem. In this purpose, we first consider the double penalized HUM strategy
proposed in Section 2, which allow us to obtain regular approximate controls for a regularized version of
equation (1.3). The existence of approximate regular controls for the linear equation (1.3) allows to define
an application associating to the diffusion coefficient a the quantity Fεp|∇yε|q from a bounded closed convex
set with values in itself, yε being the controlled solution of the regularized version of (1.3) and Fε being
a regularization of the function F still verifying hypotheses (A1)-(A3). The objective is then to show the
continuity of such applications on some weakly sequentially compact sets, in order to apply a suitable fixed
point theorem. Remark that, since we aim to prove only a null approximate controllability result, we do not
need to take the limit with respect to the regularization parameter ε, which would make us lose boundedness
in the most interesting cases.

First, let us define a regularisation process Rε such that for every ε ą 0, Rε : L2pQT q Ñ C8pQT q, and
considering a mollifier pνεqε, we set:

Rεpgq “ νε ˚ pχεgq ` ε , (4.1)

where we denote by χε : R2 Ñ R is a smooth cut-off function with supppχεq “ QT and by “*” we denote the
convolution product. We get that Rεpgq ÝÑ

εÑ0
g in L2pQT q. Moreover, let us observe that Rε is continuous

over L2pQT q. Taking pa, hq P Kε ˆ L
2pQT q such that pa` hq P Kε, we can write:

Rεpa` hq ´Rεpaq “ νε ˚ pχεhq. (4.2)

Hence, the result follows using Hölder’s inequality. We define a similar regularisation process over the real
line that we denote rε, that is considering a mollifier pζδqδ over the real line, rε is given by:

rεpF q :“ ζε ˚ pσεF q ` ε , (4.3)

where we denote by σε : R Ñ R the smooth cutoff function satisfying:

σε “

"

1 in
“

ε, 1
ε

‰

0 in p´8, 0s Y
“

1
ε ` ε,`8

˘

.
(4.4)

We consider the following bounded convex closed subset Kε of the set L2
`pQT q composed by the functions

of L2pQT q which are non negative almost everywhere, such that

BL2pQT q

˜

0,

d

2pCL,ε ` 1q

ˆ

1

ε
`
C0

2ε2

˙

‖u0‖2 ` ε|Ω|T

¸

X L2
`pQT q Ă Kε,
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CL,ε being the Lipschitz constant associated to the function rεpF q defined in (4.3).

Let us now define the function Gε : Kε Ñ Kε by

Gεpaq “ rεpF qp|∇va|q, (4.5)

where va is the weak solution to:

$

&

%

Btva ´ div pRεpaqpt, xq∇vaq “ χωϕa in QT
va “ 0 on ΣT

vap0q “ u0
ε in Ω,

(4.6)

with ϕa P HkpqT q being the approximate control provided by Theorem 1.1 applied to (4.6) which is nothing
else than an alternative version of (1.3) with a regularised operator Lε : u ÞÑ ´div pRεpaq∇uq. Notice that
in (4.6) the function u0

ε P C
8pΩq is chosen such that }u0

ε ´ u
0}L2pΩq Ñ 0 when εÑ 0.

Let us recall the following fixed point theorem (see [19] for a proof).

Theorem 4.1 ([19, Theorem 2.1]). Let K be a closed convex subset of a Banach space Y . Let us consider
G : K Ñ K such that for all sequence panqn Ă K which converges weakly toward a, then pGpanqqn admits a
subsequence which converges strongly toward Gpaq. Hence, if G is continuous and GpKq is weakly compact,
G admits a fixed point.

Before proving the Theorem 1.2, let us prove the following lemma.

Lemma 4.1. For every ε ą 0, the function Gε : Kε Ñ Kε defined by (4.5) is continuous.

Proof. First, let us put forward the fact that Gε is well defined. Since Kε contains 0L2pQT q, one can write,
from assumption (A1) and since rεpF q P C8pQT q:

‖Gεpaq ´Gεp0q‖2
L2pQT q

“ ‖rεpF qp|∇va|q ´ rεpF qp|∇v0|q‖2
L2pQT q

ď CL,ε‖va ´ v0‖2
L2pp0,T q,H1

0 pΩqq
. (4.7)

Now, we point out that for every a P Kε, ‖va‖L2pp0,T q,H1
0 pΩqq

is bounded by ‖u0
ε‖
b

1
ε `

C0
2ε2

, this bound following
from the following energy estimate:

1

2
‖va‖2

L2pQT q
`
ε

2
‖va‖2

L2pp0,T q,H1
0 pΩqq

ď
1

2
‖u0

ε‖2 `
1

4ε
‖χωϕa‖2

L2pqT q
, (4.8)

which implies, using (1.14)

‖va‖2
L2pp0,T q,H1

0 pΩqq
ď

1

ε
‖u0

ε‖2 `
1

2ε2
‖χωϕa‖2

L2pqT q
ď

ˆ

1

ε
`
C0

2ε2

˙

‖u0
ε‖2. (4.9)

Now, from (4.7), we can write:

‖Gεpaq‖2
L2pQT q

ď CL,ε

´

‖va‖2
L2pp0,T q,H1

0 pΩqq
` ‖v0‖2

L2pp0,T q,H1
0 pΩqq

¯

` ‖Gεp0q‖2
L2pQT q

. (4.10)

On the other hand, we have:

‖Gεp0q‖2
L2pQT q

ď ‖v0‖2
L2pp0,T q,H1

0 pΩq
` ε|Ω|T. (4.11)

Hence, Gε is well defined, combining (4.11) together with (4.10) and (4.9).
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Let us now show that Gε is continuous. Since rεpF q is globally Lipschitz, one have:

‖Gεpa` hq ´Gεpaq‖2
L2pQT q

“ }rεpF qp|∇va`h|q ´ rεpF qp|∇va|q}2L2pQT q
ď CL,ε‖∇va`h ´∇va‖2

L2pQT q
. (4.12)

Then, we have that wa,h :“ va`h ´ va solves:

$

&

%

Btwa,h ´ div pRεpa` hq∇wa,hq “ χω pϕa`h ´ ϕaq ´ div ppRεpa` hq ´Rεpaqq∇va`hq in QT
wa,h “ 0 on ΣT

wa,hp0q “ 0 in Ω.
(4.13)

Hence, an energy estimate over (4.13) leads to, using parametrized Young’s inequality and Poincaré’s in-
equality:

1

2
‖wa,h‖2

L8pp0,T q,L2pΩqq `
ε

2
‖wa,h‖2

L2pp0,T q,H1
0 pΩqq

ď
1

ε
‖ϕa`h ´ ϕa‖2

L2pQT q

`
1

ε
‖∇va`h‖2

L8pQT q
‖Rεpa` hq ´Rεpaq‖2

L2pQT q
.

We then get, using Theorem 1.1 and (4.12) that:

‖Gεpa` hq ´Gεpaq‖2
L2pQT q

ď
Cpεq

ε2

´

‖h‖2
L2pQT q

` ‖u0
ε‖2
k‖Rεpa` hq ´Rεpaq‖2

L2pQT q

¯

, (4.14)

which proves the lemma.

Remark 3. We point out that is essential here to consider solutions to (4.6), since the space of functions
which are essentially positively lower and upper bounded do not give rise to regular enough solutions of (1.3)
(namely, at least Hölder continuous) since we can construct discontinuous solutions with respect to the space
variable of (1.3) for some diffusion coefficient in this space, given by Serrin’s example (see [30]).

We are now able to prove the result.

Proof of Theorem 1.2. In order to apply Theorem 4.1, we first show that if panqn is a sequence which con-
verges weakly toward a, then Gεpanq converges weakly, up to a subsequence, toward Gεpaq. First, let us
observe that the weak convergence of panqn implies that Rεpanq ÝÑ

nÑ`8
Rεpaq strongly in Kε, by definition of

Rε. Also, arguing by continuity, one can see that the associated controls provided by Theorem 1.1 in (4.6)
leads to

‖χωϕRεpanq ´ χωϕRεpaq‖L2pQT q ÝÑnÑ`8
0.

From this, an energy estimate leads to, setting wn :“ va ´ van , where va and van are respectively solutions
to (4.6) associated to the diffusion coefficient Rεpaq and Rεpanq and to the controls ϕRεpaq and ϕRεpanq,
respectively:

1

2
‖wn‖2

L8pp0,T q,L2pΩqq `
ε

2
‖wn‖2

L2pp0,T q,H1
0 pΩqq

ď
1

ε
‖χωpϕRεpaq ´ ϕRεpanqq‖

2
L2pqT q

`
C‖u0‖k

ε
‖Rεpanq ´Rεpaq‖2

L2pQT q
. (4.15)

Then, we can write, from (4.12):

‖Gεpanq ´Gεpaq‖2
L2pQT q

“ }rεpF qp|∇van |q ´ rεpF qp|∇va|q}2L2pQT q
ď CL,ε‖∇van ´∇va‖2

L2pQT q
. (4.16)
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Then, (4.15) combined with (4.16) leads to the fact that ‖Gεpanq ´ Gεpaq‖L2pQT q ÝÑ
nÑ`8

0. Applying now

Lemma 4.1 to (4.6), we get from Theorem 4.1 that Gε admits a unique fixed point in Kε. Namely, we get
that in the solution to the equation

$

&

%

Btv ´ div pRε prεpF qq p|∇v|qq∇vq “ χωϕ in QT
v “ 0 on ΣT

vp0q “ u0
ε in Ω.

(4.17)

ϕ can be chosen as an approximate control of (4.17), from Theorem 1.1. For the sake of simplicity, we denote
RεprεpF qp¨qq as Fε. Next, we consider the solution to (1.1), namely the solution of:

$

&

%

Bty ´ div pF p|∇y|q∇yq “ χωϕ in QT
y “ 0 on ΣT

yp0q “ u0 in Ω.

Setting w :“ y ´ v, an energy estimate leads to:

1

2
‖wpT q‖2 `

ĳ

QT

pFεp|∇y|q ´ Fεp|∇v|q ` Fεp|∇v|q ´ F p|∇v|qq ¨∇w dxdt “
1

2
‖u0

ε ´ u
0‖2. (4.18)

Then, (4.18) leads, using the monotonicity of the operator Aε : v ÞÑ ´div pFεp|∇v|q∇vq (see [21, Chapitre 2,
section 1.3.] and [31, section 25.3]) obtained from that of A and the linearity of the integral to:

1

2
‖wpT q‖2 ď

1

2
‖wpT q‖2 `

ĳ

QT

pFεp|∇y|q ´ Fεp|∇v|qq ¨∇w dxdt

ď ‖Fεp|∇v|q ´ F p|∇v|q‖L2pQT q‖w}1 `
1

2
‖u0

ε ´ u
0‖2.

Then, the result follows using assumption (A2), the fact that v belongs to W 1,8pQT q, and from the bound-
edness of ‖w}1 up to take ε small enough.

The case of the parabolic p-Laplacian is directly taken into account directly by Theorem 1.2, and thus we
immediately get the Corollary 1.1.

Let us now consider Theorem 1.3 and Corollary 1.2. In fact, when the solution stops in finite time, it is
enough to bring its energy to be almost null so that it becomes null in an arbitrarily short time. In other
words, the global approximate controllability implies the global exact controllability, as soon as the stopping
time is controlled by the energy of the initial data via a relation as in (1.19).

Proof of Theorem 1.3. Let T ‹ P p0, T q and ε “
´

T ‹

2µ

¯
1
γ . Applying Theorem 1.2 for an approximate control

in time T ‹

2 there exists a control ϕc P L2pp0, T
˚

2 qˆΩq such that the solution y of (1.1) with the control given
by

ϕptq “

"

ϕcptq for t P
`

0, T
‹

2

˘

0 for t ě T ‹

2

verifies
›

›

›

›

y

ˆ

T ‹

2

˙›

›

›

›

ď ε.

Combining the above inequality to the estimate (1.19) we obtain that ypT ‹q “ 0, which is the desired
result.

As previously mentioned, Corollary 1.2 is an immediate consequence of Theorem 1.3 applied to [10, Propo-
sition 2.1.].
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5 Numerical simulations

The aim of this section is to propose a numerical strategy for the computation of an approximate null control
for quasilinear equations (1.1). In a first step we approach an approximate control ϕ P H1pqT q for the linear
equation (1.3) by a method consisting in solving several mixed formulations as explained in Section 3. Once
the method for the controllability of the linear heat equation is validated, we propose a fixed point algorithm
employed to numerically compute an approximate control for the quasilinear equation (1.1). This approach
is illustrated by several examples in dimension one of the space. For the remaining part of this section we
consider Ω “ p0, 1q, ω “ p0.1, 0.5q and T “ 0.5.

From a practical point of view, the proposed strategy needs to efficiently compute the solutions of mixed
formulations of the form (3.2). In order to numerically approach the solutions of such mixed formulations, we
consider structured triangulations Th of the domain QT with h ą 0 being the diameter of triangles forming
Th. Then we define the finite dimensional sub-spaces Φh Ă Φ and Λh Ă L2pQT q as follows:

Φh “
 

φh P C
1pQT q : φh|K P PpKq @K P Th, φh “ 0 on ΣT

(

, (5.1)

where PpT q denotes the reduced Hsieh-Clough-Tocher (HCTr for short) C1 finite element space, and

Λh “
 

λh P CpQT q : λh|K P P1pKq @K P Th
(

, (5.2)

with P1pT q being the space of affine functions with respect to both x and t. We then approach the mixed
formulation (3.2) by its following discrete version: find pϕh, λhq P Φh ˆ Λh solution to

"

apϕh, ϕhq ` bpϕh, λhq “ lpϕhq pϕh P Φhq

bpϕh, λhq “ 0 pλh P Λhq.
(5.3)

Remark that for every h ą 0 the mixed-formulation (5.3) is well posed. Nevertheless, in order to have a
convergence of the solutions pϕh, λhq to the solution pϕ, λq a inf-sup condition similar to (3.7) should be
verified for the discrete mixed-formulation (5.3) with a inf-sup constant uniform with respect to h. Proving
such a uniform inf-sup condition is generally a difficult question. An alternative avoiding the necessity of
this condition is to stabilize the mixed formulation (5.3) by an appropriate term.

We denote by Nx the number of right triangles in the triangulation Th having one side on the boundary
Ωˆ t0u and by Ny the number of right triangles having one side on the boundary t0u ˆ p0, T q. We take Ny

such that the vertical side hy of every triangle in Th is much smaller than hx where hx is the length of the
horizontal side of the triangle. Then hx “ 1{Nx and Ny “ Nxγ

´1T with γ P p0, 1s being such that Ny is an
integer. Two such triangulations are represented in Figure 1.

QT

x = 0 x = 1

T = 0.5

QT

x = 0 x = 1

T = 0.5

(a) (b)

Figure 1: Two structured triangulations of QT with Nx “ 10. (a) γ “ 1. (b) γ “ 0.25.

Since the controls of minimal L2 norm for the heat equation obtained by HUM are highly oscillating in time
near the control time T , for all the simulations discussed in this work we consider meshes that are finer in
time than in space. More exactly, we take Ny “ 320 and Nx P t20, 40, 80, 160u.
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5.1 Approximation of H1pqT q controls for linear parabolic equations

In this section we consider a non-homogeneuous diffusion coefficient given by

apt, xq “
1

10

`

1` x2 ` t
˘

. (5.4)

In order to compute an approximate control in H1pqT q for the equation (1.3) we numerically aproach the
minima of the functional J2 given by (3.1) by solving the mixed formulation (5.3). We adapt the value of
the penalization parameter ε by a fixed point algorithm such that we are able to approach the minima of
the functional Jn for every integer n ě 2.

In what follows, we consider two examples of regular initial data to control.

5.1.1 Example 1: linear equation with u0pxq “ sinpπxq

As a first example we consider the approximate control of the linear equation (1.3) with initial data given by

u0pxq “ sinpπxq. (5.5)

In Table 1 we gather the L2 norm of the approximate control χωϕ obtained for different meshes and three
different values of n. We observe that the norm of the control converges with respect to the size of the mesh
for each value of n P t2, 4, 8u. The control is robust with respect to n: when the mesh is fine enough we
observe that the L2 norm of the control slightly decrease with from n “ 4 to n “ 8. Similar results are
obtained for the H1 norm of the control and are gathered in Table 2. The control χωϕ and its associated
controlled solution λ computed for Nx “ 160 and n “ 8 are displayed in Figure 2.

n “ 2 n “ 4 n “ 8
Nx “ 20 2.068 2.068 2.068
Nx “ 40 2.265 2.265 2.264
Nx “ 80 2.358 2.358 2.338
Nx “ 160 2.387 2.387 2.351

Table 1: Example 1: L2pqT q norm of the control of the linear equation (1.3) with a diffusion coefficient a
given by (5.4) and initial data (5.5) as a function of n and Nx.

n “ 2 n “ 4 n “ 8
Nx “ 20 40.380 40.380 40.380
Nx “ 40 47.697 47.697 47.604
Nx “ 80 59.623 59.623 57.233
Nx “ 160 63.714 63.714 59.248

Table 2: Example 1: H1pqT q norm of the control of the linear equation (1.3) with a diffusion coefficient a
given by (5.4) and initial data (5.5) as a function of n and Nx.

5.1.2 Example 2: linear equation with u0pxq “ χp0.6,0.9qpxq

As a second example we consider a localized but still regular initial data to control:

u0pxq “ χp0.6,0.9qpxq “

$

’

’

’

’

&

’

’

’

’

%

1, if x P r0.6` δ, 0.9´ δs
0, if x P p0, 1qzp0.6, 0.9q

e
α
´

1
δ2
´ 1
px´0.6qp0.6`2δ´xq

¯

if x P p0.6, 0.6` δq

e
α
´

1
δ2
´ 1
px´0.9`2δqp0.9´xq

¯

if x P p0.9´ δ, 0.9q,

(5.6)

with δ “ 0.1 and α “ 0.02.
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(a) (b)

Figure 2: Example 1: (a) Control χωϕ for the linear equation (1.3) with a given by (5.4) and initial data (5.5)
computed for Nx “ 160 and n “ 8. (b) The corresponding controlled solution λ.

We obtain results similar to the ones in the Example 1 described in Section 5.1.1. The L2 and H1 norm of the
obtained control are listed in Table 3 and Table 4 respectively. We also depict the control and corresponding
controlled solution computed on the mesh with Nx “ 160 and n “ 8 in Figure 3.

n “ 2 n “ 4 n “ 8
Nx “ 20 0.672 0.672 0.672
Nx “ 40 0.746 0.746 0.746
Nx “ 80 0.787 0.787 0.787
Nx “ 160 0.800 0.800 0.800

Table 3: Example 2: L2pqT q norm of the control of the linear equation (1.3) with a diffusion coefficient a
given by (5.4) and initial data (5.6) as a function of n and Nx.

n “ 2 n “ 4 n “ 8
Nx “ 20 14.847 14.847 14.847
Nx “ 40 17.708 17.708 17.708
Nx “ 80 22.888 22.888 22.882
Nx “ 160 24.625 24.625 24.608

Table 4: Example 2: H1pqT q norm of the control of the linear equation (1.3) with a diffusion coefficient a
given by (5.4) and initial data (5.6) as a function of n and Nx.

(a) (b)

Figure 3: Example 2: (a) Control χωϕ for the linear equation (1.3) with a given by (5.4) and initial data (5.6)
computed for Nx “ 160 and n “ 8. (b) The corresponding controlled solution λ.

Null controllability for quasilinear parabolic equations 19



5.2 Approximation of H1pqT q controls for quasilinear equations

For the remaining part of this section we consider the following non-linearity:

F pXq “
1

10

´

1` p1`X2q´
1
2

¯

. (5.7)

Remark that this nonlinear function F verifies the hypotheses (A1)-(A3).

In order to numerically approach the control and the corresponding controlled solution we employ a fixed-
point algorithm combined to the strategy proposed in Section 5.1 for the approximation of H1pqT q controls
for linear parabolic equations. More exactly, the following algorithm is employed for the computation of an
approximate null control for the quasilinear equation (1.1):

Algorithm 1 Fixed point algorithm for the approximation of the control and the controlled solution for the
quasilinear problem
Require: F , u0, T , ε, imax Ź imax is the maximal number of iterations
aÐ 1
iÐ 0
errÐ `8

Compute the control and controlled solution pϕ0, λ0q for the linear problem.
while i ď imax and err ą tol do Ź The tolerance tol is taken equal to h

aÐ F p|∇λi|q
iÐ i` 1
Compute the control and controlled solution pϕi, λiq for the linear problem.
errÐ }χωpϕi ´ ϕi´1q}L2pqT q

end while
if err ď tol then

The algorithm converged.
The control and solution of the quasiliinear problem are pϕ, λq Ð pϕi, λiq.

end if

In what follows we consider the same initial data as in Section 5.1 for the control of the quasilinear equa-
tion (1.1) corresponding to this choice of F . Since, in the previous section, we observe that the control is very
robust with respect to the value of n, for the remaining part of this section we only consider the case n “ 2.
We then consider different levels of meshes and several values of the penalization parameter ε. For each mesh
of the domain QT and every value of ε we compute the L2 norm of the control provided by Algorithm 1 and
we report the number of iterations needed for its convergence.

5.2.1 Example 3: quasilinear equation with u0pxq “ sinpπxq

In this section we consider again the control of initial data (5.5) in the case of the quasilinear equation (1.1)
with F given by (5.7). The first question we would want to investigate is related to the convergence of
Algorithm 1. In this purpose we list in Table 5 the number of iterations needed for the convergence of the
fixed point algorithm for four levels of meshes and for four different values of the penalization parameter
ε. We observe that, for every ε P t10´6, 10´8, 10´10, 10´12u the number of iterations needed for the
convergence slightly increases with Nx. This is due to the fact that tolerance parameter in the algorithm is
smaller for larger values of Nx. The second observation is that the fixed point algorithm does not converge
for small values of ε and fine enough meshes.

In Table 6 we gather the norm of the approximate control computed for different of values of Nx and ε. As
for the control of the linear equation we observe a convergence of the norm of the control with respect to
h. The control obtained for Nx “ 160 and ε “ 10´8 and its associated controlled solution are illustrated in
Figure 4.
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ε “ 10´6 ε “ 10´8 ε “ 10´10 ε “ 10´12

Nx “ 20 4 4 5 5
Nx “ 40 5 5 5 5
Nx “ 80 5 6 6 -
Nx “ 160 6 6 - -

Table 5: Example 3: The number of iterations needed for the convergence of Algorithm 1 as a function of ε
and Nx for the control of quasilinear equation (1.1) whith F given by (5.7) and initial data (5.5).

ε “ 10´6 ε “ 10´8 ε “ 10´10 ε “ 10´12

Nx “ 20 2.362 3.004 3.355 3.388
Nx “ 40 2.300 2.929 3.315 3.400
Nx “ 80 2.315 2.956 3.359 -
Nx “ 160 2.319 2.963 - -

Table 6: Example 3: L2pqT q norm of the control of the quasilinear equation (1.1) with F given by (5.7) and
initial data (5.5) as a function of ε and Nx.

(a) (b)

Figure 4: Example 3: (a) Control χωϕ of the quasilinear equation (1.1) with F given by (5.7), initial data
given by (5.5) and for Nx “ 160, ε “ 10´10. (b) The corresponding controlled solution λ.

5.2.2 Example 4: quasilinear equation with u0pxq “ χp0.6,0.9qpxq

This last example consider the numerical approximation of the approximate null control for equation (1.1)
with F given by (5.7) and initial data (5.6). For this choice of initial data we conduct the same experiments
as for Example 3. We obtain similar results with the difference that Algorithm 1 has a better convergence
for this initial data. As reported in Table 7 the fixed point algorithm converge for ε “ 10´12 and for all the
values of the discretization parameter Nx. Nevertheless, the number of iterations augment for Nx “ 160 and
the convergence will probably deteriorate for smaller values of ε.

ε “ 10´6 ε “ 10´8 ε “ 10´10 ε “ 10´12

Nx “ 20 3 4 4 4
Nx “ 40 4 4 5 5
Nx “ 80 4 5 5 5
Nx “ 160 5 5 6 16

Table 7: Example 4: the number of iterations needed for the convergence of Algorithm 1 as a function of ε
and Nx for the control of quasilinear equation (1.1) whith F given by (5.7) and initial data (5.6).

The values of the L2 norm of the computed controls, reported in Table 8, indicate that controls converge
with respect to Nx for fixed values of ε. This convergence seems faster for larger value of the penalization
parameter ε. The control and the corresponding controlled solution associated to the initial data (5.6) are
displayed in Figure 5.
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ε “ 10´6 ε “ 10´8 ε “ 10´10 ε “ 10´12

Nx “ 20 0.736 1.009 1.160 1.175
Nx “ 40 0.718 0.972 1.146 1.184
Nx “ 80 0.721 0.982 1.159 1.211
Nx “ 160 0.723 0.982 1.163 1.005

Table 8: Example 4: L2pqT q norm of the control of the quasilinear equation (1.1) with F given by (5.7) and
initial data (5.6) as a function of ε and Nx.

(a) (b)

Figure 5: Example 4. (a) Control χωϕ of the quasilinear equation (1.1) with F given by (5.7), initial data
given by (5.6) and for Nx “ 160, ε “ 10´8. (b) The corresponding controlled solution λ.

6 Conclusion and research perspectives

In this paper, we proved the approximate null controllability in arbitrarily small time T of quasilinear
equations of the parabolic p-Laplacian type, when 3

2 ă p, and the global exact one in the particular case
when 3

2 ă p ă 2. Numerical simulations illustrate the proposed control strategy.

A first open question is that, under the hypothesis of showing the Lipschitz continuity of the control associated
to the linear problem in the Lq frame for some q ą 2, it is possible to extend our controllability result for
the Lq controllability of the parabolic p-Laplacian. We could then obtain the exact controllability of the
parabolic p-Laplacian for some p‹ ď p ă 2, still applying [10, Proposition 2.1.].

Another interesting question is that the results presented in this paper could be extended to the controllability
of non-Newtonian fluid flows, e.g. of power law or Carreau-Yasuda type. More precisely, the issue is that for
a system with solutions being divergence free in the weak L2 sense, the addition of the nonlinear quadratic
term will probably cause some difficulties.
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