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Using Deep Learning to Hedge Rainbow Options

Thibault Collin 1

June 6, 2023

Abstract

The general scope of this thesis 2 will be to further study the application of artificial neural networks

in the context of hedging rainbow options. Due to their inherently complex features, such as the

correlated paths that the prices of their underlying assets take or their absence from traded markets,

finding an optimal hedging strategy for rainbow options is difficult, and traders usually have to resort

to models and methods they know are inaccurate. An alternative approach involving deep learning

however recently surfaced in the context of hedging vanilla options [6], and researchers have started

to see potential in the use of neural networks for options endowed with exotic features in [5], [12]

and [22].

The key to a near-perfect hedge for contingent claims might be hidden behind the training of neural

network algorithms [6], and the scope of this research will be to further investigate how those inno-

vative hedging techniques can be extended to rainbow options [22], using recent research [21], and

to compare our results with those proposed by the current models and techniques used by traders,

such as running Monte-Carlo path simulations. In order to accomplish that, we will try to develop

an algorithm capable of designing an innovative and optimal hedging strategy for rainbow options

using some intuition developed to hedge vanilla options [21] and price exotics [5]. But although it

was shown from past literature to be potentially efficient and cost-effective, the opaque nature of

an artificial neural network will make it difficult for the deep learning algorithm to be fully trusted

and used as a sole method for hedging purposes, but rather as an additional technique associated

with other more reliable models.

1 Introduction

The most crucial step in dealing with any asset is to be capable of determining its price, usually
referred to in the literature as the present value. That price must reflect the reality as closely as
possible, because for widely-traded instruments such as options, even the smallest price discrepancy
can have severe consequences on the profits and losses made by traders. European options are often

1Paris Dauphine University student, enrolled in the Master 203 - Financial Markets
2Master thesis written under the direction of Prof. Thibaud Vienne and Prof. Gaelle Le Fol
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evaluated using the Black-Scholes pricing model [3], which calculates the price of an option as the
discounted expected value of its payoffs, under a risk neutral probability measure. The model is
arbitrage-free, meaning that no certain gain can be made without taking any risk. Under Black-
Scholes, the price of an option is dependent on several input parameters, such as the option’s time
to maturity or the volatility of its underlying’s spot price. The evolution of those parameters thus
has an influence on the present value of the evaluated contingent claim, and each option reacts
differently to a variation of one of its inputs. These reactions are characterized by coefficients that
are commonly referred to as the Greeks, and as it is often preferable for the value of a portfolio to
be stable over time, traders usually build theirs so that the Greeks are neutralized. This process is
referred to as hedging. Hedging is thus buying or selling additional instruments to make a portfolio
neutral to one or several input variations, because the Greeks of the additional assets cancel out
with those of our initial portfolio.

Because those sensitivities change constantly during an option’s life, traders need to monitor and
rebalance their portfolio to maintain their hedge accordingly, but the presence of trading costs
prevents the possibility for the hedge to be realized continuously, so it is done periodically. Figuring
out exactly the price and Greeks of an option at any moment is therefore of paramount importance
in that context, because any miscalculation could result in a sub-optimal hedging strategy. This
comes down to choosing the most convenient model to begin with, as each model is endowed with
a specific set of assumptions that will influence the degree to which the solution is or is not well
approximated. For certain types of derivatives such as vanilla options, the present value can be
calculated analytically as a closed-form solution. Pricing options with more exotic features rarely
allows for such, and numerical approximations using Monte-Carlo [4] simulations are often required.
Those methods have however proven to be computationally expensive and tremendously slow to
run when there is some complexity involved, and in a context where the parameters of an option
are updated regularly, Monte-Carlo appears to be rather unreliable.

Our study will have a particular focus on rainbow options, which are exotic derivatives relying
on the performance of more than a single underlying asset. These instruments are of interest not
only because of their popularity, but also because their dependence over multiple underlying assets
with correlated paths makes it difficult to define an optimal hedging strategy that is in line with
real-world dynamics, especially since current methods cannot account for very sudden and extreme
market moves, forcing traders to use their experience and intuition to manually re-calibrate their
strategy, which has gotten increasingly difficult with the growing sophistication of financial markets.
This explains why traders have been looking for an innovative method that would assist them in
reaching an optimal hedging strategy for rainbow options, and improvements could be foreseen
through the use of deep learning and artificial neural networks [6], an architecture capable of
learning key representations in the data without the need for an underlying model. The application
of neural networks to hedging and pricing purposes was proven successful in several research papers,
and was initiated by [17], who demonstrated an ability of deep learning in pricing futures options.

The studies of [9] then illustrated how neural networks could outperform standard hedging mod-
els for American options, and [6] presented an extensive theoretical framework for hedging vanilla
options in the presence of market frictions, which was later applied by [21], who analyzed the cal-
ibration of the algorithm to various stochastic paths for the asset prices, with interesting results.
Studies diving further into the use of deep learning for exotic derivatives include [22], who used the
regress later neural network technique to price and semi-statically hedge high-dimensional contin-
gent claims such as Bermudan max and basket options, which came after the works of [5], whose
paper initiated research for options relying on several underlyings, namely rainbow options. Those
were further explored by [12], who illustrated the feasibility of the deep learning approach through
the valuation of an option relying on six underlying assets, as well as its computational power when
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compared to Monte-Carlo simulations, showing improvements in speed and accuracy.

This paper will partly aim at extending the most recent literature made on using deep learning for
dealing with problems of hedging vanillas and pricing exotics, to the problem of hedging rainbow
options in a regular market context. Beyond designing a strategy that would be in line with real-
world dynamics, using deep learning could also allow us to eliminate constraints that weight heavily
in the accuracy of our results, such as the absence of sudden and extreme market moves. We will
therefore try to implement the algorithm in a context that is closer to what is really observed on the
markets, to investigate the potential of deep learning in areas that could not have been explored by
current methods, due to the high degree of complexity and computational power that was required.

The thesis shall be structured as follows. We will successively cover prerequisites in financial
mathematics (Chapter 2) as well as in general deep learning concepts (Chapter 3), to lay down
the basic foundations of our research. Then, as we begin building and testing our neural network
algorithm, we will first produce and interpret the hedging strategy designed by the algorithm
for European Call options, using Black-Scholes as a benchmark (Chapter 4). Having shown the
robustness and efficiency of the method for vanilla options, we will then derive an adjustment of the
algorithm for rainbow options (Chapter 5), in which we shall also test the accuracy of the method in
the presence of large and unexpected market moves, to assess whether the neural networks are able
to properly process such information to adapt the hedging parameters accordingly. To conclude, we
shall condense our results and infer on the practical feasibility and usefulness of the method, and
we shall also further discuss issues and limits encountered with deep learning algorithms applied in
such context, as well as providing potential clues for further developments (Chapter 6).

2 Mathematical prerequisites

2.1 Agent’s terminal wealth

We will need to consider a discrete-time financial market with trading dates comprised in the set
{0, t1, t2, .., tn} with tn = T our finite time horizon, as well as a complete probability space (Ω,F ,P)
with Ω = {ω1, ..., ωn} and P the risk-neutral probability measure, which is not the observed measure,
but an identical one that is fitted for arbitrage-free pricing. Let us also define the set of all random
variables over Ω to be Q, such that Q := {Q : Ω −→ R}.

Let us denote Ii any new piece of information that becomes available at time ti. This may include
mid-prices of liquid instruments, trading signals and more. All information available up to a certain
time ti is thus given by the filtration F = (Fi) for i = 0...n, which is generated by the process I = (Ii)
for i = 0...n. In this study, we will restrain the information set to the log-transformed prices of the
assets considered. The prospect of implementing sophisticated trading signals will be explored in
Chapter 6 as a further research.

We will then assume that m instruments exist in the market for us to hedge our contingent claim,
and that their mid-prices follow an F-adapted process S = (Si) for i = 0...n. Those additional
instruments can either be equities or European options, and their maximum maturity is T . The
portfolio of contingent claims we intend to hedge will be denoted Z. The position we will take in
the hedging instrument t is given by the F-adapted stochastic process δ = (δti) for i = 0...n and
t = 1...m. Finally, we define the set of all such trading strategies to be H.
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We note the profits made from trading the hedging instrument at time i to be (δ · S)i, which gives
the following total gains and losses until maturity.

(δ · S) =

n−1∑
i=0

δi · (Si+1 − Si)

Trading is costly through many ways: bid-ask spreads or liquidity constraints for example. Let us
define by ci the cost of taking a position at time ti on any asset. The total cost of trading is then
defined as the following.

C(δ) =

n∑
i=0

ci · (δi − δi−1)

To simplify, let us assume that no position is held in hedging instruments outside {t1, t2, .., tn−1}.
Finally, the self-financing strategy starts with an initial lump sum p0. The agent’s terminal wealth
is then defined as the following [6].

PnL(Z, δ, p0) = p0 − Z + (δ · S)− C(δ) (2.1)

The goal is to minimize said equation, being the part of our position that we were not able to hedge.
In other terms, it is our final risk exposure. We shall see that the objective of the algorithm will be
to find a hedging strategy δ such that the uncovered risk is minimal. Note that this equation can
be extended to a hedging strategy on two underlyings. Indeed, in Chapter 5 we shall study options
relying on two underlying assets, and we would want to hedge against both their moves.

PnL(Z, δ1, δ2, p0) = p0 − Z + (δ1 · S1)− C(δ1) + (δ2 · S2)− C(δ2) (2.2)

Let us finally remark that we would be able to perform such strategy with or without trading costs,
although they were usually implemented for vanilla option hedging in the past literature with [6],
[7] and [21].

2.2 Convex risk measures

We introduce monetary risk measures denoted ρ, which are statistical measures used to asses the
risk inherent to an investment, taking the form of a cash requirement. We then have that for
any portfolio of assets X, ρ(X) can be viewed as the minimal amount of cash required for the
risk of the position to be in an acceptable range, in light of the agent’s preferences. We will
therefore materialize the aforementioned unhedged part of our position by said risk measure, which
our algorithm will try to minimize. To guarantee that the solution we find is close-to-optimal, we
choose to work with convex risk measures, which are classic risk measures satisfying the following
properties. Once again, this minimization program can be extended to a strategy involving two
underlying assets.

Definition 2.1 We let X1 and X2 ∈ X be positions in assets. We let ρ : X −→ R be a convex risk
measure if the following properties are verified.

• X1 > X2 −→ ρ(X1) 6 ρ(X2) (monotone decreasing)

• ρ(βX1 + (1− β)X2) 6 βρ(X1) + (1− β)ρ(X2) (convex)

• ρ(X1 + c) = ρ(X)− c, ∀ c (translation invariance)
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Having introduced a proper way of quantifying the risk of our portfolio then allows us to introduce
the agent’s optimization program. Let us denote by π(X) the minimal lump sum required by the
agent’s preferences for the position in a portfolio of financial assets X to be sufficiently well hedged,
H the set of possible trading strategies, and δ ∈ H the minimizing strategy for the program [6].

π(X) =

(
inf
δ∈H

ρ(X + (δ · S)− C(δ))

)
(2.3)

We thus have that the minimal cash injection π that is required to make a portfolio X acceptable
regarding an agent’s preferences is equal to the minimal lump sum required to make the hedged-
portfolio acceptable in light of those same preferences, with δ ∈ H the hedging strategy allowing
such. In (2.2), π is monotone decreasing and translation invariant. Given that the function C and
the set H are convex, π then is a convex risk measure [6].

Finally, as we need to consider the scenario in which having no liabilities may generate positive
expected returns, which could happen under the physical measure, we decide to focus on the
indifference price denoted p(Z). This price is such that holding p(Z) and a position −Z gives the
same utility as holding nothing.

π(p(Z)− Z) = π(0) −→ p(Z) = π(−Z)− π(0) (2.4)

This result is given by translation invariance, as π is a convex risk measure.

2.3 Optimized certainty equivalents

In this study, we want to use a specific class of convex risk measures denoted optimized certainty
equivalents (or OCEs), to determine the minimal amount of cash required to make a portfolio of
contingent claims acceptable in light of some agent’s preferences. We denote X such a portfolio
and r ∈ R the minimizing parameter of our program.

Definition 2.2 We let l: R −→ R be a convex risk measure and denote it our loss function. The
OCE is then defined as the following.

ρ(X) = inf
r∈R
{r + E[l(−X − r)]}, X ∈ X (2.5)

Following the intuition built in [6], the entropic risk measure can be used in our algorithm. and it
can be defined with the following formula.

Definition 2.3 For a fixed and positive λ we set l(x) = eλx − 1+ln(x)
λ . Optimizing and using (2.4)

gives us the entropic risk measure.

ρ(X) =
1

λ
ln
(
E[e−λX ]

)
(2.6)

Such risk measure has for long been quite popular in financial mathematics because of some inter-
esting properties it is endowed with, as it depends on an agent’s risk aversion, and can be modelled
through exponential utility functions, which are defined as U(x) = −e−λx with λ the positive risk
aversion coefficient. We notice how the aforementioned utility function appears in the entropic risk
measure (2.7), but let us solidify the relationship between the two with the following proposition
[6].
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Proposition 2.4 Let q(Z) be a solution of the following indifference pricing problem. Then it
follows that q(Z) = p(Z), the latter being the indifference price.

sup
δ∈H

E[q(Z)− Z + (δ · S)− C(δ)] = sup
δ∈H

E[U{(δ · S)− C(δ)}]

This result means that if we receive q(Z) of cash in exchange for letting Z go, we are not better
nor worse off compared to not selling Z at all.

2.4 Reminders on probability distributions

Several probability distributions are to be used along this paper to model the uncertain character
of our dynamics. Their density function and relevance for our study are to be successively and
concisely introduced in this section.

Gaussian distribution

The univariate normal distribution is by far the most popular of all probability distributions, and
will be used here mainly in the discretization of a Brownian motion inherent to the price dynamics
of a single asset, as well as the computation of the prices and Greeks for our options (Chapter 4).

Definition 2.5 We denote f(x) the probability density function of a Gaussian distribution, with
µ and σ its expectation and standard deviation. If X ∼ N (µ, σ) then X is a Gaussian, and if X
∼ N (0, 1) then X is a standard Gaussian variable.

f(x) =
1

σ
√

2π
e−

1
2 ( x−µσ )

2

Multivariate Gaussian distribution

Such is an extension of the univariate case to account for the joint moves of two underlying assets,
and is to be used for the same purpose as the preceding distribution, but for multi-asset price
dynamics (Chapter 5).

Definition 2.6 Given a symmetric positive definite covariance matrix M and µ the expectation of
the distribution, we denote fX(x1, .., xk) the multivariate normal density per the following, with X
being a k-dimensional column vector.

fX(x1, .., xk) =
exp{− 1

2 (x− µ)tM−1(x− µ)}√
(2π)k|M|

We will mainly be interested in the cumulative distribution of such variable, for which there does
not exist any closed-form solution. Therefore, the computation will be made following the efficient
algorithm introduced in [11].
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Poisson distribution

The discrete Poisson distribution can describe the probability of occurence for some rare events,
and is to be used to model for the presence of jumps in the multi-asset dynamics, for which random
samples are to be generated from a Poisson distribution (Chapter 5).

Definition 2.7 For a given parameter λ and x the number of events occurring within λ, we define
as f the probability mass function of a Poisson distribution.

f(x, λ) =
λke−λ

k!

Exponential distribution

To simplify our computations, we decided to use a proxy for the Laplace distribution to measure
the size of our jumps. Such proxy, that is to be defined later, involves a multivariate Gaussian as
well as an exponential distribution.

Definition 2.8 For a given parameter λ > 0, we define as f the probability density function of an
exponential distribution over any x ≥ 0.

f(x, λ) = λe−λx

2.5 Additional risk measures

The entropy is not the only common risk measure used in the literature. We will work with the
mean squared error to hedge multi-asset options in Chapter 5, as it was shown to provide stronger
results when compared to other risk measures. In the context that will be ours, we will minimize
the wealth function, meaning that the predicted value is ideally 0. Finally, we will use n = 1.2 · 105

because our entire data set will be comprised of as many data points.

Definition 2.9 For n the number of data points, Yi the observed values and Ŷi the predicted values,
we define the mean squared error as the following risk function.

mse =
1

n

n∑
i=1

(
Yi − Ŷi

)2
(2.7)

3 Neural Networks

3.1 Understanding key notions

Deep learning architecture

Deep learning algorithms are structures endowed with the ability to learn features and patterns

directly from data they are trained on, in order to figure out similar patterns on resembling new

data they have never seen. Through successive layers of neurons which are connected by channels

to form the neural network, data is analyzed by the algorithm and patterns are understood.
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The training set is defined as the set of inputs and their respective expected outputs which are

initially fed to the algorithm. Through this first set, the algorithm will try and figure out what

are the most fundamental and important representations behind the data. The testing set is then

given as a way of assessing whether the neural network managed to seize and project those patterns

on new but similar data. Measuring its performance is thus done through the loss function, which

compares the actual outcome of the algorithm with what we expect to obtain. The loss function

that shall be used is the entropic risk measure defined in (2.6), unless stated otherwise.

Learning is done iteratively until the loss function is minimized. Inputs are initially fed into the

network through first layers of neurons, called the input layers. They are then transferred to

subsequent hidden layers, whose role is to decipher key representations of the data. Each neuron

in those layers has its own importance in the algorithm, meaning that the weights attached to the

inputs of each neuron, as well as their bias, is different. These parameters are randomly initialized

and iteratively adjusted through back-propagation, which is what allows neural networks to learn

by themselves, by evaluating their performance using the loss function. The weights are allocated

to each input entering a given neuron, and the bias term skews the result of the neuron’s output,

modelling a systemic error stemming from incorrect assumptions on the model. To resume, the

algorithm will iteratively rearrange its structure until the output is judged sufficiently close to what

the network is expected to produce.

We just introduced the feed-forward neural network, a structure where neurons only communicate

horizontally. Such will form the basic element in our research and is defined in the following

definition.

Definition 3.1 Let L,N0, ..., NL ∈ R, σi : R −→ R and let Ai be affine functions, for any i ∈
{1, 2, ..., L}. The function F : RN0 −→ RNL below is called a feed-forward neural network, with

Fi = σi ◦Ai for any i ∈ {1, 2, ..., L− 1}.

F(x) = AL ◦ FL−1 ◦ ... ◦ F1 (3.1)

Activation functions

We define σk as the activation function applied to the neuron k. Such function decides on the

degree of activation of the node, depending on the accuracy and relevance of its output. Denoting

b the bias and w the weights associated with the inputs x gives us the following final output ok for

a given neuron k.

ok = σ

(
n∑
i=1

(wixi) + bk

)

The choice for an activation function is crucial, and is made by evaluating the trade-off between

simplicity of implementation and powerfulness. Indeed, complex activation functions allow nodes to

learn complex structures in the data. Nonlinear functions are examples of such functions, whereas

linear ones are easier to implement and faster to run. Both accumulate their share of advantages

and shortcomings, so our idea will be to use one that is a mix of both.
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Let us work with an activation function that resembles a linear function, while in reality being

a nonlinear one, allowing for complex relationships in the data to be learned while allowing fast

computations. Such is called the rectified linear activation unit (ReLu) [10]. That function is often

referred to as piecewise linear, for it is half linear and half nonlinear. It is defined as the positive

part of its input: σ(x) = max(0, x). One can therefore see that the gradient is zero when x is

negative, and the neuron becomes inactive.

Recurrent neural networks

We note L the total number of layers and Ni the dimension of the layer i. Finally, let us consider

L− 1 hidden layers, one input and one output layer. We would want our algorithm to remember to

some extent what happened in the past, because we need to consider market frictions. In that sense,

we could extend our regular feed-forward neural network so that a temporal dynamic behavior can

appear. This would be done through the use of recurrent neural networks (RNNs), where neurons

use their memory regarding past information in their decision-making process. Such an algorithm

is structured as an ensemble of regular feed-forward neural networks where information is passed

both horizontally to the next hidden layer, and vertically to a similar hidden layer at the next time

period. For the rest of this paper, we shall however restrain ourselves to simple neural networks,

and leave recurrent ones for further exploration. To conclude, we shall explain the mechanism that

allows the algorithm to adjust its weights and biases, to converge towards their final values.

Stochastic gradient descent algorithms

In our model, we will use the Adam algorithm [18], which is defined as a stochastic gradient descent

algorithm with advantageous properties. As was explained earlier in that sub-section, the neural

network algorithm works under a loss function that is aimed to be globally minimized, explaining

why the function needed to be differentiable. A stochastic gradient descent algorithm loops through

the network and uses at each iteration the set of first partial derivatives ∇ of the loss function l(θ)

that was calculated using back-propagation, and iteratively takes a step downhill using the gradient.

This means that the next point θ(i+1) taken shall always be lower than the previous one θ(i), in order

to reach a global minimum for the loss function. The starting point is often randomly initialized.

θ(i+1) = θ(i) − η∇i
(
θ(i)
)

The key idea behind such a process is to quantify the step taken by the algorithm to move downhill

the loss function. That step η is called the learning rate, and it is a small fixed hyper-parameter

for regular gradient descent algorithms. For the Adam algorithm however, the learning rate of each

input parameter is being individually and adaptively optimized, and under suitable assumptions

on the loss function l as well as on the sequence {ηi} for i ∈ N, θ(i) converges to a local minimum

of l as i −→∞, with dynamics for updating parameters resembling what we already saw above, but

using instead the first two moments of the gradient ∇ respectively denoted m and v, with α and β

being forgetting factors, and ε a small scalar preventing any division by zero.

m∗θ =

(
1

1− α

)(
αm

(i)
θ + (1− α)∇ li(θ(i))

)

v∗θ =

(
1

1− β

)(
β m

(i)
θ + (1− β)(∇ li(θ(i)))2

)
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θ(i+1) = θ(i) − η
m∗θ√
v∗θ + ε

Combining the stochastic gradient descent algorithm with the back-propagation error algorithm

makes the process of computing ∇ efficient, and is at the core of the deep learning approach [10].

3.2 Validity and power of the method

Having clearly defined the main concepts attached to the deep learning approach, let us now in-

troduce mathematical proof for both the power and the validity of such method. Let us coin as

NN σ
∞,e,f the set of all neural networks mapping from Re −→ Rf with activation function σ. Let us

denote as NN σ
M,e,f the one with at most M non-zero weights and a potentially infinite number of

layers. The following theorem [6] proves the validity of the method, as it shows the algorithm is

able to provide us with the minimal cash injection that the agent must supply to hedge his claim

given his preferences, while the number of non-zero weights in the neural network tends towards

infinity.

Theorem 3.2 Let HM denote the subspace of all strategies δ that can be obtained with the use of

neural networks belonging to NN σ
M,e,f with X an asset position and ρ and πM convex risk measures.

lim
M→+∞

πM (X) = lim
M→+∞

(
inf

δ∈HM
ρ(X + (δ · S)− C(δ))

)
(3.2)

An important theorem [16] then illustrates that the feed-forward neural network is able to provide

accurate approximations for multivariate functions, demonstrating the usefulness of the method.

Theorem 3.3 (Universal approximation [16]). Let σ be bounded and non-constant and ρ a finite

risk measure. The following statements are true.

• ∀ ρ on (Re,B(Re)) and p ∈ [1,+∞[, the set NN σ
∞,e,f is dense in Lp (Re, ρ).

• If in addition σ ∈ C(R), then the set NN σ
∞,e,f is dense in C (Re) for the topology of uniform

convergence on compact sets (or compact convergence).

This last statement explains that having an activation function that is continuously differentiable

on R while having the set of all neural networks to be dense on the Lebesgue space (Re, ρ) ensures

that the solution given by the neural network algorithm is close-to-optimal.

Properties 3.4 Having {NN σ
M,e,f}M∈N a sequence of subsets from {NN σ

∞,e,f}, we can give the

following properties ∀M ∈ N.

• {NN σ
M,e,f} ⊂ {NN σ

M+1,e,f} and
⋃
M∈N NN σ

M,e,f = NN σ
∞,e,f .

• NN σ
M,e,f = {F θ : θ ∈ ΘM,e,f}, ΘM,e,f ⊂ Rg for g ∈ N (depending on M).

This sequence could be thought of as the subset of all neural networks with a fixed number of nodes

and hidden layers, parametrized by a vector θ whose dimension g depends on M [21]. The following

and final part of this chapter will implement all the concepts previously introduced, in the context

of hedging derivatives.
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3.3 Deep learning in the context of hedging

Let us remember that the aim of our deep learning algorithm is to produce the hedging strategy

δ ∈ HM as a numerical solution for the problem of hedging vanilla and rainbow options. Theorem

3.1 provided proof of validity for the method, and Theorem 3.2 justified the usefulness and accuracy

of the approach.

The feasibility of the algorithm shall then be demonstrated in the following sections by building and

training the neural network in Python with the use of Tensorflow [10]. Both training and testing

sets that are to be used in the development of the algorithm will be composed of underlying asset

paths, generated randomly using Numpy.

The deep learning approach to hedging any claim will follow the same structure. We begin by

generating samples of asset paths endowed with specific price dynamics, which will then be fed

to the algorithm. Using the wealth function, the network will search for the hedging strategy that

minimizes the residual cash injection, materialized by the entropic risk measure (2.7). By the end of

that training period, the algorithm should have learned an approximated relationship between the

spot moves and the strategy to adopt, and we can move to the testing phase. Here, the algorithm

tries to produce the hedging parameters according to what was learned in the previous training

phase. What is produced is then compared with what the benchmark outputs.

As was introduced previously, the network shall be trained following the Adam algorithm [18], with

η = 0.005 as an initial learning rate that is then individually adjusted. As was explained earlier, all

the parameters of the network shall be randomly initialized from a range depending on the size of

the preceding layer, increasing the pace at which the algorithm is able to determine the minimum

of the loss function [14]. For efficiency purposes, we use a batch size of 500, which is the number

of samples that are processed before the structure of the algorithm is updated. Finally, the ReLu

activation function [10] is to be applied to our hidden layers, unless stated otherwise. The complete

code can be found and used on a GitHub page in the repository: thibaultcoo/rainbow-deep-hedging.

4 Deep Hedging Vanillas

4.1 Fundamental derivatives pricing theory

Black-Scholes model

The Black-Scholes equation for pricing European options [3] is widely seen as one of the most pop-
ular pieces of research that was produced in recent financial mathematics, because of its efficiency
and usefulness under its restrictive set of assumptions. Indeed, given continuous rebalancing and
assuming the complete set of assumptions is verified, the payoffs of an option can be perfectly
replicated, hence allowing for a complete hedge over any move of the underlying’s spot price.

Definition 4.1 Given all relevant assumptions are verified, the Black-Scholes price of a European
Call option is given by the following equation.

V (t, St) = e−q (T−t)StN (d1)− e−r (T−t)KN (d2) (4.1)
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Let N be the cumulative distribution function of a standard normal random variable, r and q the
constant parameters for the interest and dividend rate, σ the underlying’s volatility, T the option’s
maturity, K the strike price and St the underlying’s price at time t. The input parameters for N
are described below.

d1 =
1

σ
√
T − t

(
ln

(
St
K

)
+

(
r +

σ2

2

)
(T − t)

)

d2 = d1 − σ
√
T − t

This analytical solution is obtained by solving the Black-Scholes parabolic partial differential equa-
tion [3], assuming St follows a geometric Brownian motion.

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (4.2)

From either (4.1) or (4.2) emerges a key hedging parameter, considering we want to hedge the
Call option against the moves of the underlying’s spot price. Such a coefficient is denoted δ,
and represents the sensitivity of the option’s price to any move of the underlying’s price. It is
derived from Black-Scholes that to perfectly delta-hedge the position, one must trade δ unit of the
underlying.

δ =
∂V

∂S
= N (d1) (4.3)

The benchmark will hedge the Call option periodically using that parameter. Using Black-Scholes
however comes at a cost, one of which is the lack of accuracy that the method tends to display,
and another being the inability of the model to efficiently evaluate complex options, which we will
focus on in Chapter 5.

Monte-Carlo method

Using Monte-Carlo simulations [4] is a wide-spread solution to deal with those shortcomings. The
idea behind Monte-Carlo is that a large number of risk-neutral price paths for the underlying asset
are generated, following a specific dynamic. For each of those paths, the option’s payoff at maturity
is computed, and the final value of the option is calculated as the discounted average of those
payoffs, which approximates the true price of the option.

The accuracy of the method relies on the Law of Large Numbers, which states that the sample
average converges almost surely to the expected value. This method allows to fit in any stochastic
process for our underlying with potentially interesting features that are more in-line with real-world
dynamics, such as the presence of jumps in the underlying’s prices. Another benefit is its ability to
deal with complexity in options.

We will later study the use of Monte-Carlo for options relying on several underlying assets, il-
lustrating the accessibility and popularity of the method for any type of exotics, even though it
is computationally heavy and takes an incredible amount of time to run, the problem being the
unavailability of more efficient alternatives. So, as an input for our deep learning algorithm in this
section, we will run Monte-Carlo simulations on an underlying asset for two specific price dynam-
ics separately, Black-Scholes and Heston. We will then compare the hedging strategies that come
along with those dynamics, and compare them with what the benchmark produced for the same
underlying.
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Under the Black-Scholes framework, the dynamics of the underlying asset is governed by the geo-
metric Brownian motion defined below [2], with µ and σ being Ft-adapted processes, and Bt being
a Brownian motion.

dSt = µStdt+ σStdBt

Definition 4.2 For a given filtration F = (Fi) for i = 0...n, we define the Brownian motion Bt as
a continuous Ft-adapted process with B0 = 0 and Gaussian stationary and independent increments,
such that Bt −Bs ∼ N (0, t− s).

The discretized Black-Scholes dynamics will be used as a first set of inputs for our algorithm,
assuming that returns are log-normally distributed with unconstrained borrowing and lending at
rate r. We finally assume one can buy and sell any amount of the underlying asset in a market
without any trading costs. When the price dynamics are evaluated under the risk-neutral measure
P, we have that µ = 0 [2]. We shall use the log transform to generate our paths, with st = ln(St).

dst = −σ
2

2
dt+ σtdBt

The time discretization of such path then takes the following form under P, with the time interval
[0, T ] defined in Chapter 2, and using N time steps with i = 0..n.

st = st−1 −
σ2

2

T

N
+ σ

√
T

N
Zi (4.4)

In the above, Zi are independently distributed standard normal random variables.

Heston model

To allow for a more compelling analysis of the efficiency of our deep learning architecture, let us
introduce another model for which the volatility of the underlying is considered as a stochastic
process, in order to get us closer to real market dynamics. We choose to work with the Heston
model [15], under which the underlying’s dynamics St are defined below.

dSt = rStdt+
√
υtStdB

s
t , S0 ≥ 0

Heston is a stochastic volatility model, so we must also define the Cox-Ingersoll-Ross dynamics
followed by the underlying’s volatility υt, with ξ its own volatility, θ its mean and κ its mean-
reversion rate.

dυt = κ(θ − υt)dt+ ξ
√
υtdB

v
t , υ0 ≥ 0

Let us denote Bst and Bvt two Brownian motions, whose correlation will be defined as ρ, where
r denotes the risk-free rate, κ is the mean-reversion pace of the process, ξ is the volatility of the
volatility and θ is the long-term variance.

Properties 4.3 The volatility process υt is defined as strictly positive if the following condition,
known as the Feller condition, is respected.

2κθ ≥ ξ2
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As for Black-Scholes, let us use the discretized log-transformed paths for Heston, so that it can be
applied to the context of periodical hedging. We are still using the time interval [0, T ], with N time
steps and st = ln(St) for i = 0..n.

st = st−1 + r − υt−1
2

T

N
+
√
υt−1

√
T

N
ZSi (4.5)

We perform the same transform with the dynamics of the volatility. We previously used ZSi ∼
N (0, 1), and to account for the relationship between the spot and volatility’s dynamics, we introduce

the following formula to characterize the jiggling of the volatility: ZVi = ρZSi +
√

1− ρ2 Zi, where
ZVi and Zi ∼ N (0, 1). Let the following be the dynamics of the volatility, with %t = ln(υt) for
i = 0..n.

%t = %t−1 +
1

υt−1

(
κ(θ − υt−1)− ξ2

2

)
T

N
+

(
ξ

√
υt−1

)√
T

N
ZVi (4.6)

Those paths will be generated in Python using Numpy, for both our training and testing sets. Those
random paths will be used to evaluate the robustness of our artificial neural network, which shall
then be compared to the hedging parameters generated using Black-Scholes’s partial differential
equation.

To resume, we will on one hand generate stochastic price paths for the underlying, feed them to the
neural network algorithm so that it can decipher key patterns in that data, and produce hedging
parameters accordingly. On the other hand, we will compute the Black-Scholes hedging parameters,
which will allow us to compare and thus evaluate the performance of the deep learning architecture.
Such reasoning shall also be observed for when we will study multi-asset options, the sole difference
being the growing complexity in the methods used.

Calibration of Heston parameters

Several constant parameters need to be introduced to model the dynamics defined above. The
process of searching for parameters that are best-suited to fit with real market dynamics is the
model calibration problem. Such is solved by comparing the analytical price of vanilla options
to their market value, and iteratively adjusting the parameters so as to minimize the difference
between the two.

A formula for the analytical price of a European call option considering Heston dynamics and defined
as a function of those parameters was introduced by [8], which the authors later used to calibrate
the Heston model based on a real data set of 144 vanilla call options with varying maturities from
the year 2003. Their results shall be used in this study and will be introduced later.

The pricing formula defined by [8] is the following, with K the strike price and T the time to
maturity. One can notice that this analytical solution takes the form of a Fourier transform [24].
This will allow for the computation of the complete option surface using fast Fourier transform, an
algorithm capable of calculating the discrete Fourier transform of a sequence in an efficient manner.

C(K,T ) =

(
e−0.75ln(K)

π

)∫ +∞

0

e−iυln(K)η(υ)dυ

η(υ) =
e−rTφ(υ − (α+ 1)i, T )

α2 + α− υ2 + i(2α+ 1)υ
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From that equation, we denote φ the characteristic function of the log-spot dynamics of the under-
lying asset, defined as such by [15] in its most simple form.

φ(u, t) = E
(
eiuln(St)|S0, σ

2
0

)
(4.7)

The detailed equation can be found in [15]. The fast Fourier transform-based methods are very
popular when it comes to pricing vanilla options, for they allow the simultaneous computation
of option values for a ladder of different strike levels. The complexity of (4.7) can make the
computations time-consuming, and being able to make simultaneous calculations saves time, which
is why they were used in [24] for such calibration.

4.2 An extensive literature review

Several interesting papers have emerged since [17] demonstrated an ability of artificial neural net-
works to price futures options with great accuracy. The works of [9] extended such studies to delta
and vega hedging problems for vanilla options, whose novelty was to introduce a training set of price
changes instead of simple prices, which resulted in more accurate hedging ratios, as the sensitivities
produced by the algorithm were better than when using the standard model.

The most important piece of research in the field of deep hedging vanillas is widely seen as being
[6], where the authors laid down extensive mathematical foundations to the use of deep learning
towards vanilla options hedging. By using convex risk measures as loss functions for the algorithm
in a context with trading costs, the paper demonstrates that given the trajectories of all hedging
instruments, with payoff samples and associated weights, deep learning techniques can be used to
compute close-to-optimal hedging parameters, for any transaction cost structure and risk measure.
The algorithm was tested under regular Brownian dynamics, as well as with Heston dynamics,
the latter allowing for trading in both the stock and a variance swap to complete the market.
Beyond using the theoretical notions defined in the paper, we have also been influenced by the
general architecture of their algorithm for our own research, although under Heston we chose not
to introduce the variance swap for simplicity.

The need to verify the robustness of the method was then further explored by [21], whose intuition
was to test the algorithm under different stochastic dynamics, with some introducing jump diffusion
in the price of the assets, with Bates and Variance-Gamma dynamics, although the resulting
parameters under the latter were far from being satisfying. An interesting loss function defined as
a mix of two expected shortfalls was however introduced, with promising results.

The paper of [7] finally demonstrated that fully delta-hedging is sub-optimal, and that depending
on how the current holding of underlying assets compares to the quantity recommended by said
delta-hedging, one should either under-hedge or over-hedge. By providing a loss function that
varies with the first two moments of the distribution of the hedging cost, the authors illustrated an
ability of reinforcement learning to outperform regular delta-hedging with trading costs, and laid
down interesting ideas for further developments, such as the introduction of other moments of the
hedging cost distribution.

4.3 Results and discussion

Research design

This section will be devoted to studying the hedging strategy produced by the neural network for
an At-The-Money European Call option with initial spot price S0 = 100, using discretized Black-
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S K vol r q T (in days) N (in days)
100 100 0.2 0.0 0.0 365 30

Table 1: Table 1: Option parameters we will use for our computations.

learning rate epochs batch size hidden layers neurons per layer loss
0.005 10 500 2 25 entropy

Table 2: Table 2: Algorithm parameters we will use for our computations.

Scholes as a benchmark. A simple neural network with L = 3 and Li = {1, 25, 25, 1} shall be
used in our research. The input data for the first two sets shall be taken from the discretized price
dynamics of the underlying defined in (4.4).

Outcome and benchmark comparison

As expected, the algorithm is capable of correctly replicating the payoffs of the European Call option
when evaluated under the previously introduced parameters. Minor changes are observed when we
tweak them a little. For example, the prediction for the price gets more precise with a lower batch
size and learning rate. However, the computation time that is required under those new conditions
makes it a losing trade-off. An even larger decrease of those parameters combined with more epochs
would cause over-fitting to appear, which happens when the algorithm is trained to decipher an
exact relationship in the training data, making it unable to detect resembling relationships in new
testing data. Here are the results for a given random set of underlying asset paths. Let us remark
that the approximation is accurate, as the PnL obtained by using the algorithm is close to the
real one computed using Black-Scholes, meaning that the δ parameters found by the network to
replicate the price of the option are coherent.

We also notice that increasing the number of epochs to 50 does not significantly increase the quality
of the prediction, although the PnL distribution is logically closer to what is obtained using the
benchmark, per the graph below. Overall, the model appears to capture well the relationship
between the asset moves and the price of the European Call option, when entropy is used as a loss
function.

4.4 Introducing Heston stochastic volatility

Context and relevance of the research

Assuming constant volatility is one of the most substantial drawbacks encountered when working
under Black-Scholes, as it reduces considerably the approximation for the hedging parameters of an

Black-Scholes price Monte-Carlo price Algorithm price
2.287 2.243 2.375

Table 3: Table 3: Price results for a given simulation with 10 epochs.
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Figure 1: Figure 1: Deep Hedging PnL against Black-Scholes benchmark with 10 epochs.

Black-Scholes price Monte-Carlo price Algorithm price
2.287 2.313 2.358

Table 4: Table 4: Price results for a given simulation with 50 epochs.

Figure 2: Figure 2: Deep Hedging PnL against Black-Scholes benchmark with 50 epochs.
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υ0 κ θ ξ ρ
0.0654 0.6067 0.0707 0.2928 -0.7571

Figure 3: Table 5: Calibrated Heston parameters.

Black-Scholes price Monte-Carlo price Algorithm price
2.287 3.089 3.194

Table 5: Table 6: Price results for a given simulation with 10 epochs.

option. Therefore, we would prefer to work under Heston dynamics, which considers the volatility
of the asset as a stochastic process. We will illustrate how successful the artificial neural network is
at retrieving the fundamental patterns in such new data. The architecture of the algorithm studied
in the preceding section is to be used again, as we shall only change the input data, being derived
from the log-transformed discretized price paths for the asset s and its volatility %, defined in (4.5)
and (4.6).

Results and conclusions

To work with Heston, we needed to introduce calibrated parameters for the model. We decided to
use those computed in [24]. Those parameters verify the Feller condition.

We expected the algorithm to continue to produce coherent hedging parameters compared to the
Black-Scholes benchmark. For only 10 epochs however, the results were shifted upwards. This is
probably due to the higher complexity of the relationship in the asset price dynamics caused by the
introduction of a stochastic volatility.

It gets slightly better when increasing the number of epochs to 50, but the downward shift in
PnL proposed by the algorithm seems to be persistent. However, we shall also envision that the
benchmark may bear some responsibility for this gap. Indeed, we can see through the Monte-Carlo
price, which is computed as the discounted average of all future payoffs, that it is a lot closer to
what the algorithm produces. We can emit the hypothesis that because of the added uncertainty
caused by the stochasticity of the volatility, the option gets more expensive. The algorithm may
not entirely be wrong considering the latter.

All in all, the algorithm seemed to capture with a surprising accuracy the dynamics behind pricing
and hedging an option relying on a single underlying asset, although some inconsistencies appeared
when testing the network under Heston dynamics and few epochs. The final parts of this paper
will focus on adapting and testing our algorithm in a multi-asset option context.

Black-Scholes price Monte-Carlo price Algorithm price
2.287 3.029 3.165

Table 6: Table 7: Price results for a given simulation with 50 epochs.
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Figure 4: Figure 3: Deep Hedging PnL against Black-Scholes benchmark with 10 epochs.

Figure 5: Figure 4: Deep Hedging PnL against Black-Scholes benchmark with 50 epochs.
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5 Deep Hedging Rainbows

5.1 Financial Theory

Defining correlation options

One of the main challenges in portfolio management is the handling of risk exposure, to an asset
class or a market sector for example. Although partly done through hedging, another fundamental
strategy that is heavily used to reduce any risk exposure is known as diversification, which deals
with how capital is allocated in the first place, in such a way as to minimize the risk of the portfolio.

The key idea behind diversification is that we consider the correlation between the movements of
several asset prices. It is often perceived as preferable for the assets of a portfolio to be uncorrelated,
as the plunge of one’s price has lower chances of affecting the price of the other assets in our portfolio,
hence offering protection. One can therefore see the potential of speculating on correlation, and
several of the most traded derivatives on the market are purely based on such.

Rainbow options are correlation options. As was previously introduced, they are exotic derivatives
relying on the performance of several underlying assets, each being a color of the rainbow. Several
different types of payoff structures for the rainbow option can exist on the market, allowing for any
investor with a specific view on the correlation of some assets to find an interest in trading the
option. For example, a basket of two underlying stocks allowing the buyer to purchase the worst
performing one can be perceived as an ideal protection, as long as the correlation between both
assets is high, and is called a worst-of call option. The latter is the most popular of the class, and
shall be studied for the rest of the section. The payoff Π of a worst-of call option on n underlying
assets is given by the following equation, with Si and K being the spot and strike prices of the
underlying asset i at maturity T .

Π = max

(
0, min

1≤i≤n
(Si(T ))−K

)
(5.1)

As was already introduced in Chapter 4, multi-asset options are too complex for a closed-form
present value to be easily computed, and analytical approximations using Monte-Carlo are accessible
solutions for pricing and hedging purposes. The following sub-sections will lay out the research
design for the use of artificial neural networks as a potentially efficient alternative method for such
purposes.

Price and sensitivities of rainbows under Stulz

An analytical solution for the price of a worst-of-two call option was introduced by [25], along
with an intuitive formula to compute its sensitivity to first-order price moves of its two underlying
assets. We shall successively introduce those results. The latter will allow us to compute the two
delta-hedging parameters according to the two spot prices at any moment. In its training phase,
the neural network will be fed with a three-dimensional matrix filled with input data, which can be
seen as being two-dimensional matrices for each simulation composed of the two stock price paths.
Let us now lay out the theoretical foundations that led to the pricing and hedging formulas for
European rainbow options.

The assumptions required are the same as those defined for Black-Scholes in the previous chapter,
with the two assets following the stochastic differential system defined below. Let us notice that
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those dynamics are different than the Multi-asset geometric Brownian motion. We will study this
difference later. {

dSit = µiS
i
tdt+ σiS

i
tdB

i
t with i ∈ {1, 2}

dB1
t dB2

t = dρ

We assume that ρ, µi and σi for i ∈ {1, 2} are constants. Under the no-arbitrage condition, finding
the value of the option comes down to computing the value of a portfolio P which replicates its
payoffs. So, following Ito’s Lemma, we derive the dynamics of P as a function of the spot prices,
as well as the time to maturity.

dP (S1, S2, τ) =
∂P

∂S1
dS1 +

∂P

∂S2
dS2 −

∂P

∂τ
dt

+
1

2

(
∂2P

∂S2
1

S2
1σ

2
1 +

∂2P

∂S2
2

S2
2σ

2
2 + 2

∂2P

∂S1S2
S1S2 ρ σ1σ2

)
dt

Given that the above defined partial differential equation is verified, P is self-financing. By noting
that when either one of the assets has price 0 the option is worthless, and using the constraint
defined in (5.1), we can find the analytical solution to the price R of a worst-of two call option [25],
with strike price K.

R = S1N2 (η1, β1, ρ1) + S2N2 (η2, β2, ρ2)−Ke−rτ N2 (γ1, γ2, ρ)

There, we have that N2(η, β, θ) is the bivariate cumulative standard normal distribution, η and β
being the two upper limits of integration, and θ being the correlation coefficient. We also detail the
simplifications that were made above.

ηi =
1

σi
√
τ

(
ln

(
Si
K

)
+

(
r +

σ2
i

2

)
τ

)
γi = ηi − σi

√
τ

σ2 = σ2
1 + σ2

2 − 2ρσ1σ2 ρi =
ρ σj − σi

σ

βi =
1

σ
√
τ

(
ln

(
Sj
Si

)
− σ2

√
τ

2

)
Finally, one can compute the partial derivative of the price of the rainbow option with respect to
the two assets, so as to define the delta-hedging parameters [25].

δi =
∂R

∂Si
= N2(ηi, βi, ρi) +N1

(
ηi − ρiβi√

1− ρ2i

)
e−

1
2β

2
1

1√
k

−
(
Sj
Si

)
N1

ηj − ρjβj√
1− ρ2j

 e−
1
2β

2
2

1√
k

With j ∈ {1, 2}, j 6= i and k = min{ln(Sj)}. The design of our further research will be the following.
The input data that will be fed into the algorithm will consist of the paths taken by the two assets.
The algorithm will try to learn key features in the data, so that when introduced to new paths, the
network is able to produce coherent and optimal hedging parameters. We will then compare those
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results with our benchmark, to assess if the algorithm can be used as a substitute rainbow hedging
method.

The computation of the cumulative bivariate normal probability N2(η, β, θ) is to be approximated.
For the rest of this paper, we will consider the algorithm proposed by [11], whose surprisingly
accurate method grants us four-decimal correct approximations. The detailed application can be
found in the code.

Multi-asset Brownian motion extension

In the setting where the price dynamics of two assets are to be generated, one has to consider
the correlation in their movements. Whereas we could be tempted to proceed as in Chapter 4
while modelling Heston co-movements of the spot and the volatility, here we must remark that the
influence is bilateral. To take such into account, we naturally choose to work with an extension
of the geometric Brownian motion defined earlier for single asset dynamics. A multidimensional
geometric Brownian motion can be specified through a system of stochastic differential equations,
assuming Si with i = {1, 2} our assets.

dSit = µiS
i
tdt+ σiS

i
tdB

i
t (5.2)

Considering the correlation between those two stochastic processes, we define byM the covariance
matrix associated with the two Brownian motions.

Mi j = ρijσiσj

By recalling that a Brownian motion B with zero mean and said covariance can be written as AB,
with A the Cholesky factor of M, such that AAT =M, we can rewrite the system defined in (5.2)
as the following.

dSit = µiS
i
tdt+

2∑
j=1

AijS
i
tdB

i
t

Finally, and to allow for practical implementation, we decide to discretize such system. Let us
define the following algorithm for simulating multidimensional geometric Brownian motions with
the price log-transformed, such that st = ln(St).

sit = sit−1 −
σ2

2

T

N
+

√
T

N

 2∑
j=1

AijZ
i
k

 (5.3)

Those are the discretized price dynamics for the two underlying assets on which our exotic option
is to be studied. We notice that in such context, the correlation coefficient ρ is constant, which
remains unrealistic but makes computations easier. We recall that the price dynamics are evaluated
under P, so that µi = 0 [2].

Multi-asset dynamics with jump-diffusion under Kou

The final and most exciting part of our research will be to evaluate the performance of our deep
learning algorithm when fitted with stochastic paths for the two underlying assets endowed with
random and unexpected large price moves. These sudden trends are characterized by jumps, and
following the work of [20] on multivariate jump-diffusion models for asset pricing, we can derive the
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following stochastic differential equation for two assets, and remark the similarity with the system
defined in (5.2) for i, j ∈ {1, 2}, i 6= j.

dSit = µiS
i
tdt+

2∑
j=1

AijS
i
tdB

i
t + d

N(t)∑
k=1

(V ik − 1)

 (5.4)

We adopted the same notations as previously for the Cholesky matrix A. The final term between
parentheses characterizes the additional jump part, described by a Poisson process N(t), where
jumps are denoted Vk. We consider two types of jumps, the first one being an individual jump that
affects only one of the two assets, and is defined with the Poisson rate λi for i ∈ {1, 2}. The second
being a common jump that affects both our assets, with λc being the corresponding Poisson rate.
The final rate λ of our Poisson process is therefore λ = λc + λ1 + λ2. This illustrates how complex
it would be to consider more than two underlyings.

The jump Vk is such that its log-transform has the following distribution, with M the covariance
matrix, µc the vector for the means of the two assets, and µi and σi respectively the mean return
and volatility of asset i. Let us remark that our individual and common jumps follow respectively
one-dimensional and two-dimensional asymmetric Laplace distributions that we will denote AL [20].

(
ln(V 1

k ), ln(V 2
k )
)

=


AL2(µc,M) −→ probability = λc

λ

(AL1(µ1, σ
2
1), 0)′ −→ probability = λ1

λ

(0,AL1(µ2, σ
2
2))′ −→ probability = λ2

λ

Computation is made easier using the following relationship, where µi is the mean vector of the
assets,Mi is the covariance matrix, Z is an exponential law and i is the number of assets [19]. We
remark that for individual jumps, AL1 is a scalar, and when common jumps are considered, AL2

is a two-entry array.

ALi(µi,Mi) = µiZ +
√
Z Ni(0,Mi)

From then on, we can derive the discrete dynamics of the two asset paths, considering Zik a cumu-
lative standard normal distribution and N a Poisson process with rate λ. All three are assumed to
be independent of the jumps themselves.

sit = sit−1 −
σ2

2

T

N
+

√
T

N

 2∑
j=1

AijZ
i
k

+

√
N

(
λ
T

N

)
Λi (5.5)

We chose to denote by Λi the distribution for the log-transform of the jump, which could be either
individual or common to both assets. Let us remark that if the jump is individual to i, then
Λj = 0. Λ is a two entry vector that impacts both assets at every period, based on the probability
distribution defined above.

The Python implementation will then be straightforward. We will build a module that is capable of
producing the joint dynamics of our two assets over N time steps, and we will then loop for a given
number of simulations to produce the training set that is to be given as inputs for the algorithm.
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Stulz price Monte-Carlo price Algorithm price
2.393 2.580 8.304

Table 7: Table 8: Price results for a given simulation with 10 epochs.

5.2 An extensive literature review

The few and recent papers that tackled the use of artificial neural networks in pricing and hedging
problems for exotics options have illustrated the potential of the method in such a context. In his
study of Bermudian options, [22] demonstrated an interesting technique to semi-statically hedge
high-dimensional and path-dependant claims, by defining an upper and lower bound for the price
of the option. Beyond illustrating the simplicity and efficiency of the model for both pricing and
hedging purposes, the neural networks used are flexible, as they have been tested for several types
of options with linear and nonlinear payoff structures, whose outcome was demonstrated to be at
least as good as the benchmark, using mean squared error (2.7) as a loss function.

Some other developments regarding rainbow options were seen with [5], where the author demon-
strated that the algorithm could not produce satisfying present values for such options, although it
was able to price an option as a Monte-Carlo method would. The reason is that the network was not
able to correctly decipher the pricing function for the option, contrarily to what was demonstrated
by [16]. The reason advanced by [5] was the lack of a qualitative data set to be fed to the algorithm,
an issue that was further studied in [12], where the author successfully managed to value basket
options on six underlyings, with prodigious pace when compared to Monte-Carlo simulations.

5.3 Results and discussion

Brief overview of the research design

In this section, we will tackle the problem of producing coherent hedging parameters for a worst-of
call option on two underlying assets with same initial spot price Si0 = 100, and whose dynamics
are defined in (5.2). As a benchmark, we shall use the analytical formula defined above for delta
computation of said rainbow option. The same architecture as in the preceding chapter shall be
used. The loss function chosen is the entropy risk measure (2.6). The input data that we load
into the deep learning algorithm will be comprised of stochastic paths for the two assets as defined
in (5.2). The final data used to verify the performance of the algorithm will also be generated
randomly.

Outcome and benchmark comparison

Given the complexity of that new algorithm, we did not initially expect very accurate results on the
first try. Indeed, hedging an option relying on two underlying assets required the network to account
for a two-dimensional set of inputs, as well as being able to produce two outputs. Keeping the same
parameters as those introduced previously, we can observe that the outcome of the algorithm is
not entirely off the chart, although major refinements will need to be implemented. In that first
try with regular spot dynamics, let us observe that the algorithm was able to produce a good
overall replication of the worst-of-two call option, with the profits and losses matching quite well
the benchmark from Stulz.

Let us notice that contrary to the previously studied algorithm for vanilla hedging, the dispersion
of the profits and losses is much higher when hedging rainbow options. The algorithm and the
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Figure 6: Figure 5: Deep Hedging PnL against Stulz benchmark with 10 epochs.

Stulz price Monte-Carlo price Algorithm price
2.393 2.507 3.541

Table 8: Table 9: Price results for a given simulation with mse as a loss function.

benchmark are a lot less precise in the production of a hedging strategy against the moves of
the two assets for which the option is written on, which makes sense given the added complexity
embedded with both the dynamics and the payoff structure of the derivative.

The increase in the number of epochs did not strongly increased the quality of the outcome, and it
was observed that the model purely stopped learning after having passed the threshold of 20 epochs,
while increasing the learning rate to 0.01 to accelerate the convergence towards Stulz benchmark.

Using the mean squared error (2.8) this time radically improves the quality of our results, and the
price given by the algorithm now seems to converge towards the Stulz benchmark, using once again
the model parameters defined in Table 2.

5.4 Multivariate case jump-diffusion extension

Context and relevance of the research

While it makes sense for our deep learning algorithm to be tested for hedging purposes under
regular market dynamics, it comes as even more interesting to verify its robustness under large and
unexpected moves in the underlying asset prices. Indeed, it is during those rare and unpredictable
events that the hedging parameters produced are more likely to be off the chart, forcing traders to
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Figure 7: Figure 6: Deep Hedging PnL against Stulz with mse as a loss function.

learning rate epochs batch size hidden layers neurons per layer loss
0.01 10 200 4 25 mse

Table 9: Table 10: Algorithm parameters we will use for our computations.

manually re-calibrate their strategies. This sub-section will be devoted to running our algorithm
in such a context, by providing the artificial neural networks with asset paths generated using the
method defined above [20], with the dynamics introduced in (5.5). The benchmark remains the
discrete delta-hedge [25].

Results and conclusions

The presence of jumps in the dynamics of an underlying asset is usually extremely difficult to
consider for standard valuation models, so our expectations regarding the accuracy of our algorithm
are limited for this first try. Adding to that the duality of assets to be considered, and we obtain
joint dynamics that can be extremely tricky to analyze, even with sophisticated neural networks.

That being said, the large number of experiments we ran provided prices that were far from in-
coherent, although still wrong. The model initially could not perceive the relationship stemming
from those new dynamics, and the resulting parameters and prices were extremely far from our
benchmark. Tweaking the parameters then allowed us to refine our model and obtain cleaner out-
puts. We chose to increase the number of hidden layers, and we also used a larger learning rate
and a smaller batch size. The mean squared error (2.8) was eventually the preferred loss function,
as it was shown to provide stronger results than the entropy did in the preceding section. We will
however show that the dispersion in the profits and losses remains extremely large, which massively
jeopardizes the overall quality of the replication, and thus of the delta-hedging strategy.
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Stulz price Monte-Carlo price Algorithm price
2.393 1.397 14.081

Table 10: Table 11: Price results for rainbow options with jump diffusion dynamics.

Figure 8: Figure 7: Deep Hedging PnL against Stulz with jump diffusion dynamics.

27



As one can observe with the results above, the algorithm was not capable of approximating the
correct hedging parameters for the rainbow options under such dynamics, and nothing changes with
an increased number of hidden layers or an increased learning rate: the algorithm seems to always
converge towards a price that is too far from what it should connect with.

6 Conclusion and discussion

6.1 Research outcome

In this thesis, we aimed at using the advantageous architecture of neural networks to design an
algorithm capable of hedging financial derivatives. We first demonstrated the remarkable ability of
the network to decipher simple single-asset dynamics and hedge a European Call option, although
a better Heston calibration and an improved benchmark might have shown stronger results.

We then tried to adapt our algorithm to a multi-asset situation by considering a worst-of two
Call option, for which the results were less satisfying. The algorithm was not capable of precisely
capturing the hedging dynamics behind the exotic option, and many factors can be coined as
responsible for such, starting with the intertwined dynamics of the two underlying assets, for which
the algorithm struggled to extract a relationship that would have given the exact delta-hedging
parameters. Increasing the number of epochs and the learning rate did not significantly increase
the quality of the outcome.

Then finally, when adding another layer of complexity with a jump diffusion parameter for both
asset dynamics, we were able to observe some limits to the deep learning method, as it was clear
that the model was not able to correctly decipher the embedded functions and relationships in that
data, and so for a large choice of model parameters. Some improvements could probably be foreseen
with the use of recurrent neural networks instead, which would allow a deeper perception of those
complex dynamics.

6.2 Limits of the deep learning method

This study was concentrated on studying vanilla and fairly restricted exotic options, as we believe
that despite the remarkable computational power of artificial networks, they would most likely fail
to capture more complex relationships, considering for example a worst-of ten Call option, which
would require the manipulation and approximation of extremely intertwined dynamics. Dealing
with such issues may be realized through a larger training set and an increased variety in the
generated price dynamics, considering for example a stochastic correlation matrix between the
underlyings. But then again, managing to hedge single exotic derivatives fails to help the trader
who wishes to hedge an entire portfolio.

The final and most inherent shortcoming to working with artificial neural networks is the black-box
problem. As introduced earlier, those algorithms approximate non-linear relationships in the input
data during the training phase [16], and then use such functions on new data during the testing
phase. Those functions remain invisible to the user, so one might find it difficult to entirely trust
the outcome of the network, especially in the context of hedging derivatives, where the stakes can
be very high. The deep learning model can then at best be used jointly with another more classic
and reliable method, which will at least reduce the degree to which traders have to rely on their
intuition to re-calibrate their strategies. The algorithm could also offer clues for innovative and
potentially efficient new strategies, reinforcing its position as a research tool for traders.
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6.3 Further research

Reflecting on this research, several improvements could be foreseen in the context of hedging rainbow
options, particularly through three major refinements: the necessity to consider stochastic corre-
lations between the colors of the rainbow, and the possibility to implement trading signals in the
form of forecasts for the volatility and the correlation matrices of the underlyings.

Considering simple correlation trading signals

The high degree of complexity that implementing those methods in such context would require
refrained us from wanting to do so, but the need to further train the algorithm in a context
that aspires to imitate real market dynamics will inevitably lead us to such future developments.
We could however consider a direct correlation trading signal that would encompass the first two
moments of the distribution for the correlation between our two assets. Using such might let
the algorithm observe the appearance of specific patterns before episodes of correlation moves
and understand their consequences on the hedging parameters, in order to adjust the strategy
consequently.

Volatility forecasts through quantile regression

Following the work of [27], we propose to implement quantile regression to determine volatility fore-
casts for the returns of our underlyings, and use those as trading signals, introduced as additional
inputs to our deep learning algorithm. This method relies on the analysis of stock return auto-
correlation on several sub-parts of the overall distribution, based on which we can infer a general
autocorrelation pattern which we will use to determine future volatility levels.

This method was proven robust, for it does not assume a fixed conditional distribution of stock
returns, an assumption that truly harmed other simpler models. Indeed, it was shown by [27] that
autocorrelation on both extremes of the distribution is different. When stock prices are increasing,
their future returns appeared as negatively correlated with their past returns, which is also true
contrariwise. Using such might allow the algorithm to refine its hedging strategy, by considering
deeper dynamics than those observable with current models.

Covariance forecasts with support vector regression

In a market where the intertwined moves of hundreds of assets need to be considered, having
an accurate forecast for the complete covariance matrix of the returns is of much more help for
our analysis, as the sole consideration of volatility forecasts omits the pondering of correlation
coefficients between the assets.

As advanced by [13], an innovative, stable and flexible method can be observed in support vector
regression to produce forecasts for covariance matrices, for which the major advantage is the sur-
prising reliability of the method in highly tumultuous markets, when accurate forecasts are the most
needed. Another significant development is the growing efficiency of the method when compared
to univariate generalized autoregressive conditional heteroskedasticity models [13].

The complete methodology introduced by [13] is decomposed into five steps, during which we shall
successively extract the Cholesky from the range-based covariance matrix of returns that is to be
first estimated, and then forecast the individual Cholesky factors instead of the whole matrix,
for this decomposition allows the positive definiteness of the forecasted covariance matrix. We
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then produce our covariance forecast by applying the reverse decomposition, using the previously
estimated Cholesky factors.

The efficiency of support vector regression mainly comes from its ability to consider nonlinear
data-generating processes, whereas other methods assume their linearity. This is crucial, as the
nonlinearity of the dynamics of assets was observed in several studies [13]. Exploring the use of
such methods for an increasingly accurate representation of the market dynamics, in the context of
training a neural network to hedge financial derivatives, remains the most exciting further develop-
ment that is to be realized following this paper.
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