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Abstract. Among the fourth round finalists of the NIST post-quantum
cryptography standardization process for public-key encryption algo-
rithms and key encapsulation mechanisms, three rely on hard problems
from coding theory. Key encapsulation mechanisms are frequently used
in hybrid cryptographic systems: a public-key algorithm for key exchange
and a secret key algorithm for communication. A major point is thus the
initial key exchange that is performed thanks to a key encapsulation
mechanism. In this paper, we analyze side-channel vulnerabilities of the
key encapsulation mechanism implemented by the Classic McEliece cryp-
tosystem, whose security is based on the syndrome decoding problem.
We use side-channel leakages to reduce the complexity of the syndrome
decoding problem by reducing the length of the code considered. The
columns punctured from the original code reduce the complexity of a
hard problem from coding theory. This approach leads to efficient pro-
filed side-channel attacks that recover the session key with high success
rates, even in noisy scenarios.

Keywords: Post-quantum cryptography · Code-based cryptography ·
Side-channel attacks.

1 Introduction

Recent developments in quantum computing threaten classical public key cryp-
tography. Indeed, Shor’s algorithm [22] could be used to break public key schemes
such as RSA or Diffie-Hellman. Therefore, to prepare security in the quantum
computing era, in 2016, NIST launched a standardization process for post-
quantum cryptography standards to replace current public-key standards which
are vulnerable to quantum computing. In July 2022, the fourth round of the stan-
dardization process started. Among the four remaining candidates for public key
encryption algorithms and key encapsulation mechanisms, three are code-based
solutions: Classic McEliece [2], BIKE [3], and HQC [1].

All three proposals implement a solution for IND-CCA secure key exchange
using a Key Encapsulation Mechanism (KEM) [15]. KEMs are used to exchange



private session key over an insecure channel using public cryptography scheme.
To avoid short message and padding issues while using public-key encryption
schemes, a key derivation function is used allowing to generate the message sent
in the right domain and using most of the time a hash function to derive a
uniform random looking secret key, assuming enough entropy in the original
message. The security of the private communication relies on the security of the
KEM, assuming that secure symmetric algorithms are used. Moreover KEM can
be seen as a key-exchange protocol in which only a single message is transmitted,
if one of the two parties knows the public key of the second party.

For both Classic McEliece and BIKE, the security of the KEM relies on
the hardness of the binary Syndrome Decoding Problem (SDP). Conversely, the
security of HQC essentially relies on the hardness of decoding a general linear
code. The binary SDP is an NP-hard problem stating the following. Knowing

a matrix H ∈ F(n−k)×n
2 , an integer t ≤ n and a vector s∗ ∈ Fn−k

2 , it is difficult
to recover e ∈ Fn

2 such that He = s∗ and HW(e) = t. The vector s∗ is usually
referred to as the syndrome. In a KEM, the vector s∗ is sent, and the secret data
e is reconstructed by the recipient. Thus the encapsulation algorithm consists
of a matrix-vector multiplication. The difficulty of the problem depends on the
weight t of e. The problem is difficult when e is of sufficiently “low weight”.

Some of the best solutions to solve the binary SDP make use of the so-called
“information set decoding” strategy (ISD) [19,23,14,16,4]. The key idea is to
exploit the “low weight” property of e by selecting a sufficient number of columns
that do not operate in the computation of s∗. Afterwards, Gaussian elimination
can be performed on the other columns. However, selecting the columns is a
challenging phase.

A consequence of the NIST post-quantum cryptography standardization pro-
cess is to accelerate the development of implementations of code-based cryptog-
raphy algorithms [21,7,18,8]. In particular, Classic McEliece has been imple-
mented on 32-bit microprocessor ARM Cortex-M4 [7], with the limitation that
the public key must be stored in the flash memory, and on a Xlilinx Artix-7
FPGA [8]. Implementations on constrained platforms, such as micro-controllers
or FPGAs, also lead to physical attacks against different algorithms of code-
based cryptography [13,5,9,12]. For example, it has been shown that the session
key can be recovered by side-channel attacks with multiple observations during
the decapsulation process [13] or with a single observation during the encapsula-
tion process [9]. Colombier et al. demonstrated the effectiveness of their method
against an implementation on the Chipwhisperer platform, which is known to
allow for low-noise side-channel measurements. The efficiency of the proposed
method in a more noisy setting was later analyzed in [10].

The focus of this article is on Classic McEliece, in particular the matrix-vector
multiplication over F2 used in the syndrome computation. Conversely, BIKE uses
polynomial multiplication. Adaptations are needed to apply the attack against
other finalists but this is out of the scope of this article.

Contribution This article exposes in details the inherent limitations of previously
proposed side-channel attacks against Classic McEliece presented in [9]. In par-



ticular, we explain the performance degradation of the existing approach when
large noise levels are considered. Besides the intrinsic uncertainty of the Ham-
ming weight classifier, we show that, overall, it is mainly due to an accumulation
of errors in the way the integer syndrome is computed, as required by the at-
tack setting and explained below. We then present a new, more efficient method
that achieves better resistance against noise present in side-channel traces by
resorting to a more traditional divide-and-conquer approach.

This new method is a profiled side-channel attack against Niederreiter-like
constructions using packed matrix-vector multiplications, as used in the round
four finalist of the NIST standardization process Classic McEliece. Moreover,
we also study the feasibility of the proposed attacks against implementations
that use a larger register size, which is a clear trend in embedded software
implementations.

Organization This article is organized as follows. Section 2 describes existing
message-recovery attacks on the packed matrix-vector multiplication as used for
the syndrome computation in the Classic McEliece cryptosystem. The inherent
limitations of these attacks, in particular when it comes to error propagation, are
detailed in Section 3. In Section 4, we introduce a divide-and-conquer strategy
that efficiently limits the propagation of errors. Experimental results are given
in Section 5 and we conclude in Section 6.

2 Message-recovery attacks on the packed matrix-vector
multiplication

This section introduces code-based KEMs and the target algorithm of the pro-
posed side-channel attack: Classic McEliece. In particular, we focus on the
matrix-vector multiplication performed during the encapsulation step. We also
present previous side-channel attacks that recover the shared session key.

Notations The following notations are used in this article. A finite field is
denoted by F. Matrices and vectors are written in bold capital, respectively
small letters, e.g. a vector of length n is c = (c1, . . . , cn) and a k × n matrix
is H = (hi,j)(i,j)∈N∗

k×N∗
n
. Let Hi,(j−1)w+1:jw be the jth block of size w of the

ith row of the H matrix. The concatenation of the vectors a and b is written
as a ∥ b. The Hamming weight of a binary vector HW(e) is the number of its
non-zero coordinates. The Hamming distance between two vectors a and b is
written as HD(a, b).

2.1 Classic McEliece encapsulation

Like others KEMs, Classic McEliece includes three operations: key generation,
encapsulation and decapsulation. We focus on the encapsulation step in this
work. This is detailed in Algorithm 1, where the target operation of the proposed
attack is annotated. This target operation performs a matrix-vector multiplica-
tion over F2 and its implementation is detailed in the next subsection.



Algorithm 1 Classic McEliece encapsulation

1: function Encap(H)
2: Generate a uniform random vector e ∈ Fn

2 with HW(e) = t.
3: Compute C ←He ▷ target operation
4: Compute K ← H(1 ∥ e ∥ C) ▷ session key
5: return (C,K)

2.2 Packed matrix-vector multiplication

Algorithm 2 shows the pseudo code of a software implementation of the matrix-
vector multiplication over F2. This implementation is referred to as “packed”
since multiple bits are stored together in the same machine word. The size of the
machine word w is a parameter in this algorithm. In the reference implemen-
tation of the Classic McEliece submission [2], w = 8. In the ARM Cortex-M4
implementation by Chen and Chou [7], w = 32. In the vectorized implementa-
tion of the Classic McEliece submission [2], w = 64. Boolean instructions then
operate over the full machine word to perform operations in parallel. That is the
key operation of the encapsulation step in the Classic McEliece KEM. As shown
in [9], the strongest side-channel leakage occurs for line 5, when the intermediate
variable b is updated by repeatedly adding the logical AND of a matrix entry
and a vector entry. To be able to refer to specific intermediate values later, we
write these intermediate variables as if they were stored in a matrix: bi,j . In
actual implementations, a single machine word is used.

Algorithm 2 Packed matrix-vector multiplication over F2

Require: A binary (n, n − k) matrix H, and a binary vector e of n elements, the
register size w (should be a power of 2)

Ensure: A binary vector s∗ = He
1: s∗ ← 0
2: for i ← 1 to (n− k) do
3: bi,0 ← 0
4: for j ← 1 to n

w
do

5: bi,j ← bi,j−1 ⊕Hi,(j−1)w+1:jw ∧ ej

6: t← w
2

7: while t > 0 do
8: bi, n

w
← bi, n

w
⊕ (bi, n

w
≫ t)

9: t← t
2

10: s∗
⌊ i

w ⌋
← s∗
⌊ i

w ⌋
∨
((

bi, n
w
∧ 1

)
≪ (i mod w)

)
11: return s∗



2.3 Message recovery attack

We describe the method introduced in [9], to recover session keys on cryp-
tosystems based on the binary syndrome decoding problem. This attack uses
side-channel information obtained during the encapsulation step. The message
recovery attack is composed of four steps, which we describe hereafter.

1. Side-channel analysis: the goal of this first step is to estimate the Hamming
weight of the successive intermediate values of b during the matrix-vector
multiplication, as shown on line 5 in Algorithm 2. For the loop index i, j, we
denote by H̃W(bi,j) the best guess for the Hamming weight of bi,j . In [9],
authors use a random-forest classifiers for this step, but other classifiers can
be used.

2. Derivation of the integer syndrome: with the Hamming weight information
obtained in the first step, the attacker may estimate the values of the syn-
drome s in N, in addition to the binary syndrome s∗ which is public. This
is done by summing the differences of the maximum of each value found in
the previous step, as detailed in Equation (1).

1 ≤ i ≤ (n− k) s̃i =

n
w∑

j=1

∣∣∣H̃W(bi,j)− H̃W(bi,j−1)
∣∣∣ (1)

This computation requires a good estimation of the Hamming weight of the
intermediate values. In addition, it only works under additional conditions
between bi,j and bi,j−1. If those conditions are not met, it can lead to derive
an erroneous value for the integer syndrome. We discuss these issues in more
details in Section 3.

3. Sort columns: the next step is to separate the columns into two sets. The first
set consists of the columns whose indexes are in the support of e. The second
set consists of the other columns. However, this separation is a difficult task.
In [9], authors compute a score for each column and sort columns according
to this score. The score for the column j, based on the work of Feige and
Lellouche [11], is defined in Equation (2).

∀j ∈ J1, nK, ψj(s̃) = H.,j · s̃+H .,j · s̃ (2)

where H is the complementary of the matrix Hand s̃ = t− s̃, where t is the
weight of e as dictated by the security parameters. In [10], the efficiency of
this score function is analyzed in the presence of errors.

4. Information Set Decoding: as shown in [10] the score function allows to
efficiently discriminate most of the columns in the support of e from other
columns even in the presence of noise. However, a few columns may still
be wrongly classified. In that case, the score function is used to provide a
“good” initial permutation for ISD methods.

This method achieves a good success rate in a realistic scenario with mea-
surements on a ChipWhisperer platform [17] for various sets of parameters.



3 Limitation of the CDCG method

In this section, we present errors that can appear in the method of [9] and
reduce the efficiency of the message recovery. We concentrate on side-channel
and recombination errors that lead to an incorrect syndrome in N, i.e., the two
first steps presented in section 2.3. Eventually, we discuss the impact of such
errors on scores output by the ψ score function [11].

3.1 Side-channel analysis error

We first try to identify how side-channel analysis errors alter the estimation of the
syndrome s in N. Due to their nature and noise in measurements, side-channel
attacks can output guesses that are not the targeted sensitive information used
in the implementation.

We say that the side-channel distinguisher makes an error if the highest guess
score does not correspond to the Hamming weight of the actual computation:
H̃W(bi,j) ̸= HW(bi,j). We may rewrite the faulty guess as:

H̃W(bi,j) = HW(bi,j) + εi,j ,

with εi,j ̸= 0.
Due to the leakage model, the error is generally small: εi,j ∈ {−1, 1} The

Hamming weight guess is the real Hamming weight plus or minus one. In practice,
we observe on real traces that the error is small for template and random forests
when used as side-channel distinguishers.

If the side-channel distinguisher made some errors for the value in row i and
column j then the estimated syndrome in N will be flawed in the ith position.
This is clear when considering how the ith component of s is derived from the
Hamming weight of the intermediate values:

s̃i =

n
w∑

j=1

|H̃W(bi,j−1)− H̃W(bi,j)|

=

n
w∑

j=1

|HW(bi,j−1)−HW(bi,j)|+ εsi , (3)

where εsi comes from the side-channel error on the ith syndrome entry.
This εi,j value actually appears in two Hamming distances: for j and j − 1.

As a consequence, the recombination step given in Equation (3) amplifies the
side channel noise.
Remark : s̃i corresponds to the number of transitions between H̃W(bi,j−1) and

H̃W(bi,j) for j going from 1 to n/w.

Example 1. For a given row i, let HW(bi,.) = (0, 0, 1, 1, 1, 2, 1, 1) be the error-free
sequence of Hamming weights of the intermediate values. Then, the estimation



part should give a guess value of s̃i = 3. Indeed, there are 3 transitions 0 →
1, 1 → 2 and 2 → 1.

Depending on where the error εi,j appears, the consequence on the s̃i value
differs.

– Let’s assume we observe H̃W(bi,.) = (0, 1, 1, 1, 1, 2, 1, 1), εi,1 = +1 affects
HW(bi,1). We derive s̃i = 3 and therefore εsi = 0

– Let’s assume we observe H̃W(bi,.) = (0, 0, 1, 1, 1, 1, 1, 1), εi,5 = −1 affects
HW(bi,5). We derive s̃i = 1 and therefore εsi = −2

– Let’s assume we observe H̃W(bi,.) = (0, 0, 1, 1, 1, 2, 1, 2), εi,7 = +1 affects
HW(bi,7). We derive s̃i = 4 and therefore εsi = 1

As shown in the example, a negative or null impact on the estimation of
the integer syndrome entry can happen. However, these cases occur with low
probability.

The side-channel error is directly linked to the accuracy of the side-channel
distinguisher. Indeed, the accuracy corresponds to the probability of a correct
guess. We see that, with high probability, any wrong guess of the side-channel
distinguisher will lead to an overestimation of the syndrome entry.

3.2 “Double-cancellation” error

Another error that can appear, as already discussed in [9], was called the “dou-
ble cancellation” issue. We recall the problem briefly. We are interested in the
successive Hamming weights of the partial matrix-vector product. However, the
observations we get are the successive Hamming weight of the b value in line 5
of Algorithm 2. Thus, in the CDCG method, the values we are interested in are
estimated with the following approximation of the Hamming distance from the
Hamming weight:

HD(a, b) ≃ |HW(a)−HW(b)|.

With this approximation, the 2HW(b∧¬(a)) part of the Hamming distance
computation is omitted. In our case, we know that both vectors a and b are
close due to the low weight of the input vector. Indeed, if we look at Line 5
in Algorithm 2, we can notice that in our case, we can consider one vector a
to be random, but the second is of the form b = a ⊕ c, with c of low weight.
Indeed c corresponds to the bitwise AND between a vector that looks random,
a sub-group of columns of a line of the matrix H, that is indistinguishable from
a random matrix, and a subpart of the vector e of low weight c = Hi,j ∧ ej . In
particular, HW(c) ≥ 2 implies HW(e) ≥ 2.

The following theorem gives the weight distribution of the blocks.

Theorem 1. Let n, t, w be strictly positive integers with t < n and w divides n.
Let Xi be a discrete random variable denoting the number of blocks of weight i of
a binary string of length n and Hamming weight t, where each block has length



w. For any 2 ≤ j ≤ w let αj ∈ {0, . . . , t} satisfying

j∑
ℓ=1

ℓαℓ = t. Then

Pr(Xj = αj , . . . , X2 = α2, X1 = α1) =

( n
w

α1,...,αj

)(
n
t

) j∏
ℓ=1

(
w

ℓ

)αℓ

, (4)

where
( n

w
α1,...,αj

)
denotes the multinomial coefficient.

Corollary 1. The probability that the maximum weight is 1 equals
wt(

n
w
t )

(nt)
.

Moreover, for t = o(n) when n → ∞ the probability that the weights of the
blocks are at most 1 can be approximated by

e
− (w−1)t2

2n

(
1+

(w+1)t
3n +

(w2+w+1)t2

6n2 +O
(

t5

n4

))
.

In particular, using only the first term in the exponent for block sizes w ∈
{8, 32, 64} gives e−

7t2

2n , e−
31t2

2n and e−
63t2

2n .

Remark 1. In the case of Classic McEliece, we have t = O( n
log2 n ), which implies

that the probability of having only weights 0 and 1 blocks is roughly e
−c n

log22 n ,
where c is a constant related to the block size w.

One can deduce that the probability of having at least one block of weight
2 is extremely high. This result implies that the CDCG method has a very high
probability of underestimating the Hamming weights. One can notice, as shown
in Table 1a, that for block sizes greater or equal to 32, the probability of having
only blocks of weight 0 and 1 is extremely small. For w = 8 the weight of the
blocks is with high probability at most 2. This shows that it is highly probable
that at least one word of the e vector will lead to a recombination error, which
will affect the estimated syndrome. We also know that in such a case, all wrong
estimated values are underestimated.

Having many blocks of weight strictly greater than 1 increases the estima-
tion error. Therefore, determining the expected number of such blocks would be
useful.

In Table 1b, we compute a lower bound on the expected value of the number
of such blocks. Notice that for w = 8 the number of blocks having weight larger
than or equal to 2 is indeed, extremely small. Hence in such a scenario, the
syndrome estimation should be rather close to the exact value. On the opposite,
for w = 64 around 30% of the blocks are of Hamming weight greater than or
equal to 2. As we shall see, large values of w have a devastating impact on the
success probability of the CDCG method.

3.3 Dependent error

In Section 3.2, we showed that it is highly probable that we have a block of the
vector with Hamming weight greater than 1. These blocks are problematic since



Table 1: Weight of blocks ej for Classic McEliece parameters: probability of the
maximum weight and lower bound on the average number of blocks with weights
larger than or equal to 2.

(a) Pr(max(HW(ej)))

w max (3488,64) (4608,96) (6688,128)

8

= 1 0.01378 0.00061 0.00012
≤ 2 0.873 0.767 0.739
≤ 3 0.997 0.993 0.992
≤ 4 0.999 0.999 0.999
≤ 5 0.999 0.999 0.999

32

= 1 8.69× 10−11 7.59× 10−19 3.1× 10−22

≤ 2 0.0804 0.0077 0.0038
≤ 3 0.753 0.543 0.519
≤ 4 0.974 0.936 0.936
≤ 5 0.997 0.994 0.994

64

= 1 0 0 0
≤ 2 5.66× 10−5 4.21× 10−9 3.80× 10−10

≤ 3 0.159 0.021 0.015
≤ 4 0.715 0.455 0.444
≤ 5 0.947 0.865 0.869

(b) |{j | HW(ej) ≥ 2}|/(n/w)

w (3488,64) (4608,96) (6688, 128)

8 3.8/436 6.4/576 7.9/836

32 12.6/109 20.0/144 25.9/209

64 17.1/54.5 24.2/72 31.7/105

they will impact approximately one-fourth of the Hamming weight estimation
for the considered block.

Indeed, if HW(ej) = 2 and the Hi,j are random words, then approximately
one-fourth of the product for this word column has weight 2. Among this quarter,
half of them are underestimated with the approximation used in the CDCG
method if we consider a to be random. Hence, the double cancelation error will
impact several results and the error induces by a word of weight higher than 1
will lead to dependent errors on the different syndrome estimations.

3.4 Impact of the error on the score computation

After the estimation step, the side-channel analysis error is increased. This error
is then propagated with the evaluation of the column score with the ψ function
from [11], as used in [9]. The score for the column j is defined as:

∀j ∈ J1, nK, ψj(s̃) = H.,j · s̃+H .,j · s̃. (5)

Thus if, the ith coordinate of s̃ is incorrect, it will modify the score of the whole
column. If Hi,j = 1, then the left part (H.,j · s̃) is affected. In that case, the
score computed by ψ for the column i is the error-free score plus εj . If Hi,j = 0,

then the left part (H .,j · s̃) is affected. In that case, the score computed by ψ
for the column i is the error-free score minus εj .



Therefore, any incorrect estimation during the side-channel analysis will in-
fluence all the results and affect them differently depending on the value of the
bit in the H matrix. On average, half of the columns score will be over-evaluated
while the other half will be under-evaluated.

4 Error propagation limitation

This section presents a different message recovery attack against Niederreiter-like
schemes, that make use of a matrix-vector multiplication in F2. Our new method
does not require estimating the syndrome in N, as previously done in [5,9].
Moreover, it just looks at side-channel results locally and does not propagate
the error discussed in Section 3.

4.1 Punctured matrices

In order to cope with the error propagation issue, we propose to use both the
incorrect and correct Hamming weight estimations to distinguish between blocks
of size w in the error vector where ej = 0 and ej ̸= 0. We recall that the attacker

has access to the estimations of the Hamming weight H̃W(bi,j).

For simplification, we will denote wi,j = H̃W(bi,j) and the matrix of es-
timated weights W = (wi,j)1≤i≤n−k,1≤j≤ n

w
. The jth column vector of W is

wj ∈ Nn−k, more exactly, wj =
(
H̃W(b1,j), H̃W(b2,j), . . . , H̃W(bn−k,j)

)
. Algo-

rithm 3 below determines for which index j we have ej = 0.

Algorithm 3 Zero-Distinguisher

Require: W : Hamming weight guess for each intermediate value of the b value in
Algorithm 2 and a the estimate accuracy computed during profiling phase

Ensure: A set L of blocks to be punctured
1: L = {∅}
2: γ = (n− k)(1− a2 − (1−a)2

2
) +

√
(2a2 + (1− a)2)(n− k) log(n− k)

3: if HW(w1) ≤ (n− k)(1− a) +
√

2a(n− k) log(n− k) then
4: L← L ∪ {1}
5: for j ← 2 to n

w
do

6: if HW(wj −wj−1) ≤ γ then
7: L← L ∪ {j}
8: return L

If ej = 0 then this implies that, bi,j = bi,j−1 for 2 ≤ i ≤ n − k. In other
words, for the first block, the estimated weight vector w1 should be equal to
zero if the estimation is perfect, and if the estimation is not perfect, depending
on the accuracy, the value of HW(w1) (number of coordinates different from
zero) should be rather small. For all the subsequent blocks, the condition ej = 0



Table 2: Distributions of the number of zeros in w1 and wj −wj−1.

HW(ej) = 0 HW(ej) = 1

n− k −HW(w1) B (n− k, a) B
(
n− k, 1+a

4

)
n− k −HW(wj −wj−1) B

(
n− k, a2 + (1−a)2

2

)
B
(
n− k, 1+a2

4

)

implies that there should be no difference between wj and wj−1 if the Ham-
ming weight estimation is perfect. In the non-perfect case, the vector wj −wj−1

should have a small Hamming weight, that depends on the classification accu-
racy. The following theorem gives the necessary conditions on the accuracy a
for Algorithm 3 to successfully output a list of valid zero-weight blocks. In order
to distinguish between the case HW(ej) = 0 and HW(ej) = 1 we will use the
following procedure. Denote the random variable Xi = n− k−HW(wj −wj−1)
given HW(ej) = 0 and Yi = n − k − HW(wj − wj−1) given HW(ej) = 1 for
j ≥ 2 (for j = 1 use X1 = n−k−HW(w1)). Then we say that one distinghuishes
between Xj and Yj with high probability as long as Pr(Xj > Yj) is close to 1.
To achieve our goal we will use known results on bounding the tail of binomial
distribution and set up a threshold value β∗ that acts as an almost perfect sep-
aration between the two distributions. More exactly, we will have that Xj ≥ β∗

w.h.p. and Yj < β∗ w.h.p. This value β∗ will depend on the accuracy parameter
a.

Theorem 2. Assume that the errors are limited to a distance of 1 and overesti-
mation and underestimation are equally probable. Let Xj and Yj be the random

variables as previously defined. Let a1 >
1
3+

40 log(n−k)
9(n−k) +

8
√
2
√

8 log(n−k)2+3(n−k) log(n−k)

9(n−k)

and a2 ≥ 0.5 be a solution of the equation:√
n− k

log(n− k)
=

4

5a2 − 4a+ 1

(√
(3a2 − 2a+ 1)−

√
1 + a2

2

)
.

Then Pr(Xj > Yj) > 1 − 1
(n−k) −

1
eO((3a−1)(n−k)) as long as a > a1 for j = 1

and a > a2 for j ≥ 2.
Moreover, the threshold separation value between the distributions of n− k−

Xj and n− k − Yj equals (n− k)(1− a) +
√
2a(n− k) log(n− k) for j = 1 and

(n− k)(1− a2 − (1−a)2

2 ) +
√

(2a2 + (1− a)2)(n− k) log(n− k) for j ≥ 2.

The proof of Theorem 2 is provided in the appendix. In Table 2, we illus-
trate the distributions of Xj and Yj . Some restrictions on the level of accu-
racy are to be examined in details. For example if a = 0.4 the distribution of
n−k−HW(wj −wj−1) is almost identical when HW(ej) = 0 and HW(ej) = 1.

The larger the difference between the parameters a (respectively a2 + (1−a)2

2 )

and 1+a
4 (respectively 1+a2

4 ) the better for the distinguisher. The one-distance
error assumption is based on Hamming weight leakages with Gaussian noise and



assumes univariate attacks. Previous work show that for low-noise setting this
assumption can be fulfilled [20,26]

4.2 T-test based score

The method presented in the Section 4.1 is efficient when considering small reg-
isters, or equivalently small sub-matrices. However, as the register size increases,
the number of columns kept is too high to perform an efficient ISD. For that, we
propose a method to select a permutation for the ISD that can be used on the
full matrix or its punctured version. Our method is based on a T-test [24]. The
T-test is commonly used for leakage assessment to detect if side-channel traces
are dependent on a parameter. The traces are separated into two sets according
to the known value of a parameter which may have an influence on them. Here,
we use the T-test to identify which columns have an impact on the side-channel
traces difference.

To achieve this, for all groups of columns (depending on the implementation
and parameter w), we separate the rows into two multisets according to the
Hamming distance recovered during the side-channel attack (difference of the
Hamming weight), the first one S0 for Hamming distances equal to 0, the second
one S1 for the other cases. In an error-free scenario, two cases occur:

– All rows are in the same multiset (S0), which means that none of the columns
are used in the computation of the syndrome, and thus, the considered co-
ordinates of the vector e are zero.

– The rows are distributed in the two multisets. Hence some coordinates of e
are different from zero. We use a statistical test to determine which columns
have a different distribution in the two multisets. If the coordinate of e is
null, then the distribution should be similar in the two multisets, whereas if
the coordinate of e is not null S0 should contain rows with 0, and S1 should
contain rows with 1.

In order to deal with errors, either from side-channel analysis or recombi-
nation, we use a statistical test to deal with the misplacement of rows in the
multisets. The method is described in Algorithm 4. The next step is to use the
permutation obtained as an initial permutation for ISD-based methods.

5 Experimental validation

In this section, we compare our method with the CDCG method in various set-
tings, to evaluate the different approaches in different case studies. In particular,
we want to illustrate the limitations of the CDCG method we described before in
Section 3. Our experimental validation confirms that our T-test-based approach
is better suited than the previous method in low and large noise settings. For
that, we consider simulation leakages and optimal template attacks [6] , i.e. with
perfect modeling. We consider a leakage of the form Li,j = HW(bi,j)+N (0, σ2),
where the Hamming weight HW can be on w = 8, 32 or 64-bit values and the



Algorithm 4 T-test based attacks

Require: W : Hamming weight guesses for each intermediate value of the b value in
Algorithm 2 and a binary (n, n− k) matrix H.

Ensure: A n-permutation ϕ (of the coordinates of the vector e).
1: for j ← 1 to n

w
do

2: (S0, S1)← ({∅}, {∅})
3: for i ← 1 to n− k do ▷ Separate columns according to side-channel analysis
4: if wi,j − wi,j−1 = 0 then
5: S0 ← S0 ∪Hi,(j−1)w+1:jw

6: else
7: S1 ← S1 ∪Hi,(j−1)w+1:jw

8: T-score[(j − 1)w + 1 : jw]←T-test(S0 ∼ S1) ▷ Perform feature selection

9: return ϕ← argsort(T-score) ▷ Sort in decreasing order

noise variance σ2 affects the side-channel distinguisher accuracy. To estimate the

accuracy of the template attack, we use the 3-σ rule a ≃ erf
(

1
2
√
2σ

)
, where erf

is the Gauss error function [25]. While this estimation may not be true for limit
case, i.e. HW(bi,j) = 0 or HW(bi,j) = w. We also evaluate the accuracy of the
distinguisher and the one observed in experimental results is close to the 3-σ rule
one. This is due to the fact that most of the values of HW(bi,j) are close to w

2 ,
and we consider a relatively low-noise case. Experiments confirm that the punc-
turing methods offer better results than the previous method for large registers
and/or high noise.

For reproducibility, the source code of the simulation is given in https:

//github.com/vingrosso/Side-channel-attacks-Classic-McEliece.git.

5.1 Punctured matrices

In this experiment, we consider the selection method to reduce the ISD problem
via the method presented in Section 4.1. We arbitrary set to 240 binary oper-
ations the maximum value of a computationally feasible attack. All the lower
values are part of the so-called computationally feasible zone.

The idea is to evaluate the resistance to noise of the selection method for
different register sizes. We simulate 100 experiments for the first and last set
of parameters of Classic McEliece (n, k, t) = (3488, 2720, 64) and (n, k, t) =
(8192, 6528, 128). The results are plotted in Figure 1.

As expected for small register size w = 8 and high accuracy a = 0.92 (σ =
0.26), the punctured method allows for an effective discrimination of a sufficient
number of blocks of columns. Consequently, a simple Gaussian elimination is
sufficient to recover the syndrome up to σ < 0.29. When the noise variance
increases, a reduced syndrome decoding problem can be solved. However, the
number of columns kept becomes rapidly large, close to all the columns, and
requires too much computational power to mount a successful attack.

For large registers (w = 32 and w = 64), each block kept adds 32 or 64
columns for only one or two selected columns. Hence, even for low noise and

https://github.com/vingrosso/Side-channel-attacks-Classic-McEliece.git
https://github.com/vingrosso/Side-channel-attacks-Classic-McEliece.git
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Fig. 1: Median number of columns selected with the punctured method. The
hatching zone corresponds to the computationally feasible zone.

high accuracy, the number of columns kept is too large and compromises the
success of an ISD attack.

For the set of parameters of Classic McEliece the length of the codes are
divided into a number of blocks n/w equal to [436, 576, 836, 1024] (for w =
8), [109, 144, 209, 256] (for w = 32) and [51, 72, 105, 128] (for w = 64). As for
the codimension of the code we obtain a number of blocks (n − k)/w equal to
[96, 156, 208, 208] (for w = 8), [24, 39, 52, 52] (for w = 32) and [12, 20, 26, 26] (for
w = 64).
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Fig. 2: Two ISD variants on punctured matrices (w = 32).



In Figure 2, we represent an estimated complexity of two ISD variants, Pra-
nge [19] and BJMM [4], when applied on punctured matrices. At each step, we
increase by one the number of blocks of size w = 32 that are to be removed.
Hence, we decrease the length of the matrix by 32, while keeping the same co-
dimension, i.e. n − k is constant. For example, the Prange variant applied on
n = 3488 with 80 punctured blocks, gives a complexity smaller than 230. In this
case, one has to remove 2560 columns out of the information set which is of size
k = 2720. The horizontal solid line at y = 40 points out a rough limit from
where ISD techniques become computationally feasible in practice. Computing
the intersection points of this line with the BJMM variants gives a number of
blocks to be punctured equal to [69, 89, 142, 189]. This implies that one needs to
distinguish [2208, 2848, 4544, 6048] columns, i.e. to select [1280, 1760, 2144, 2144]
columns. Represented as a factor, one has to select [1.66, 1.41, 1.28, 1.28] times
(n − k) columns to perform the BJMM attack with a time complexity of 240

binary operations.

5.2 Impact of the side-channel distinguisher accuracy

In this experiment, we evaluate the impact of the accuracy of the distinguisher on
the success of three methods: CDCG punctured, CDCG and T-test. We consider
Hamming weight 8-bit leakages, which means 0 ≤ HW(bi,j) ≤ 8, and we consider
different values of noise σ to modify the accuracy. We work with the first set of
parameters of Classic McEliece: (n, k, t) = (3488, 2720, 64). In Figure 3, we can
notice that for every accuracy parameter evaluated, the T-test method achieves
a similar success rate, while the success rate of the CDCG method drops rapidly
when the accuracy decreases. Applying the score function ψ on the punctured
matrix does not help: the limit appears as early as for σ = 0.3 for punctured
matrices as shown in the experiments of Section 5.1.

As discussed in Section 3.1, this was expected since every side-channel error
will have an effect on the syndrome computation, and each incorrect coordinate
in the syndrome will have an impact on all the column scores. By contrast, side-
channel error in the proposed method will only alter the two columns where the
incorrect Hamming weight is used, and, thanks to the large number of rows, we
can correct this error efficiently.

In Figure 4, we consider the T-test method only and look at the impact of
the accuracy value. As expected, the lower the accuracy, the less efficient the
methods. Finally we can notice that the size of the population in the T-test
method helps in the columns selection step. Indeed, when considering larger
parameter sets, the success rate increases.

5.3 Impact of the register size

In the next experiment, we highlight the recombination error discussed in sec-
tion 3.2. As discussed in the previous section, the larger the register, the more
likely dependent errors are. Hence, we expect the success rate of all methods to
drop when larger registers are considered. We fix the accuracy at 0.99822 for a
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Fig. 4: Success rate of the T-test method for w = 8 and different noise levels for
two Classic McEliece parameters sets.

noise level of σ = 0.16 that is close to the accuracy obtained on the real traces
used in [9].

In Figure 5, as expected, the success rate of all three methods decreases when
larger registers sizes are considered. However, in all cases, the proposed T-test-
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Fig. 5: Comparison of the three methods for different register sizes at noise level
σ = 0.16.

based method shows a better success rate than the CDCG method. We refer to
Section 3.3 for a more detailed explanation of the impact of the dependent error
on the CDCG method. The proposed method is also affected by larger register
sizes, especially when noise increase as shown in Figure 6. For the noise levels
considered in this figure, the punctured method does not manage to distinguish
blocks with ej = 0 and ej ̸= 0. Thus the T-test is the only solution when
considering large registers and “high” noise scenarios.

6 Conclusion

In this paper, we analyze and develop techniques to solve the syndrome decoding
problem with noisy information. In particular, we analyze some weaknesses of
the method proposed in [9]. The weaknesses are due to the redefinition of the
classical syndrome decoding problem into the integer syndrome decoding prob-
lem. We demonstrate that reformulating to integer syndrome decoding problem
propagate errors due to side-channel acquisition.
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Next, we present two methods based on a divide-and-conquer approach, to
avoid the propagation of the error. The methods presented are based on the fact
that the distribution of the side-channel observations are different when a block
of the vector e is 0 or not. The first method characterizes the distributions of
the estimation according to the accuracy and finds the bound on the number of
coordinates equal to 0 to distinguish if the block of the vector e is 0 or not. The
second solution separate the rows of the matrix according to the side-channel
leakages and evaluate if the rows seems to follow a uniform distribution in the two
set or follow different distributions in the two sets. The analysis of the behavior
of the two distribution is performed with a T-test. This allows us to discriminate
inside the block which coordinate is more likely to follow a different distribution,
allowing for an even finer analysis than the first method.

We finally validate our approach with various experiments. Both methods
presented offer a better success rate than state-of-the-art attacks and the T-test
is generally more efficient when considering larger registers or a higher level of
noise. Compared with existing attack paths, this method cannot be used when
the attacker obtains an integer syndrome only, without partial information, as
done in [5]. In [9], the author suggests using masking as a countermeasure. An
interesting research direction would be to evaluate the efficiency of the different
approaches when masked implementations are considered.

All presented side-channel attack methods on KEM for code-based cryptog-
raphy so far exploit profiling. An interesting research direction could be to turn
these attacks into a non-profiled attack. Another path could be to adapt the
technique to different rings or fields rather than the binary field considered. The
specific structure of the public key in the BIKE cryptosystem, a quasi-cyclic
moderate density parity check matrix, is not exploited in this work and deserves
more investigations.



Acknowledgements

This work was funded by a French national grant managed by the Agence Na-
tionale de la Recherche (ANR): project PQ-TLS reference ANR-22-PETQ-0008
through France 2023 program.

Appendix

Proof of Theorem 1

We deal here with a classical combinatorial urn process. It can be described as
follows. We place t balls into n

w urns, where the urns are labeled with respect to
the number of balls contained in the urn. Hence, we can have urns labeled with
integers from 0 to w. And we are interested in how many urns are labeled with
the integer j, where 1 ≤ j ≤ w. The number of possible (i2, . . . , ij) urns labeled
with (2, . . . , j) equals( n

w

i2

)( n
w − i2
i3

)
. . .

( n
w − i2 − · · · − ij−1

ij

)
. (6)

As there are n
w − i2 − · · · − ij remaining urns, which are either labeled with 0

or with 1, and since there are a total of t balls from which 2i2 + · · ·+ jij where
already extracted, we can place the remaining balls in the remaining urns in( n

w−i2−···−ij
t−2i2···−jij

)
possible ways. This makes a total of( n

w

i2

)( n
w − i2
i3

)
. . .

( n
w − i2 − · · · − ij−1

ij

)( n
w − i2 − · · · − ij
t− 2i2 · · · − jij

)
=

( n
w

i1, . . . , ij

)
.

(7)
with i1 = t− 2i2 − . . . jij .
Now each urn labeled with j has

(
w
j

)
possible representatives. Thus, we can

deduce the number of positive cases which equal( n
w

i1, . . . , ij

) j∏
l=1

(
w

l

)il

.

Proof of Theorem 2

To prove Theorem 2 we will proceed step by step. We shall assume that errors
are limited to a distance of 1 and overestimation and underestimation are equally
probable, and the side-channel distinguisher accuracy equal to a.

Lemma 1. Given ej = 0 we have

Pr (wℓ,1 = 0) = a, ∀1 ≤ ℓ ≤ n− k,

Pr (wℓ,j − wℓ,j−1 = 0) = a2 +
(1− a)2

2
,∀1 ≤ ℓ ≤ n− k, ∀2 ≤ j ≤ n

w
.



Proof. By definition of a we have Pr(wj,1 = 0) = a,∀1 ≤ ℓ ≤ n− k.
For the intermediate blocks Pr

(
wℓ,j − wbℓ,j−1

= 0
)
depends on the estima-

tions at step j−1 and j. So, either both estimations are correct, with probability
a2, or both estimations are overestimated (resp. underestimates), with probabil-
ity 1−a

2 .

Corollary 2. Given ej = 0 we have HW(w1) ∼ n − k − B(n − k, a) and

HW(wj −wj−1) ∼ n− k − B
(
n− k, a2 + (1−a)2

2

)
.

Lemma 2. Given HW(ej) = 1 we have

Pr(wℓ,1 = 0) =
1 + a

4
, ∀1 ≤ ℓ ≤ n− k,

Pr(wℓ,j − wℓ,j−1 = 0) =
1 + a2

4
, ∀1 ≤ ℓ ≤ n− k, ∀2 ≤ j ≤ n

w
.

Proof. For the first block, without loss of generality, we assume that ej(i) = 1.
We have two cases to obtain wℓ,1 = 0.

1. The ith bit of the word of the matrix is 0, and we correctly estimate wℓ,1,
the probability is a

2 .
2. The ith bit of the word of the matrix is 1, and we underestimate wℓ,1, prob-

ability 1−a
4 .

For the intermediate blocks, without loss of generality, we assume ej(i) = 1.
Thus, we have two cases to obtain wℓ,j − wℓ,j−1 = 0.

1. The ith bit of the word of the matrix is 0, and we made the same error on

both evaluations for j and j − 1. Both correct, with probability a2

2 , both

underestimated, with probability
(
1−a
2

)2
, similar for both overestimated,

with a probability
(
1−a
2

)2
.

2. The ith bit of the word of the matrix is 1.

(a) The weight increases (resp. decreases), i.e. HW(bℓ,j) = HW(bℓ,j−1) + 1,
we correctly estimate wℓ,j but underestimate (resp. overestimate) wℓ,j−1

with a probability 1
2
1−a
2 a (resp. 1

2
1−a
2 a).

(b) Similarly, the error can be on wℓ,j overestimation or underestimation,
and the difference will be zero depending on the impact on the weight
modification, here also, we have two times probability of 1

2
1
2
1−a
2 a.

By summing all cases, we obtain the following:

Pr(H̃W(bℓ,j)− H̃W(bℓ,j−1) = 0) =
a2

2
+

(
1− a

2

)2

+ 4

(
1

4

1− a

2
a

)
.

Corollary 3. Given HW(ej) = 1 we have HW(w1) ∼ n−k−B(n−k, 1+a
4 ) and

HW(wj −wj−1) ∼ n− k − B(n− k, 1+a2

4 ).



Proposition 1. Let a > 1
3 +

40 log(n−k)
9(n−k) +

8
√
2
√

8 log(n−k)2+3(n−k) log(n−k)

9(n−k) . Then,

Pr(X1 > Y1) ≥ 1− 1
(n−k) −

1
eO((3a−1)(n−k)) .

Moreover when e1 = 0 we have HW(w1) ≤ (n−k)(1−a)+
√

2a(n− k) log(n− k).

Proof. Let us first recall that X1 = n − k − HW(w1) given e1 = 0 and Y1 =
n−k−HW(w1) given HW(e1) = 1. Also, by Lemma 1 X1 ∼ B(n−k, a) and by
Lemma 2 Y1 ∼ B(n − k, 1+a

4 ). Let β∗ = (n − k) 1+a
4 + β. This value will act as

the separation between the distributions. More exactly we will require use the
fact that

Pr(X1 > Y1) ≥ Pr(X1 > (n− k)
1 + a

4
+ β) Pr(Y1 < (n− k)

1 + a

4
+ β). (8)

First we need to check the existence of such a value. For that we need to deter-

mine if such a positive integer β satisfying (n−k) 1+a
4 +

√
(n− k) 1+a

2 log(n− k) ≤
(n−k) 1+a

4 +β ≤ (n−k)a−
√
2a(n− k) log(n− k) exists. By making the upper

bound and lower bound equal, we obtain the wanted condition on a. This also
implies that β < (n− k) 3a−1

4 −
√
2a(n− k) log(n− k).

Second, we will determine the probability in (8). Using Chernoff one gets

Pr(Y1 ≥ (n− k)
1 + a

4
+ β) ≤ e

− β2

1+a
2

(n−k)+β 2
3 (9)

Pr(X1 ≤ (n− k)
1 + a

4
+ β) ≤ e−

((n−k)a−(n−k) 1+a
4

−β)2

2a(n−k) (10)

Pr(X1 > Y1) ≥ 1− e
− β2

1+a
2

(n−k)+β 2
3 − e−

((n−k) 3a−1
4

−β)2

2a(n−k) . (11)

Putting β = 3a−1
4 (n − k) −

√
2a(n− k) log(n− k) in the previous equation

we deduce Pr(X1 > Y1) ≥ 1 − 1
elog(n−k) − 1

eO((3a−1)(n−k)) . The threshold value

equals, β∗ = (n− k)a−
√

2a(n− k) log(n− k).

Proposition 2. Let a ≥ 0.5 be a solution of the equation√
n− k

log(n− k)
=

4

5a2 − 4a+ 1

(√
(3a2 − 2a+ 1)−

√
1 + a2

2

)
.

Then, Pr(X1 > Y1) ≥ 1− 1
(n−k) −

1
eO((3a−1)(n−k)) . Moreover, when ej = 0 we have

HW(wi−wi−1) ≤ (n−k)(1−a2− (1−a)2

2 )+
√
(2a2 + (1− a)2)(n− k) log(n− k).

The proof of this Proposition is identical to the previous one.
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