
HAL Id: hal-04059991
https://hal.science/hal-04059991

Preprint submitted on 5 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Poincaré and Arithmetic Revisited
Catherine Goldstein

To cite this version:

Catherine Goldstein. Poincaré and Arithmetic Revisited. 2023. �hal-04059991�

https://hal.science/hal-04059991
https://hal.archives-ouvertes.fr


Poincaré and Arithmetic Revisited

Catherine Goldstein

Abstract: Henri Poincaré’s forays into number theory have often been reduced to his pioneering
use of automorphic forms or his contribution to the arithmetic of elliptic curves. We examine here
all of his arithmetical papers, in particular the earliest, those devoted to the study of forms. From
this apparently marginal standpoint, we will be able to grasp several characteristic features of
Poincaré’s work at large. We show in particular the coherence of Poincaré’s point of view and
his mastery of the disciplinary issues of his day. We also come back to his knowledge of the
contemporary mathematical literature and to his links with the program of Charles Hermite, in
particular for a unity of mathematics built less on the reduction to concepts than on a circulation
of methods, tools and inspiration in all fields of mathematics and for a theory of numbers revealed
by the domains of the continuous.

Henri Poincaré is not especially renowned as an arithmetician. According to
André Weil who devoted an article to the issue,

Poincaré’s writings that touch upon arithmetic occupy an entire volume (volume V) of his
Complete Works. One could not deny that they are of unequal value. Some of them have
hardly any other interest than to show us how carefully Poincaré studied all of Hermite’s
work and how he assimilated his methods and results.[. . . ] What is particularly striking in
this volume is that in it Poincaré shows very little knowledge of German-language works.1

Nonetheless Weil singled out two major contributions, which may attest to
Poincaré’s universal and long-lasting genius: Poincaré’s use of non-Euclidean ge-
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1 [Weil 1955, p. 207]: “ Les écrits de Poincaré qui touchent à l’Arithmétique occupent un volume
entier (tome V des Œuvres). On ne saurait nier qu’ils sont de valeur inégale. Certains n’ont guère
d’autre intérêt que de nous faire voir combien attentivement Poincaré à ses débuts a étudié toute
l’œuvre d’Hermite et comme il s’en est assimilé les méthodes et les résultats. [. . . ] Ce qui frappe
dans le volume de ses Œuvres dont il s’agit, c’est surtout qu’il s’y montre fort peu instruit des
travaux en langue allemande."
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ometry in the theory of ternary quadratic forms [Poincaré 1882b, Poincaré 1886b,
Poincaré 1887],whichWeil prefers presenting as the first example of an arithmetically-
defined discontinuous group, and Poincaré’s celebrated paper on points with rational
coordinates on elliptic curves defined over the field of rational numbers (the origin
of Weil’s own 1928 thesis) [Poincaré 1901]. To these two gems, which still survive
in the living memory of mathematics, Nicolas Bergeron has more recently added
an article on invariants, published by Poincaré on the occasion of the centenary of
Peter Gustav Lejeune Dirichlet, [Poincaré 1905a], viewed from the perspective of
the modern theory of automorphic forms [Bergeron 2018].

Seen from such points of view which correspond to the disciplinary context of the
second half of the twentieth century and beyond, Poincaré’s results appear as isolated
and scattered, of little significance in illuminating the global characteristics of his
work. Here, on the contrary, I would like to restore the synchronic configuration
in which these results are inscribed, that of the last third of the nineteenth century.
My first and main objective is to show the coherence of Poincaré’s interventions
in number theory, a coherence that testifies, in a domain that was a priori marginal
for him, to several characteristics of his work, in particular his great mastery of the
disciplinary issues of his time and his ability to reformulate them in an approach
that was specific to him. Such a mastery is rooted in a knowledge of the state of the
art in mathematics and thus of previous mathematical literature in one form or an-
other. As Poincaré’s relation to his predecessors has often puzzled his commentators,
two secondary objectives of the present paper are to assess more clearly Poincaré’s
awareness of the international literature, in particular of the work of German math-
ematicians, and to discuss in more detail the components of his interactions with
Charles Hermite and with Hermite’s mathematics.2

1 Poincaré’s corpus on arithmetic

To delineate precisely the corpus to be constructed for our purpose is not as obvious as
it may seem. As is well-known, a complete numbered bibliography was provided by
Poincaré himself in the classical exercice of his Notice sur les travaux scientifiques,
preparatory to a candidacy for the French Academy of Sciences.3 This bibliography
was extended by him in 1901, at the request of Gösta Mittag-Leffler, then reproduced
and completed after his death in a special issue of Acta mathematica4 and of course
in Volume V of Poincaré’s Œuvres in 1950.

2 In this respect, I am only completing for arithmetic, and confirming, the conclusions of the fine ar-
ticle that Frédéric Brechenmacher devoted to Poincaré’s algebraic practices [Brechenmacher 2011].
3 See in particular [Poincaré 1886c]. Poincaré was elected in 1887, after having been ranked
increasingly higher on the lists of several previous elections, as was the tradition at the time
[Gray 2013, 162].
4 [Poincaré 1921]. The number (38) of the volume appears to date it to the year 1915, but, according
to Mittag-Leffler, it was finally printed only in 1921 because of the war.
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The bibliography is organized by journal and not by theme. But in the structured
presentation of his work that accompanies it, Poincaré gathered 16 articles under
the heading “Arithmetic”, to which Albert Châtelet, the editor of the Volume V of
Poincaré’sŒuvres in 1950, added several more, most of them published after 1900.5
However, the Volume V of Poincaré’s Œuvres is explicitly devoted to both algebra
and arithmetic. In the bibliography at the beginning of the volume, Châtelet thus
indiscriminately gathered together articles that Poincaré himself had put under the
headings “Algèbre” or “Algèbre de l’infini” (Algebra of the infinite) in 1901, as well
as later texts belonging (according to Châtelet) to one of these headings (“Arith-
métique", “Algèbre", “Algèbre de l’infini"). Then, the whole volume is organized
in sixteen sections, the first five being on algebraic, the last eleven on arithmetical
themes—this thematic distribution being itself only loosely based on Poincaré’s pre-
sentation for the earlier texts, without respecting a chronological order. It provides a
list of 20 articles devoted to arithmetic (20 among the 491 items of the bibliography
published in 1921).

However, the classification of this small set of texts as “arithmetic" was not shared
by all mathematicians in Poincaré’s era. In the Jahrbuch über die Fortschritte der
Mathematik, 3 of these 20 articles were not reviewed at all (probably because their
journal of publicationwas not included at the time among the titles taken into account
in the Jahrbuch). Châtelet had included in his list the part devoted to arithmetic and
algebra of a survey on the future of mathematics, presented in absentia at the fourth
International Congress of Mathematicians, held in Rome, and reproduced several
times in a variety of journals [Poincaré 1908a]; it was classified as “Philosophy” by
the Jahrbuch. Moreover, 4 articles among the 20 were classified as algebra; for one of
them, this classification is understandable, as the article is the second half of a two-
part investigation, one on the algebraic, the other on the arithmetic, theory of forms,
and the two parts were simply reviewed together. But, more surprisingly, and despite
the word “arithmetic" in their titles, articles on the application of Fuchsian functions
to arithmetic and on arithmetical invariants were also classified as algebra or function
theory. As for the celebrated paper on the arithmetic of curves [Poincaré 1901], it
was classified as analytic geometry!6 Another classification is that of the Répertoire
bibliographique des sciences mathématiques (launched by a committee headed by
Poincaré himself!): only 2 articles—on the distribution of prime numbers, published
in 1891—were indexed in the section on number theory (section I). The others
were either in the section B (which includes linear substitutions, invariants and the
algebraic theory of forms) or in the section D (general theory of functions). As for the
Catalogue of Scientific Papers 1800-1900, issued by a committee of theRoyal Society

5 There are small discrepancies in the lists. For instance, the two earliest items, two notes to the
Comptes rendus de l’Académie des sciences in 1879, are counted as either one or two, depending
on the list. Note that there is also a misprint in Châtelet’s list, the article 122 should be instead 127
cf. [Poincaré 1921, p. 9] and [Poincaré 1950, p. 16].
6 Some of these papers have been reclassified as number theory in the recently-created online
database integrating the Jahrbuch and zbMATH Open, using a modern classification of all articles.
However, the 1901 paper escaped totally the attention of the reviewers, probably because of its
original classification and did not receive any modern MSC-headings (September 2022).
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of London in 1908, it also classified most of the relevant part of Poincaré’s papers
published before 1900 not in Number Theory (rubrics 2800–2920), but under the
headings of “Non-Euclidean Geometry” (6410), “Automorphic Functions” (4440) or
“General Theory of Quantics” (the English terminology for algebraic forms, 2040).7

Such variations are indicative of the uncertain status of number theory circa 1900.
They may also hint at the role played by Poincaré in the extension and restructuration
of the domain during the twentieth century. How then to select the texts on which to
focus for our study? Confronted by the same problem for algebra, Frédéric Brechen-
macher took a unique text as his point of departure, from which he unfolded an
intricate web of conceptual and disciplinary settings [Brechenmacher 2011]. Here,
the chronology provides us with a clue; the distribution of our 20 potential candidates
for the study of Poincaré’s arithmetic (see Fig.1) clearly displays an initial concen-
trated period, while Poincaré’s best known, later papers are rather chronologically
isolated.

Tableau 1

Années CRAS Other journals

1878 0 0

1879 2 0

1880 2 1

1881 1 2

1882 1 1

1883 0 0

1884 1 0

1885 0 1

1886 1 1

1887 0 1

1888 0 0

1889 0 0

1890 0 0

1891 1 1

1892 0 0

1893 0 0

1894 0 0

1895 0 0

1896 0 0

1897 0 0

1898 0 0

1899 0 0

1900 0 0

1901 0 1

1902 0 0

1903 0 0

1904 0 0

1905 0 1

1906 0 0

1907 0 0

1908 0 1

1909 0 0

1910 0 0

1911 0 0

1912 0 0

0

1

2

3

1878 1880 1882 1884 1886 1888 1890 1892 1894 1896 1898 1900 1902 1904 1906 1908 1910 1912

CRAS Other journals

�1

Fig. 1: The distribution of Poincaré’s articles on arithmetic by year.

In his 1886 presentation, Poincaré explains that his research on arithmetic con-
cerns exclusively the theory of forms.8. As explained above, my purpose is not to
study Poincaré’s influence on the development of number theory, but the coherence
of his arithmetical work and its sources. I shall thus first examine in some detail the

7 On the history of mathematical reviewing and the use of these classifi-
cations, see [Siegmund-Schulze 1993, Nabonnand & Rollet 2002, Goldstein 1999,
Goldstein & Schappacher 2007b].
8 [Poincaré 1886c, p. 61]: “Mes recherches arithmétiques ont exclusivement porté sur la théorie
des formes.
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15 articles published before 1890, then briefly, for reasons of space, discuss some of
their relations to the later articles.9

2 The arithmetic theory of forms in the nineteenth century

Although the work of German number theorists, such as Ernst-Eduard Kummer,
Richard Dedekind or David Hilbert, is better known, hundreds of papers on number
theory (even according, say, to the classification of the Jahrbuch) have been published
by French authors and in French journals in the last decades of the nineteenth century,
in particular in the Comptes rendus of the French Academy. They can be gathered
roughly in three main clusters, which can be defined and distinguished by their
references, their sources of inspiration, their methods and some of their practices
of publication. One of these clusters blossomed in particular thanks to the French
Association for the Avancement of Science (launched in 1872), which coordinated
teachers, engineers, military and amateurs with a strong interest in mathematics.
The two others were mostly restricted to academia and strongly relied on analytic
methods as well as complex functions and numbers; the difference between them
was mostly thematic and testified to their sources, Hermite and Kronecker’s works
for one, Dirichlet’s and Riemann’s on the distribution of prime numbers for the
other.10 Poincaré figured prominently in the second cluster, besides authors like
Camille Jordan, Émile Picard, Léon Charve, Georges Humbert, or, later, the editor
of Volume V of Poincaré’s Œuvres himself, Albert Châtelet. Their main topic was
the arithmetical study of algebraic forms, that is, of homogeneous polynomials in n
variables xi , with coefficients ai j in various sets of numbers (ordinary integers, real
numbers, and sometimes algebraic integers, in particular).

Two important aspects should be emphasized. First of all, this cluster was in-
ternational; we may mention for instance the work of Henry Smith in England,
of Eduard Selling or Paul Bachmann in Germany or of Luigi Bianchi in Italy.
Then, it largely benefited from the legacy of a research field which blossomed
in mid-century and that Norbert Schappacher and myself have called “arithmetic
algebraic analysis” [Goldstein & Schappacher 2007a, 24–55]; however, after 1870,
several parts of this research field became proper disciplines—in the sense of an
“object-oriented system of scientific activities” [Guntau & Laitko 1987]—with its
own subject matter, its key concepts, its main problems and soon its textbooks and
theses. This is particularly the case for the (arithmetical) theory of forms, see for
example [Smith 1861–1865, Charve 1880, Bachmann 1898].

If the study of sums of squares, in particular, began much earlier, a common
source for the arithmetic theory of forms in the nineteenth century was the fifth
section of Carl Friedrich Gauss’s Disquisitiones Arithmeticae, published in 1801.

9 This part of Poincaré’s work is presented in the ninth chapter of Jeremy Gray’s biography of
Poincaré [Gray 2013, 466-488], to which my present text can be considered as a footnote.
10 For the constitution of these clusters and details on each of them, see [Goldstein 1994,
Goldstein 1999, Goldstein & Schappacher 2007b].
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In this section, Gauss studies binary quadratic forms with integer coefficients, that
is expressions f (x, y) = axx + 2bxy + cyy, with a, b, c ∈ Z and two variables x,
y (and launched the study of ternary quadratic forms, with three variables x, y, z).
Two such forms f and g are said to be equivalent (or in the same class) if they
are the same up to an invertible linear change of variables with integer coefficients:
g(x, y) = f (αx + βy, γx + δy), where α, β, γ, δ are integers and αδ − βγ = ±1.11
Gauss singled out the determinant D = b2 − ac of the form f as a key quantity; any
two equivalent forms have the same determinant, that is, D is invariant under the
linear transformations considered above. Reciprocally, for a given determinant D,
Gauss proved that there are only finitely many different classes of equivalent forms.
He also defined what would be the two main problems of the theory of forms for the
whole of the nineteenth century:

I. Given any two forms having the same determinant, we want to know whether or not they
are equivalent [. . . ] Finally we want to find all the transformations of one form into the other
[. . . ].
II. Given a form, we want to find whether a given number can be represented by it and to
determine all the representations [Gauss 1801/1966, §158, p. 113].

While the second problem, for particular forms such as sums of squares, had been
in the spotlight previously, the first would take center stage during the remainder
of the century. This is indeed the problem that Poincaré (who nonetheless devoted
two articles to the second problem) emphasizes at the beginning of his first paper on
quadratic forms:

The main problems relating to quadratic forms can be reduced as one knows to a single one:
Recognizing whether two given forms are equivalent, and by what means one can pass from
one to the other.12

This shift in interest went hand in hand with a view of classification as a central
object of research in mathematics as well as in the natural sciences.13 “Science”,
Poincaré would write in 1905, “is above all a classification, a manner of bringing
together facts which appearances separate, although they are bound together by some
natural and hidden kinship. Science, in other words, is a system of relations.” 14

Relations between forms, from the point of view described above, manifest them-
selves through linear transformations. Their study, including the study of those
transforming a form into itself, became an important topic in the nineteenth century,
as well as the search for quantities, such as the determinant, that are invariant under
such transformations and can be used as characteristics in the classification. Gauss

11 Gauss calls the two forms f and g properly equivalent if αδ − βγ = 1. I shall not comment here
on these different types of equivalences, see [Goldstein & Schappacher 2007a, 8–13].
12 [Poincaré 1879a, 344]: Les principaux problèmes relatifs aux formes quadratiques se ramènent
comme on le sait à un seul : Reconnaître si deux formes données sont équivalentes, et par quel
moyen on peut passer de l’une à l’autre.
13 On this issue, see [Knight 1981, Tort 1989, Rey 1994, Lê & Paumier 2016].
14 [Poincaré 1905b, 172]: “[Q]u’est-ce que la science ? [. . . ] c’est avant tout une classification, une
façon de rapprocher des faits que les apparences séparaient, bien qu’ils fussent liés par quelque
parenté naturelle et cachée. La science, en d’autres termes, est un système de relations.
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also completed what would be a model for the classifications of forms in the future;
to find good, “simple” (in a sense to be explained) representatives of each class of
forms (the so-called reduced forms), to study the possible equivalence among the
reduced forms and to explain how to transform any form into a reduced form of its
class. In the case of the binary quadratic forms with integer coefficients and with
a strictly negative determinant (the case of a definite form), for instance, one can
choose in each class an essentially unique reduced form such that

−a < 2b ≤ a < c or 0 ≤ 2b ≤ a = c. (1)

There are a finite number of such reduced forms for a given D and every form is
equivalent to a reduced form. It is notable that for a reduced form, the coefficient a is

then less than 2
√
−D
3

(a bound which only depends on D, but not on the particular
class of the form); since a = f (1, 0) is obviously a value of the reduced form at
integer values of (x, y), it is also a value at integers of all the forms in the same
class, obtained by a linear change of variables from the reduced form. This remark
gave rise to questions about the smallest non-zero value of the numbers represented
by a form. For D > 0, there is no longer a unique reduced form in each class, but
Gauss organized equivalent reduced forms into finite “periods”. In this case, there
are also infinitely many transformations of a form into itself, such transformations
being associated to the solutions of the Pell-Fermat equation T2 − DU2 = 1.

Equivalent forms obviously represent the same integers, but the reciprocal is not
true. Again, in order to solve the second problem, Gauss refined his solution to
the first problem—more precisely, to his classification of forms—with new criteria,
leading him to the concepts of order and genus, two new characteristics attached to
a form. Last, but not least, he defined a relation called the composition of forms:
a form F is said to be a compound of the forms g and h if there exists linear
functions X and Y of xu, xv, yu, yv such that F (X,Y ) = g(x, y)h(u, v) (with extra
technical conditions). This construction is of course useful for the representation
of integers by forms, as a form composed of two others of the same determinant
can represent the product of two integers which are represented respectively by the
two forms. But its importance is more subtle; this relation among forms is not a
binary operation, that is, it is not possible to define “the” compound of two forms.
However, it behaves nicely with respect to equivalence and turns into such a binary
operation on classes of forms — that is, Gauss could define “the” composition of
two classes—a remarkable idea, as it displayed an operation on less than familiar
objects, classes of forms, made of infinitely many algebraic expressions. As such it
became a model for operation on sets of mathematical objects. In the Disquisitiones
arithmeticae, however, composition of forms relied upon complicated and extensive
algebraic computations; a conundrum for many readers of Gauss who would then
try to simplify or redefine it.

Among the numerous works inspired by Gauss, some were decisive in the con-
struction of a discipline around algebraic forms. At the end of the 1830s, Peter Gustav
Lejeune-Dirichlet introduced infinite series, built from inverses of quadratic forms
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with integer coefficients, in order to compute the number of classes of forms for a
given determinant. Other analytic means, in particular elliptic functions, were also
used by various authors to refine or generalize such computations. A decade later,
Hermite began a series of articles devoted to forms; considering first quadratic forms
with any number of variables and with real coefficients, he established through a
close reading of Gauss’s Section V bounds for the values of such forms at integers,
which depended only on the determinant and the number of variables (and not on
the coefficients of the form). This result, closely linked to the theory of reduction as
explained above, led him to a variety of applications, from the approximation of real
numbers by rationals to the properties of algebraic numbers or even of complex peri-
odic functions [Goldstein 2007]. Hermite also introduced his method of “continuous
reduction"; he associated to a given problem a family of positive definite quadratic
forms, indexed by real parameters, and thus transferred to the initial situation the
reduction procedures for this family (continuously, by changing the values of the
real parameters, hence the name of the method), in particular through a study of the
transformations leading to the reduction.

For instance, if f (x, y) = ax2 + 2bxy + cy2 is an indefinite quadratic form, with
a positive determinant D = b2 − ac, one can write f (x, y) = (x − αy)(x − βy) for
two real numbers α, β. Hermite thus associated to f the family of definite quadratic
forms f∆(X,Y ) = (x−αy)2+∆(x− βy)2, with a real positive parameter ∆. For each
∆, there exists a linear transformation such that the transformed form F∆ of f∆ is re-
duced. Applying to f the transformation(s) reducing f∆, for each ∆, Hermite showed
that there are only a finite number of transformed forms, reproducing themselves
periodically; they define the reduced forms associated to f . Remarkably, here, the
focus shifted from the forms to the transformations and these transformations became
the key elements in the reduction process. The mid-century witnessed a blossoming
of the study of such linear transformations, and it was the nature of their coefficients
that defined what the nature of the domain of research: it was considered to be arith-
metic when the coefficients were integers, algebra when they were real or complex
general numbers [Brechenmacher 2016]. The determinant, as explained, appeared as
the simplest instance of invariants of forms—functions built from the coefficients of
the forms which certain types of transformations leave unchanged (sometimes up to a
well-controlled term). In turn, such invariants played a key role in the classification of
forms and invariant theory was seen then as the new and fruitful direction for algebra
at large [Fisher 1966, Crilly 1986, Parshall 1989, Parshall 2006, Parshall 2023].

When Poincaré entered the scene at the end of the 1870s, a whole discipline
attached to the arithmetic of forms had thus been established, one of the first in
number theory [Goldstein & Schappacher 2007a, p. 54].15 Besides its subject matter,
it included core concepts such as invariants and reduced objects, theorems about the
two main problems (equivalence and the representation of integers by forms), a
systematization based on the classification of forms, methods of proof based on
the study and use of linear transformations such as that of continuous reduction. It

15 It is important to keep in mind that so-called “algebraic number theory”, that is, in fact, the theory
of algebraic number fields, has yet not reached that same stage at the time, despite the publication
of Dedekind’s first papers, nor had analytic number theory.
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constituted a separate subsection of the section on number theory in the recently
founded Jahrbuch über die Fortschritte der Mathematik. As we will see, Poincaré’s
memoirs took its place on this map in a quite natural way.

3 Lattices as a framework for forms

Poincaré’s first articles on forms were published at the beginning of his career
as a mathematician, in 1879.16 The two first items on his list of works are these
notes at the Academy of Sciences in August and November 1879, parts of a mem-
oir for which Hermite, Joseph Bertrand and Victor Puiseux were designated as
reviewers. A version of these results was then expanded into a longer article in
Journal de l’Ecole polytechnique [Poincaré 1880c]. This situation is standard and
it is difficult to establish a strict chronology for the subtopics relative to forms that
Poincaré handled between 1879 and 1889. Most often, he presented a memoir to
the Academy for review, publishing one or two short notes to announce his results,
sometimes withdrawing the larger memoir before any referee report and publish-
ing a long version of his results in another journal several years later. Roughly
speaking, Poincaré discussed two main situations. First of all, that of quadratic
forms, mostly binary and ternary, for which the main results were well-known; for
them, Poincaré introduced in particular new geometrical viewpoints, based either
on lattices ([Poincaré 1879a, Poincaré 1879b, Poincaré 1880c]) or on non-Euclidean
geometry ([Poincaré 1882b, Poincaré 1886b, Poincaré 1887]) and new analytical
invariants ([Poincaré 1880c, Poincaré 1882a]). Then, that of cubic forms, mostly
ternary and quaternary, asHermite and others had already thoroughly explored the bi-
nary cubic case ([Poincaré 1880a, Poincaré 1880b, Poincaré 1881c, Poincaré 1882c,
Poincaré 1886a]); for these forms, Poincaré aimed at classifying them, establishing
in particular relations between his classification and some already known classifica-
tions of algebraic curves. Moreover, if some aspect of his research lent itself easily
to generalization, for instance, to a greater number of variables, he would discuss
this general situation ([Poincaré 1881b, Poincaré 1885]). For reasons of space, I will
thus not strictly respect chronology, but will discuss each subtopic separately.

The 1879 manuscript and notes on forms were apparently the occasion of a
renewal of scientific links with Hermite, who had been his teacher at the Ecole
polytechnique a few years earlier.17 At least until Poincaré’s 1887 entry into the
Academy of Sciences, which Hermite had supported for several years in a row with

16 As as student, Poincaré also published a small contribution to the Nouvelles annales de mathé-
matiques, in 1874, see [Gray 2013, p. 157].
17 [Hermite & Mittag-Leffler, vol. 5, p. 110] : “Je crois à ce jeune homme, qui a été mon élève à
l’Ecole polytechnique en 1875, un véritable génie” (I believe that this young man, who was my
student at the Polytechnique in 1875, has a true genius). Hermite wrote to Poincaré on November
22, 1879 that he had not yet seen the August manuscript, but would be delighted to read at the
Academy the new note prepared by Poincaré (it would take place on November 24) [Poincaré 1986,
p. 164]. Let us remind our readers that Poincaré also defended his thesis on differential equations
and lacunary series, preceded by a short article on this topic, in August 1879; but Hermite was
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laudatory reports, and with the promotion of Poincaré among his colleagues, both
maintained regular and close relations—and Poincaré would play a decisive role
in the organization of Hermite’s Jubilee in 1892. Hermite’s judgment on Poincaré,
entrusted in a letter to Gösta Mittag-Leffler in March 1882, is well-known:

In confidence, with great fear of being overheard by Madame Hermite, I will tell you that
of our three mathematical stars [Paul Appell, Emile Picard and Poincaré], Poincaré seems
to me the brightest. And then, he is a charming young man, who, like me, is from Lorraine
and who knows my family very well.18

This statement is not an isolated one. Despite some opposition, on family as
well as on institutional grounds, Hermite insisted that “Poincaré is unquestionably
superior to Appell and Picard in terms of both the importance of his discoveries and
the number of published works."19 This on-going support is expressed in several
ways: Hermite sent Poincaré’s thesis to Mittag-Leffler [Hermite & Mittag-Leffler, I,
p. 118], asking him to recommend Poincaré’s work to Hugo Gyldén or Karl Weier-
strass [Hermite & Mittag-Leffler, I, p. 150]; he provided explanations on Poincaré’s
work to Georges Halphen [Poincaré 1986, p. 158]. Reciprocally, he fed Poincaré
with mathematical literature, commented on his results and, as we shall see, pushed
him to rewrite, develop or explore more deeply and more precisely certain topics.

In Poincaré’s first papers on forms, however, Hermite is notmentioned.20 Poincaré
acted here as he often would do in the future; he first re-read or re-established in a
specific framework results that were already known, at least partially. In our case, the
basic results are those of Gauss’s Section V, but the framework is more surprising.
In Poincaré’s terms:

The link between Bravais’ theory of parallelogrammatic lattices and that of quadratic forms
was noticed long ago, butwas restricted until now to definite forms. Themain objective of this
Memoir is to show that nothing is easier than applying the same geometrical representation
to indefinite forms. First I had to study the properties of these parallelogrammatic lattices

not a member of the defence committee, composed of Ossian Bonnet, Claude Bouquet and Gaston
Darboux.
18 [Hermite & Mittag-Leffler] : “Tout bas et en confidence, ayant grande crainte d’être entendu de
Madame Hermite, je vous dirai que de nos trois étoiles mathématiques [Appell, Picard et Poincaré],
Poincaré me semble la plus brillante. Et puis, c’est un charmant jeune homme, qui est lorrain
comme moi et qui connaît parfaitement ma famille.” Also quoted in [Gray 2013, p. 161]. Appell
was Hermite’s nephew by marriage and Picard his son-in-law, and they were thus both supported
by Hermite’s family members. On the other hand, both had been students at the Ecole normale
supérieure, which at that time was beginning to take over the training of scientific elites, under the
leadership of Louis Pasteur, against the influence of the Polytechnique.
19 [Hermite & Mittag-Leffler, vol. 5, p. 214]: “Poincaré est incontestablement supérieur à Appell et
à Picard sous le double rapport de l’importance des découvertes et du nombre des travaux publiés”.
20 The link to Poincaré’s other early works, on differential equations, with the topic proposed in
1879 for an Academy Prize has been noted by historians [Gray 2006], [Gray 2013, ch. 3]. But I have
not been able to find an explicit incentive for his work on forms. The theme of the decomposition
of a number as a sum of squares was proposed only in 1881. We note that a topic on crystals was
also proposed by the Academy for a mathematical prize in 1879 and, given Poincaré’s reference to
Auguste Bravais’s work on crystallography, this might have played a role in his interest in lattices
and forms, but I have not found any source to substantiate this.
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and to sketch out, so to speak, their arithmetic. [. . . ]. The lattices enjoy properties which
recall several of the properties of numbers.21

The representation of positive forms by lattices had been indeed popularizedmuch
earlier among mathematicians through Gauss’s review of Ludwig August Seeber’s
theory of reduction for ternary quadratic forms [Seeber 1824, Gauss 1831]. Seeber
worked on crystallography and his interest in quadratic forms was primarily linked
to the modelization of crystal properties. In his review, Gauss explains that, if on a
plane one chooses two coordinate axes making an angle of cosine b√

ac
, the value at

x, y of a positive definite form, ax2 + 2bxy + cy2, with a, b, c integers, represents
the square of the distance to the origin of the point with coordinates (x

√
a, y
√

c)
with respect to these axes. For x, y integers, the form is thus associated to a discrete
grid of points, situated at the intersection of two systems of lines which are parallel
respectively to each of the two axes and evenly spaced (

√
a for one system of lines,

√
c for the other) (see Fig. 2); this double system of lines defines a lattice. The plane

is thus cut into equal elementary parallelograms (such that no point of the lattice
lies inside such a parallelogram); the area of each such parallelogram is ac − b2

(that is, the absolute value of the determinant of the form). Different lattices can
be associated to the same distribution of lattice points, for different choices of the
systems of lines joining them; the forms associated with these different lattices
are then equivalent. In this framework, reduction theory can also be described in
geometrical terms: among the various lattices associated to the same given regular
discrete distribution of points, the lattice corresponding to a reduced form in Gauss’s
sense is the only one for which the fundamental triangle, joining the chosen origin
to the nearest points of the lattice, has acute angles; it is also the only one for
which the elementary parallelograms have their sides smaller than their diagonals
[Gauss 1831, Dirichlet 1850]. This geometrical representation of the theory of forms
can be extended in the same way to a three-dimensional space and ternary forms
ax2 + by2 + cz2 + 2a′yz + 2b′xz + 2c′xy, with three variables, the triple system of
lines defining a lattice with spacings of

√
a,
√

b,
√

c, respectively and the cosine of
the angle between two of the three axes being a′√

bc
, b′√

ac
, c′√

ab
respectively.

Poincaré, however, did not refer to Seeber or to Gauss’s review in his arithmetical
work. Besides Gauss’sDisquisitiones arithmeticae and, for one specific result, Eisen-
stein, Poincaré mentions only Auguste Bravais in [Poincaré 1880c]. Bravais, also an
engineer from the Polytechnique and a professor at this school (before Poincaré’s
time) developed his own theory of lattices, first on the plane in a botanical context,
then in a 3-dimensional setting for crystallography.22 Bravais’ viewpoint was neither

21 [Poincaré 1880c, pp. 177–178]: Le lien qui existe entre la théorie des réseaux parallélogram-
matiques de Bravais et celle des formes quadratiques a été remarqué depuis longtemps, mais on
s’est restreint jusqu’ici aux formes définies ; le but principal de ce Mémoire est de faire voir que
rien n’est plus facile que d’appliquer la même représentation géométrique aux formes indéfinies.
J’ai dû d’abord étudier les propriétés de ces réseaux parallélogrammatiques et en ébaucher pour
ainsi dire l’arithmétique [. . . ]. Les réseaux jouissent de propriétés qui rappellent quelques-unes des
propriétés des nombres.
22 [Bravais 1850, Bravais 1851] and the posthumous collection [Bravais 1866]. Bravais calls a 3-
dimensional lattice an “assemblage". For a survey of Bravais’s approach in crystallography from
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arithmetical, nor centered on quadratic forms; it relied on the study of symmetries
and of the effect on lattices of various transformations, in particular rotations. But
it constituted a common reference among Polytechnicians: Henry Résal, the editor
of the Journal de mathématiques pures et appliquées following Joseph Liouville,
referred for instance to Bravais in a footnote added to an article by Eduard Selling
on the reduction of quadratic forms which Hermite strongly recommended to all his
students [Selling 1877].23 And Camille Jordan explicitly followed Bravais’ study of
symmetries when he analysed the groups of space motions at the end of the 1860s
[Jordan 1868-1869]. Poincaré used Bravais not only as a mere designation of objects
(the so-called “Bravais lattices”), but also for his proofs of several basic properties
on lattices; he would also mention Bravais’s work elsewhere, in particular in his
lectures on the theory of light [Poincaré 1889, p. 195].

In [Poincaré 1880c], Poincaré introduces several notations for plane lattices and
their points. First of all, a plane lattice can be defined by four numbers (a, b, c, d),
the coordinates of the points of the lattice being given as

x = am + bn

y = cm + dn

with integers m, n.24 Poincaré also designates this lattice (a, b, c, d) by
[
a b
c d

]
. He

calls the quantity ad − bc the norm of the lattice (this is the area of an elementary
parallelogram of the lattice).

The first part of the 1880 memoir [Poincaré 1880c] is then explicitly devoted to
the development of an arithmetic of lattices, for the case where a, b, c, d are integers.
The objective is to mimic standard concepts of the arithmetic of integers, such
as multiples, divisors and primes. A multiple of a lattice, for instance, is simply
a sublattice—that is, all its points are contained among the points of the original
lattice. Two lattices are then said to be equivalent if each of them is a multiple of
the other. It is always possible, up to equivalence, to assume that d = 0; then, two
lattices (a, b, c, 0) and (a′, b′, c′, 0) are equivalent if and only if c = c′, b = b′, a ≡ a′

(mod b).25
Using Bravais’s results, Poincaré asserts that the norm of a lattice is the limit of

the ratio of the area of a circle to the number of lattice points inside the circle when
the radius increases indefinitely. This allows him to show that the norm of a lattice

a group theoretical point of view, see [Scholz 1989]; for a general presentation of Bravais’ work
using lattices, see [Boucard, Goldstein & Malécot, 2023].
23 But it is the German version of Selling’s paper, published in 1874, and not its French 1877
translation, that Poincaré would mention in [Poincaré 1882b].

24 The directions of the two systems of lines defining the lattice are then
(
a
c

)
and

(
b
d

)
.

25 As pointed out by Châtelet in the comments of his edition of Poincaré’s works, a unique
representative of each class of equivalence is obtained if one requires that a, b, c are positive and
0 < a < b.



Poincaré and Arithmetic Revisited 13

is divisible by the norms of its divisors and that the norms of two equivalent lattices
are equal. Poincaré then characterizes the smallest common multiple and the largest
common divisor of two lattices. He defines a “prime" lattice as a lattice the norm
of which is a prime number, and a “second" lattice as one the norm of which is the
power of a prime number.26 He concludes with the theorem that any lattice is the
least common multiple of co-prime second lattices.

Poincaré’s procedure, and his results, are thus very close to those of Richard
Dedekind’s theory of ideals, which had been published in French only a few years
earlier [Dedekind 1876, Dedekind 1877]. For instance, Dedekind defines a multiple
of an ideal in the following way: the ideal a is a multiple of the ideal b when “all
the numbers of the ideal a are contained in b” [Dedekind 1876, p. 287]; he then also
develops an arithmetic of ideals, in order to generalize and simplify Ernst Kummer’s
preceding theory of ideal numbers. However, while Poincaré, as we shall see, alluded
indeed to “ideal numbers” in his memoirs, he mentioned explicitly neither Kummer
nor Dedekind, reinterpreting their theories in his lattice framework.

Following Poincaré, let us then come back to quadratic forms. He represents now
a (binary quadratic) form am2 + 2bmn + cn2 (with a > 0) by the lattice



b√
a

√
a√

b2−ac
Da 0


or by



b a√
b2−ac

D 0


and its multiples.27 We recall that D = b2 − ac, which makes it obvious that the
entries in the last expression are integers when the form has integer coefficients. A
key point of this expression is to underline its relation with the usual association
between a quadratic form and a lattice that we have outlined above. In the usual
representation, valid for definite binary quadratic forms (with D < 0), the third term
would have been

√
ac−b2

a . As Poincaré explains, his representation allows a similar
treatment for definite and indefinite forms (those with D > 0). For definite forms, he
introduces it as a projection of the usual plane representation on another plane, which
makes an angle with the first that depends on D. It means in particular that the plane
hosting the lattices depends on the determinant D (or, from our modern perspective,
that the representation is proper to one specific quadratic field Q(

√
D).28 The whole

theory Poincaré then develops is associated to the forms of a given determinant

26 In French, the word “premier" is both ‘prime’ and ‘first’, which explains this somewhat strange
terminology. We would now prefer “primary" instead of “second".
27 There is here of course an abrupt change of notation, as a, b, c do not mean the same thing as
before! This type of change is frequent in Poincaré’s early papers. Darboux, for instance, complained
of precisely this when he reviewed Poincaré’s thesis in 1878-1879.
28 This apparent disadvantage could be seen in a positive way as changing the implicit Euclidean
metric of the Gauss-Seeber representation into a Lorentzian one.
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D, up to the square of an integer (which amounts to normalizing the size of the
elementary parallelograms). Again, on the plane, the same regular distribution of
points may correspond to different lattices, and thus give rise to different quadratic
forms, depending on the way the two systems of parallel lines joining these points
are chosen.

Let us now explain Poincaré’s geometrical definition of the theory of reduction
for binary quadratic indefinite forms. Let O, A, B be a fundamental triangle of the
lattice associated to an indefinite form, that is, a triangle with three points of the
lattice as vertices and such that no other point of the lattice lies inside the triangle.
Poincaré then constructs an elementary parallelogram of the lattice OABC, OA
and OB being sides of this parallelogram.29 Then OBC and OAC are two other
fundamental triangles of the lattice, that Poincaré calls “derived" from the first one
OAB. In the same way, OAB is itself derived from two other fundamental triangles
OAE and OBD (that Poincaré calls the “primitive" of OAB) (see Fig. 2).30

Fig. 2: A fundamental triangleOABof a lattice, its derivativesOACandOBC (left) and its primitives
OEB and OAD (right).

For instance, let x2 − 2y2 be our initial form: its determinant is D = 2, the

associated lattice is
[
0 1
1 0

]
. On the appropriate projection plane, the elementary

29 In the original text, the drawings do not show the lattices, they only sketch the construction of the
derived and primitive triangles. For convenience, our representation Fig. 2 is thus slightly different
from the original, as well as its normalization.
30 Again, Poincaré’s terminology is slightly confusing. The words “derived" and “primitive" (in
Latin or German, in particular) appear in the theory of forms developed by Gauss and some of his
successors. In their work, a “derived form" is also obtained by applying a certain transformation to
the initial form. But “primitive" here describes an intrinsic property of the form, for instance that its
coefficients a, b, c are co-prime. In this perspective, unlike Poincaré, ‘primitive’ and ‘derived’ do
not correspond to inverse transformations of each other. Poincaré’s terminology seems more akin
to that coming from function theory.
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parallelograms of the lattice are squares (the area being renormalized as 1 in the
projection). The points of the lattice are those of coordinates (x = n, y = m), with n
and m integers; the corresponding points A and B are respectively (0, 1) and (1, 0),
the point C being thus (1, 1). The new elementary parallelogram associated to the
derived triangle 0AC, for example, is thus 0, A,C ′,C, with C ′ = (1, 2) (the other
derived triangle 0BC gives rise to 0BCC” with C” = (2, 1)). Reciprocally, 0AB
is one of the two primitive triangles of 0AC. The new lattice corresponding to the

elementary parallelogram 0, A,C ′,C is thus given by
[
1 1
1 0

]
, and the new quadratic

form of determinant 2 associated to it is x2 + 2xy + 2y2.
The lines X :

√
Dx = y and Y :

√
Dx = −y are called the asymptotes. Poincaré

calls “ambiguous” a fundamental triangle (such asOAB) such that the first asymptote
cuts it and the second does not. Exactly one derivative and one primitive of an
ambiguous triangle are also ambiguous (in our example, OAC is ambiguous and
OBC is not). The procedure of derivation thus allows Poincaré to construct sequences
of ambiguous triangles. Relying on a theorem of Bravais, Poincaré is then able to
show that the binary quadratic forms associated with the successive triangles of such
a sequence are periodically reproduced. As seen in our example Fig. 2, a triangle
has a common side with its derivatives; thus, among the finite sequence of triangles
in a period, subsequences of ambiguous triangles and their successive derivatives
share a common side, before another side occurs as the common side of another
subsequence. Poincaré shows that the last triangle (or the first) of such a finite
subsequence is associated to a reduced binary quadratic form.

Poincaré also displays the correlated geometrical interpretation of the develop-
ment into continued fractions of a

√
D

1−b
√
D
: the successive reduced fractions provide the

coordinates of a vertex of a triangle associated to a reduced form. This interpretation
will be used by Poincaré in a later note to embody the rational approximation of a
real number α, by using the line y = αx and the Bravais lattice of the points with
integral coordinates [Poincaré 1884].31

The following section of [Poincaré 1880c] reinterprets in the language of lat-
tices the difficult composition of forms introduced by Gauss in the Disquisitiones
arithmeticae. For this, Poincaré introduces a new multiplication on lattices, which
is different from the non-commutative general multiplication on which the arith-
metic of lattices discussed above was based. Let Am + Bn and A1m1 + B1n1 be two
lattices (with A, B, A1, B1 complex quadratic numbers for the same D), the result
of this new multiplication is the lattice AA1µ1 + AB1µ2 + BA1µ3 + BB1µ4, with
m, n,m1, n1, µ1, µ2, µ3, µ4 integers.32 Poincaré proves that if a form is composed of
two others, the corresponding lattice is the (new) product of the lattices associated

31 In this note, he also generalizes this construction to the rational approximation of two real
numbers, by using this time the 3-dimensional version of Bravais lattices. We recalled earlier the
link between the theory of reduction and bounds on the values of the form at integers. Hermite
had already applied it, for suitable quadratic forms, to the rational approximation of several real
numbers, [Hermite 1850].
32 The infelicitous notation, again, is Poincaré’s.
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to the two forms, that is, the composition on forms corresponds to a true operation
on lattices, from which he can deduce Gauss’s results relative to composition.

At the beginning of the last section of this memoir, Poincaré announces:

The above considerations make it possible to present in a simple and concrete manner the
theory of ideal complex numbers that correspond to quadratic forms of determinant D.33

This reference to ideals is very rare in the French landscape at the time
[Goldstein 1999]. Hermite had displayed an interest inKummer’swork on ideal num-
bers early on [Hermite 1850], but his research aimed at offering alternative proposals
to handle the arithmetic of algebraic numbers rather than promoting the reception of
Kummer’s (or later, Dedekind’s) conceptual enterprise.34 Poincaré situates himself
in a Hermitian vein here, when he proposes (at least for the quadratic case) to substi-
tute plane lattices—themselves embodied in tables of familiar "true" numbers—to
an “ideal” family constructed by means of divisibility properties, as Kummer did, or
with a set-theoretical perspective, as Dedekind did. 35 To a (quadratic) real complex

number λ + µ
√

D, Poincaré associates the lattice
[
λ µ
√

D
µ λ

]
. The points of the lattice

represent the multiple of this number and the (new) product of lattices, as defined
for the composition of forms, corresponds to the product of two associated complex
numbers.36 An ideal complex number is then defined by Poincaré as a lattice with
some simple conditions (which are of course verified for the lattices associated to
a “true” complex number). The main arithmetical properties of lattices are then
transferred to these ideal numbers; a prime ideal number, for instance, is one for
which the norm (of the defining lattice) is a prime and Poincaré proves in particular
that every ideal number, in his sense, can be decomposed in a unique way into ideal
prime factors.37

Although Poincaré only addresses well-known cases in his first articles on forms,
he clearly had hopes regarding the framework of lattices he has deployed, in particular
for a generalization to any number of variables. The equivalence of two forms
(under linear, invertible, transformations with integer coefficients) correspond to
the equality of the two associated lattices, that is, (as in Bravais’s memoirs), the
two lattices differ from each other only by a rotation around the fixed origin O, of

33 [Poincaré 1880c]: “Les considérations qui précèdent permettent d’exposer d’une manière simple
et concrète la théorie des nombres complexes idéaux qui correspondent aux formes quadratiques
de déterminant D”.
34 See [Goldstein 2007] and on Hermite’s emphasis on a “clear” and “concrete” approach in
mathematics, see [Goldstein 2011], and below.
35OnKummer’s construction of ideal numbers, see [Edwards 1977].On the issues at stakewith ideal
numbers at the time and Dedekind’s approach, see [Edwards 1980, Edwards 1992, Haubrich 1992].
Once again, Poincaré seems close to the practical preferences expressed by Dedekind, even if their
proposals to solve the problems differ, [Ferreiros 2007, Haffner 2014, Haffner 2019].
36 See [Edwards 2007] on the link between the composition of forms and a theory of ideal numbers.
37 As pointed out by Châtelet, Poincaré’s viewpoint amounts for complex numbers to the represen-
tation by a matrix of the multiplication by this number of the elements of a well-chosen basis of the
quadratic field [Poincaré 1950, p. 174, footnote 2]. This matrix point of view on ideal theory was
adopted by several authors after Poincaré, including Châtelet himself.
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an angle θ. Poincaré computes the transformations of the forms in terms of their
coefficients and the angle θ and reciprocally. But an original and, for Poincaré,
decisive step is the introduction of new types of invariants. As explained before, for
a binary quadratic form ax2 + 2bxy + cy2, the quantity b2 − ac is invariant under all
linear transformations of the variables of determinant 1, whatever the nature of the
coefficients of this transformation; this property had given rise to the search for other
invariant algebraic expressions, associated to forms of various degrees and number
of variables, during all of the nineteenth century; as the nature of the coefficients does
not intervene, it was considered to be the algebraic part of the study of forms by most
authors, in particular Hermite, Jordan or Poincaré himself [Brechenmacher 2011,
Brechenmacher 2016]. For binary quadratic forms, b2 − ac was the only algebraic
invariant. But, as noted by Poincaré, there exist (many) arithmetical invariants, that
is, expressions which are unchanged under a linear, invertible, transformation with
integer coefficients. For instance, the series

∑∞
−∞

1
(am2+2bmn+cn2)k (where the sum

is taken over all the integer couples (m, n) , (0, 0)) are such arithmetical invariants.
Poincaré also considers

∑∞
−∞

1

(
√
am+ b+

√
ac−b2
√
a

n)2k
, which a linear transformation with

integer coefficients changes by a function of the angle of rotation θ.38
He then provides an effective (if not efficient) procedure to decide if two definite

binary quadratic forms ax2+2bxy+cy2 and a′x2+2b′xy+c′y2 with the same deter-
minant D = ac − b2 = a′c′ − b′2 are equivalent [Poincaré 1879b, Poincaré 1882a].
Let us consider the (convergent) series

φk (q) =
∑ 1

(qm + n)2k ,

the sum being taken over all integers m, n, except (0, 0). Assuming that the two forms
are equivalent, Poincaré expresses the coefficients α, β, γ, δ of a linear transformation
between the forms as a function of the coefficients of the forms and the real and
imaginary parts of

√√√√
aφ1( b

′+i
√
D

a′ )

a′φ1( b+i
√
D

a )
.

If one computes the values of φ1 with a sufficient approximation, the values of
α, β, γ, δ can be known up to less than 1/2 and one thus gets exact values for these
integers. It is then sufficient to check if this transformation indeed sends the form
ax2 + 2bxy + cy2 into the form a′x2 + 2b′xy + c′y2. Other series are introduced
for deciding on the equivalence of indefinite forms [Poincaré 1882a]. In both cases,
Poincaré also shows that the series can be represented by definite integrals (using in
particular then recent results on elliptic functions by Appell).

38 Analogous series had appeared in Dirichlet’s work on the computation of class numbers of binary
quadratic forms (as well as in his work on prime numbers in arithmetic progressions).
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4 Representation of numbers

Poincaré’s foray into ideal theory did not go unnoticed. For instance, Arthur Cayley
wrote to Poincaré on October 12, 1883:

I have to thank you very much for the valuable series of memoirs which you have kindly
sent me. I see that you have in one of them applied the theory of ideal numbers to the case
of binary quadratic forms ; it had occurred to me that a very good illustration of the general
theory would thus be obtained and I am vey glad to find that the case has been worked out
[Poincaré 1986, p. 116].

Nor was this an isolated instance. As explained earlier, a classical question of
the theory was the study of the values of forms at integers, and, in particular, the
representation of integers by such values.39 After a short communication to the
Academy of Sciences in 1881 [Poincaré 1881b], Poincaré handled this problem for
general binary forms in a memoir in the Bulletin of the French Mathematical Society,
of which he had been elected to membership on April 21, 1882 [Poincaré 1885].
In this article, he puts ideal theory center-stage, but this time he explicitly adopts
Dedekind’s terminology, mentioning ideals instead of ideal numbers.40 Poincaré’s
point of departure, however, is a type of form that Hermite had singled out in several
memoirs [Goldstein 202?]:

Ψ(x0, x1, · · · , xm−1) = (x0 + α1x1 + α
2
1x2 + · · · + α

m−1
1 xm−1)

(x0+α2x1+α
2
2x2+· · ·+α

m−1
2 xm−1) · · · (x0+αmx1+α

2
mx2+· · ·+α

m−1
m xm−1),

where α1, · · · , αm are the roots of an algebraic equation. That is,Ψ(x0, x2, · · · , xm−1)
is the norm of the complex integer x0 + α1x1 + α

2
1x2 + · · · + α

m−1
1 xm−1 (as well as

of its conjugates).
Such decomposable norm-forms were here used by Poincaré (as had been done

earlier by Hermite) as a link between ideal theory and the representation of integers
by binary forms. More precisely, let F be an arbitrary binary form

F (x, y) = Bmxm + Bm−1xm−1y + · · · + B1xym−1 + B0y
m

with the Bi integers. The question of the representation of an integer N by F is easily
reduced to that of the representation of Bm−1

m N by the form (x+α1y)(x+α2y) · · · (x+
αmy) = Ψ(x, y, 0, · · · , 0) (where the αi are now the roots of the algebraic equation
obtained by dehomogenizing the form F). Poincaré was thus led to study in general
the representation of an integer, say N ′, by a form Ψ(x0, x1, · · · , xm−1). To do this,
he proceeds by studying all the ideals of norm N ′ in what we would call the ring

39 Poincaré also made use of ideals in 1891 while extending to them some analytical results of
Pafnuty Chebyshev on the distribution of prime numbers, but his application was limited to the ring
Z[i] of Gaussian integers, for which all ideals are principal [Poincaré 1891a, Poincaré 1891b].
40 Besides Dedekind, this article includes references to Eisenstein and Kummer, and, as we shall
see, to Hermite.
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generated by the αi . The question is thus to decide if the ideals representing N are
principal, that is, if they are composed of the multiples of one complex number, as
required for the initial problem.

Poincaré represents the elements of such an ideal (this concept being more or
less understood in Dedekind’s sense) as a module stable under multiplication by any
complex number of the type x0 + α1x1 + α

2
1x2 + · · · + α

m−1
1 xm−1 41 as x (1)m1 +

x (2)m2 + · · · + x (n)mn, with integers mi and (x (i)) generators of the ideal. The norm
of the elements of the ideal then defines a form of the same degree and the same
number of variables as Ψ, and it is possible to study its equivalence with the form
Ψ by using the Hermitian method of continuous reduction we mentioned earlier
[Hermite 1851].

To summarize, Poincaré’s procedure is to construct all ideals of norm N , then to
examine if they are or are not principal by deciding on the equivalence of two forms.
Hermite’s technique even provides theoretically the transformation that is needed to
express N as the value at integers of the initial binary form.

Most of Poincaré’s article is thus devoted to the determination of ideals with a
given norm. The generators (x (i)) of an ideal are represented as a function of the
powers of the α j by a table of coefficients.42The first decisive step is to reduce this
table to a triangular form which describes this possible ideal-solution—a step also
arising from Hermite’s work [Hermite 1851]. Then, Poincaré computes successively
the conditions required such that a table represents an ideal (in his sense), then an
ideal with a prime number as its norm, then an ideal with a power of a prime number
as its norm, which finally allows him to exhibit ideals with a given norm N .

To give a flavor of the computations involved, let us illustrate them by the first

step, in the case of a reduced 3 by 3 table *.
,

a b c
0 d e
0 0 f

+/
-
.43 The three generators are thus

here a, b + dα1, c + eα1 + f α2
1, with a, b, c, d, e, f integers. If a complex integer

x0 + x1α1 + x2α
2
1 is in this module, it should be a linear combination with integral

coefficients of the generators, say pa + q(b + dα1) + r (c + eα1 + f α2
1) (with p, q, r

integers), thus the coefficient of the term in α1
2 should be a multiple of f . Moreover,

for this module to be an ideal, the multiplication by α1 of the generators should again
be in the module, that is, aα1 = qdα1 (the term r f α1

2 being 0, one should have
here r = 0), thus d divides a. In the same way, expressing that bα1 + dα2

1 is in the

41 By taking only integral coefficients, Poincaré does not obtain in all cases the principal ideal
generated by an element in the complete ring of integers, and here, as elsewhere in his writings,
several assumptions are missing. Châtelet completed them carefully in his comments to the OE
uvres and I will not discuss them further.
42 We would now call this table a matrix, but F. Brechenmacher has convincingly discussed the
conceptual nuances of the two terms in [Brechenmacher 2011]. As for Poincaré, he spoke of
“notation” and later of “tableaux” (tables, or charts).
43 In his paper, Poincaré uses a representation with 3, 4 or 5 variables, while asserting the generality
of his construction. Such a tension appears again in other papers of the same period and has also
been analyzed in [Brechenmacher 2011].
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module provides the fact that f divides d. A repetition of the same argument with
α1

2 provides the final conditions:

a ≡ d ≡ 0 mod f b ≡ e ≡ c ≡ 0 mod f a ≡ 0 mod d b ≡ 0 mod d.

5 Cubic ternary forms: another geometrical outlook

As we have seen, the use of lattices could be extended to ternary (quadratic) forms.
But Poincaré came back to the basics of the theory of forms when he turned to cubic
forms [Poincaré 1881c, Poincaré 1882c]:

The various problems connected with the theory of binary quadratic forms have long been
solved by the notion of reduced forms [. . . ]. To generalize such a useful idea, to find forms
playing in the general case the same role as reduced forms do in the case of quadratic forms,
such is the problem which naturally arises and which M. Hermite has solved in the most
elegant way. M. Hermite has confined himself to the study of definite or indefinite quadratic
forms and of forms decomposable into linear factors; but his method can be extendedwithout
difficulty to the most general case. I believe that this generalization can lead to interesting
results, and this iswhat determinedme to undertake thiswork. [. . . ] The simplest of all forms,
after the quadratic forms and the forms decomposable into linear factors, are the ternary
cubic forms. [. . . ] In addition to [their] simplicity, other considerations have influenced my
choice. These forms have indeed, from the algebraic point of view, been the object of very
interesting and very complete works, and thanks to the close connection between Higher
Algebra and Higher Arithmetic, these results have been of great help to me.44

The “very interesting and very complete works” mentioned by Poincaré were,
according to his references, those of Otto Hesse, Siegfried Aronhold, Jakob Steiner
and Alfred Clebsch, which concern invariant theory. Though Poincaré describes
them as “algebraic", their relevancy here relies on a geometrical interpretation of
the problem; for a ternary form F (x1, x2, x3), the equation F (x1, x2, x3) = 0 indeed
gives rise to a (projective) plane curve. Following Hermite, Poincaré first studies and
classifies the linear transformations reproducing the form (that is, leaving the form
unchanged when the transformation is applied to its variables), by means of what
we now call eigenvalues. Then, he transfers the results to the corresponding plane

44 [Poincaré 1881c, 190–191]: Les divers problèmes qui se rattachent à la théorie des formes
quadratiques binaires ont été résolus depuis longtemps, grâce à la notion de réduite [. . . ]. Généraliser
une idée aussi utile, trouver des formes jouant dans le cas général, le même rôle que les réduites
remplissent dans le cas des formes quadratiques, tel est le problème qui se pose naturellement et
que M. Hermite a résolu de la façon la plus élégante [. . . ]. M. Hermite s’est borné à l’étude des
formes quadratiques définies ou indéfinies et des formes décomposables en facteurs linéaires ; mais
sa méthode peut s’étendre sans difficulté au cas le plus général. Je crois que cette généralisation peut
conduire à des résultats intéressants ; et c’est ce qui m’a déterminé à entreprendre ce travail. [. . . ]
Les plus simples de toutes les formes, après les formes quadratiques et les formes décomposables
en facteurs linéaires, sont les formes cubiques ternaires. [. . . ] Outre [leur] simplicité [. . . ] d’autres
considérations ont influé sur mon choix. Ces formes ont été en effet, au point de vue algébrique,
l’objet de travaux très intéressants et très complets, et grâce au lien étroit qui rapproche l’Algèbre
supérieure de l’Arithmétique supérieure, ces résultats m’ont été d’un grand secours.
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curves, linking their (algebraic) invariants and their geometrical characteristics to the
various categories of transformations. For each associated family of forms, Poincaré
also provides a canonical one, whose equation is considered as particularly simple,
and he explicitly computes the invariants.45

In the second part of his memoir, Poincaré addresses the properly arithmetical
problems of the cubic ternary forms: their equivalence and classification, and the
description of the transformations (this time with integer coefficients) which re-
produce them (we now call them automorphisms and for sake of simplicity, we
will use this terminology freely). To do this, Poincaré, following Hermite and other
authors, in particular Selling, uses a (real) transformation sending the form into
a canonical one (which is thus algebraically equivalent) and then transfers to the
original form the reduction and the automorphisms of the canonical form. As for
the quadratic case, there exist several possible definitions of the reduction of a
form and/or of the canonical forms; the explicit description of the reduced forms
depends on these choices, but their general properties, in particular the finiteness
or unicity of the reduced forms in each class of algebraically equivalent forms,
does not. For instance, the first “family” (in Poincaré’s terminology) of ternary cu-
bic forms identified by him is made of forms algebraically equivalent to the form
6αxyz+ β(x3+ y3+ z3), with α , 0,46 chosen as the canonical form. Poincaré com-
putes its Hessian ∆ = 6(β3 + 2α3)xyz − 6α2 β(x3 + y3 + z3) and the two Aronhold
invariants S = 4α(α3 − β3) and T = 8α6 + 20α3 β3 − β6. The distribution of the
nine inflection points on the associated cubic curve shows that a real transformation
reproducing the canonical form can only exchange the three lines x = 0, y = 0,
z = 0, i.e., that these transformations (except the identity, which is never mentioned
by Poincaré) should be given by one of the following five “tables”:



0 1 0
0 0 1
1 0 0


,



0 0 1
1 0 0
0 1 0


,



0 1 0
1 0 0
0 0 1


,



0 0 1
0 1 0
1 0 0


,



1 0 0
0 0 1
0 1 0


.

Poincaré then proves that there is in general a unique reduced form arithmetically
equivalent to a given form of this family and provides bounds on the coefficients of
the reduced forms in terms of the invariants S and T . In the case of cubic ternary
forms, this gives a new proof of a recent result of Camille Jordan, stating there are
only finitely many classes of forms with integer coefficients algebraically equivalent
to a given form (here the chosen canonical form).47

A more subtle case arises when the cubic form can be decomposed into several
factors. For instance, in the case where the form represents a conic and a line
which are not tangent, the canonical forms can be chosen to be 6αxyz + z3 or
3αx2z + 3αy2z + z3, whether or not.the line and the conic intersect each other.
The first canonical form is reproducible by the family of transformations with one

45 On this algebraic work, and its relation to both Hermite and Jordan’s works, see
[Brechenmacher 2011]. On the history of the classification of algebraic curves, see [Lê 2023].
46 This means that the equation is not reducible to a sum of three cubes.
47 [Jordan 1879]. Jordan excludes the case of determinant 0.
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parameter


λ 0 0
0 1 0
0 0 1

λ


. When the double points of the associated curve are imaginary

(in particular when the canonical form is 3αx2z + 3αy2z + z3), there are a finite
number of reduced forms, thus a finite number of classes. But when the double points
are real, several cases occur, whether or not the invariant 4S is a fourth-power: there
may be a finite number of classes or infinitely many classes, each of them containing
a finite number of reduced forms.

The preliminary notes presented to the Academy of Sciences, as well as the
longer memoirs on ternary cubic forms, are, as we have seen, quite explicit, giving
for each family the concrete equations of canonical forms, their automorphisms,
and the possible distribution of the reduced forms in arithmetical classes (and also
genus). However, this did not satisfy Hermite completely. Hermite, who presented
Poincaré’s note [Poincaré 1880a] in June 1880 to the Academy, wrote to him a few
days earlier to fix an appointment in order to discuss his memoir. He also suggested
some further readings and concluded:

Your search for the substitutions that reproduce a given form, and the distinction between
the cases where these substitutions are entirely determined or depend on one or two variable
parameters, seem to me to be entirely new, and I attach great importance to them. You have
seen perfectly well that there is no arithmetical question in the search for the equivalence
of cubic forms unless there are an infinite number of algebraic substitutions that change
them into themselves. But then we leave the field of cubic forms and the question that you
had the merit of posing—an entirely new question and one that I consider very beautiful
and very fruitful —is that of the simultaneous reduction, that is to say, by the same linear
substitutions, and with integer coefficients, of the system of a ternary quadratic form and of
a linear function. [. . . ] But you must not be satisfied with having thus opened the way, you
must, in reality and in fact, give the means of calculating these reduced forms, and produce
numerical applications. Many things can be revealed in this way of which neither you nor
anyone else has any idea, so hidden are the properties of numbers and so far beyond any
prediction. It is with regard to them that observation plays an absolutely necessary role; you
need elements of observation, and these elements you will be the first to have obtained and
to have given. 48

Hermite’s aphorism about observation is a recurrent one [Goldstein 2011], but
Poincaré took the request seriously. “FollowingM. Hermite’s advice", he wrote later,

48 [Poincaré 1986, pp. 164–165]: Votre recherche des substitutions qui reproduisent une forme
donnée, et la distinction des cas où ces substitutions sont entièrement déterminées ou bien dépendent
d’un ou deux paramètres variables, me semblent entièrement nouvelles, et j’y attache une grande
importance. Vous avez parfaitement vu qu’il n’y a de question arithmétique, dans la recherche de
l’équivalence des formes cubiques qu’autant qu’il existe une infinité de substitutions algébriques qui
les changent en elles-mêmes. Mais alors on quitte le champ des formes cubiques et la question que
vous avez eu le mérite de poser question entièrement neuve et que je juge très belle et très féconde,
est celle de la réduction simultanée, c’est-à-dire par la même substitution linéaire, et à coefficients
entiers, du système d’une forme quadratique ternaire et d’une fonction linéaire. [. . . ] Mais il ne
faut point vous contenter d’avoir ainsi ouvert la voie, il faut, en réalité et en fait, donner les moyens
de calculer ces réduites, et faire des applications numériques. Bien des choses peuvent se révéler
ainsi dont ni vous ni personne n’a eu l’idée, tant les propriétés des nombres sont cachées et en
dehors de toute prévision. C’est à leur égard que l’observation joue un rôle absolument nécessaire
: il faut donc des éléments d’observation, et ces éléments vous serez le premier à les avoir obtenus
et donnés.
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he investigated more deeply the simultaneous reduction of a quadratic and a linear
form—which corresponds to one of the more complicated case alluded to above, in
which the cubic form can be decomposed and which is more delicate to handle from
an arithmetical point of view. Using both complex congruences and Pell-Fermat
type equations, Poincaré exhibited for instance the reduced forms associated to the
system x+ y+ z, x2+4y2− z2+2xy+2xz+2yz or the automorphisms of the system
14x + y + 2z, y2 − 6z2 as the powers of the transformation



1 5981360 14651280
0 46099201 112919520
0 18819920 46099201


.49

Hermite continued to encourage him to make new explicit calculations.

Your result on the transformations of a system composed of a ternary [quadratic] form and
a linear form is excellent, but I confess that I would have preferred that, at the cost of greater
difficulty, you had been led to a new algorithm of calculation, instead of reducing the solution
to the transformation into themselves of the simple binary forms. It is therefore necessary to
persevere in the research which concerns only ternary forms.50

He had in fact a model for this, as his student Léon Charve defended a the-
sis on November 1880, a few months after this letter, on the reduction of ternary
quadratic forms with completely effective (and extremely laborious) computations
[Charve 1880]. Hermite mentioned this thesis several times in his own correspon-
dence in laudatory terms.51 However, when Poincaré returned to this quadratic case,
it was not to have the effect that Hermite wished for.

49 [Poincaré 1880b] and the developed article [Poincaré 1886a, pp. 135–142].
50 [Poincaré 1986, p. 168]: Votre résultat sur les transformations semblables d’une système composé
d’une forme ternaire [quadratique] et d’une forme linéaire est excellent, mais je vous avoue que
j’aurais préféré qu’au prix d’une difficulté plus grande vous eussiez été amené à un nouvel algorithme
de calcul, au lieu de ramener la solution à la transformation en elles-mêmes des simples formes
binaires. Il faut donc persévérer dans la recherche qui concerne les seules formes ternaires.
51 For instance, to Thomas Stieltjes [Hermite & Stieltjes, II, p. 12]: “La réduction n’est point un
procédé facile ni commode et il n’a rien moins fallu que le talent et l’opiniâtreté de M. Charve pour
en faire application dans quelques cas particuliers, et cependant il serait si utile et même absolument
indispensable de pouvoir faire de nombreuses applications, pour s’éclairer et se diriger, j’ajouterai
pour s’inspirer puisqu’il s’agit d’Arithmétique” [Reduction is neither an easy nor a convenient
procedure and it took nothing less than the talent and obstinacy of Mr. Charve to apply it in a few
specific cases, and yet it would be so useful and even absolutely indispensable to be able to make
numerous applications, to enlighten and to direct, and since we are dealing with Arithmetic I will
add, to inspire ourselves.].
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6 Back to quadratic forms: Fuchsian functions and
non-Euclidean geometry in arithmetic

Poincaré’s discovery of a link between Fuchsian functions and non-Euclidean ge-
ometry is well-known, as the mathematician used it to illustrate the art of invention
in mathematics [Poincaré 1908b]. It is the famous story of the omnibus:

At the moment I set foot on the step, the idea came to me, without anything in my previous
thoughts seeming to have prepared me for it, that the transformations I had used to define
the Fuchsian functions are identical to those of non-Euclidean geometry.52

The scene probably took place in June 1880,53 at a time when Poincaré was
working on the classification of cubic ternary forms, and more specifically on the
casewhen the form is composed of a linear and a quadratic factor, which led him again
to ternary quadratic forms. As is well-known, he was involved simultaneously in the
writing of a contribution to the 1880 prize in mathematics of the French Academy
of Sciences, on differential equations, and in his own creation, description and
classification of specific Fuchsian functions and of their associated transformations.54

I would like to underline once more the close relations, at several levels, between
these works and the way Poincaré transfers methods, intuitions and objets from one
topic to another, as we have already seen for the invariants of quadratic forms or
the classification of cubic ones. In his very first note on Fuchsian matters, Poincaré
defines a Fuchsian function as a uniform function on the plane which is reproduced
by a discontinuous subgroup of the homographic transformations on the unit disk.
He then remarks that some of these subgroups are isomorphic to groups of linear
transformations with integer coefficients that reproduce an indefinite ternary form
with integer coefficients, concluding that this “highlights the intimate links between
number theory and the analytical question in hand" [Poincaré 1881a, p. 335]. Indeed
the omnibus story continues on, displaying influences in both directions:

On my return to Caen [. . . ] I then began to study questions of Arithmetic without much
result and without suspecting that this could have the slightest connection with my previous
research. Disgusted with my failure, I went to spend a few days at the seaside and thought
of other things. One day, while walking on a cliff, the idea came to me, always with the
same characteristics of brevity, suddenness and immediate certainty, that the arithmetic
transformations of the ternary indefinite quadratic forms are identical to those of non-
Euclidean geometry. Back in Caen, I meditated on this result and drew the consequences:
the example of quadratic forms showed me that there were Fuchsian groups which are
different from those corresponding to the hypergeometric series.55

52 [Poincaré 1908b, p. 363]: Au moment où je mettais le pied sur le marche-pied, l’idée me vint,
sans que rien de mes pensées antérieures parut m’y avoir préparé, que les transformations dont
j’avais fait usage pour définir les fonctions fuchsiennes sont identiques à celles de la Géométrie
non-euclidienne.
53 See [Gray 2013, p. 216–217].
54 We will not restate the details of this episode, which has been thoroughly studied, in particular
by Jeremy Gray [Gray 2000], [Gray 2013, ch. 3].
55 [Poincaré 1908b, p. 363]: “De retour à Caen [. . . ] je me mis alors à étudier des questions
d’Arithmétique sans grand résultat apparent et sans soupçonner que cela pût avoir le moindre
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Poincaré was here perfectly in line with several of his fellow mathematicians,
in particular the contemporary research of Émile Picard on substitutions with 3
variables on the hypersphere or Camille Jordan’s study of the groups of motions,
which Jordan directly connected to Bravais’s works.56 While the appearance of non-
Euclidean geometry in the story is a more spectacular feature, a close reading of all
these papers suggests that the explicit writing out of the various transformations used
in these different situations was a driving element and a decisive factor in favoring
the thematic rapprochements.

As Poincaré explained at the Algiers meeting of the French Association for
the Advancement of Science where he presented his new viewpoint in April 1881
[Poincaré 1882b], his point of departure was Hermite’s method for ternary quadratic
forms [Hermite 1854]. In 1854, Hermite had studied the reduction of indefinite
ternary quadratic forms—the forms algebraically equivalent to, say, X2 +Y 2 − Z2—
by a variant of his technique of continuous reduction. To such a form f , Hermite
associated a family of definite ternary quadratic forms φ(x, y, z) = f (x, y, z)+2(λx+
µy + νz)2, λ, µ, ν real numbers with some suitable conditions. Each φ could then
be reduced by a suitable transformation, by the general theory of definite quadratic
forms. Hermite then applied this transformation to the initial f and thus obtained,
by varying φ, a family of transformed forms, which he considered as the reduced
forms of the initial form f . He showed that the coefficients of these reduced forms
satisfy certain bounds; in particular, if the coefficients of the initial f are integers, it
implies that there are a finite number of such reduced forms. Hermite also studied
the automorphisms of the form, proving for instance that what we now call their
characteristic equation has solutions of the type ±1, l, 1

l .57
Poincaré followed exactly the same path in 1881. He associated to the indefinite

form F (x, y, z) = (ax+by+cz)2+(a′x+b′y+c′z)2−(a′′x+b′′y+c′′z)2 = ξ2+η2−ζ2

the definite forms ξ2 + η2 − ζ2 + 2(ξ1ξ + η1η − ζ1ζ )2, with ξ1, η1, ζ1 satisfying the
condition (analogous to that of Hermite) ξ2

1 + η
2
1 − ζ

2
1 = −1. Again, he used the

transformations reducing these definite forms, applying them in turn to F to get what
he defined as the reduced (forms) for F.

As he noted, however, since ξ2
1 + η

2
1 − ζ

2
1 = −1, the point with coordinates

ξ1
ζ1+1,

η1
ζ1+1 is inside the unit disk. To each definite form of the family is then associated

such a point, as well as a reduced form. When the parameters ξ1, η1, ζ1 change,
the point moves inside the disk. However, the reduced form remains the same so
long as the point lies inside a certain region of the disk, then it changes. The

rapport avec mes recherches antérieures. Dégoûté de mon insuccès, j’allai passer quelques jours
au bord de la mer et je pensai à tout autre chose. Un jour, en me promenant sur une falaise, l’idée
me vient, toujours avec les mêmes caractères de brièveté, de soudaineté et de certitude immédiate,
que les transformations arithmétiques des formes quadratiques ternaires indéfinies sont identiques à
celles de la Géométrie non-euclidienne. Étant revenu à Caen, je réfléchis sur ce résultat, et j’en tirai
les conséquences ; l’exemple des formes quadratiques me montrait qu’il y a des groupes fuchsiens
autres que ceux qui correspondent à la série hypergéométrique.
56 The analogies and differences with Jordan, in particular with respect to the concept of group, are
discussed in [Brechenmacher 2011].
57 The description of the automorphisms was completed by several authors c. 1870, in particular
by Georg Cantor in his Habilitationschrift, by Paul Bachmann, and by Hermite himself.
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transformations providing the reduction can be then studied geometrically, by looking
at the corresponding regions delimited inside the disk.58 To do this, Poincaré used
non-Euclidean geometry on the disk, more specifically, a non-Euclidean description
of the tessellation of the disk in domains delimited by polygons. This approach, as
might be expected, was not to the taste of Hermite who asked Poincaré several times
to reformulate his results:

In renewing my request to you to present your results on the classification of functions az+b
cz+d

in order to obtain the elements of the formation of the Fuchsian functions, without resort
to the use of non-Euclidean geometry, and after having presented them by the method by
which you discovered them, I beg you, Sir, to receive the renewed assurance of my highest
esteem for your work and of my most devoted sentiments.59

The explicit, detailed, connection with the Fuchsian groups was presented only a
few years later, Poincaré choosing at that time another expression of the canonical
ternary quadratic form [Poincaré 1886b]:

An indefinite ternary quadratic form may always be written . . . in the following way:

F (x, y, z) = Y2 − XZ,

where

X = ax + by + cz, Y = a′x + b′y + c′z, Z = a′′x + b′′y + c′′z,

a, b, c being arbitrary real numbers.

Let now α, β, γ, δ be four real numbers such that αδ− βγ = 1. Poincaré introduces
the transformations:

X ′ =α2X +2αγY + γ2Z

Y ′ =αβX +(αδ + βγ)Y + γδZ

Z ′ =β2X +2βδY + δ2Z

If X = ax ′+by′+cz′, Y = a′x ′+b′y′+c′z′, Z = a′′x ′+b′′y′+c′′z′, it is then
easy to check that the transformation changing x, y, z into x ′, y′, z′ leaves F invariant.
If the coefficients of F and the α, β, γ, δ are integers, these transformations form a
discontinuous group and the associated substitutions z → αz+β

γz+δ form a Fuchsian

58 In other words, as Châtelet explains in a footnote, Poincaré studies the fundamental domain of
the automorphisms, seen as homographic transformations.
59 For instance, [Poincaré 1986, p. 174]: “En vous renouvelant la prière de présenter sans recourir à
l’emploi de la géométrie non euclidienne, après les avoir exposés par la méthode qui vous les a fait
découvrir, vos résultats sur la classification des fonctions az+b

cz+d afin de posséder les éléments de la
formation des fonctions fuchsiennes, je vous prie, Monsieur de recevoir la nouvelle assurance ma
plus haute estime pour vos travaux et de mes sentiments bien dévoués". Hermite was not hostile to
all geometrical arguments; he did not complain about Poincaré’s lattices or Hermann Minkowski’s
geometry of numbers (also based on lattices). But for him, non-Euclidean geometry was not helpful
in representing analytical facts, see [Goldstein 2011].
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group. In a longer memoir, Poincaré emphasizes the particular properties of these
arithmetically-defined Fuchsian groups, in particular the algebraic relations satisfied
by the associated Fuchsian functions, analogous to those already known for elliptic
and modular functions [Poincaré 1887].

7 Classification again

In the wake of his research on the classification of forms, Poincaré also devoted two
short notes to a generalization of the tools Gauss had introduced for his own refined
classification of binary quadratic forms, “order" and “genus", [Poincaré 1882d].60 In
the Disquisitiones arithmeticae, two classes of binary quadratic forms, represented
for example by the forms ax2+2bxy+cy2 and a′x2+2b′xy+c′y2, are said to belong to
the same order if the g.c.d. of (a, b, c) is equal to the g.c.d. of (a′, b′, c′) and the g.c.d.
of (a, 2b, c) is equal to the g.c.d. of (a′, 2b′, c′). Following a proposal of Eisenstein for
ternary forms, for forms of higher degree or with more variables, Poincaré imposes
equality conditions not only on the coefficients of the forms, but also on those
of some of their invariants and covariants. For instance, for the binary cubic form
f = ax3+3bx2y+3cxy2+dy3, theHessian 6(ac−b2)x2+6(ad−bc)xy+6(bd−c2)y2

should be taken into account; the order is determined by four quantities, the g.c.d
of a, b, c, d, the g. c. d. of a, 3b, 3c, d, the g.c.d. of ac − b2, ad − bc, bd − c2 and the
g.c.d. of 2(ac − b2), ad − bc, 2(bd − c2).

As for the genus, its definition in the Disquisitiones arithmeticae relied on the
following fact: for a binary quadratic form ax2+2bxy+cy2, such that g.c.d.(a, b, c)=1,
and a prime factor p of its determinant ac−b2, two integers which are represented by
the form are both quadratic residues modulo p or both non-quadratic residues. The
various cases (“characters") for the various p then define the genus of the form (in fact,
of its whole class). Poincaré defined the equivalence of two forms f and f ′ according
to a modulus m when there exists a linear transformation T with integer coefficients
and determinant ≡ 1 (mod m) such that f ◦ T ≡ f ′ (mod m). Two (algebraically
equivalent) forms are then in the same genus if they are equivalent according to all
moduli. Again, in these notes, Poincaré gives only very general statements, without
proofs, and illustrates his definitions with a few numerical examples. He computes
in particular the distribution of binary cubic forms according to moduli 2, 3 and
5, but he does not seem to have gone further in the 1880s in this attempt of a
classification of higher-degree forms. In particular, he does not appear to have then
seen Eisenstein’s suggestion, developed in particular by Smith in the 1860s, and then
much later by Minkowski, of defining the genus by means of transformations with
rational coefficients [Smith 1861–1865, Dickson 1919].

60 Several authors, in particular Eisenstein and Dirichlet, had then contributed to simplifications,
reformulations and partial extensions of these notions, which also appear in other domains of
mathematics, see [Lê 2023].
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8 Poincaré’s arithmetic revisited

We have tried to show that Poincaré’s arithmetical work is highly coherent as soon
as one restores the collective program in which it is embedded, i.e. the disciplinary
configuration of the theory of forms in the last third of the nineteenth century. With
its own questions, concepts and resources, it largely guided Poincaré’s objectives,
in the perspective of the classification of forms: to find well-chosen, preferably
effective, invariants; to identify adequate representatives of classes (and of other
levels of classification), such as the canonical forms of the algebraic classification
and the reduced forms of the arithmetic one; to explain the operations allowing the
transformation of each form into its representatives; and to study the automorphisms
of a form. Conversely, we have seen that the recourse to ideal numbers did not
indicate a change of discipline (for instance, as David Hilbert would define it in his
own presentation of the theory of algebraic numbers), but an attempt to integrate (or
even disintegrate . . . ) these concepts (whose importance Poincaré clearly perceived)
in the disciplinary framework of forms.

We have seen this program at work in all his early research, including the famous
papers linking quadratic forms, Fuchsian functions and non-Euclidean geometry.
What shaped these paperswas also reflected in his later, more famous, work. His 1905
article, on the centenary of Dirichlet’s birth, is thus in many respects, a microcosm
of the larger mathematical world we have just presented. Its results, as their recent
commentator Nicolas Bergeron describes them, may seem disparate, the only clear
arithmetical application being a new proof of a well-known formula of Dirichlet on
the number of classes of forms. But, as before, essential and varied analytical tools
(in particular those linked to automorphic functions) were mobilized to search for
invariants of linear and quadratic forms [Bergeron 2018].

As for Poincaré’s celebrated memoir of 1901, today’s readers see it as one of the
main origins of so-called Diophantine geometry and focus on the way Poincaré, with
the help of the parametrization of cubic curves by elliptic functions, defined more
or less adequately the rank of (the group of points with rational coordinates on) an
elliptic curve.61 However, our study provides another context for this article. In 1880,
Poincaré had employed a geometric interpretation of ternary forms, considering
them as defining equations of plane (algebraic) projective curves. It allowed him
to link the classifications of curves (by their invariants, singular points and other
geometric characteristics) with those of forms (by linear transformations). In 1901,
Poincaré proposed a new classification of algebraic curves directly inspired by the
theory of forms, one based on birational transformations between curves. The link
to the mode of classification of forms is explicit, Poincaré refers directly to the
Disquisitiones arithmeticae as providing the principles to classify conics according

61 See [Weil 1955], [Gray 2013, pp. 486–488]. The parametrization was already widely used,
see [Schappacher 1991, Lê 2018]. Norbert Schappacher has discussed the problems raised by
Poincaré’s definition of rank in [Schappacher 1991]. On this paper and its geometrical viewpoint,
see [Schneider 2000].
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to his own program [Goldstein & Schappacher 2007b, pp. 95–96].62 And it is indeed
to the study of birational transformations between curves defined by equations of
different degrees that the major part of Poincaré’s memoir is devoted, as well as to
the reduction of any algebraic curve to a curve defined by equations of the lowest
possible degree— coherent with the guidelines of the theory of forms.

In this respect, the presentation of arithmetic in Poincaré’s lecture on the future
of mathematics is illuminating :

Among the words which have had the happiest influence, I would mention “group” and
“invariant”. [. . . ] Progress in arithmetic has been slower than that in algebra and analysis
and it is easy to understand the reasons. The feeling for continuity is a precious guide which
the arithmetician lacks [. . . ] [He] must therefore take analogies with algebra for his guide
[. . . ] The theory of forms, and in particular that of quadratic forms, is intimately bound to
the theory of ideals. One of the earliest to take form among arithmetic theories, it arose with
the successful introduction of unity through the use of linear transformation groups. These
transformations have allowed a classification with its consequent introduction of order.63

This coherence alsomanifests itself on amore subterranean level, that of practices.
As the word has been widely used recently in the philosophy of mathematics, let
me specify that I use it here in a rather informal way, to designate a concrete way
to carry on an activity (as opposed to official rules or principles, and to theory).
They have to do with “real individuals, their actions and their material conditions
of life"64 In mathematics, practices can thus be attached to the pervasive use of a
certain tool or technique, or to a way of reading the articles of other mathematicians
or of publishing one’s own work or of exchanging mathematical information. They
can also be detected through an epistemic privilege attached to specific features, like
effectivity or proofs, or a recurrent representational device, be it diagrams or lattices.

Poincaré’s way of practising mathematics in his early arithmetical work displays
a striking mixture of a particularly vague mode of writing and of an impressive
mobilisation of ideas and techniques from several branches of mathematics. The
second point has been obvious on several occasions here, with the recourse to several
kinds of geometry or to a large variety of analytical tools. On the first point, let us note,

62 We do not know if Minkowski’s use of transformations with rational coefficients to define the
genus of forms played a role in Poincaré’s conception. Nor does Poincaré mention contemporary
work on birational geometry, even that connecting it with Diophantine equations.
63 [Poincaré 1908a, p. 175, pp. 179–180]: Les progrès de l’Arithmétique ont été plus lents que ceux
de l’Algèbre et de l’Analyse, et il est aisé de comprendre pourquoi. Le sentiment de la continuité
est un guide précieux qui fait défaut à l’arithméticien. [. . . ] L’arithméticien doit donc prendre
pour guide les analogies avec l’Algèbre. [. . . ] La théorie des formes, et en particulier celle des
formes quadratiques, est intimement liée à celle des idéaux. Si parmi les théories arithmétiques
elle a été l’une des premières à prendre figure, c’est quand ont est parvenu à y introduire l’unité
par la considération des groupes de transformations linéaires. Ces transformations ont permis la
classification et par conséquent l’introduction de l’ordre.
64 [Marx & Engels 1846/1969, p. 20]: “Es sind die wirklichen Individuen, ihre Aktion und ihre
materiellen Lebensbedingungen". Or, as Michel Foucault writes [Foucault 1982/2001, p. 1039]:
“L’on tient plus aux manières de voir, de dire, de faire et de penser qu’à ce qu’on voit, qu’à ce qu’on
pense, qu’à ce qu’on dit" (“We care more about the ways of seeing, saying, doing and thinking
than about what we see, what we think, what we say"). On this issue, see among many others,
[Bourdieu 1994, Lepetit 1995, Chateauraynaud & Cohen 2016].
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for example, that necessary hypotheses are often missing—the examples include the
irreducibility of an algebraic equation under scrutiny, the non-vanishing of certain
expressions like the determinant or the fact that some of his ideals are not defined
over the ring of integers, but only over a subring. As seen in the section on quadratic
forms and lattices, Poincaré may also use the same symbols to designate different
things in the same article65. Browsing through his articles gives the impression of
flying over a vast textual landscape (in the vernacular) with the occasional example or
calculation serving as anchor points. More than the precise statements and detailed
proofs we are now used to, computations of examples are the warrants of the solidity
of Poincaré’s whole construction.66

It is also quite tricky to identify Poincaré’s sources of inspiration—he often quotes
some predecessors in a general way at the beginning of his text, very rarely for a
specific result inside the text (we have seen an example with some references to
Bravais or Eisenstein. As those close to him sometimes explained after his death,
Poincaré was particularly gifted for roughly grasping ideas or problems and then in-
tegrating them into his own framework.67 Moreover, several correspondents pointed
out to Poincaré that such and such a result had already appeared in one of the sources
that he mentioned. However, he was also one of the rare authors (French or not)
to mention Dedekind’s theory of ideals in the 1880s and he quoted and relied on
numerous German authors; we have mentioned Gauss of course, but also Eisenstein,
Dirichlet, Selling, Hesse, Steiner. . . . Weil’s assertion in this respect seems a little
misleading—or perhaps a little anachronistic, in that he seems to be referring to
Poincaré’s neglect of what will be considered in the interwar period as “the royal
road” to a structuralist point of view.68

An obvious source, however, is Hermite, whose influence operates at several lev-
els, in addition to the direct interactions we have already mentioned. Like Poincaré
in 1880, Hermite had revisited the classical results of the classification of forms of
theDisquisitiones arithmeticae, in the light of his procedure of continuous reduction
[Hermite 1851]. At another level, the emphasis on (linear) transformations is one of

65 As mentioned earlier, Gaston Darboux wrote to Poincaré in 1878 about his thesis: “I still believe
that we will make a good thesis out of it, but it seems essential to me to recast the writing and to
correct all the errors of calculation or the changes of notation which make it almost unreadable."
[“Je persiste à croire que nous en ferons une bonne thèse, mais il me parait indispensable de fondre
la rédaction et de corriger toutes les erreurs de calcul ou les changements de notation qui la rendent
presque illisible.”] [Poincaré 1986, p. 132].
66 Poincaré is almost describing his own practice when, advising Mittag-Leffler on the translation
of Georg Cantor’s memoirs on set theory, he writes: “To make it accessible, it would be necessary
to give a few specific examples after each definition and then put the definitions at the beginning
instead of at the end", [Hermite & Mittag-Leffler, p. 278]: “Il faudrait pour la rendre accessible
donner quelques exemples précis à la suite de chaque définition et puis mettre les définitions au
commencement au lieu de les mettre à la fin."
67 The contrast with Châtelet’s painstaking corrections and complements of Poincaré’s memoirs is
in this respect quite striking.
68 The rumor that Poincaré did not know or mention German sources spread through Mittag-
Leffler, in particular among French students in Germany at the time of the rivalry between
Poincaré and Klein around automorphic functions, despite Hermite’s protests; see for instance
[Hermite & Mittag-Leffler, I, pp. 129, 251 ].



Poincaré and Arithmetic Revisited 31

the characteristics of Hermite’s work during his whole career. His use of “tableaux”
(our matrices) to work out transformations is pervasive, as it is in Poincaré’s work.69.
The reduction of transformations, in particulier, is carried out on these “tableaux”,
playing a key role for both mathematicians. Poincaré also took from Hermite the
idea that decomposable forms constitute a fruitful entry into the study of algebraic
numbers. Some specific constructions were directly borrowed from Hermite’s ar-
ticles: for example, Poincaré followed and generalized the approach Hermite had
introduced to factorize into complex factors prime numbers congruent to 1 modulo
5 or 7 [Hermite 1850, Goldstein 2007].

Two other instructive shared features deserve to be highlighted. First, the im-
portance of reduced forms in their scheme of work. Reduced forms are particular
representatives of classes (sets of forms connected by suitable linear transforma-
tions). The later, structural, viewpoint would privilege classes, which are intrinsic.
Poincaré, like Hermite, was perfectly aware that several (rather arbitrary) choices
were possible for the reduced forms; indeed, he modified his choice, for example, in
the course of his research on ternary quadratic forms. This freedom of choice, how-
ever, like that of the “tableaux" (whose writing depends on a choice of generators),
favors calculation. Hermite is quite explicit about his predilection [Goldstein 2011]
and Poincaré-, who nevertheless built, as we have shown, an arithmetic of lattices,
followed him on this point. This can be seen in particular in what Poincaré called a
classification: his are not based on classes per se but on the construction of specific,
and in principle, calculable characteristics such as invariants.

Another point that brought the two mathematicians together was their vision of a
larger research field that would merge arithmetic, algebra and analysis, and exclude
the disciplinary purity whichwas at the time defended bymanymathematicians, such
as Edouard Lucas or Leopold Kronecker. On the contrary, the use of continuous tools
in arithmetic was favored and praised by Hermite as well as by Poincaré. We have
emphasized this direction here, but, reciprocally, the search for automorphisms, for
instance, was exported into the study of Fuchsian or Abelian functions, as well as
differential equations.70 Poincaré’s famous sentence—“The only natural object of
mathematical thought is the integer”—might thus lead to a misinterpretation if read
in isolation. It is in fact a mere concession to the defenders of a pure number theory,
stripped of its analytical tools, a concession immediately corrected into a promotion
of a unified field of mathematics.71.

The only natural object of mathematical thought is the integer. [. . . We] have devoted almost
all our time and energy to the study of the continuous. Who will regret it? Who will believe
that this time and these efforts have beenwasted? Analysis unfolds for us infinite perspectives

69 This has already been underlined by F. Brechenmacher on the basis of algebraic works in the
same period, in particular Poincaré’s 1884 paper on complex numbers [Brechenmacher 2011]
70 Other examples are given by Frédéric Brechenmacher in [Brechenmacher 2011]. He shows how
the theory of forms redefined the multiple domains where Poincaré intervenes.
71 Hermite repeated on several occasions that the theory of numbers is only an anticipation of
the theory of elliptic functions. For the importance he attached to the use of analytical tools, see
[Goldstein 2007, Goldstein 2011]. It should be noted that Hermite himself, a priori unaware of
advances in geometry, sometimes used elementary geometric representations
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that arithmetic does not suspect, it shows us at a glance a grandiose whole, the order of
which is simple and symmetrical; on the contrary, in the theory of numbers, where the
unforeseen reigns, the view is, so to speak, blocked at every turn. [. . . ] Let us be grateful
to the continuum which, if everything comes out of the whole number, was alone capable
of bringing out so much. Need I remind you, moreover, that M. Hermite drew a surprising
advantage from the introduction of continuous variables into the theory of numbers? Thus,
the proper domain of the whole number is itself invaded, and this invasion has restored order
where disorder reigned.72

In Poincaré, however, the continuous is not restricted to the theory of functions.
It extends to geometric representations or even geometric techniques, themselves
borrowed from several branches of mathematics, from Bravais’s theory of polyhedra
and lattices to that of projective curves or to non-Euclidean geometry.73 This justifies
his well-known reputation as one of the last universalist mathematicians. But what
is striking when reading his early work on arithmetic is his professionalism (all
the more paradoxical for us who are now used to a very different writing style); his
mastery of both the disciplinary issues and the tools available, his ability to intervene
effectively in order to fill in all the gaps in a program, rarely explained in detail, but
whose reconstruction allows us to see that Poincaré had identified its stakes and
components perfectly. 74

The historian Gil Bartholeyns suggests that:

The evolution of the object of history during the twentieth century can be described as the
change from the extraordinary (the particular, the unique) to the ordinary (the collective,
the structural, the trivial). In place of the exceptional individuals, the chefs-d’oeuvre, the
memorable events, [the historians] have preferred the forgotten, the unpretentious documents,
the repetitive and shared dimensions of existence.75

72 [Poincaré 1897]: Le seul objet naturel de la pensée mathématique, c’est le nombre entier.
[. . . N]ous avons consacré à l’étude du continu presque tout notre temps et toutes nos forces.
Qui le regrettera? Qui croira que ce temps et ces forces ont été perdus? L’analyse nous déroule
des perspectives infinies que l’arithmétique ne soupçonne pas; elle nous montre d’un coup d’œil
un ensemble grandiose, dont l’ordonnance est simple et symétrique; au contraire, dans la théorie
des nombres, où règne l’imprévu, la vue est pour ainsi dire arrêtée à chaque pas. [. . . S]oyons
reconnaissants au continu qui, si tout sort du nombre entier, était seul capable d’en faire tant sortir.
Ai-je besoin, d’ailleurs, de rappeler que M. Hermite a tiré un parti surprenant de l’introduction des
variables continues dans la théorie des nombres? Ainsi, le domaine propre du nombre entier est
envahi lui-même, et cette invasion a rétabli l’ordre là où régnait le désordre.
73 Châtelet also underlines Poincaré’s hope, again like Hermite, in the specific approach of Hermann
Minkowski with his geometry of numbers [Poincaré 1908a]. Minkowski’s approach would be
regularly integrated into the arithmetical work developed in France before the First World War, in
particular by Châtelet himself [Gauthier 2009, Gauthier 2011]. On the importance of geometry in
Poincaré’s arithmetical works, see [Schneider 2000].
74 This situation can be compared to that described for Albert Einstein’s famous articles of 1905,
also often perceived as isolated, but whose coherence can be restored [Rynasiewicz & Renn 2005].
75 [Bartholeyns 2010]: “L’évolution de l’objet de l’histoire au XXe siècle peut être décrite comme
le passage de l’extraordinaire (le particulier, l’unique) à l’ordinaire (le collectif, le structurel, le
banal). Aux individus exceptionnels, aux chefs-d’œuvre et aux événements mémorables, on a donné
préférence aux oubliés, aux documents sans prétention, aux dimensions répétitives et partagées de
l’existence".
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As I have tried to show here, the forgotten and the repetitive may also draw a path
to a better understanding of the exceptional.
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