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Abstract: The problem of prescribed-time cooperative state estimation is addressed in this
paper. A network of strongly connected (linear homogenous) distributed observers are designed
under the assumption that each observer can receive a time-varying scalar signal broadcasted
by a supervisor. By a proper parameter tuning, the observer gains go infinity and estimation
errors correspondingly reach zeros at the settling time prescribed by users.
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1. INTRODUCTION

Recent years, cyber-physical systems (CPS) are widely
applied in industrial scenarios, whose output components
are usually geographically dispersed in a large region. In
most cases, no single sensor is able to obtain the global
output information of CPS due to the geographic disper-
sion. To reconstruct the state of CPS, traditional Luen-
burger state observers based on global outputs are unable
to be designed. In view of this problem, the cooperative
state estimation technique based on consensus protocols
is developed, where multiple observers are coordinated in
a network, and each of them use local and neighboring
estimations to recover the state of the plant. This new
observer is known as the distributed observer.

The seminal result on cooperative state estimation is pro-
posed by Park and Martins (2012). Under the assumption
of global observability, a group of distributed Luenburger
state observers are designed to cooperatively reconstruct
the states of a discrete-time plant. For continuous-time
plants, the distributed observers are designed by Kim
et al. (2016). The work mentioned above mainly focus
on the design of linear distributed observers, whose state
estimation is accomplished with time goes into infinity.
In this situation, it is hard to guarantee the performance
of next-step control utilizing the estimated states. Some
scholars also concentrate on the convergence rate of the
observers. Han et al. (2018) propose a scheme that the
plant states are estimated with guaranteed convergence
rates. However, it can only increase the decay rates of
estimation errors, but cannot change the fact that esti-
mation errors are asymptotically stable. Based on that,
nonlinear (weighted homogeneous) distributed observers
are introduced by Silm et al. (2018), under which the
estimation errors stabilize in a finite time. It is known that
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the settling time of a finite-time stable system is dependent
on the initial states of the system (Levant (1998), Andrieu
et al. (2008)) which may also influence the control perfor-
mance because real-time states may cannot be provided
in a desired time. It is necessary to develop some new
technique such that the cooperative estimation achieved
with the settling time independent of system states, or
even prescribed by users.

Indeed, for centralized systems, the research on control
systems with state-independent settling time is not a new
topic. There are two main branches of the existing re-
search. On the one hand, as an extension of finite-time sta-
bilization, fixed-time stabilization is proposed by Polyakov
(2012), where the settling time is bounded for all initial
states. On the other hand, a prescribed-time approach is
proposed by Song et al. (2017), which employs a finite-
time feedback input with time-varying gains that tends to
infinity as time approaches the prescribed settling time.
However, there are plenty of existing results regarding
the prescribed-time control for distributed systems. For
example, prescribed-time consensus of linear/nonlinear
multi-agent systems (Jing and Wang (2018), Yong et al.
(2012), Colunga et al. (2018)); prescribed-time contain-
ment control for multi-agent systems (Wang et al. (2018));
prescribed-time leader-following consensus of multi-agent
systems (Wang and Song (2018)); cluster synchronization
of complex networks (Liu et al. (2018)); lag consensus
of second order leader-following multi-agent systems (Ren
et al. (2021)); prescribed-time bipartite consensus tracking
(Ning et al. (2020)); prescribed-time consensus over time-
varying graph via time scaling (Kan et al. (2017), Yucelen
et al. (2018), Arabi et al. (2021), Tran et al. (2021),
Kurtoglu and Yucelen (2021)).

The centralized fixed-time and prescribed-time state ob-
servers are developed in Lopez-Ramirez et al. (2018) and
Holloway and Krstic (2019), respectively. To address the
cooperative state estimation, we propose to design these
kind of observers which work distributively. To the best



of our knowledge, such research has not received much
attention; the only known paper (see Gong et al. (2021))
presents a prescribed-time observer for multi-agent system
with SISO agents, but it is hard to demonstrate the dis-
tributed nature of the observer in the SISO case. Based
on the above discussion, this paper develops a class of
prescribed-time distributed observers for cooperative state
estimation of linear MIMO plants, where each observer
shares the results of local estimates to its neighbors under
a strongly connected graph. The key idea of our paper is
to upgrade the classical linear distributed observer to a
homogeneous one following the scheme proposed in Wang
et al. (2021). We show that such an upgrade is possible if
all agent obtain synchronously a scalar time-varying signal
which scales dynamically the gains of observers to guaran-
tee a prescribed-time convergence (see Song et al. (2017)
for more details). There are several ways to generate such
a signal. For example, if all agents may have synchronized
clocks then they can generate the required signal, simulta-
neously. Another approach by Li et al. (2022) assumes that
there is a supervisor broadcasting the scalar signal simulta-
neously to all agents. Inspired by generalized homogeneity,
in this paper we design a dynamics of the supervisor
in such a way that the cooperative state estimation is
achieved in a prescribed time. Below we show that this
approach fits the concept proposed in Song et al. (2017),
Holloway and Krstic (2019), which, in fact, implicitly uses
the homogeneity (dilation symmetry) principles as well.

This paper is organized as follows. Section 2 gives some
basic knowledge on graph theory, stability definitions and
homogeneous systems. The problem to be studied is formu-
lated in Section 3; The basic idea upgrading the classical
linear distributed observers to homogeneous ones is pro-
posed in Section 4; The main result regarding the design
of prescribed-time observers and the convergence analysis
are in Section 5; Finally, in Section 6, the effectiveness of
the designed homogeneous observers is illustrated by some
numerical simulations.

Notation. N+ is the set of positive integers; R is the set of
real numbers; R≥0 is the set of non-negative real numbers;
Rn and Rn×n denote the n × 1 real vector and the n × n
real matrix, respectively; ‖ · ‖ is the norm in Rn; IN is
the N ×N identity matrix; 1N is the N-dimension vector
whose components are all ones; 0 is the matrix/vector
composed of zeros with proper dimension; exp(·) = e(·),
with e is the Euler number; diag{σi}Ni=1 is the N × N
diagonal matrix with elements σi; λmax(·) and λmin(·)
denote the maximum and minimum eigenvalue of a matrix,
respectively; P � 0(≺ 0) for P ∈ Rn×n means that the
matrix P is symmetric and positive (negative) definite;
⊗ represents the Kronecker product; C(X,Y ) denotes the
space of continuous functions X 7→ Y , where X, Y are
subsets of normed vector spaces; Cρ(X,Y ) is the space
of functions continuously differentiable at least up to the
order ρ.

2. PRELIMINARIES

2.1 Graph Theory

In graph theory, a fixed directed graph G is usually
characterized by the node set V, the edge set E and the

adjacency matrix A. To be specific, the node set V = 1, N ,
which contains all the nodes at the graph labeled by
i = 1 . . . N ; the edge set E = {(i, j)|i, j ∈ V}, (i, j) ∈ E if
node j is able to transfer its local information to node i,
the number of incoming edges of node i is ni; A = {aij},
where aij = 1 for (i, j) ∈ E and aij = 0 for (i, j) 6∈ E .
A directed path from node i to node j is a sequence of
node {i1 . . . is}, where i1 = i, is = j and (iκ, iκ+1) ∈
E , κ ∈ 1, s− 1. The directed graph G is strongly connected
if there exists at least one directed path between each pair
of the nodes. The Laplacian matrix associated to graph G
is defined as L = {lij}, where lij = −aij for i 6= j and

lij =
∑N
k=1

aik for i = j.

Lemma 1. [Ren and Beard (2005)] For a strongly con-
nected graph, the associated Laplacian matrix has a simple
eigenvalue zero and all other eigenvalues have positive real
parts.

Lemma 2. [Yu et al. (2009)] Assume L be the Laplacian
matrix corresponding to a strongly connected graph G.
Then L can be similarly transformed by T and its inverse,
which is given as T−1LT = diag{0,∆}, where ∆ is a
Jordan block related to nonzero eigenvalues of L, T =

(1N , Y1) and T−1 = (ζ, Y2)
>

, Y1 is composed of the
eigenvectors of L which associated to nonzero eigenvalues,

Y >2 Y1 = IN−1, ζ = (ζ1 . . . ζN )
>

is the left zero eigenvector
of L, which yields

ζi > 0, 1>Nζ = 1 and ζ>L = 0. (1)

2.2 Stability Notations

A system is considered with the following presentation:

ς̇(t) = f(t, ς(t)), t ≥ 0, (2)

where ς(t) ∈ Rd, d ∈ N+ is the state vector; the vector field
f : R × Rd 7→ Rd is assumed to be piece-wise continuous
on time variable for any fixed state and continuous on
state variable for almost all instances of time, such that
f(·,0) = 0 (the origin is an equilibrium). A solution of (2)
is denoted as S(t, ς0) with ς0 = ς(0).

To present the notion of the prescribed-time stability, some
classes of functions are needed to be introduced.

Definition 1. [Khalil (1996)] A continuous function ϑ(%) :
R≥0 7→ R≥0 belongs to

• K function if it is strictly increasing with ϑ(0) = 0;
• GK function if it is strictly increasing on % ∈ [%0,+∞)

and ϑ(%) = 0 on % ∈ [0, %0].

Definition 2. [Khalil (1996), Hong et al. (2010)] A contin-
uous function $(%, t) : R≥0 × R≥0 7→ R≥0 belongs to

• KL function if it belongs to K function for each
fixed t ∈ R≥0, and, for each fixed % ∈ R≥0, it has

lim
t→+∞

$(%, t) = 0;

• GKL function if it is a GK function for each fixed
t ∈ R≥0, and, for each fixed % ∈ R≥0 there exists
T (ρ) ∈ R≥0 such that limt→T (%)$(%, t) = 0.

Definition 3. The origin of the system (2) is said to be

• globally asymptotically stable [Khalil (1996)] if ∃$ ∈
KL such that ‖S(t, ς0)‖ ≤ $(‖ς0‖, t), ∀t ∈ R≥0 and
∀ς0 ∈ Rd;



• globally uniformly finite-time stable [Bhat and Bern-
stein (2000)] if it is globally uniformly asymptotically
stable with $ ∈ GKL;

• globally uniformly fixed-time stable [Polyakov (2012)]
if it is globally uniformly finite-stable and ∃Tmax > 0
such that T (%) ≤ Tmax,∀% ∈ R≥0;

• globally uniformly prescribed-time stable [Song et al.
(2017)] if it is fixed-time stable and S(t, ς0) 6= 0 for
all t ∈ [0, Tmax) if ς0 6= 0 .

In the view of the latter definition, the prescribed-time
stability is a version of the finite-time stability, where the
settling time is a constant (prescribed) value.

2.3 Dilation in Rn

Homogeneity is an invariance of an object with respect
to a class of transformations called dilations. Choosing
a proper dilation group d(s), s ∈ R is vital for the
homogeneity-based analysis, d(s) is supposed to satisfy the
limit property: lims→±∞ ‖d(s)x‖ = exp(±∞) for ∀x 6= 0.
Examples of dilations are as follows: standard dilation
(introduced by L. Euler 18th century), defined as d(s) =
exp(s)I, s ∈ R; weighted dilation (Zubov (1958)) defined
as d(s) = diag{exp(r1s) . . . exp(rns)} ∈ Rn×n, where
ri > 0, i ∈ 1, n; linear dilation (Polyakov (2019)) defined
as d(s) = exp(Gds), s ∈ Rn where Gd ∈ Rn×n is
an anti-Hurwitz matrix known as the generator of the
dilation; geometric dilation (Khomenuk (1961), Kawski
(1995)) which is defined as a flow generated by an unstable
C1 vector field.

2.4 Homogeneous Systems

Definition 4. A vector field f : Rn 7→ Rn (resp. a function
h : Rn 7→ R) is said to be d-homogeneous if there exist a
µ ∈ R such that

f(d(s)x) = exp(µs)d(s)f(x), ∀s ∈ R, ∀x ∈ Rn,
(resp. h(d(s)x) = exp(µs)h(x), ∀s ∈ R, ∀x ∈ Rn)

where d is a dilation and the scalar µ ∈ R is known as the
homogeneous degree of f (resp. h).

One of the main advantages of homogenous systems is
that whose finite-time stability can be achieved by an
asymptotic stability scheme.

Lemma 3. [Bhat and Bernstein (1997)] Let f be a con-
tinuous d-homogeneous vector field of degree µ ∈ R. The
evolution system ẋ = f(x) is globally finite-time stable
if µ < 0 and the system is asymptotically stable at the
equilibrium.

Below we show that in the case of a discontinuous vector
field f , for µ < 0 the homogeneous system may also
be partially prescribed-time stable. Namely, one part of
coordinates may converge to zero in a prescribed time de-
pendent on the initial state of another part of coordinates.

3. PROBLEM STATEMENT

Consider a linear plant with multiple outputs:{
ẋ(t) = Ax(t) +Bu(t), (3a)

yi(t) = Cix(t), i ∈ 1, N (3b)

where x(t) ∈ Rn is the plant state; A ∈ Rn×n; B ∈ Rn×q;
u ∈ Rq is the control input; yi ∈ Rpi is the ith portion
of the measured output with Ci ∈ Rpi×n. The plant (3)
satisfies the following assumptions:

Assumption 4. The pair (A,B) is controllable and A is a
nilpotent matrix.

Remark 1. The assumption A is a nilpotent matrix implies
that the vector field x 7→ Ax is linear homogeneous
(Polyakov (2020)). This assumption is not conservative in
our case and the explanation is as follows. Since (A,B)
is controllable, ∃u0 = K0x, K0 ∈ Rq×n such that A +
BK0 is nilpotent (Zimenko et al. (2020)). Without loss of
generality, let u = u0 +unew, the linear plant (3a) becomes
ẋ(t) = Anewx(t) + Bunew(t), where Anew = A + BK0 is
nilpotent.

Assumption 5. [Global Observability, Park and Martins
(2012)] The pair (A,C) is observable, where

C =
(
C>1 . . . C>N

)> ∈ Rp×n, p =
∑N
i=1pi.

Remark 2. According to pole placement theory in Chen
(1984), the global observability implies that ∃Ĥ ∈ Rn×p
and P1 ∈ Rn×n such that

P1 � 0, P1A+AP1 + P1ĤC + C>Ĥ>P1 ≺ 0. (4)

The goal of this work is to design a network of linear
homogeneous observers ˙̂xi = f(yi, ξ, x̂j1 . . . x̂jni ), i ∈
1, N, ξ ∈ R, jk ∈ V : (i, jk) ∈ E to cooperatively
reconstruct the state of (3a) in a prescribed time tp ∈ R≥0,

i.e., limt→tp(x̂i(t)− x(t)) = 0, i ∈ 1, N . The design bases
on the following assumption.

Assumption 6. All observers at the network are capable to
receive a scalar signal ξ(t) broadcasted by a supervisor.

Remark 3. The existence of the scalar signal ξ(t) does not
destroy the local distributed working style of the observer
since ξ(t) is independent of any states or outputs of the
whole system. The reason to introduce such a scalar ξ(t)
is to regulate the gains in the homogeneous observers to
be infinity at the prescribed time tp. This is an essential
part to achieve prescribed-time state estimation. Such a
combination, i.e., utilizing the external ξ(t) and the local
plant output as well as information from neighbors for
state estimation, is named as the distributed prescribed-
time cooperative estimation.

To achieve our purpose, we need to design properly a
distributed observer

˙̂xi = r(x̂i, yi, ξ), t ≥ 0, r : Rn × Rpi × R 7→ Rn (5)

for (3) and a dynamic of the broadcasting scalar signal

ξ̇ = g(ξ), t ≥ 0, g : R 7→ R (6)

such that

• the dynamic of the observation error

e =
(
(x̂1 − x)> . . . (x̂N − x)>

)>
,

system has the following presentation

ė = ϕ(e, ξ), (7)

where ϕ : RnN × R 7→ RnN ;

• the vector field (e, ξ) 7→
(
ϕ(e,ξ)
g(ξ)

)
is linear homoge-

neous of a given degree µ ∈ R;



• the augmented system (7), (6) is globally uniformly
asymptotically stable and the error subsystem (7) is
globally uniformly prescribed-time stable for µ < 0.

4. BASIC IDEA

Let us start from the classical linear distributed observer.
Firstly, a useful lemma is introduced as follows:

Lemma 7. [Liu et al. (2017)] The matrix defined as

Λ =
(
G R
R> F−νIn

)
is negative definite for a sufficiently large ν if G ≺ 0 and
F is symmetric.

Theorem 8. [Liu et al. (2017)] Assume a group of linear
distributed observers connected under a strongly connected
topology G, and whose dynamics are

˙̂xi = Ax̂i +Bu+Hi(Cix̂i − yi) + ν
∑N
j=1aij(x̂j − x̂i),

Hi ∈ Rn×pi , ν ∈ R, i ∈ 1, N.
(8)

The error system (7) with ξ = 0 is asymptotically stable if

Hi = Ĥi
ζi
, ν > νl =

λmax{M4−M>2 M
−1
1 M2}

λmin{P2∆+∆>P2} , (9)

where

M1 = P1Â+ Â>P1, M2 = P1B̂ + Ĉ>(P2 ⊗ In),

M4 = (P2 ⊗ In)Φ + Φ>(P2 ⊗ In), Â = A+
∑N
i=1ζiHiCi,

B̂ = (ζ> ⊗ In)(Ã+ H̃C̃)(Y1 ⊗ In),

Ĉ = (Y >2 ⊗ In)(Ã+ H̃C̃)(1N ⊗ In),

Φ = (Y >2 ⊗ In)(Ã+ H̃C̃)(Y1 ⊗ In),

Ã = IN ⊗A, H̃ = diag{Hi}i∈1,N , C̃ = diag{Ci}i∈1,N ,

the vector ζ with component ζi 6= 0 is defined in (1), ∆,

Y1 and Y2 are given in Lemma 2, Ĥi is the component of
Ĥ = (Ĥ1 . . . ĤN ), and Ĥ is defined in (4), P1 is given in
(4) and P2 satisfies

P2 � 0, P2(−∆) + (−∆)>P2 ≺ 0. (10)

It is obvious that the linear distributed observers (8) (cor-
respondingly, the augmented system (7)) are homogeneous
of degree µ = 0. A scheme for upgrading a linear central-
ized Luenburger state observer to a liner homogeneous one
is developed by Wang et al. (2021), which suggest us to
replace the linear term Hi(Cix̂i− yi) with a homogeneous
one exp((G0 + In)µ ln ξ)Hi(Cix̂i − yi), where G0 ∈ Rn×n
is a properly designed matrix such that the dilation gen-
erator Gd := µG0 + In anti-Hurwitz, and ξ is a scalar
signal defined in a special way to guarantee finite/fixed-
time convergence. In the case of observers working as the
multi-agent system, the signal should be received by all
individuals simultaneously.

As shown before, to guarantee the prescribed time state
estimation this signal can be selected as a certain function
of time. In practice, its computation may be realized by
means of clock synchronization for all agents or by broad-
casting of the required signal to all agents simultaneously.

5. PRESCRIBED-TIME OBSERVER DESIGN AND
CONVERGENCE ANALYSIS

Given µ 6= 0 and G0 ∈ Rn×n satisfying the following
identities

AG0 = (G0 + In)A, CG0 = 0. (11)

From Polyakov (2020), it is known that such a G0 can
always be found provided that (A,C) is observable and A
is nilpotent.

Theorem 9. Assume a network of homogenous observers,
which interact among each other under a strongly con-
nected graph G, and the dynamics are as follows:

˙̂xi = Ax̂i +Bu+ exp((G0 + In)µ ln ξ)Hi(Cix̂i − yi)
+ νξµ

∑N
j=1aij(x̂j − x̂i), Hi ∈ Rn×pi , ν ∈ R, i ∈ 1, N

(12)
where G0 ∈ Rn×n is obtained from (11), and ξ is calculated
according to

ξ̇(t) = −γξµ+1(t), t ∈ [0, t1),

t1 = −ξ−µ(0)
γµ , ξ(0) > 0, γ ∈ R

(13)

and we assign ξ(t) = 1, ∀t ≥ t1. Let γ > 0, µ < 0,

Hi = Ĥi
ζi

and ν > νl, where ζi 6= 0, Ĥi and νl are defined

in (1), (4) and (9), then

• the differential equation ϕ(e, ξ) in (7) has the follow-
ing presentation

ϕ=
[
Ã+(IN⊗exp((G0+In)µ ln ξ)H̃C̃−νξµ(L⊗In)

]
e,

(14)

which together (13) is d̃-homogeneous of degree µ∈R,

d̃(s) =
(
IN⊗d(s) 0

0 exp(s)

)
,

where s ∈ R and the dilation d(s) is generated by
Gd = µG0 + In;

• the error system (7) is globally uniformly prescribed-

time stable with the settling time Tmax = −ξ−µ(0)
γµ .

Remark 4. Users are able to arbitrarily prescribe the set-
tling time tp by choosing proper γ > 0, ξ(0) > 0 or/and
µ < 0.

6. SIMULATION RESULTS

Let the system matrixes of the LTI plant (3) be

A =
(

0 1 0
0 0 1
0 0 0

)
, B =

(
0
0
1

)
,

and output matrixes corresponding to yi, i = 1, 2, 3
are C1 = (1 1 0), C2 = (0 0 1) and C3 = (1 0 0).

From (4), we have Ĥ1 = (0.9999 − 1.0000 − 2.0000)
>

,

Ĥ2 = (−1.0000 1.0000 − 1.0000)
>

, Ĥ3 = (−1.9999 −
0.9999 2.9999)>.

To recover the state of the LTI plant, three observers are
employed to form the distributed prescribed-time observer
(12), whose communication graph is as Fig.1 shows. Cor-
responding Laplacian matrix can be calculated and the as-

sociated zero-eigenvector is ζ = (0.3333 0.3333 0.3333)
>

.

Then, from Theorem 9, we can obtain H1 = 3 × Ĥ1,
H2 = 3× Ĥ2, H3 = 3× Ĥ3. Meanwhile, we let ν = 15.

In addition, from the identity (11), we have

G0 =
(−0.0136 0.1568 0.0326

0.1568 −0.3193 −0.0061
0.0326 −0.0061 0.0364

)
.

Then, the generator of dilation Gd = µG0 + I3 can be
specified by letting µ = −0.4.
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Fig. 1. The communication graph of observers

The estimation error e =
(
e>1 . . . e

>
3

)>
, where ei = x̂i −

x is a vector contains the estimation error between the
ith observer and the state of the LTI plant. In order
to make the simulation more clear, we introduce ψ1 =

(e1(1) e2(1) e3(1))
>

, ψ2 = (e1(2) e2(2) e3(2))
>

, ψ3 =

(e1(3) e2(3) e3(3))
>

, in which each ψi contains the esti-
mation errors of all observers respect to ith state of the
LTI plant.

Let the initial state of the observers be zeros and the initial
state of the LTI plant be x(0) = (1.0000 1.5000 2.5000)

>
.

The control input u = Kx with K = (−0.0000 −
2.3104 − 0.0000) is such that the closed-loop LTI plant
Lyapunov stable. Based on all the above parameters and
the simulation step h = 0.01s, the MATLAB platform
and the implicit Euler method are adopted for simulation.
Theoretically, the states of the prescribed time observer
reach the state of the LTI plant at the prescribed time tp =
2.5s and the external signal ξ(t) → 0 as t → tp. However,
in practice this reaching cannot be exact, for example,
due to discretization issues. In fact, the sampled-time
implementation of the prescribed-time observer implies
instability due to infinite growth of observers gains as
t → tp (resp. as ξ → 0). That is why the signal is
taken ξ(t) = 1 after the reaching phase. Since exp((G0 +
In)µ ln ξ) = In if ξ = 1 then the prescribed-time observer
coincides with the original linear observer for t ≥ tp. Such
a simple switching approach allows an acceleration the
convergence of the observer (see Fig. 2).
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(a)

0 1 2 2.5 3 4 5 6

t(sec)
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(b)

LTI plant states observer states

Fig. 2. Trajectories of LTI plant states and states of (a)
prescribed-time observers; (b) linear observers.

Fig.3-Fig.5 show the comparison of ψi, i ∈ 1, 3 between
the asymptotic stabilization by linear observers and the
prescribed-time stabilization by homogeneous observers.
It is clear that errors settle at the prescribed time.
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Fig. 3. Evolution trajectories of ψ1 by homogeneous ob-
servers and linear observers.
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Fig. 4. Evolution trajectories of ψ2 by homogeneous ob-
servers and linear observers.
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Fig. 5. Evolution trajectories of ψ3 by homogeneous ob-
servers and linear observers.

7. CONCLUSION

In this paper, a prescribed-time cooperative state esti-
mation problem is addressed by a scheme of distributed
homogeneous observers, which is proposed by upgrading
the classical linear distributed observers with the con-
cept of homogeneity. This novel scheme demonstrates a
possibility to extend the design framework of prescribed-
time observers from centralized to distributed one. The
prescribed-time algorithms have certain difficulties in
practical/digital implementation. The homogeneity may
allow to overcome them in future using methods of consis-
tent discretization.
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