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Abstract: This paper contributes to the design of a family of homogeneous controllers to deal
with the trajectory tracking problem in unicycle mobile robots (UMRs). The control strategy is
based on a cascade control paradigm, which includes the position and orientation tracking error
subsystems. The proposed homogeneous controllers provide different types of convergence to
zero for the tracking error dynamics, i.e., asymptotic, exponential and finite–time convergence.
Simulation results illustrate the performance of the proposed family of homogeneous controllers.
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1. INTRODUCTION

The Unicycle mobile robot (UMR) as a well–known and
widespread nonlinear system has attracted much interest
for a long history. Non–holonomic vehicles are a class
of systems that cannot be stabilized asymptotically via
smooth static state feedback Brockett et al. (1983). In
general, there are two solutions: non–smooth feedback
control (see, e.g., Bloch and Drakunov (1996) and Astolfi
(1996)) and smooth time–varying feedback control (see,
e.g., Samson (1995) and Tian and Li (2002)).

Homogeneity is a dilation symmetry. Homogeneous sys-
tems have some important properties such as faster conver-
gence, better robustness and less overshoots (for more de-
tails, see Hong (2001), Bhat and Bernstein (2005), Andrieu
et al. (2008) and Polyakov (2020)). Many homogeneity–
based controllers for UMRs proposed in the literature
guarantee just exponential stabilization (see, e.g., Kimura
et al. (2013), Kimura et al. (2015), and M’Closkey and
Murray (1997)).

From a practical perspective, a trajectory tracking task is
more important than stabilization for a UMR (see, e.g.,
Rochel et al. (2022), Maghenem et al. (2017), Zhai and
Song (2019) ). Stabilization of the UMR is challenging
because the linearized system around the origin loses
⋆ This work was supported in part by the SEP–CONACYT–
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Project 922, and in part by TecNM Projects. M. Mera was supported
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controllability. But the linearized system around some
moving trajectories could be controllable, which make the
tracking control design more flexible De Luca et al. (2001).

Finite–time control on the unicycle model has attracted
a lot of attention in recent decades due to its fast con-
vergence and robustness properties. There are two major
approaches about the finite–time control design: direct
Lyapunov method and homogeneity–based method.

Since any asymptotically stable homogeneous system with
negative degree is finite–time stableBhat and Bernstein
(2005), many finite–time controllers based on homogeneity
have been proposed(see, e.g., Kimura et al. (2016), Wu
et al. (2018) and Li and Tian (2007), Ding et al. (2010)).

Motivation: The majority of homogeneity–based tracking
control designs focus on the system with a negative degree
of homogeneity. The different convergence rates of a ho-
mogeneous system can be determined by simply adjusting
the homogeneity degree. Thus, it motivates us to develop
a homogeneous control algorithm providing different con-
vergence rates. The cascade structure is widely used in
UMR control design owing to the underactuated prop-
erty of UMR. In Li and Tian (2007), Ding et al. (2010),
homogeneity–based algorithms for the finite–time trajec-
tory tracking problem are investigated using a cascade
structure. However, these algorithms require a nonzero
desired angular velocity, therefore they are unable to track
some trajectories, e.g., a simple straight line. It motivates
us to design a homogeneity control based on a new cascade
structure.

In this paper, we aim to develop a homogeneous tracking
control for a UMR kinematic. The homogeneous control



design, and stability analysis, are based on an implicit
homogeneous Lyapunov function called canonical homoge-
neous norm. Considering the underactuated characteristic
of the system, a cascade control scheme is adopted.

Main Contribution: The trajectory tracking problem in
UMRs is solved by means of a family of homogeneous
controllers. The control design and stability analysis are
based on homogeneity properties and implicit Lyapunov
function. It is able to provide different types of conver-
gence to zero, i.e., asymptotic, exponential, and finite–
time convergence. The control utilizes a flatness–based
cascade structure that allows it to track a wider range
of trajectories.

The following is how this paper is structured. The prob-
lem is modeled in Section II. Section III presents useful
knowledge of homogeneous systems. Section IV summa-
rizes the main results of this research on cascade system
design, homogeneous control design, and stability analysis.
The simulation validations are presented in Section V.
The concluding remarks are given in Section VI. Finally,
some supporting results about Input–to–State Stability
are given in the Appendix.

Notation: Let R be the set of real numbers, R+ = {α ∈
R : α ≥ 0}; ∥ · ∥ be a norm in Rn, 0 denotes the zero
vector from Rn; P ≻ 0(≺ 0,⪰ 0,⪯ 0) for P ∈ Rn×n means
that the matrix P is symmetric and positive (negative)
definite (semidefinite); λmin(P ) and λmax(P ) represent the
minimal and maximal eigenvalue of a matrix P = P⊤; for
P ⪰ 0 the square root of P is a matrix M = P

1
2 such

that M2 = P . The conical Euclidean norm for x ∈ Rn

is denoted as ∥x∥2 =
√
x⊤x. Let denote by K the set

of continuous increasing functions map R+ to R+. The
set of unbounded K functions is denoted by K∞. Let
continuous function β(·, ·) ∈ KL if it is K with respect
to the first argument and strictly decreasing to zero with
respect to the second argument. L∞ is the set of the
essentially bounded measure functions. L1

loc is the set of
local Lebesgue measure functions.

2. PROBLEM STATEMENT

Let us consider the kinematic model of a UMR:{
ṙ = vξ,

θ̇ = ω,
r(0) = r0,
θ(0) = θ0,

(1)

where r = [x, y]⊤ ∈ R2 is the planar position vector,
v ∈ R+ is the velocity magnitude, ξ = [cos(θ), sin(θ)]⊤

is the unit vector that defines the direction of the velocity,
θ ∈ R is the angle between the vector r and the x-axis,
ω ∈ R is the angular velocity. We assume that x, y, and θ
are the only available measurements of the system, which
may be noised.

The system is unable to track any arbitrary trajectory due
to the non-holonomic constraint

ẋ sin(θ)− ẏ cos(θ) = 0. (2)

However, the system (1) is a differential flatness system,
and a feasible trajectory can be defined according to the
flat output and its derivatives. Selecting the flat output
as (x, y). For given desired position xd, yd ∈ C2(R+,R),
according to the system we have can determine the desired
velocity magnitude vd:

ṙd = vdξd ⇒ vd = ∥ṙd∥2 =
√

ẋ2
d + ẏ2d,

where rd = [xd, yd]
⊤, ξd = [cos(θd), sin(θd)]

⊤. The desired
trajectory should satisfy the non-holonomic constraint (2).
Then the desired angle and desired angular velocity can be
determined from the derivative of the xd and yd,

θd = arctan

(
ẏd
ẋd

)
, θ̇d = ωd =

ÿdẋd − ẏdẍd

ẋ2
d + ẏ2d

.

We define a feasible trajectory for the system (1) as a pair
rd ∈ C2(R+,R2), θd ∈ C2(R+,R) satisfying{

ṙd = vdξd,

ẋd sin(θd)− ẏd cos(θd) = 0.
(3)

The conventional tracking problem for the perturbation-
free system (1) can be formulated as follows: design a
control law of the inputs v and ω such that for any desired
feasible trajectory rd, θd one holds

∥r(t)−rd(t)∥2→ 0, ∥θ(t)−θd(t)∥2→0 as t → ∞.

In practice, some additional properties may be requested
for the control system, e.g., stability of the error dynam-
ics 1 , specification of the convergence rate, minimization
of overshoots, robustness.

In this paper, we utilize the concept of generalized homo-
geneity (see below) allowing additional properties men-
tioned above to be guaranteed. In particular, we investi-
gate the possibility of homogeneous finite–time 2 stabiliza-
tion of the error dynamics.

3. PRELIMINARIES

The homogeneity (dilation symmetry) based analysis and
design of control system requires a dilation to be specified.
By definition, a dilation d(s), with s ∈ R, is a one-
parameter group of transformations satisfying the limit
property lim

s→s∞
∥d(s)x∥ = exp(s∞), s∞ = ±∞,∀x ̸= 0

Husch (1970).

The linear dilation in Rn is defined as follows Polyakov
(2019)

d(s) = exp(sGd) :=

+∞∑
i=0

siGi
d

i! , s ∈ Rn,

where Gd ∈ Rn×n is an anti–Hurwitz 3 matrix called the
generator of the dilation d.
Definition 1. A vector field f : Rn → Rn (resp. a
function h : Rn → R) is said to be d–homogeneous of
degree µ ∈ R if

f(d(s)) = exp(µs)d(s)f(x), ∀x ∈ Rn, ∀s ∈ R,
(resp., h(d(s)) = exp(µs)h(x), ∀x ∈ Rn, ∀s ∈ R),

where d is a linear dilation in Rn.

An essential characteristic of a homogeneous system is
the existence of a homogeneous Lyapunov function. The
1 Asymptotic convergence does not imply stability in the general
case.
2 The system ė = f(t, e), t > t0 is globally uniformly finite–time
stable if it is uniformly Lyapunov stable and there exists a locally
bounded function T : Rn 7→ R+ such that ∀e0 ∈ Rn, e(t0) = e0 ⇒
e(t)=0, ∀t≥ t0+T (e0).
3 A matrix Gd is anti–Hurwitz if −Gd is Hurwitz.
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analysis in this study is based on the implicit homogeneous
Lyapunov function known as the canonical homogeneous
norm.
Definition 2. Polyakov (2019). The function ∥·∥d : Rn 7→
R+ defined as ∥0∥d = 0 and

∥u∥d = exp(su), where su ∈ R : ∥d (−su)u∥ = 1,

is called the canonical d–homogeneous norm in Rn, where
d is a linear strictly monotone dilation 4 .

3.1 Homogeneous Stabilization of Linear Plants

Let us consider the linear plant

ẋ = Ax+Bu, t > 0, (4)

where x(t) ∈ Rn, u(t) ∈ Rm, A ∈ Rn×n and B ∈ Rn×m.
Theorem 1. Zimenko et al. (2020). Let the pair (G0, Y0) ∈
G0 × Rm×n be a solution of the linear matrix equation

AG0 +BY0 = G0A+A, G0B = 0, (5)

such that G0 − In is invertible and the matrix Gd =
In + µG0 is anti–Hurwitz. Let the homogeneous control
be defined as follows

u = uhom(x) :=K0x+∥x∥1+µ
d Kd (− ln ∥x∥d)x, (6)

where K0 = Y0(G0 − In)
−1, K = Y X−1 with the pair

(X,Y ) ∈ Rn×n × Rm×n being a solution of the system{
XA⊤

0+A0X+Y ⊤B⊤+BY +ρ
(
XG⊤

d+GdX
)
=0,

XG⊤
d +GdX ≻ 0, X ≻ 0, A0 = A+BK0,

(7)

and the canonical homogeneous norm ∥ · ∥d is induced by

the norm ∥x∥ =
√
x⊤X−1x. Then, the closed–loop system

(4) and (6) is d–homogenenous of degree µ and

• Globally uniformly finite–time stable for µ < 0;
• Globally uniformly exponentially stable for µ = 0;
• Globally uniformly nearly fixed–time stable for µ > 0.

Moreover, ∥ · ∥d is a Lyapunov function of the system:

d
dt∥x∥d = −ρ∥x∥1+µ

d . (8)

If the pair {A,B} is controllable then any solution of
the system (5) satisfies conditions of the latter theorem
for µ ≤ 1/k, where k is a minimal number such that
rank[B,AB, ..., Ak−1B] = n (see Nekhoroshikh et al.
(2021) for more details).

4. HOMOGENEITY–BASED CONTROL FOR THE
UMR

4.1 Cascade Control Design

The main aim of this paper is to develop control algorithms
for trajectory tracking by the unicycle vehicle being an
under–actuated system. A widely used model for UMR
tracking problems in the absence of disturbances is pro-
posed in Kanayama et al. (1990). However, the model
is not straightforward in the control design. Thus, this
section presents a cascade control paradigm following the
flatness idea.

4 A dilation is strictly monotone if the function s 7→ ∥d(s)x∥ is
strictly monotone for any x ̸= 0. dilation in Rn. Any liner dilation
in Rn is strictly monotone under a proper selection of a weighted
Euclidean norm Polyakov (2019).

Let us define the tracking errors as

er = r − r∗, (9)

where r∗ is a feasible nominal trajectory such that

r∗(t) → rd(t) as t → +∞.

Following the flatness of the system, the angle error and
the angular error can be determined using the position
error and its derivatives.

Then, the tracking error system is described as follows:

ėr = vξ − ṙ∗, ėθ = ω − θ̇∗. (10)

where θ∗ is an artificial angle command driven by the
position subsystem.

Following the back–stepping ideas, we assume that there
exists virtual controllers u∗

r and u∗
θ dependent on er and

eθ, which stabilize the error subsystems ėr = u∗
r ėθ =

u∗
θ, respectively. In this case, we can rewrite the error

dynamics as follows {
ėr = u∗

r + δ1,

ėθ = u∗
θ + δ2,

(11)

where
δ1 = vξ − ṙ∗ − u∗

r , δ2 = ω − θ̇∗ − u∗
θ. (12)

Therefore, to stabilize the error dynamics of er, we need
to define the control inputs v and ω such that

δ = (δ1, δ2)
⊤ → 0.

The entire system (11) is under-actuated, the position
subsystem is under-actuated by the input v, but the
orientation subsystem is fully-actuated. Hence, the idea
of the cascade structure is that the position subsystem
determines the desired velocity vector vξ∗, the v is the
actual input of the system, then the direction command
ξ∗ is tracked by the orientation subsystem. To track the
velocity direction ξ∗, the angular command ω∗ should be
properly defined.

Let us select the control inputs as follows:

v = ∥ṙ∗ + u∗
r∥2, ω = ω∗ + u∗

θ, (13)

where

θ̇∗ = ω∗ :=
(ṙ∗+u∗

r)
⊤
[
0 −1
1 0

]
d(ṙ∗+u∗

r )

dt

∥ṙ∗+u∗
r∥2

2
, (14)

θ∗(0) = arctan
(

[0,1](ṙ∗(0)+u∗
r(0))

[1,0](ṙ∗(0)+u∗
r(0))

)
, (15)

where r∗(0) and u∗
r(0) denote the values of r∗ and u∗ at

the initial instant of time t = 0.
Lemma 1. Let the functions t 7→ ṙ∗(t) and t 7→ u∗

r(t) be
continuously differentiable on R+, the function t 7→ ω∗(t)
be locally Lebesgue integrable, the set

∆ = {t ∈ R+ : ṙ∗(t) + u∗
r(t) = 0}, (16)

be finite and 0 /∈ ∆. Then

• the differential equation (14), (15) has the unique
solution t 7→ θ∗(t) satisfying

θ∗(t) = θ∗(0) +
t

∫
0
ω∗(τ)dτ, t ∈ R+, (17)

that is absolutely continuous on R+ and continuously
differentiable on R+\{∆};

• the vector-valued function t 7→ ξ∗(t) :=
[
cos(θ∗(t))
sin(θ∗(t))

]⊤
,

satisfies the identity
3



ξ∗(t) =
ṙ∗(t)+u∗

r(t)
∥ṙ∗(t)+u∗

r(t)∥2
, ∀t ∈ R+; (18)

• the function t 7→ eθ(t) is absolutely continuous on R+

provided that ω is locally Lebesque integrable.

If the conditions of Lemma 1 are fulfilled and v and ω are
defined as in (13) then the set ∆ defines some instances of

time, where θ̇∗ has a singularity. In the control design, it
is assumed that the measure of the set ∆ is zero. It is not
conventional. Since ∆ does not contain any equilibrium,
the assumption holds in most cases. So, the error equation
(11) is fulfilled almost everywhere with

δ1 = ∥r∗ + u∗
r∥ (ξ − ξ∗) , δ2 = u∗

θ + ω∗.

Since ∥ξ∥ = 1 and

ξ − ξ∗ =
[

cos(θ)−cos(θ∗)
sin(θ)−sin(θ∗)

]
= 2 sin

(
eθ
2

) [− sin
1
2 (θ+θ∗)

cos
1
2 (θ+θ∗)

]
then

∥δ1∥2 ≤ ∥ṙ∗ + u∗
r∥2(2∥eθ∥2), (19)

for almost all t ∈ R+.
Remark 1. Notice that the function θ∗ is defined by
the formula (14) just for simplicity of the mathematical

constructions. Since θ∗(0) = θ̃(0) and dθ̃(t)
dt = θ̇∗(t) almost

every on R+, then in practice, a computation of θ∗(t) can
be realized using an ”arctan” formula

θ∗(t) = arctan

(
[0 1] (ṙ∗(t) + u∗(t))

[1 0] (ṙ∗(t) + u∗(t))

)
. (20)

The coupling term δ → 0 as eθ → 0. However, δ may be
non–vanishing in the general case, so below we use the
generalized homogeneity to analyse the robustness of the
control system with respect to the coupling term. In the
following section, we show that u∗

r and u∗
θ can always be

selected such that the error dynamics of the system (11)
is locally homogeneous in a certain sense.

4.2 Locally Homogeneous Error Dynamics

Based on the above scheme, we construct a homogeneous
cascade system in this section. The orientation command
(15) calls for the derivative of u∗

r . To guarantee continuous
differentiability of u∗

r , let us define the virtual control u∗
r

as follows
u∗
r = u,

u̇ = uhom(e∗) := ∥e∗∥1+µ
d∗ Kd∗(− ln ∥e∗∥d∗)e∗,

(21)

where e∗ = [e⊤r , u
⊤]⊤ and the homogeneous feedback law

uhom is designed according to Theorem 1, where A =[
0 I2
0 0

]
, B =

[
0
I2

]
, K0 = 0, µ ∈ [−1, 1/2], d∗ is a dilation

in R4 generated by Gd∗ =
[
(1−µ)I2 0

0 I2

]
, K = Y X−1 and

the pair (X,Y ) is a solution of (7) with some ρ > 0, and
∥ · ∥d∗ is the canonical homogeneous norm induced by the

norm ∥e∗∥ =
√
(e∗)⊤X−1e∗.

Let the virtual control of the orientation be defined as:

u∗
θ =−α|eθ|νeθ, α>0, ν ≥ −1. (22)

The closed–loop system can be represented as follows

ė = f(e) + δ, (23)

f(e) :=
[
f⊤
1 (e∗) f⊤

2 (eθ)
]⊤

,

f1(e
∗) = Ae∗ +Buhom(e∗), f2(eθ) = u∗

θ(eθ),

where δ = [δ⊤1 ,0, δ2]
⊤, e = [e∗⊤, eθ]

⊤. Notice that the
vector field f is homogeneous. Indeed, the vector field f1
is d∗–homogeneous of degree µ. The vector field f2 is es–
homogeneous of degree ν. If νµ > 0 or ν = µ = 0, then
the vector field f is d-homogeneous of degree µ for the

dilation in R5 defined as follows d(s) =
[
d∗(s) 0

0 exp(γs)

]
,

where γ = µ
ν for ν ̸= 0 and γ = 1 for ν = 0. Simple

computations show that f(d(s)e) = exp(µs)d(s)f(e), for
all e ∈ R5, ∀s ∈ R. Therefore, the system (23) can be
regarded as a homogeneous system with perturbations;
however, the perturbation δ is dependent on the subsystem
states. The stability and robustness of (23) is investigated
below.

4.3 Stability of the Error Dynamics

The system (23) can be treated as two homogeneous
subsystems and the term δ = δ(ṙ∗, ω∗, u∗

r , u
∗
θ, eθ) defines

an interconnection of these systems. For δ = 0, the
system (23) is d–homogeneous with degree µ. Since δ2 is
independent of e∗ then stability and robustness properties
of the subsystems can be analyzed based on ISS of the
cascade systems (see Appendix and Sontag et al. (1989),
Sontag (1998) and Angeli et al. (2000)).
Theorem 2. The control inputs v and ω for the system
(1) be defined by the formulas (13), (14), (21), (22). If
sup
t∈R+

∥ṙ∗∥=v∗<+∞ and ω∗ ∈ L1
loc; then, the error system

(23) is:

• Globally finite–time stable for ν < 0, µ < 0;
• Globally asymptotically stable −1 ≤ µ, ν ≤ 0;
• Globally asymptotically stable and locally exponen-

tially stable for µ = ν = 0.

The control scheme is summarized as follows:

v = ∥r∗ + ur∥2, ur = ∫ ∥e∗∥1+µ
d∗ Kd∗(− ln ∥e∗∥d∗)e,

ω = θ̇∗ + uθ, u∗
θ =−α|eθ|νeθ,

θ̇∗ =
(ṙ∗+u∗

r)
⊤
[
0 −1
1 0

]
d(ṙ∗+u∗

r )

dt

∥ṙ∗+u∗
r∥2

2
.

Note that when µ = ν = 0, the controllers are linear; when
µ = ν = −1, the controllers are sliding–mode controllers.
The simulation below demonstrates the parameters tuning
and performance validation.

5. SIMULATION RESULTS

A numerical simulation illustrates the performance of the
controllers proposed in this paper. The simulation is done
in Simulink with the sampling step 10−4. The lemniscate
trajectory

xd(t) =
cos(ϕt)

1 + sin2(ϕt)
, yd(t) =

sin(ϕt) cos(ϕt)

1 + sin2(ϕt)
,

with ϕ = 0.8, is used as a benchmark for mobile robot
trajectory tracking. In this case, We set r∗ = rd. The
orientation control parameters are ν = −0.5 and α =
−8. The position control parameters are obtained by
solving the system (7) in MATLAB sing the packages
Yalmip and SEDUMI for µ = −0.5 and ρ = 2: K =
[−19.6938I2,−5I2],

P =

[
30.4741I2 4.6422I2
4.6422I2 1.5474I2

]
, Gd∗ =

[
1.5I2 0
0 I2

]
.
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The initial state of the system is r(0) = [1.5, 0.25]⊤, θ = 0.
In this example, we select r∗(t) = rd(t). The simulation
results are depicted in Fig. 1. 2, 3. As seen in Fig. 1, there is
a reaching phase due to an initial error er(0) = [0.5, 0.25]⊤,
but the vehicle quickly reaches the target trajectory and
then follows it. Fig. 2 confirms the finite-time convergence
(see the logarithmic scales for the error). Variations of the
stabilization error for values less than 10−10 are caused
by computational errors. The control signals v and ω are
presented in Fig. 3.

-1 -0.5 0 0.5 1 1.5

x(m)

-0.4

-0.2

0

0.2

0.4

0.6

y
(m

)

desired trejectory

actual trajectory

initial point

Fig. 1. Lemniscate trajectory tracking.

6. CONCLUSION

In this paper, a family of homogeneous controllers is
proposed to deal with the trajectory tracking problem in
UMRs. The proposed approach is based on a cascade con-
trol paradigm. In comparison to earlier kinematic finite–
time tracking techniques, the proposed control strategy
does not require a non–zero angular velocity for the desired
trajectory; hence, it is able to track a broader range of fea-
sible trajectories. Different combinations of homogeneous
degrees, for the position and orientation tracking error
subsystems, exhibit different convergence properties, i.e.,
globally and locally asymptotic, locally exponential, and
globally finite–time convergence. The simulation results
confirm the efficiency of the proposed homogeneous control
approach.

Appendix A.

A.1 Input–to–State Stability

Consider a nonlinear system with control inputs:

ẋ = f(x, u), (A.1)

where x ∈ Rn is the state, u ∈ Rm is the input and
f : Rn × Rm → Rn denotes a Lipschitz function, and
x(t0) = x0.
Definition 3. Chaillet et al. (2014a). The system (A.1)
is said to be Strongly iISS if it is both iISS and ISS,
with respect to small inputs. In other words, there exist
R > 0, β ∈ KL and µ1, µ2, µ ∈ K∞ such that, for all

0 2 4 6 8
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0

Fig. 2. Position error and orientation error.
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Fig. 3. Control input v and w.

u ∈ Um, all x0 ∈ Rn and all t ≥ 0, its solution satisfies
the following two properties:

∥x(t)∥ ≤ β (∥x0∥, t) + µ1

t

∫
0
µ2(∥u(s)∥)ds,

∥u∥ < R ⇒ ∥x(t)∥ ≤ β (∥x0∥, t) + µ(∥u∥).

The constant R is called an input threshold and the
function µ is referred to as a supply gain for (A.1),
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Um denotes the set of all measurable locally essentially
bounded functions u : R+ → Rm.

Consider a cascade system

ẋ1 = f1 (x1, x2) ,
ẋ2 = f2 (x2) ,

(A.2)

where f1 : Rn1 ×Rn2 7−→ Rn1 and f2 : Rn2 ×Rm2 7−→ Rn2

denote two locally Lipschitz functions satisfying f1(0, 0) =
0 and f2(0, 0) = 0.
Corollary 1. Chaillet et al. (2014b). If the system ẋ1 =
f1 (x1, x2) is Strongly iISS and the origin of ẋ2 = f2 (x2)
is globally asymptotically stable, then the origin of the
cascade (A.2) is globally asymptotically stable.
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