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Identifying how infection modifies host behaviours that determine social
contact networks is important for understanding heterogeneity in infectious
disease dynamics. Here, we investigate whether group social behaviour is
modified during bacterial infection in fruit flies (Drosophila melanogaster)
according to pathogen species, infectious dose, host genetic background
and sex. In one experiment, we find that systemic infection with four differ-
ent bacterial species results in a reduction in the mean pairwise distance
within infected female flies, and that the extent of this change depends on
pathogen species. However, susceptible flies did not show any evidence of
avoidance in the presence of infected flies. In a separate experiment, we
observed genetic- and sex-based variation in social aggregation within
infected, same-sex groups, with infected female flies aggregating more
closely than infected males. In general, our results confirm that bacterial
infection induces changes in fruit fly behaviour across a range of pathogen
species, but also highlight that these effects vary between fly genetic back-
grounds and can be sex-specific. We discuss possible explanations for sex
differences in social aggregation and their consequences for individual
variation in pathogen transmission.
1. Background
Understanding how infection modifies group behaviour, thereby altering
social connectivity and transmission dynamics, is a central focus of infectious
disease research [1–5]. We can consider several types of behavioural responses
to infection [6,7]. Infection avoidance is the first line of behavioural defence,
where hosts modify their behaviour if they perceive an infection risk in their
environment or from conspecifics [8–11]. This may include spatial or habitat
avoidance [12,13], trophic avoidance [11,14,15] and social avoidance [11,16].
Nevertheless, it is rarely possible to completely avoid infection, as many
common infection routes involve activities that are central to organismal physi-
ology and fitness, including foraging and feeding. Once infected, as part of a
generalized sickness response, individuals may actively self-isolate or due to
their lethargic behaviour, engage in fewer social interactions [17–19], while
uninfected individuals may also actively avoid those showing signals of infec-
tion [8,9,20]. Altogether, this variation in social behaviour drives the likelihood
of pathogen transmission [2,21].

The extent to which hosts modify their behaviour during infection is likely
to depend on their environmental and social contexts [22–24], as well as on host
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Table 1. Outputs for ANOVA performed on social aggregation testing (A)
intra-class pairwise distance within infected flies, (B) intra-class pairwise
distance within susceptible flies, (C) inter-class pairwise distance between
infected and susceptible flies.

F d.f. p-value

(A) intra-class infected

pathogen 4.501 4 0.001

dose 0.782 1 0.377

time 0.276 1 0.6

pathogen × dose 2.568 3 0.053

pathogen × time 1.373 4 0.241

dose × time 0.597 1 0.44

pathogen × dose × time 0.123 3 0.947

(B) intra-class susceptible

pathogen 0.959 4 0.429

dose 2.084 1 0.149

time 6.192 1 0.013

pathogen × dose 3.38 3 0.018

pathogen × time 1.757 4 0.135

dose × time 0.184 1 0.668

pathogen × dose × time 0.303 3 0.823

(C) inter-class infected-susceptible

pathogen 1.345 4 0.251
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and pathogen genetic factors [25–27]. For example, following
an immune challenge, isolated zebra finches show reduced
activity, but those kept in a colony setting do not [18],
while in fruit flies, social aggregation and infection risk
varies according to the sex ratio of the group [23]. It is there-
fore important to investigate the effect of different sources
of variation in infection-induced changes in insect social
behaviour. The fruit fly Drosophila melanogaster is particularly
powerful model to address this question due to its
genetic tractability and its extensive use as a model of host–
pathogen interactions and behavioural ecology and genetics
[22,27–29]. For example, social behaviour in D. melanogaster
shows moderate heritability and responds to directional
selection [22,27]. Here, we investigate how the behavioural
response to infection in Drosophila is modified by pathogen
species and infectious dose, or host genetic background
and sex.

In one experiment, we focus on pathogen sources of
variation and ask how social aggregation behaviour changes
over time when flies are exposed to either low or high doses
of different bacterial pathogens. We used social groups com-
prised of both infected and susceptible individuals, which
allowed us to test how infection affects the behaviour of
infected flies, how the presence of infected flies affects the
behaviour of susceptible flies, and whether there is any evi-
dence that healthy flies show avoidance behaviour towards
infected conspecifics. In a separate experiment, we inquire
how host genetic background generates differences in social
aggregation following infection, and how these effects differ
between males and females.
dose 1.972 1 0.161

time 1.728 1 0.189

pathogen × dose 1.87 3 0.133

pathogen × time 1.463 4 0.211

dose × time 2.488 1 0.115

pathogen × dose × time 1.064 3 0.364
2. Material and methods
(a) Fly lines
In experiment 1 (pathogen variation), we used female flies from a
large outbred population, originally derived from DGRP (Droso-
phila Genetic Reference Panel). In experiment 2 (host variation),
we used male and female flies from 10 DGRP lines (RAL-208,
RAL-852, RAL-427, RAL-304, RAL-21, RAL-375, RAL-28, RAL-
324, RAL-358, RAL-712) selected to include a range of sociality
scores [30]. Detailed rearing conditions are provided in the
electronic supplementary material.

(b) Bacterial strains and culture
In experiment 1, we established systemic infections with one of
four species of bacterial pathogen with well-described pathology
in D. melanogaster: Enterococcus faecalis, Pseudomonas entomophila,
Serratia marcescens DB11 and Providencia rettgeri. In experiment
2, we used a single bacterial fly pathogen, P. entomophila.
Detailed culture conditions are provided in the electronic sup-
plementary material.

(c) Experiment 1 (pathogen variation)
Social interaction chambers consisted of 50 mm Petri dishes con-
taining 8% sugar-agar medium. In total, we set up 24-replicate
social groups for each pathogen and dose (N = 192), plus 24 con-
trol groups. Flies were anaesthetized using light CO2 and
infected in the mesopleuron with one of four bacterial pathogens
at OD 0.1 or 0.01 using a 0.14 mm diameter stainless steel pin.
Control flies received an equivalent inoculation with sterile LB.
The experiment was blocked over 4 consecutive days (10.00–
14.00), with chambers including all treatments spread across
each block. Each Petri dish contained six uninfected, susceptible
female flies and six female flies infected with a specific bacterial
pathogen at a specific dose. Infected flies were marked with red
fluorescent powder on the prothorax and the underside of the
abdomen using a cotton bud (electronic supplementary material,
figure S1). Control plates were also set up containing 12 unin-
fected individuals, with half marked as above. Flies were
allowed an hour of recovery from the systemic infection and
marking before being re-anaesthetized using light CO2 and
added to the social interaction chambers. Thirty minutes were
allowed for habituation before photos of the groups were taken
every 30 min until 4 h post-infection. Pictures were processed
in IMAGEJ, to estimate coordinates of each individual. Social
aggregation was then measured using the pairdist function
in the spatstat package in R [31] (electronic supplementary
material, figure S2). The pairwise distance between each pair
of flies within a dish was used to calculate three sociality
metrics per dish: (i) the mean pairwise distance between
infected flies, which is relevant to evaluate changes in aggrega-
tion due to sickness behaviour; (ii) the mean pairwise distance
between susceptible flies, and (iii) the mean pairwise dis-
tance between infected and susceptible flies, which enables
testing whether susceptible flies tend to avoid infected flies,
when compared to the control group. Therefore, each dish
resulted in two intra-class measures (within infected and
within susceptible) and one inter-class measures (between
infected and susceptible).
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Figure 1. Mean pairwise distance in millimetres (mm) when considering (a,b) intra-class distance within infected flies, (c,d ) intra-class distance within susceptible
flies, (e,f ) inter-class distance between infected and susceptible flies, of both low (O.D. 0.01) and high (O.D. 0.1) doses. (a,c,e) The mean pairwise distance (mm) ±
s.e. (b,d,f ) The mean pairwise distance (mm) for each pathogen and dose, averaged across all time points. Time points refer to the interval of data collection: nine
pictures taken every 30 min post-infection. Intra-class infected flies aggregated significantly closer than control flies (b).
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(d) Experiment 2 (host variation)
For each of the 10 fly lines, we set up single-sex groups of flies,
divided into infected and control, and each fly line–sex–treat-
ment was replicated 11–12 times, for a total of 466 social
aggregation assays. Each group consisted of 12 flies systemically
infected with P. entomophila (or sterile LB medium for uninfected
control groups) using a stainless pin. Following infection, flies
were lightly anaesthetized with CO2 and transferred to 55 mm
Petri dishes containing agar. After a 30-min habituation period,
one set of photographs were taken. Here we used the median
nearest neighbour distance (NND) of each group as a measure
of social aggregation [25,30]. Individual fly positions in each
image were marked in the middle of the fly thorax using Fiji
(Fiji Is Just ImageJ), and the nearest neighbour distances between
each pair of flies was calculated using the ‘NND’ plugin within
the software Fiji [32].

(e) Statistical analysis
All raw data and analysis R code are available at https://doi.
org/10.5281/zenodo.6554320 [33]. Data from experiment 1
were analysed using linear mixed effects models, separately for
each social class (i.e. within infected, within susceptible, between
infected and susceptible). We used the mean pairwise distance as
the response factor, pathogen, dose and time as predictor vari-
ables, and day of assay as a random effect. For experiment 2,
we used a linear mixed effects model with the log10 of median
NND as the response variable, line, sex and infection status as
predictors, and day of the assay as a random effect. All possible
interactions between line, sex and infection status were included.
A more detailed description of the analysis can be found in the
electronic supplementary material.
3. Results
(a) Pathogen drivers of social aggregation
(i) Intra-class infected
Our analysis showed a significant effect of pathogen species on
the mean pairwise distance within infected flies, with a non-
significant trend for an interaction between dose and pathogen
(table 1 and figure 1a,b). This trend is likely driven by flies
infected with low dose (OD= 0.01) of P. entomophila (electronic
supplementary material, table S1; p = 0.0005) and high dose
(OD= 0.1) of E. faecalis ( p = 0.005) and S. marcescens ( p = 0.04)
aggregating closer together when compared with control

https://doi.org/10.5281/zenodo.6554320
https://doi.org/10.5281/zenodo.6554320
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Figure 2. (a) Box plots showing the NND in millimetres (mm) for males and females (uninfected and infected) among DGRP lines. Grey data points indicate outliers.
(b) Plot of infection status and sex, based on median NND in millimetres (mm). Females, but not males, aggregate more closely following infection.
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uninfected flies. When comparing the overall rate of social
aggregation within infected flies to uninfected control flies,
we observed that infection with almost all tested pathogens
resulted in a reduction in mean pairwise distance when com-
pared to controls: low dose (OD = 0.01) = 1.25 mm for
E. faecalis (post-hoc Dunnett’s test, p≤ 0.05), 2.61 mm for
P. entomophila ( p < 0.001), 1.05 mm for P. rettgeri ( p = 0.11)
and 1.78 mm for S. marcescens ( p < 0.01). High dose (OD=
0.1) = 2.19 mm for E. faecalis (< 0.001), 1.47 mm for
P. entomophila ( p≤ 0.05), 1.63 mm for P. rettgeri ( p≤ 0.01) and
1.76 mm for S. marcescens ( p < 0.01).

(ii) Intra-class susceptible
Among the subgroup of susceptible flies, we observed a
reduction in the pairwise distance over the course of the
experiment (table 1, time effect, p = 0.013) and an interaction
between dose and pathogen (table 1, p = 0.018, figure 1c,d).
We did not observe any difference between the overall aggre-
gation pattern of susceptible flies when compared to control
groups: E. faecalis (electronic supplementary material, table
S1; post-hoc Dunnett’s test, OD = 0.01: p = 0.98; OD = 0.1:
p = 0.65), P. entomophila (OD = 0.01: p = 0.96; OD = 0.1: p = 1),
P. rettgeri (OD = 0.01: p = 0.32, OD = 0.1: p = 0.97) and
S. marcescens (OD = 0.01: p = 0.59, OD = 0.1: p = 0.42).
(iii) Inter-class infected-susceptible
We did not find any effect of pathogen, dose and/or time
when testing the inter-class distance between infected and
susceptible flies (table 1 and figure 1e,f ), providing no
evidence of social avoidance between susceptible and
infectious flies in our experiments.



Table 2. Output for ANOVA performed on social aggregation testing the
influence of male and female flies of 10 DGRP lines.

F d.f. p-value

line 4.676 9 <0.0001

sex 4.758 1 0.03

infection status 1.756 1 0.186

line × sex 1.05 9 0.399

line × infection status 1.448 9 0.166

sex × infection status 4.959 1 0.026

line × sex × infection status 0.626 9 0.775
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(b) Host drivers of social aggregation
In a second experiment, we tested whether social aggregation
following systemic P. entomophila infection differs between
flies of different genetic backgrounds and sex. We found
that social aggregation is explained by host DGRP line
(figure 2a and table 2, Line effect, p = 0.001) and that patterns
of social aggregation differed between males and females
(table 2, sex effect, p = 0.03). We also observed a significant
interaction between sex and infection status (table 2, p =
0.026, figure 2b). While male and female flies have near iden-
tical NND aggregation in the absence of infection ( p = 1,
least-square means, t = 0.15), infected females aggregated
more closely than infected males by 1.15 mm (electronic sup-
plementary material, table S2; p = 0.01, t =−3.04, figure 2b).
This sex difference in post-infection aggregation was
observed regardless of DGRP line (there was no significant
line × sex × infection interaction, table 2).
4. Discussion
Social avoidance of infection is a widespread mechanism of
defence in the animal kingdom [9,34]. Sick individuals may
decrease social connectivity due to lethargic behaviour or
actively self-isolate [16,35], but they can also be avoided by
healthy individuals to avoid direct routes of infection
[9,20,36]. This social behavioural flexibility leads to detectable
changes in the group social structure, which affects the risk of
contagion among individuals [2,37]. In this study, we
observed increased aggregation (shorter distances) within
female infected flies—which may be due to a sickness
response—but we did not find evidence that infected and
susceptible flies tend to avoid each other. Given males have
a body length of 1.5–2.5 mm, while females are slightly
larger (1.7–3 mm) [25], the largest effects we found mean
flies would be nearly a full body length closer to each
group member.

Distinct ways of modifying social aggregation have been
described in different social insects and may occur due to
host’s social context (e.g. sex ratio, [23], alteration of feeding
patterns [15], or changes in oviposition site choice [11]).
An additional source of changes in infected host behaviour,
which we did not explore in the current study, is that
pathogens can often manipulate the behaviour of their
hosts to increase the likelihood of transmission [7,38,39].
One relevant example relates to the increased production of
attraction pheromones in flies infected with P. entomophila,
resulting in increased aggregation between healthy and
infected flies [40]. It is unclear if the increased aggregation
in females we observed could have been mediated by similar
pathogen-derived effects.

Regarding sex-specific aggregation during infection, these
appear to be pathogen specific. While this study found
increased aggregation of female flies infected with pathogenic
bacteria (relative to no change in males), other work ident-
ified sex differences in the opposite direction during virus
infection, where males infected with Drosophila C virus aggre-
gated further apart, with no apparent change in female social
behaviour following DCV infection [25]. A recent analysis of
59 F1-hybrids derived from the DGRP panel (the same panel
of flies used here) also reported little correlation between the
sociability of male and female flies [27].

One possible explanation is that sex differences are a
consequence of sex-based costs of social aggregation [41–
43]. Given that males usually display costly aggressive beha-
viours [44], avoiding aggregating closely when infected may
also avoid the costs of aggressive encounters, while saving
resources for immune deployment [45]. Female flies, how-
ever, employ generally less costly aggressive behaviours
[46,47]. Differences in social aggregation costs could therefore
explain why infected females aggregate more closely than
males, and maintaining or augmenting sociality during infec-
tion has been suggested to reduce the impact of infection in
some systems [4].

We also found that genetic background strongly
influences social aggregation in fruit flies. This result
confirms previous findings [25,27,30], where sociality in
D. melanogaster exhibits moderate broad sense heritability
(H2 = 0.21–0.24) [27], and responds readily to directional
selection [48]. This large variation is to be expected for a poly-
genic trait such as sociality [27], and is not just characteristic
of insects, as genetic background has been also found to
influence social behaviours in humans and other mammalian
species [9,49].

In summary, we find that flies modify their social behav-
iour following bacterial infection. These differences were
pathogen and dose dependent, and for at least one pathogen
species, this response was sexually dimorphic, with infected
females aggregating more closely than infected males. Our
work therefore contributes to further our understanding of
this important driver of infection dynamics and of the
ecology and evolution of both hosts and pathogens [2,4,36].
Data accessibility. All raw data and analysis R code are available at
https://doi.org/10.5281/zenodo.6554320 [33].
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