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ABSTRACT The concept of smart cities is to enhance the life quality of residents and provide efficient
services by integrating advanced information and communication technologies, autonomous robots, Internet
of Things (IoT) devices, etc. Unmanned Aerial Vehicles (UAVs) are a class of autonomous flying mobile
robots that bring a lot of benefits to smart cities due to their mobility, accessibility, autonomy, and many other
advantages. Their integration allows for accomplishing hard and complex tasks that humans or other entities
are not able to complete. In most applications, multiple connected UAVs are required to build a network under
which missions are completed and tasks are shared. This network can be established by finding the optimal
UAV placement that meets some requirements such as user coverage, UAV connectivity, energy, and load
distribution. In this paper, we present a hybrid algorithm, called IMRFO-TS, based on the hybridization of
Improved Manta Ray Foraging Optimization IMRFO) with the Tabu Search (TS) algorithm for solving the
UAV placement problem in a smart city. First, the tangential control strategy is incorporated into the original
MRFO algorithm to enhance its convergence speed and explore the search space effectively. Second, The
TS algorithm is hybridized with the IMRFO algorithm to increase the exploitation capability of IMRFO and
improve the best solution (placement quality) obtained after each iteration. The performance of the proposed
IMRFO-TS algorithm is validated using 52 benchmarks considering the fitness value, coverage, connectivity,
energy consumption, and load distribution parameters. Compared to eight well-known optimization meta-
heuristics such as the original MRFO, TS algorithm, Bat Algorithm (BA), Firefly Algorithm (FA), Grey Wolf
Optimization (GWO), Sine Cosine Algorithm (SCA), Whale Optimization Algorithm (WOA), and Reptile
Search Algorithm (RSA), the results of the experiments revealed the significant superiority of the proposed
IMRFO-TS algorithm by obtaining promising solutions (optimal positions of UAVs) in the majority of the
cases.

INDEX TERMS Manta ray foraging optimization, Tabu search, unmanned aerial vehicles (UAVs), UAV
placement.
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I. INTRODUCTION

Nowadays, the subject of smart cities has become increas-
ingly interesting, whether from research or industrial perspec-
tives. In fact, the population today is continuously growing,
and people tend to move from rural regions to big cities,
whether for social, economic, or other motivations. As a
result of this phenomenon, managing and handling services in
cities human beings become more difficult and complex. This
issue requires deploying intelligent and centralized system
management to handle it. The use of advanced technologies in
cities gives rise to the concept of smart cities. By definition,
the smart city is a developed urban area where several tech-
nologies are integrated to enhance residents’ lifestyles and
service quality. The improvements in smart cities are growing
for two simple reasons. First, manufacturers in collaboration
with researchers, focus more on designing and proposing
efficient solutions with reduced costs for smart cities. Second,
humans continuously trust devices, machines, and robots for
operations and applications, especially autonomous ones like
drones.

Drones or Unmanned Aerial Vehicles (UAVs) are con-
sidered important components of smart cities where they
have been successfully integrated. The kinematic, autonomy,
mobility, and flexibility of UAVs facilitate their use in various
applications such as data collection, monitoring, disaster,
emergency, delivery services, and many other services. Most
of these services require several UAVs for efficient use and
information exchange either between them or with the ser-
vice provider (infrastructure) or users (clients). Therefore,
multiple UAVs cooperate and form a network called Flight
Ad-Hoc Network (FANET) to accomplish the task. The net-
work is called Aerial Mesh Network (AMN) if the connection
is established between all UAVs. Furthermore, UAVs can
be equipped with 5G systems or IEEE 802.11 modules for
establishing and maintaining communication in the AMN.
Designing the AMN is challenging and complex because it
changes according to several factors, such as the area where
UAVs are used, the target coverage, the connectivity, UAV
resources, and energy consumption. All these factors are
related to the positioning of UAVs in the first place. Increas-
ing UAVs heights increases the coverage area but decreases
the source power of UAVs. Low altitude level preserves
both energy and UAVs’ safety but decreases the coverage
quality. Users are connected to the closest UAV that covers
the area. According to user distribution, users are attached
to some UAVs more or less than others. In this case, the
load of UAVs is not equal. Some of them consume more
energy and resources for communications until the resources
will be insufficient. At this point, the overloaded UAV will
not be able to operate and quit the network impacting the
connectivity quality. The connectivity parameter depends on
the number of deployed UAVs and their positions. Since it
is established by a complete connection between them and
based on the 3D distance that separates them. Consequently,
the key to designing an optimal AMN is to find the opti-
mal UAV placement that optimizes the mentioned objectives.

24316

The problem of UAV placement is an NP-hard problem [1]
where meta-heuristic algorithms can be applied to solve it
and provide optimal solutions. Besides providing optimal
solutions, meta-heuristics deal better with complex problems
such as wireless networks where a complete mathematical
model is hard to establish. Moreover, meta-heuristics perform
in a reasonable time and are easy to implement. Thus, in this
paper, we propose a meta-heuristic-based algorithm for solv-
ing the UAV placement problem.

Among existing meta-heuristics, the Manta Ray Forag-
ing optimization algorithm is a recent Swarm Intelligence
optimization algorithm developed by Zhao et al. [2] in
2020. Due to its simplicity and easy implementation, it was
widely applied for solving optimization problems such as
electrical engineering [3], [4], image processing [5], [6],
mathematics [7], geology [8], feature selection [9], sys-
tem identification [10], energy [11], [12], [13], network-
ing [14], PID control [15], and many others. Similar to other
meta-heuristics, the MRFO algorithm suffers from premature
and slow convergence and attempts to fall to local optima.
Moreover, the MRFO algorithm integrates the exploitation
operators into the exploring search in the earlier stage of
processing. This feature decreases the exploration ability and
leads to local optima stagnation. To address this drawback,
various solutions were proposed in the literature for various
applications. In [12] and [16], MRFO was combined with
Particle Swarm Optimization algorithm. Simulated Anneal-
ing was used as a local search to enhance the exploitation
of MRFO in [17] and [18]. Both neural networks and deep
neural networks were incorporated into the original MRFO,
respectively in [19] and [20]. In [21], MRFO was hybridized
with Salp Swarm Algorithm. A hybrid Harris Hawk Opti-
mization (HHO) with MRFO algorithms was proposed
in [22].

This study proposes a novel approach for solving the
UAV placement problem based on Manta Ray Foraging
Optimization. The proposed algorithm brings two signifi-
cant improvements over the original MRFO algorithm. The
MRFO algorithm is first adjusted with a non-linear control
strategy adjustment to enhance exploration and exploitation
balance. This strategy aims to improve the exploration of
new areas of global optimization. To benefit from the strong
exploitation of the Tabu search (TS) algorithm, we integrated
it to improve MRFO. TS algorithm searches locally for a
better solution where the initial solution has already been
found. To our knowledge, there is no work hybridizing MRFO
with TS algorithm in the literature and it is the first time the
MRFO algorithm has been used to solve the UAV placement
problem.

The main contribution of this paper is presented below:

« Defining a weighted fitness function that considers the
user coverage, UAV connectivity, energy consumption,
and load distribution metrics for solving the UAV place-
ment problem as a multi-objective problem.

o Proposing a new hybrid algorithm, called Improved
Manta ray Foraging Optimization Tabu Search
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(IMRFO-TS) algorithm for determining the optimal
placement of UAVs in smart city.

o Implementing the proposed IMRFO-TS and nine other
meta-heuristics such as MRFO, Tabu Search (TS), Bat
Algorithm (BA), Firefly Algorithm (FA), Grey Wolf
Optimization (GWO), Sine Cosine Algorithm (SCA),
Whale Optimization Algorithm (WOA), and Reptile
Search Algorithm (RSA).

o Evaluating the efficiency of the proposed IMRFO-TS
and the state-of-the-art meta-heuristics in 52 bench-
marks regarding the fitness value, coverage, connectiv-
ity, energy, and load distribution metrics.

o The proposed IMRFO-TS outperforms the traditional
optimization algorithms and significantly improves the
deployment of UAVs network in 3D space.

The remainder of this paper is organized as follows.
In Section II, a brief survey of the existing research related
to the present study is presented. Section III elaborates the
system model used in this work and details the mathematical
model used to solve the UAV placement problem. In sec-
tion IV, a description of the Mantra ray Foraging algorithm,
Tabu search algorithm, and control parameter strategy is
given. Section V focuses on the proposed Hybrid Mantra ray
Foraging with Tabu search algorithms for solving the UAV
placement problem. Section VI reports the simulation results
and comparisons followed by conclusions and future works
in Section VII.

II. LITERATURE REVIEW

The current trend of technology research is to enhance the
quality and services in smart cities by deploying the UAVs
network as an access layer. The main purpose of this deploy-
ment is to determine the optimal placement of UAVs for
maximum efficiency. Since the UAV placement is an NP-hard
problem [1], various meta-heuristics for solving this problem
have been proposed in the literature. We will focus in this sec-
tion on some previous works (see Table 1) proposed regarding
this topic based on meta-heuristics.

Wang et al. [23] proposed an improved Tabu Search algo-
rithm based on the integration of the complementary con-
cept into the TS algorithm for solving the UAV placement
issue. The proposed algorithm was evaluated using a different
number of UAVs and end nodes. Simulation results demon-
strated the efficiency of the improved Tabu Search algo-
rithm compared to Tabu Search and branch-and-cut optimizer
approaches considering the solution quality and execution
time.

Strumberger et al. [24] used the Elephant Herding Opti-
mization (EHO) Algorithm to solve the UAV Placement prob-
lem. The EHO algorithm was assessed in four scenarios using
a different number of drones and users. Simulated results
show that EHO offers maximum coverage for users using a
limited number of drones.

Authors in [25] applied the Tabu Search algorithm for
solving the UAV placement problem. Tabu search Algorithm
was evaluated using 4 UAVs and random users under different
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connectivity requirements. Simulation results showed that the
TS algorithm gives good results regarding the connectivity
metric.

In the work of Reina et al. [26], authors proposed an ame-
liorated version of the GA algorithm, called Multi-Layout
Multi-subpopulation Genetic Algorithm (MLMPGA), for
solving the UAV placement issue. The efficiency of the
MLMPGA algorithm was evaluated using different UAVs and
users. The obtained results demonstrated that the MLMPGA
algorithm outperforms GA, PSO, and HCA methods in terms
of fitness value, coverage, fault tolerance, and redundancy.

The authors in [27] used both SA and GA for solving the
UAV placement problem taking into account coverage and
energy metrics. The performance of SA and GA are assessed
using Java and Python, respectively, in an area of 80 kilo-
meters squared with a different number of targeted users.
Simulation results showed that the GA algorithm outperforms
SA regarding fitness value and execution time.

In [28], A Social Spider Optimization (SSO) Algorithm
was employed to solve the problem of UAV deployment.
An evaluation of its effectiveness was conducted in three
different areas serving a different number of users, and a
comparison was made with the Random Search (RS) method
and the Uniform Distribution application. SSO outperforms
other meta-heuristics regarding fitness value, execution time,
and covered users in simulations.

Yang et al. [29] applied the Differential Evolution (DE)
algorithm to address the problem of the UAV placement.
The performance of DE algorithm was validated in one case
using 5 UAVs and 100 users. DE outperforms both Genetic
Algorithm (GA) and PSO algorithms in terms of fitness value.

Gupta and Varma [30] used four meta-heuristics for opti-
mizing the UAV placement in emergency cases, named
Multi-objective Particle Swarm Optimization (MOPSO),
Non-dominated Sorting Genetic Algorithm 2 (NSGA-II),
Strength Pareto Evolutionary Algorithm 2 (SPEA2), and
Pareto Envelope-based Selection Algorithm (PESA-II). The
four algorithms were validated in three scenarios (small,
medium, and large-scale) with different users. Test results
demonstrated that, based on fitness values, SPEA?2 is suitable
for a small number of users, while NSGA-II is appropriate for
a medium and large number of users.

In another work, the same authors [31] suggested two
hybrid algorithms for an optimal UAV placement, called
HWWO-HSA and HGA-SA. The HWWO-HSA scheme is
based on the hybridization of Water Wave Optimization
(WWO), Harmony Search (HS), and SA algorithms. The
GA-SA algorithm is the result of the hybridization of GA
with SA algorithms. Both proposed algorithms were tested
in three scenarios using twelve different number of users.
Results confirmed the superiority of the proposed algorithms
in terms of fitness values compared to WWO, HS, SA, and
GA methods.

Sawalmeh et al. [32] suggested GA-based and PSO-based
clustering algorithms for solving the UAV placement issue.
Both algorithms were assessed using a various number of
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drones and ground users. Simulation results proved that
the PSO-based clustering algorithm outperforms GA-based,
ABC-based, and k-mean clustering algorithms in terms of
computational complexity and cost.

Authors in [33] applied the Particle Swarm Optimization
(PSO) algorithm for solving the UAVs-based Quality of Ser-
vice (QoS) placement problem. The PSO algorithm was eval-
uated in four different areas with multiple users. Simulation
results showed that the PSO algorithm provides good results
in finding optimal positions of UAVs regarding the coverage
and the requirements of QoS.

In [34], two optimization approaches in a Continuous-data
range (OFSAC-PSO and OFSAC-EML) and two approaches
in a Discrete-data range (OFSAD-PSO and OFSAD-EML)
are developed for optimizing the UAV placement problem.
Both approaches are based on Particle Swarm Optimiza-
tion (PSO) and ElectroMagnetism-Like (EML) algorithms.
These algorithms were applied in one area using 2601, 676,
and 7734 users. Results showed that the OFSAC-PSO algo-
rithm outperforms WOA, OFSAC-EML, OFSAD-PSO, and
OFSAD-EML based on the compared metrics.

Ouamri et al. [35] applied the GWO algorithm for solving
the UAV placement issue. The effectiveness of the GWO
algorithm was evaluated using 10 UAVs and 200 users. Simu-
lation results showed the performance of the GWO algorithm
by covering more than 85% of users.

In [36], authors proposed a multi-objective Cuckoo Search
algorithm for optimal placement of UAVs. The proposed
algorithm was evaluated using a different number of drones
and ground users. The proposed algorithm gives competitive
results regarding the coverage, energy, and network efficiency
metrics.

Wei et al. [37] applied Deep Q-learning (DQN) approach
for solving the UAV, Unmanned Surface Vehicle (USV), and
Unmanned Underwater Vehicle (UUV) placement issue. The
efficiency of DQN algorithm was assessed in one scenario
using 1 UAV, 1 USV, and 3 UUVs. Compared to ACO, Double
DQN, and Dueling DQN algorithms, DQN approach out-
performs in terms of success rate, training time, and energy
optimization.

Liu et al. [38] proposed a Proximal Stochastic Gradient
Descent Based Alternating approach for solving the UAV
placement problem. The proposed approach was tested in
area where the users are grouped into 15 cells served by
Base Stations. the proposed approach achieves good results
in terms of fitness value and coverage rate.

The summary of these works is presented in Table 1

Ill. UAV PLACEMENT PROBLEM FORMULATION

The purpose of this section is to describe the UAV placement
problem in more detail. To begin with, we will present the
system model we used in this study. Afterward, we will math-
ematically define the objective function that includes user
coverage, UAV connectivity, energy, and load distribution
requirements.
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A. UAV SYSTEM MODEL

We consider in an urban area a set of users G = {gi,
g2, ..., 8m}, where m is the total number of users and a set
of UAVs U = {uy, uy, ..., u,}, where n is the total number
of UAVs. Each UAV u;,j € {1,2,...,n} is located at the
coordinate (x;, y;, z;) within the boundaries of the served area
[L,W,H], where L, W, and H represent the length, width
and height limits, respectively. Similarly, each user g;,i €

{1, 2, ..., m}islocated within the same area at the coordinate
(xi, yi)-

In this system model, we assume that each UAV u;,j €
{1,2,...,n}, is equipped with an antenna for wireless com-

munications characterized by a maximum transmission range
Ryax. The purpose of this communication is to form links
with users to provide services and also to share information
with other UAVs forming an Aerial Mesh Network (AMN) as
shown in Figure 1.

B. OBJECTIVE FUNCTION

To solve the UAV placement problem, an objective function
is designed to optimize simultaneously the four considered
objectives which are user coverage, UAV connectivity, energy
consumption, and equal load balancing. Their definitions are
given below:

1) USER COVERAGE

UAVs are said to cover a user when they are located at a
Euclidean distance d shorter than or equal to their coverage
range in the horizontal plane (r) from it. Therefore, the cov-
erage model considers a boolean variable for the connectivity
between the UAV and the user. It is mathematically given by
Equation (1).

17
Cgiuj = 0

where d(g;, uj) is the euclidean distance between the
UAV u; and the user g; in the horizontal plane formulated in
Equation (2). r; stands for the UAV coverage range related to
both altitude and visibility angle as shown in Figure 2. It can
be calculated using Equation (3)

d(gir u) = /(i = 5P + i — )? @)

if d(gi,u;) <1
otherwise.

ey

rj < zj. tan(g) 3)

where z; represents the altitude level of the UAV at the posi-
tion (x;, y;). 0 is the visibility angle. The total user coverage
in this model Cv is defined as follows:

n
Cv=> cou 4)
j=1

Our first objective is to find the (x;, yj, zj) coordinate that
maximizes Cv by:

n
max Cv = Z max Cg y; (®)]
j=1
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TABLE 1. Comparative table of some existing UAV Placement works.

Algorithms Reference Coverage Energy Connectivity Load balancing
Improved TS Wang et al. [23] X

EHO Strumberger et al. [24] X

TS Ur Rahman et al. [25] X X

MLMPGA Reina et al. [26] X

SA and GA Al-Turjman et al. [27] X X

SSO Chaalal et al. [28] X

MOPSO, NSGA- Gupta and Varma [30] X X

II, SPEA2, and

PESA-II

DE Yang et al. [29] X X
HWWO-HSA Gupta and Varma [31] X X X
and HGA-SA

PSO-C and GA-C Sawalmeh et al. [32] X

PSO Mayor et al. [33] X

OFSAC-PSO, Recep Ozdag [34] X

OFSAC-EML,

OFSAD-PSO,

and OFSAD-

EML

GWO Ouamri et al. [35] X

MOCS Mabhajan et al. [36] X X X

DQN Wei et al. [37] X X X

ProxSGD-based Liu et al. [38] X X

alternating

IMRFO-TS Proposed method X X X X

TABLE 2. The main notations used in this paper.

Parameter Description

UAV-BS Unmanned Aerial Vehicle- Base Station

GU Ground User

n The total number of UAVs

m The total number of users

Cgiuj The coverage cost of the i-th user with the
j-th UAV

d(gi,uj) The distance between the i-th user and the
j-th UAV

T The coverage range of the j-th UAV

zj The j-th UAV’s height
Visibility angle of UAV

Cv The total coverage cost

ctuj g The connectivity cost of the j-th UAV with
the k-th UAV

Rmazx The maximum transmission range of the
UAV in 3D plane

d(uj,ug) The distance between the j-th and k-th
UAVs

Cn The total connectivity cost

E; Energy consumed of the UAV j during the
flight

a The minimum power required for the UAV

B Motor speed multiplier

T Flight time

Prax Maximum motor power

8 The j-th UAV speed

En The total energy consumed

ELD Equal load distribution

g% The total covered user by the j-th UAV

2) UAV CONNECTIVITY

The nodes in a network are said to be connected when
they have a path between them. A connected network
has no unreachable nodes. The connectivity between nodes
or users can be done by connecting the deployed UAVs.
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The connectivity model considers also a Boolean deci-
sion expressed in Equation (6) based on the distance
between UAVs.
1, if d(uj, ur) < 2R
Ctuj,uk = f / . e (6)
0  otherwise.
where d(u;, uy) is the euclidean distance between the UAV u;
and uy.

dluj,u) = [0 — 3P+ 0y =P+ G =202 (D)

The total connectivity of the UAV network Cn is given by
Equation (8).

n
cn=J ety ®)
j=1
The second objective is to find the (x;, y;, z;) coordinate that
maximizes Cn by:
n
max Cn = U max Clty;,u, O]
j=1

3) ENERGY CONSUMPTION

Energy is an important parameter to take into consideration
for the efficient deployment of UAVs network. Till today,
modeling the UAV’s energy consumption is a challenging
issue that researchers have focused on. According to the
measurements and tests done in [39], the closest model to
reality of the energy consumed by the UAV u; during the flight
is formulated as follows [40]:

E = (a+ﬁ.z,->T+PMax(%) (10)
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FIGURE 1. UAV-based wireless network architecture.

FIGURE 2. UAV Coverage.

where o is the minimum power required for the UAV to
fly, B is the motor speed multiplier. T represents the flight
time. Ppgq denotes the maximum motor power. z; and sy
are the height and the speed of the UAV uj, respectively.
The total energy consumed by the UAV network is given
in Equation (11)

n
En=>)E (1)
j=1

The third objective is to determine the adequate UAV’s
height z; to minimize the energy consumption by:

min En (12)

24320

J
Users

4) LOAD DISTRIBUTION

The physical characteristics of UAVs make them limited in
terms of resources such as memory, wireless resources, etc.
To ensure the optimal use of these resources and improve
the homogeneity of the UAVs network, we introduced an
equal load distribution to balance the exploitation of these
resources. It is formulated mathematically in Equation (13).

1< m
ELD = — b )2 13
njz_l(g ) (13)

where g is the total number of users covered by UAV u;.
The last objective is to minimize as much as possible the equal
load distribution based on the UAV location by Equation (14).

min ELD (14)

Based on the four objectives defined, we formulated the
objective function as a linear weighted function expressed in
the following equation:

fpi) = w1.Cv+ w3.Cn + w3.E + w4.ELD (15)

where Cv represents the user coverage cost. Cn expresses
the UAV connectivity cost. E and ELD represent energy
and equal load distribution costs respectively. w is a weight
coefficient mathematically defined in Equation (16).

4
w:Zwlzl (16)
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IV. PRELIMINARIES

This section describes the concept of Manta Ray Foraging
Optimization Algorithm, Tabu Search algorithm, and Tangen-
tial Control adjustment strategy.

A. MANTA RAY FORAGING OPTIMIZATION ALGORITHM
Manta Ray Foraging Optimization Algorithm (MRFO) is
a new nature-inspired meta-heuristic proposed in 2020 by
Zhao et al. [2] which was applied for solving various opti-
mization problems. The main inspiration of the MRFO algo-
rithm comes from the behavior of manta rays in catching
their prey. MRFO employs three main foraging strategies
including chain foraging, cyclone foraging, and somersault
foraging [2].

1) CHAIN FORAGING

In this strategy, Manta rays form a head-to-tail chain and start
foraging by moving one after another. Except for the first
individual, other manta rays move toward the food and the
closest manta ray for cooperation. The mathematical expres-
sion of chain foraging is expressed as follows:

+1 _ p? + r‘(pBext —Pﬁ) + Ol.(pBesl —Pg), i=1
’ pi 4.y = pi) 4+ o.(pBess —pi)i=2,...,N.
(17

a = 2.r/log(r) (18)

where p! represents the i — th individual position at the
iteration ¢. r is a random vector in the range [0 — 1]. « is
a weight coefficient. pp.ss represents the best position found
so far.

2) CYCLONE FORAGING

This strategy is characterized by the spiral movement of
Manta rays toward the food and the individual in front of it.
It is mathematically represented in the following equation:

41 _ P; + 7.(PBest _Pﬁ) + B.(PBest _Pi)a i=1
' Pi+r.Wiy =P+ B-pBest —pi)i=2,...,N.
(19)
Prand = Lb + r.(Ub — Lb) (20)

41 _ P; + 7.(Prand _Pﬁ) + B-(Prand —Pf), i=1
' P4y — D)+ BPrana — P} i=2,....N.
(21)

B = 2.1 sin2.7.r) (22)

where p,qnq represents a random position in the space delim-
ited by the lower and upper bounds Lb and Ub respectively.S
donate a weight coefficient. r| is a random value within the
range [0 — 1]. T is the maximum number of iterations.

3) SOMERSAULT FORAGING
In this case, the food position is shown as a pivot. The manta
rays swim to and fro around the food and somersault to a new
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position. This behavior is expressed as follows:

Pit = pl+ S.(rappest —r3.p})i=1,...,N.  (23)

where S represents the somersault factor which is fixed to 2.
ry and r3 are random numbers in the range [0 — 1].

Algorithm 1 The Pseudo-Code of Manta Ray Foraging
Optimization Algorithm
1: Initialize MRFO parameters: Maximum number of iter-
ations 7', Population’ size N, Dimension Dim, «, 8, etc.
Initialize the population of MRFO: X;(i=1,2,...,N)
Calculate the fitness value f(X;)
Determine the best position Xpes
while (r < T) do
for i=1,2,... Ndo
if rand < 0.5 then
if (%) < rand then
Xrana=Lb + rand .(Ub — Lb)
Update the position X;(t + 1) using
Equation (21)

R A A S o

—_
4

11: else

12: Update the position X;(t + 1) using
Equation (19)

13: end if

14: else

15: Update the position X;(r + 1) using
Equation (17)

16: end if

17: Calculate the fitness value f(X;(t + 1))

18: Update the best position Xpeg;

19: Update the position X;(z + 1) using Equation (23)

20: Calculate the fitness value f(X;(t + 1))

21: Update the best position Xpes

22: end for

23: t=t+1
24: end while
25: return The best position Xpes

B. TABU SEARCH ALGORITHM
Tabu Search (TS) algorithm is a famous meta-heuristic pro-
posed by Glover [41], widely applied for solving optimization
problems [42], [43], [44], [45]. TS algorithm belongs to
the single-based meta-heuristic category, which explores one
candidate solution at each run [46]. Due to its characteristics,
TS performs better as a local search algorithm by a neigh-
borhood search approach. Starting from a candidate or initial
solution, TS searches for potential other solutions nearby.
Then, these solutions are evaluated one by one according to
their fitness value. To make sure that TS algorithm doesn’t
explore solutions more than once, it creates a list to store
the evaluated solutions. This list is updated if solutions don’t
meet evaluation criteria. In the end, the best solution which is
not in the tabu list is selected.

The pseudo-code of the Tabu Search algorithm is presented
in2
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Algorithm 2 The Pseudo-Code of Tabu Search Algorithm

1: Initialize TS parameters: Maximum number of iterations
T, Neighbors’ number n, Tabu List TL.
Generate initial solution X
Set the current solution X as the best solution Xpegr
while (r < T) do
for i=1,2,...ndo
Generate a random neighbor X’ of X
Evaluate neighbor’ solution X’
Update TL

—_ e e
W N = O

R A A A

Update the best solution Xp,y;
end for
t=t+1

: end while
: return The best solution X

0 20 40 60 80 100 120 140 160 180 200
lteration

FIGURE 3. Linear control strategy.

C. NON-LINEAR CONTROL ADJUSTMENT STRATEGY

By definition, meta-heuristics are optimization algo-
rithms that search for the optimal solution based on two
strategies: exploration and exploitation search strategies.
Exploration involves searching the unexplored areas of the
feasible region, while exploitation involves searching the
neighbourhoods of the promising region [47]. The perfor-
mance of meta-heuristics depends mainly on their ability to
balance both strategies. Mathematically, this balance is rep-
resented by a control parameter. In the MRFO algorithm, the
term (%) defines the parameter that controls exploration and
exploitation search. The variation of this parameter during the
algorithm’s execution is illustrated in Figure 3. To enhance
the performance of the MRFO algorithm, we adopted a
non-linear strategy using tangential variation as shown in
Figure 4. As we can see from the figure, in the later stage
of iterations, the control parameter () is not close to 1. So,
its value is not greater than rand. In this case, the algorithm
remains in the exploration phase, searching for new and
better solutions. Therefore, This improvement can enhance
the performance of the MRFO algorithm by improving its
exploration ability. Mathematically, it is represented by the

24322

08r
08|
077
06
05

041 v

03 F /

021 -

Value

01r P

0 20 40 60 80 100 120 140 160 180 200
Iteration

FIGURE 4. Tangential control strategy.

following equation:

Tt
y = tan(Z.?) (24)

where ¢t and T are the current and the maximum number of
iterations, respectively.

V. HYBRID MANTA RAY FORAGING OPTIMIZATION
ALGORITHM FOR UAV PLACEMENT

This section describes the implementing steps of our pro-
posed algorithm (IMRFO-TS) for solving the UAV placement
problem based on the hybridization of Improved MRFO and
Tabu Search algorithms. To begin with, a non-linear control
strategy is incorporated into the original MRFO for enhancing
its exploration capability. Furthermore, to improve its search
balance, the Tabu Search algorithm is combined as a local
search algorithm with Improved MRFO for better exploita-
tion. The pseudo-code of the proposed IMRFO-TS algorithm
is given in Algorithm 3. Figure 5 illustrates the flow chart of
IMRFO-TS algorithm.

The application of the IMRFO-TS algorithm for UAV
placement involves 5 basic phases such as initialization,
evaluation, update, local search application, termination, and
solution representation.

A. INITIALIZATION

Similar to classical optimization functions, the important
parameters should be given in a reasonable range for better
efficiency starting with the search space. In UAV placement,
the search space is set to be the 2D dimension of the area
where UAVs are deployed, in addition to the height limita-
tions of UAVs. In this space, each individual of the population
represents a potential solution that is randomly initialized.
The total population can be represented as follows:

Positions = . (25)
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where N is the total population size. P;; denotes the i-th
individual position that is represented in Equation (26)

Lmin SPi,jSLmEIijZ 1,...,”
WminSPi,jfWmux:j:n‘i‘lm-wzn (26)
Hpin < Pij < Hpgx,j=2n+1,...,3n

Pij=

where n stands for the number of UAVs. L,,;, and W,,;, are
the minimum length and width of the search area. L, and
Winax donate the maximum length and width of the area. H,,;;,
stands for the minimum flight altitude that is fixed according
to the application use and UAV safety. H,,,, represents the
maximum flight altitude that is related directly to both visi-
bility angle (¢) and maximum transmission range (R, ). It is
mathematically expressed in Equation (27).

Rinax
Hpygy = ———— 27
max tan(6,/2) (27)

B. EVALUATION

At this level, the population is initialized and the IMRFO-TS
starts evaluating the individuals. For each individual, the
fitness value is calculated using Equation (28).

Cost; = f(P;) (28)

IMRFO-TS saves at this point the best individual found so
far that corresponds to the best cost. The problem of UAV
placement belongs to the category of maximization problems.
Therefore, the best individual is defined as the individual
where the maximum cost is reached. It is formulated in
Equation (29).

Ppesr = argmax f(P;) (29)

C. UPDATE

At the beginning of each iteration, the predefined control
parameter (%) is replaced and updated using the proposed
control strategy defined in Equation (24). This new control
parameter strategy constitutes the first improvement for tra-
ditional MRFO to push better the exploration search strat-
egy. According to the parameter values, individuals of the
improved MRFO algorithm are updated in the same way as
the original MRFO algorithm. The cost of each updated indi-
vidual is calculated, and the best individual found is stored.

D. LOCAL SEARCH APPLICATION

To bring more balance to the improved MRFO algorithm,
Tabu Search algorithm is added at the end of each iteration.
Based on the previous best solution, Tabu Search makes its
searches for better solutions in the neighborhood. If any better
individual is found, the best individual is updated and the
others are stored in its list.

E. TERMINATION
The proposed IMRFO-TS algorithm repeats the update and
local search application phases until the maximum number of

iterations is reached. Once the termination criteria is satisfied.
IMRFO-TS displays the best solution found.
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F. SOLUTION REPRESENTATION

This phase is an extra step that aims to present the solution
in a format that facilitates the use of the solution for other
purposes such as displaying and plotting. The best solution is
given using the following representation:

X1 Y1 21

X2 Y2 22
Ppesr = R (30)

Xn Yn Zn

Algorithm 3 The Pseudo-Code of Hybrid Manta Ray
Foraging Optimization Algorithm for UAV Placement

1: Initialize MRFO parameters: Maximum number of iter-
ations 7', Population’ size N, Dimension Dim, «, 8, etc.

2: Initialize the population of MRFO: P;(i = 1,2,...,N)
3: Calculate the fitness value f(P;)
4: Determine the best position Ppg.g;
5: while (t < T) do
6: Update y using Equation 24
7: for i=1,2,... Ndo
8: if rand < 0.5 then
9: if y < rand then
10: Xrana=Lb + rand .(Ub — Lb)
11: Update the position P;(¢ + 1) using Equa-
tion (21)
12: else
13: Update the position P;(t + 1) using Equa-
tion (19)
14: end if
15: else
16: Update the position P;(t + 1) using Equation
(17)
17: end if
18: Calculate the fitness value f(P;(t + 1))
19: Update the best position Ppges
20: Update the position P;(f + 1) using Equation (23)
21: Calculate the fitness value f (P;(t + 1))
22: Update the best position Ppeg
23: end for
24: Call TS on Pp,y, as initial solution

25: Update the best solution Pp,y;
26: t=t+1

27: end while

28: return The best position Ppg

G. TIME COMPLEXITY OF THE PROPOSED IMRFO-TS
ALGORITHM

The time complexity of the IMRFO-TS depends on the prob-
lem dimension, the population size, and the maximum num-
ber of iterations. For every iteration, chain foraging, cyclone
foraging, somersault foraging, and local search strategies are
implemented. Therefore, the total time complexity of the
IMRFO-TS algorithm is given as follows:
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TABLE 3. Description of simulation parameter.

Simulation Parameter Value

Area size [1000, 1000]
Total number of users [20, 60, 100, 140]
Total number of UAVs [4 —16]
UAVs transmission range 250m
Visibility angle 120°

Ey 100K j

a 30

B8 1

P, Mazx 85 Watt

s 2m/s

O(IMRFO — TS) = O(T(O(chainforaging + cyclone
foraging) + O(somersaultforaging) + O(localsearch)))

O(IMRFO — TS) = O(T(Nd + Nd) + T (nd))

O(IMRFO — TS) = O(Td(N + n))
where T stands for the maximum number of iterations.
N and d represent the population size and the problem dimen-
sion, respectively. n donates the number of neighborhoods
defined in TS algorithm.

VI. NUMERICAL EXPERIMENTS AND RESULTS

In this section, we introduce the simulation experiments, per-
formance evaluation, and results of the proposed IMRFO-TS
algorithm and other well-known meta-heuristic techniques,
namely: TS [41], BA [48], FA, GWO [49], SCA [50],
WOA [51], MRFO [2], and RSA [52]. These experiences
aim to demonstrate the efficiency of the proposed IMRFO-TS
algorithm by investigating how the IMRFO-TS adapts to the
problem of UAV placement under various requirements. For
this purpose, several scenarios have been considered using a
different number of UAVs and users distributed randomly and
non-uniformly in a square area of 1000 x 1000 2. The details
of the simulation parameters are summarized in Table 3.

Before starting scenarios implementation, all optimization
algorithms parameters are adapted and fixed according to
Table 4. Afterward, simulations are running on MATLAB
R2021b software with the computer processor Intel Core i7
2.90GHz, RAM 32 GB, and 64-bits Windows 11 operating
system. The population size and the maximum number of
iterations are set to 50 and 200, respectively.

We set different complexity ranges for the UAV placement
problem. Starting with the simplest case using 4 UAVs and
20 users and ending with 140 users served by 16 UAVs. For
each case, algorithms are evaluated according to their fitness
value, coverage, connectivity, energy, and load distribution
metrics. The evaluation was running 50 times and the results
are presented in this section.

A. CASE OF 20 USERS

Table 5 reports the obtained results of 20 users covered by dif-
ferent number of UAVs. It can be observed that the proposed
IMRFO-TS algorithm provides the best fitness value in most
cases. The IMRFO-TS algorithm reaches its maximum when
U = {4, 5} which is considered as the appropriate use case
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FIGURE 5. Improved manta ray foraging optimization with the Tabu
search (IMRFO-TS) flow chart.

of the IMRFO-TS algorithm. MRFO and GWO algorithms
present approximately the same best fitness value when U is
set at 4. TS, BA, SCA, WOA, RSA algorithms didn’t reach
their optimal value. Therefore, more UAVs are required for
the global solution. FA algorithm, in this scenario, achieves
its best fitness value of 0.06 when U = 10. However, this
value is small compared to the value of 0.28 provided by the
IMRFO-TS algorithm. For all algorithms, we can notice that
the fitness value is decreasing while the number of UAVs U
increases. It can be explained by the fact that the total energy
consumed by UAVs is also increasing. Figure 6 displays the
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TABLE 4. Algorithms parameters.

Algorithm Parameter Value
«a rand
B rand
IMRFO-TS Number of neighborhood n 50
Tabu length T'L 25
Number of neighborhood n 50
s Tabu length T'L 25
Minimum frequency fasirn 0
Maximum frequency farin 2
BA Initial loudness Ag 1
Initial pulse emission rate o 1
Loudness constant o 0.5
Emission rate constant 0.5
Light absorption coefficient ~y 1
Initial light intensity coefficient I 2
FA Initial attraction coefficient 3¢ 2
Mutation coefficient 0.2
Mutation coefficient damping ratio 0.98
GWO Control parameter anin, 0
Control parameter amaz 2
Control parameter 71 [2,0]
Control parameter 72 rand
SCA
Control parameter 73 rand
Control parameter 74 rand
WOA Control parameter @y, in, 0
Control parameter amqx 2
a rand
MRFO 3 rand
RSA Exploitation adjustment « 0.1
Exploration adjustment 3 0.1

convergence curve given by the algorithms in case of using
4 UAVs for serving 20 users. In this case, we can notice
that TS, BA, FA, and WOA algorithms converge quickly
in the earlier iterations. This phenomena can be explain by
the fact that these algorithms cannot explore new solutions
and only consider their sub-optimal solutions as the best.
As for SCA and RSA algorithms, we can notice that their
convergence behaviour in this case is similar and too slow.
MRFO algorithms converges slowly and did not reach its
best fitness value yet. The convergence of GWO algorithm
is approximately steady during the iterations and its requires
more iterations to reach the optimal solution. Our IMRFO-TS
algorithm converges to the best fitness cost with an opti-
mal speed. In the earlier iterations, the convergence of our
proposed approach is enaugh quick due its good exploration
capabilities improved non linear control strategy. In the last
stage of iterations, we can see that the convergence become
slow and almost stable. At this stage, the IMRFO-TS searches
for better solutions in the area by performing the local search.

To validate the efficiency of the proposed approach,
we performed several statistics tests, including the Friedman
test as presented in Table 6. From the table, we can see that the
proposed IMRFOTS provides the optimal descriptive results,
where it gives the highest minimum, maximum, and mean fit-
ness values along the first scenario. Regarding the standards
deviation, our method gives good results and closer to the
one given by both MRFO and GWO. In this case, we can
say that our approach is stable along the test. By analysing
the mean rank, we can see that the IMRFOTS gives the best
rank compared to the other algorithms. The asymptomatic
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FIGURE 6. Convergence curve in the case of 20 users and 4 UAVs.
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FIGURE 7. The whisker plot of the fitness results obtained in the first
case.

signification is less than 0.001 which represents 0.1%. In this
case, the signification level indicates that the median of all
the algorithms is not equal and null hypothesis is rejected.
From these results, we can conclude that our approach clearly
outperforms the state-of-the-art algorithms.

Figure 7 illustrates the whisker plots of the fitness provided
by the algorithms in the first case of users. From the figure,
we can notice that both the median fitness and distribution
of the algorithms are not all identical. For the IMRFO-TS
algorithm, the statistical data is normally distribution and has
no outliers. Both TS and BA algorithms share the median and
their data distribution is negative skew. FA, SCA, WOA, and
original MRFO data distribution is negative skew and present
outliers, except MRFO algorithm. The distribution of both
GWO and RSA algorithms is positively skew. In addition, the
GWO algorithm has outliers.

The post hoc tests of the fitness for the state-of-the-art
algorithms in case of using 20 users, are presented in Table 7.
From the table, we can conclude that a statistical significance
between IMRFO-TS and TS, BA, FA, SCA, WOA, and RSA
algorithms exists based on the significance value and the
confidence interval. As for both GWO and MRFO
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TABLE 5. Results obtained from different algorithms in the first case.

Results IMRFO-TS TS BA FA GWO SCA WOA MRFO RSA

Fitness 0.28 -0.64 -0.68 -0.34 0.25 -0.26 -0.26 0.26 -0.42

Coverage 95.4 67.9 46.8 69.7 95.2 81.4 83.4 95.4 66.1

Connectivity 100 81 80 98.5 99.5 87.5 74 89.5 90 U=4
Energy 35.78 59.64 41.55 43.42 36.63 54.6 52.98 38.38 45.42

Load 0.49 3.44 3.57 2.62 0.56 2.18 2.07 0.43 2.77

Fitness 0.28 -0.46 -0.68 -0.18 0.18 -0.38 -0.21 0.25 -0.26

Coverage 93.6 69.1 55.3 82.6 89.8 65.2 76.7 91.1 82.9

Connectivity 94 86.8 64.4 95.2 98.8 76 95.2 97.6 80 U=5
Energy 27.49 53.28 40.39 61.37 32.88 39.08 54.21 28.26 59.03

Load 0.5 2.88 2.65 1.9 0.83 2.53 2.02 0.6 2.07

Fitness 0.15 -0.3 -0.41 -0.25 0.02 -0.27 -0.19 0.15 -0.4

Coverage 87.3 60.8 54 68.7 86.9 55.5 68.5 89.7 34

Connectivity 100 98 98.67 85 95.67 92 98.67 96 100 U=6
Energy 18.63 38.85 33.07 533 29.78 33.1 42.75 21.09 17.72

Load 1.12 2.41 2.85 1.99 1.44 2.24 2 0.98 2.75

Fitness 0.23 -0.34 -0.68 -0.1 0.09 -0.14 -0.16 0.13 -0.34

Coverage 91.7 49.1 55.5 68.5 83 80.5 60.2 83.8 45.8

Connectivity 99.71 90 100 98.86 100 96.57 99.14 99.71 94.57 U="17
Energy 22.75 41.77 33.21 47.51 23 54.02 34.96 21.80 35.09

Load 0.76 2.33 2.24 1.6 1.22 1.79 1.87 1.11 241

Fitness 0.18 -0.3 -0.27 -0.09 0.08 -0.14 -0.13 0.16 -0.23

Coverage 91.3 52.7 64 68.7 84.6 63.9 67.5 91.2 67

Connectivity 100 85.25 99.75 100 99.75 96.25 99.5 100 73.75 U=38
Energy 23.61 41.05 41.86 50.55 24.48 33.69 49.39 23.87 30.09

Load 0.95 2.16 2.31 1.54 1.29 1.82 1.7 1.03 2.03

Fitness 0.12 -0.21 -0.16 -0.05 0.08 -0.12 -0.12 0.15 -0.17

Coverage 88.3 79.3 89.5 71.9 85.9 64 55.8 92.9 43.8

Connectivity 100 97.56 100 100 99.78 96.89 99.78 100 99.56 U=9
Energy 20.75 51.32 51.04 56.58 24.04 35.68 28.80 24.39 30.96

Load 12 2.1 2.06 1.34 1.31 1.73 1.75 1.07 1.82

Fitness 0.08 -0.13 -0.11 0.06 0.13 -0.08 -0.02 0.08 -0.11

Coverage 79.8 74.8 81.7 85.1 86.1 63.4 732 74.5 54.10

Connectivity 100 100 100 100 100 97.8 100 100 100 U =10
Energy 14.39 40.78 40.57 50.22 23.12 29.03 37.89 12.94 27.35

Load 1.34 1.86 1.11 1.12 1.87 1.66 1.42 1.31 1.69

Fitness 0.11 -0.11 -0.14 0.05 0.12 -0.07 -0.06 0.13 -0.14

Coverage 79.8 66.5 69.3 76.1 79.4 60.7 49.7 74.8 46.6

Connectivity 100 92.18 100 100 100 98.18 100 100 100 U=11
Energy 17.34 42.74 48.81 53.23 21.18 29.92 30.14 14.41 35.25

Load 1.15 1.6 1.78 1.04 1.1 1.59 1.43 1.09 1.7

Fitness 0.1 -0.08 -0.11 -0.04 0.11 -0.07 -0.03 0.16 -0.13

Coverage 65.4 46.9 70.3 64.2 73 44.1 67.4 81.5 14.5

Connectivity 100 99.67 100 100 100 99.67 98.83 100 100 U=12
Energy 14.28 37.88 50.12 30.3 21.42 2191 43.39 23.07 5.48

Load 1.13 1.42 1.65 1.49 1.05 1.49 1.35 0.95 1.61

Fitness 0.15 -0.06 -0.08 -0.01 0.12 -0.05 0.01 0.09 -0.06

Coverage 79.2 38.4 32.7 71.4 74.8 38.5 63.7 69.5 53.1

Connectivity 100 99.69 100 99.54 99.85 99.07 99.85 100 99.54 U=13
Energy 25.94 29.61 3491 43.18 23.1 17.98 34.4 22.09 27.99

Load 0.94 1.32 1.32 1.3 1.03 1.41 1.26 1.1 1.48

Fitness 0.11 -0.08 -0.09 0.03 0.09 -0.04 0 0.13 -0.03

Coverage 63.9 66.5 354 72 61.2 29.2 48.8 76.4 52

Connectivity 100 99.43 93.14 99.57 93.14 99.43 98.86 100 100 U=14
Energy 13.83 40.77 35.77 53.4 20.61 10.30 27.55 21.34 25.11

Load 1.09 1.17 1.3 1.06 1.05 1.34 1.22 1.03 1.38

Fitness 0.17 -0.07 -0.08 0.01 0.13 0 0.01 0.12 0.01

Coverage 89 62.8 51.1 62.5 73.9 413 65.7 72.3 539

Connectivity 100 99.47 99.87 100 99.87 99.2 99.87 100 100 U=15
Energy 33.83 44.19 4225 48.93 20.31 16 44.91 20.19 30.17

Load 0.87 1.47 1.41 1.1 1.02 1.24 1.15 1.05 1.21

Fitness 0.2 -0.03 -0.03 0.03 0.17 0.01 0.04 0.12 0.01

Coverage 89.2 72.1 75 553 83.4 43.4 63.7 61.3 78.6

Connectivity 100 99.62 100 100 100 99.87 99.35 99.87 100 U=16
Energy 20.73 40.18 37.43 36.46 20.21 19.64 29.9 14.74 38.03

Load 0.9 1.44 1.5 1.1 0.96 1.19 1.15 1 1.35

algorithms, no statistical significance exists since their con-
fidence interval contains zero and the significance value
exceed the 0.5. Therefore, the null hypothesis is accepted for
both GWO and MRFO. Remaining the rest algorithms, it is
rejected.

Figure 10 illustrates the mean coverage rate of the algo-
rithms using various number of UAVs. In most cases, the
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IMRFO-TS algorithm provides the best coverage quality. The
best coverage quality given by IMRFO-TS is 95.4% achieved
when U = 4. In this case, both GWO and MRFO provided
their best rates which are 95.4% and 95.2%, respectively. TS,
SCA, WOA, and RSA algorithms provide a poor coverage
quality less than 85% which makes them inappropriate for
this scenario. BA and FA achieved 89.5% and 85.1% of users
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TABLE 6. The Friedman tests of the fitness cost in the first case.

Results IMRFO-TS TS BA FA GWO SCA WOA MRFO RSA
N 13 13 13 13 13 13 13 13 13
Minimum 0.08 -0.6 -0.6 -0.3 0.2 -0.3 -0.2 0.08 -0.4
Descriptive statistics ~ Maximum 0.28 0 0 0.06 0.25 0 0.01 0.26 0.01
Mean 0.17 -0.18  -021 -0.04 0.11 -0.08  -0.06 0.14 -0.14
STD 0.07 019 025 0.11 0.05 0.10 0.08 0.06 0.15
Rank Mean rank 8.46 2.31 2.31 4.96 7.5 3.85 4.54 8.04 3.04
N 13
. Chi-square 91.27
Statistic tests Df 3
Asymp. sig <0.001
TABLE 7. The post hoc test of the mean fitness of each algorithm in the firth case.
Multiple Comparison
Dependent variable: Fitness
Algorithm (I)  Algorithm (J) Mean difference (I-J) SE Sig 95 % confidence interval
Lower bound  Upper bound
N 0.38 0.5 < 0.001 0.28 0.49
BA 0.44 0.53 < 0.001 0.33 0.54
FA 0.23 0.53 < 0.001 0.13 0.34
GWO 0.5 0.53 0.4 -0.06 0.15
IMRFO-TS scA 0.29 053 < 0.001 0.18 0.4
WOA 0.25 0.53 < 0.001 0.15 0.36
MRFO 0.02 0.53 0.74 -0.09 0.12
RSA 0.34 0.53 < 0.001 0.23 0.45
coverage, respectively in cases U = 9 and U = 10, respec- — IMRFO.TS TS —— BA
tively. By varying the number of UAVs, it can be noticed that FA ; GWO —— SCA
the coverage quality is decreasing due to the coverage radius WOA — MRFO —— RSA

minimization related to UAVs’ heights.

Figure 11 depicts the mean connectivity rate obtained by
the algorithms under different number of UAVs. It can be seen
that the proposed IMRFO-TS algorithm improves signifi-
cantly the connectivity rate compared to the other algorithms.
Starting from U = 8§, the proposed approach achieves full
connectivity between UAVs. When U < 8, the connectivity
rate provided by the IMRFO-TS is considered high since it
is varied between 94% and 100%. After IMRFO-TS, MRFO
and GWO algorithms provide good connectivity quality more
than 89%. Both of them achieve the full connectivity 5 and
7 times, respectively. Both TS and WOA algorithms offer
more than 85% of UAV connectivity starting from U = 5.
BA, SCA, and RSA are considered optimal in terms of UAV
connectivity when U > 6 . The connectivity rate provided
by FA is good and more than 85% regardless the number
of UAVs.

Figure 8 illustrates the mean energy consumed by different
UAVs in case of 20 users. We can see that the power source
of UAVs is decreasing when the number of UAVs is rising
up. It can be justified by the fact that algorithms tend to
minimize the cost of using UAVs and improve their efficiency
by reducing energy cost. The total energy consumed by UAV's
is around 20% and continuously decreasing until it reached its
minimum value of 13.83% when U = 14. The total energy
consumed in case of using IMRFO-TS algorithm solutions is
reasonable and acceptable since the algorithm is improving
the coverage rate. MRFO and GWO presented close results
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FIGURE 8. The average total energy consumption in first case.

and their total energy values are good. IMRFO-TS, MRFO,
and GWO make a good balance between the energy constraint
and the coverage objective. The solutions found by SCA algo-
rithm focused on the energy aspect with less consideration
of the coverage quality. The energy values provided by RSA
are little high and can be acceptable forU > 9. TS, BA,
FA, and WOA showed poor performance in all cases. Their
total energy consumption is considered high and not efficient
which makes them inappropriate for this case of users.
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TABLE 8. The Friedman tests of the fitness cost in the second case.

Results IMRFO-TS TS BA FA GWO SCA WOA MRFO RSA
N 13 13 13 13 13 13 13 13 13

Minimum -0.28 -1.88 -1.88 -159 05 -142 -122  -042  -1.99

Descriptive statistics ~ Maximum 0.23 -0.63  -0.68 -0.36 0.2 -049  -0.07 0.2 -0.56

Mean -0.13 -1.08 -1.11  -0.79 -0.23 -0.88  -0.74 -0.25 -1.07

STD 0.15 0.43 0.38 0.35 0.23 0.27 0.31 0.18 0.45

Rank Mean rank 8.69 2.27 1.38 5.62 7.54 4.31 4.92 7.69 2.58

N 13
" Chi-square 94.86
Statistic tests Df 3
Asymp. sig <0.001
number of UAVs is set to 4. MRFO and GWO algorithms
— IMRFO-TS — T8 — BA . . . .
FA GWO SCA provide an equal maximum fitness value of 0.2 using 5 and 6
WOA — MRFO —— RSA UAVs respectlv'ely. Tl}e fltne.ss value 9f TS, BA, SCA, WOA,
and RSA algorithms is continuously increasing by rising up
5 the number of UAVs. Consequently, these algorithms didn’t
1 reach the optimal value yet and need more UAVs. Figure 12
""a\ shows the convergence curve of the algorithms in the case of 4
3 L) UAVs are used. As expected, The convergence of TS, BA, and
= FA algorithms is efficient in terms of speed. However, their
5 convergence can not be considered optimal regarding the rate
A . . . .

= il since their fitness results are not optimal. The convergence
= - of RSA, SCA, and MRFO algorithms is slow in this case
E due to their weakness in exploration. As for WOA algorithm,
~ we can see that its convergence is not steady in this case and
1 its behaviour changes among the iterations, which demon-
strates its inability to achieve the balance between the explo-
ration/exploitation search. Regarding the GWO algorithm,
L we can see that it is still performing the exploration search

& 9 10 11 12 13 14 15 16
Mumber of UAVs

FIGURE 9. The average load distribution in the first case.

Figure 9 presents the mean load distribution. It can be
seen that all algorithms provided good results regarding this
metric. In most cases, the mean load distribution is around 1
which is optimal since it represents 1.67% of total users.
IMRFO-TS and MRFO in this scenario provided closer
results. But the proposed IMRFO-TS outperforms MRFO
algorithm by one case difference. Comparing the algorithms,
BA provided the highest load value. RSA and TS are ranked
after BA, respectively. Fa results are less than BA, RSA, and
TS results, but more than SCA and WOA results, respectively.
Finally, both IMRFO-TS and MRFO algorithms are the most
suitable methods for preserving UAVs resources according to
the load distribution results.

B. CASE OF 60 USERS

Table 15 details the results obtained of 60 users under var-
ious number of UAVs. It can be noticed that the proposed
IMRFO-TS outperforms the compared algorithm by giving
the highest fitness value in most cases. The IMRFO-TS
algorithm achieves its maximum value of 0.23 when the
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and additional iterations are required in this case. From the
figure, we can notice that the best fitness value is offered by
our IMRFO-TS approach, which demonstrates its efficiency
in terms of convergence rate. As for the convergence speed,
we can consider it optimal due to the fact that the IMRFO-TS
algorithm is enough fast to identify the area where the opti-
mal solution is located. Moreover, our approach shows slow
convergence to search for better solutions in the area.

Table 8 describes the statistical test results of the algo-
rithms in the second case. It can bee seen that, the IMRFO-TS
algorithm gives the highest results regarding the minimum,
maximum, and means fitness. Therefore, our approach is the
best in terms of finding the optimized UAV positions. More-
over, the IMRFO-TS is the most stable in this case, which is
proved by the standard deviation results. In this scenario, the
best mean rank is given by our approach, which demonstrates
it efficiency. As for the significance level, it less than 0.1% in
this case. Therefore, the null hypothesis is rejected and the
difference between the algorithms in terms of performance
exists.

Based on the data presented in Table 8 we created a whisker
plot of the fitness results for the algorithms as presented
in Figure 13. In this case the median fitness given by the
algorithms is not identical at all. As for the data distribu-
tion, IMRFO-TS, GWO, and RSA algorithms have positive
skew distribution. The other algorithms present negative skew
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FIGURE 11. The average connectivity rate in the first case.

distribution. The IMRFO-TS, GWO, WOA, and MRFO algo-
rithms present outliers in this scenario. Table 9 summarized
the post hoc of results of the algorithms in case of using
60 users in the area. The table shows that a statistical signif-
icance with algorithms exist. The significance value for TS,
BA, FA, SCA, WOA, and RSA algorithms represent 0.1%,
which is less than 5%. In addition, the confidence interval is
strictly positive. Therefore, the statistical significance exist
and the null hypothesis is rejected. The significance value
for both GWO and MRFO algorithms exceed the 0.5. In this
case, the statistical significance does not exist and the null
hypothesis is accepted.
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Regarding the coverage metric, IMRFO-TS gives the best
coverage quality when U 4 as shown in Figure 16.
IMRFO-TS is close to cover all users with a coverage rate
of 98.8%. After IMRFO-TS, the MRFO algorithms provides
a good coverage rate of 98.5% for U 8. GWO and
WOA provide their best coverage rate of 98.6% and 93.8%,
respectively for U = 4. The coverage quality provided by
TS, BA, FA, SCA, and RSA algorithms is poor and less than
85%. By varying the number of UAVs, the coverage quality is
decreased due to the impact of energy resources. IMRFO-TS
ensures a coverage quality more than 85% when the number
of UAVs is less than 9. GWO and MRFO can provide that
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TABLE 9. The post hoc test of the mean fitness of each algorithm in the second case.

Multiple Comparison

Dependent variable: Fitness

Algorithm (I)  Algorithm (J) Mean difference (I-J) SE Sig 95 % confidence interval
Lower bound Upper bound
TS 0.95 0.13 < 0.001 0.7 0.86
BA 0.98 0.13 < 0.001 0.73 1.23
FA 0.66 0.13 < 0.001 0.41 0.91
GWO 0.09 0.13 0.45 -1.55 0.34
IMRFO-TS SCA 0.75 013 < 0.001 0.5 1
WOA 0.61 0.13 < 0.001 0.36 0.86
MRFO 0.12 0.13 0.36 -0.13 0.37
RSA 0.94 0.13 < 0.001 0.69 1.19
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FIGURE 12. Convergence curve in the case of 60 users and 4 UAVs.
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FIGURE 13. The whisker plot of the fitness results obtained in the second
case.

quality until U = 8. WOA gives only a good quality when
U = 4. The quality of the other algorithms is not acceptable
and continues to decrease.

Figure 17 illustrates the mean connectivity rate. It can be
noticed that the connectivity quality increases as the number
of UAVs increases. In fact, adding more UAVs, gives rise
to the size of the network and produces more mesh links
between them. For the IMRFO-TS algorithm, the use of 4 and
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FIGURE 14. The average total energy consumption in the second case.

5 UAVs is not the optimal one. Starting from U = 6, the
connectivity quality given by IMRFO-TS is increased from
97.43% to 100% where its achieves the full connectivity
4 times when U = {9, 20, 14, 16} After BA algorithm in
case of U = {5,7,9,11,13}. GWO and FA algorithms
provide a good connectivity rate greater than 85%. WOA and
MRFO algorithm improve the connectivity quality when the
number of drones is greater than 6. Tabu search starts to give
good connectivity results starting from U = 7. SCA and
RSA reach more than 85% of connectivity when U > 8.
The connectivity quality provided by BA is not stable when
U <09.

Figure 14 illustrates the mean energy provided by the
algorithms. We can see that the energy is decreasing when
the number of UAVs is increasing. Algorithms provide
low heights UAVs positions that minimize the energy. The
IMRFO-TS archives the best energy value of 19.65% when
U = 16 after MRFO and RSA with the value of 14.35% and
16.04% respectively. Except the case of U = {4, 5}, IMRFO-
TS provides mean energy around 30%. In the scenario,
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FIGURE 15. The average load distribution in the second case.

solutions given by both SCA, and RSA tend to optimize the
energy metric more than the coverage. starting from U = 9,
we can see that both of them give a good energy percentage.
But the coverage quality is less than 50% in most cases.
Consequently, SCA and RSA are not able to balance between
different objectives. IMRFO-TS provides the best balance
between coverage and energy. It works on minimizing the
energy while keeping a coverage quality over 70% in most
cases. MRFO and GWO algorithms also a give good balance
after the IMRFO-TS algorithm. The best energy results given
by WOA algorithm are achieved when U = {14, 15}, but
without a good balance. The results given by TS, BA, and FA
algorithms are not considered optimal. The mean energy rate
is high compared to the others.

Figure 15 represents the mean load distribution. We can
notice that the IMRFO-TS algorithm provides the smallest
load distribution value in most cases. Therefore, our pro-
posed algorithm splits approximately equal number of users
between UAVs which preserves better UAVs resources. After
IMRFO-TS algorithm, MRFO and GWO algorithms provide
good results regarding the load. The load results given by
TS, BA, FA, SCA,WOA, and RSA algorithms are high but
acceptable since it is less than 8% of total users in most cases.

C. CASE OF 100 USERS

Table 16 summarized the obtained results in case of 100 users
using different number of UAVs. According to the table,
IMRFO-TS algorithm provided the best fitness value in most
cases as expected. The proposed method achieved the optimal
fitness of 0.19 which is the greatest value in case of U = 4.
In the same case, both GWO and MRFO algorithms provided
their best fitness value of —0.08 and —0.18, respectively.
The other algorithms did not converge to their optimal value
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and their mean fitness is improving by adding more UAVs.
IMRFO-TS, GWO, and MRFO algorithms need few num-
ber of UAVs to converge unlike TS, BA, FA, SCA, WOA,
and RSA algorithms. Consequently, IMROF-TS, GWO, and
MRFO are the most optimal regarding the deployment cost
of UAVs. Figure 18 illustrates the best fitness over iterations
given by the algorithms in the case of 4 UAVs. As Shown
in the figure, the convergence of TS, BA, and SCA algo-
rithms is stable over the iterations due to their lack in finding
new solutions. RSA algorithms convergence slowly and need
more iterations. FA and WOA converge in this case with
the same manner, where both of them reach their best in
the earlier iterations. As for GWO and MRFO algorithms,
we can see that their convergence is little stable by the end of
iterations, which demonstrates their limitation in exploitation.
In this case, the proposed IMRFO-TS approach shows the
best performance in terms of both speed and rate due to non
linear control and local search mechanisms.

Table 10 details the statistical results given by the algo-
rithms in the third case. We can notice from the table that the
best descriptive statistic results is given by the IMRFO-TS
algorithm. Our approach gives the highest minimum, max-
imum, and mean values. As for the standard deviation, the
original MRFO algorithm gives the smallest value. However,
the STD given by our approach is close to the one given by
MRFO. Therefore, the stability our approach is optimal and
proved the robustness of our approach in avoiding trapping
into local optima. Regarding the mean rank, our approach is
classified the first and the rank gap with other algorithms is
clearly noticed. By analysing the asymptomatic significance,
we can see that it is small and < 0.1%. Therefore, the null
hypothesis is rejected also in this case.

Figure 19 displays the whisker plot of the fitness results
in case of using 100 users. From the figure, the median
difference of the algorithms is clearly noticed in this case.
In addition, The data distribution is not the same for all the
algorithms. The IMRFO-TS, BA, FA, SCA, MRFO, and RSA
algorithms show a negative skewed distribution. The distribu-
tion of the other algorithms is positively skewed. Moreover,
the FA, GWO, and WOA algorithms present outliers.

Table 11 details the post hoc results using the least sig-
nificant difference (LSD) test for the algorithms. The table
reveals that there is a significance difference between the
IMRFO-TS algorithm and the rest. By analysing the sig-
nificant value, we can see that it is less than 0.5% for all
algorithms, expect both GWO and MRFO algorithms. In this
case, we can say that, only GWO and MRFO algorithms
are not significant. In addition, the confidence interval for
the mean difference between IMRFO-TS and both GWO
and MRFO algorithms contains zero. Thus, the null hypoth-
esis that there is not statistical significance between them
is rejected. As for the rest, the significant value is less that
5% and the confidence interval is positive. Therefore, the
statistical significance exists.

Figure 24 illustrated the mean coverage rate in a scenario
where 100 users are deployed. It can be noticed that the
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TABLE 10. The Friedman tests of the fitness cost in the second case.

N 13 13 13 13 13 13 13 13 13
Minimum -0.74 -3.05 36 285 084 275 274 -0.81 -3
Descriptive statistics =~ Maximum 0.19 -1.22 -1.14 -0.9 -0.07 -1.09  -0.91 -0.18 -1.16
Mean -0.4 -1.98 204 -15 -0.61 -1.73  -1.49 -0.49 -1.89
STD 0.29 0.64 0.83 0.54 0.25 0.53 0.5 0.2 0.63
Rank Mean rank 8.85 1.81 1.96 5.19 7.23 3.73 542 7.92 2.88
N 13
e Chi-square 93.97
Statistic tests Df 3
Asymp. sig <0.001
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TABLE 11. The post hoc test of the mean fitness of each algorithm in the third case.

Multiple Comparison

Dependent variable: Fitness

Algorithm (I)  Algorithm (J) Mean difference (I-J) SE Sig 95 % confidence interval
Lower bound Upper bound
TS 1.58 0.21 < 0.001 1.17 1.99
BA 1.64 0.21 < 0.001 1.23 2.05
FA 1.1 0.21 < 0.001 0.69 1.51
GWO 0.21 0.21 0.31 -1.2 0.62
IMRFO-TS SCA 1.33 021 < 0.001 0.92 1.74
WOA 1.1 0.21 < 0.001 0.68 1.51
MRFO 0.1 0.21 0.64 -0.31 0.51
RSA 1.5 0.21 < 0.001 1.08 1.9
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FIGURE 18. Convergence curve in the case of 100 users and 4 UAVs.
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FIGURE 19. The whisker plot of the fitness results obtained in the third
case.

proposed IMRFO-TS provides the best coverage quality in
most cases compared to the other algorithms. When U < 10,
IMRFO-TS offers more than 88% of users coverage. More-
over, the coverage rate increases until 99.1% for U = 4.
In other cases, the coverage rate given is acceptable and
around 70%. Similar to IMRFO-TS algorithm, MRFO covers
more than 88% of users when U < 10. However, MRFO
algorithm in this case of users outperforms GWO algorithm
by giving better coverage quality. The coverage rate pro-
vided by GWO is more than 85% for U < 9. A part from
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FIGURE 20. The average total energy consumption in the third case.

this number of UAVs, MRFO, and GWO algorithms have
coverage rates of around 70% and 60%, respectively. The
coverage results given by TS, BA, FA, SCA, WOA, and RSA
algorithms are poor and around 40%.

Figure 25 depicts the mean UAVs connectivity in case of
100 users. It can be seen that IMRFO-TS algorithm provides
the best connectivity rate in most cases. In case of U < 6,
IMRFO-TS method achieves more than 98% of UAVs con-
nectivity and reaches the full connectivity for U = {14, 15}.
The other algorithms also presented good connectivity results
and greater than 85% in most cases. However, the IMRFO-TS
algorithm outperforms the other meta-heuristics.

Regarding the energy metric, Figure 20 presents the mean
total energy consumed by different number of UAVs serving
100 users. We can notice that the total energy consumed when
IMRFO-TS is used is acceptable and around 35%. IMRFO-
TS gives its best energy value of 25.86% for U = 16. From
U = 12, SCA and RSA algorithms improve the energy con-
sumption over other metrics where their both give their best
of 16.98% and 15.83%, respectively. MRFO presents similar
results to IMRFO-TS algorithm. However, GWO results are
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FIGURE 21. The average load distribution in the third case.

better and around 30% of total energy used. The results given
by TS, BA, and WOA are approximately similar and around
40% which is high and inefficient. Using FA algorithm, 50%
of energy is used and unacceptable practically.

Figure 21 illustrates the average load distribution given
by different UAVs for 100 users. It can be seen that the
most optimal load is provided by the proposed approach for
U = 4. For U #, the load increases from 1.17 to 4.36 which
represent a gap of 4.5%. This gap is considered optimal and
acceptable in view of the coverage quality offered. In this
scenario, GWO provides good load results and MRFO offers
close results to the one given by IMRFO-TS. The obtained
load values by BA, SCA, and WOA algorithms are small and
good. But, we cannot consider them optimal because using
these algorithms most of users and not covered which explain
the small load values. As for TS, FA, and RSA algorithms
the gap of user distribution between UAVs is remarkable. But,
it can be acceptable since its represents less than 10% in most
cases.

D. CASE OF 140 USERS

Table 14 shows the obtained results by the meta-heuristics
in case of 140 users. As it can be noticed, the proposed
IMRFO-TS outperforms state-of-the-art meta-heuristics in
most cases. IMRFO-TS gives the most fitness value of 0.3 for
U = 7. In this case, GWO and MRFO algorithms provide the
best fitness value of 0.17 and 0.16, respectively. As expected,
the other algorithms did not converge yet to their optimal
values and need more UAVs. Figure 26 illustrates the conver-
gence curve of the algorithms in case of using 4 UAVs. From
the figure, we can notice that TS, BA, and FA algorithms
converge to their best fitness in the earlier iterations.In this
case, these algorithms trapped into local optima and not able
to explore new solutions. As for SCA and RSA algorithms,
we can see that their convergence is slow. both of them
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FIGURE 23. The average load distribution in the fourth case.

reach their best solution in the last iterations. By analysing
the convergence of GWO algorithm, we can see that it is
relatively slow and it requires more iterations in this case.
As for WOA algorithm, it converges to a good fitness value
with efficient speed. The convergence behaviour of original
MRFO algorithm is similar to WOA algorithm. However,
in terms of efficiency, WOA performs better than MRFO
algorithm. In this case, the convergence speed of our proposed
approach is sufficiently fast due to the good balance between
the exploration and exploitation phases. Moreover, in terms
of efficiency, our approach outperforms state-of-the-art
meta-heuristics.
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FIGURE 25. The average connectivity rate in the third case.

Table 12 displays the Friedman test results provided by the
algorithms, performed in the last case of users. As expected,
the optimal descriptive statistic results are provided by the
IMRFO-TS algorithm. These results demonstrated the effi-
ciency of our proposed approach in dealing with high num-
ber of users, which reflects the high complexity problem.
Moreover, with the optimal standard deviation results, we can
conclude that the IMRFO-TS is stable along the scenario.
This characteristic proved that, our approach is likely get-
ting closer to the global optimal solution. The highest mean
rank in this case is also provided by our approach. Both
MRFO and GWO offer high mean rank. However, the
mean rank gap is important and clearly noticed. Regarding
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the significance value, we can notice that it is less than
0.1% also in this case. Therefore, the null hypothesis is
rejected.

The whisker plot of the fitness results provided by the algo-
rithms in the last case is presented in Figure 27. As expected,
the median fitness varies from an algorithm to another.
Therefore, the algorithms statistics are not identical,
as proved by the significance value. The distribution of the
IMRFOTS, BA, SCA, WOA, MRFO, RSA algorithms is
negatively asymmetric. As for the rest, their distribution is
positively skewed. None of the algorithms present a normal
distribution in this case. Regarding the outliers, IMRFO-TS,
TS, GWO, and original MRFO have. Table 13 represents the
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TABLE 12. The Friedman tests of the fitness cost in the fourth case.

Results IMRFO-TS TS BA FA GWO SCA WOA MRFO RSA
N 13 13 13 13 13 13 13 13 13
Minimum -1.05 47 479 322 -1.32 384 332 -1.39 -5.18
Descriptive statistics ~ Maximum 0.3 -1.78 -1.8  -1.32 0.17 -1.71 -1.57 0.16 -1.65
Mean -0.6 -2.84 287 208 -091 -256 -2.09 -0.86 -2.96
STD 0.46 0.95 096  0.61 0.46 0.77 0.52 0.42 1.14
Rank Mean rank 8.888 2.31 1.92 5.31 7.27 3.85 5.46 7.62 2
N 13
. Chi-square 96.64
Statistic tests Df 3
Asymp. sig <0.001

TABLE 13. The post hoc test of the mean fitness of each algorithm in the fourth case.

Multiple Comparison

Dependent variable: Fitness

Algorithm (I)  Algorithm (J) Mean difference (I-J) SE Sig 95 % confidence interval
Lower bound  Upper bound
TS 2.23 0.33 < 0.001 1.59 2.88
BA 2.26 0.33 < 0.001 1.62 291
FA 1.47 033 < 0.001 0.83 2.12
GWO 0.31 0.33 0.35 -0.34 0.95
IMRFO-TS SCA 1.96 033 < 0.001 1.31 2.6
WOA 1.19 0.33 < 0.001 0.54 1.83
MRFO 0.25 0.33 0.44 -0.39 0.9
RSA 2.35 0.33 < 0.001 1.71 3
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FIGURE 26. Convergence curve in the case of 140 users and 4 UAVs.

post hoc results of the fitness provided by the algorithms
in the last case of users. According to the table, we can
notice that the significance value is not the same for all the
algorithms. Thus, the statistical significance exists for some
algorithms. Except for GWO and MRFO algorithms, the sig-
nificance value is 0.1 % which is less than 5 %. Therefore, the
hypothesis that no statistical significance exists is rejected.
Figure 28 depicts the average coverage rate provided
by different algorithms under various number of UAVs.
As it can be seen, the use of 6 UAVs is the most optimal
case of IMRFO-TS regarding the coverage metric. In this
case, IMRFO-TS covers approximately 96% of users. Up to
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11 UAVs, IMRFO-TS ensures coverage quality superior to
85% users. GWO and MRFO algorithms offer good coverage
quality up to 99 for U = 4. GWO and MRFO can cover more
than 85% of users for U < 8 and U < 9, respectively. WOA
achieves coverage rate of 87.27% in case of 4 UAVs. In other
cases, it provides less than 85% of users coverage. The other
algorithms present a weak coverage rate that is not acceptable
in real-life applications.

Figure 29 shows the average UAVs connectivity rate.
As noticed, the proposed IMRFO-TS provides an optimal
UAVs connectivity results. In most cases, IMRFO-TS offers
more than 98% of UAVs connectivity and achieves the 100%
of connectivity for U = 16. GWO and MRFO also give good
connectivity results but not good as IMRFO-TS results. The
connectivity quality given by BA, FA, and RSA algorithms
if optimal starting from U = 7. As for WOA and SCA
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FIGURE 29. The average connectivity rate in the fourth case.

algorithms, they require more than 8 and 12 UAVs, respec-
tively to offer good connectivity quality.

Figure 22 illustrates the average total energy consumed
by different UAVs serving 140 users. As we can see, the
proposed approach provide the optimal and smallest value
of 12.87% in case of U = 16. In other cases, the energy
rate is remarkable and around 38%, as a result of the cov-
erage quality offered. In this scenario, IMRFO-TS tend to
compromise between the coverage rate and energy consump-
tion which are both related to UAVs’ heights. It results can
be acceptable since IMRFO-TS is able to balance between
the two objectives. For U > 7, results given by GWO

VOLUME 11, 2023

and MRFO are closer to IMRFO-TS results and accept-
able. Results given by BA can be acceptable only in case
of U = {12,13}. SCA and WOA offer optimal results
regarding the energy consumption for U > 7 and U > 10.
FA algorithm presents the worst results that cannot be
acceptable.

Figure 23 depicts the average load distribution given by
the algorithms under various number of UAVs. From results,
it can be seen that the proposed IMRFO-TS provides the
smallest load value of 0.02 for U = 7. The second best load
(2.15) value is given by GWO in case of U = 7. By varying
the number of UAVs, we can notice that the load distribution
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TABLE 14. Results obtained from different algorithms in the fourth case.

Results IMRFO-TS TS BA FA GWO SCA WOA MRFO RSA

Fitness 0.30 -4.70 -4.23 -2.33 0.17 -3.77 -1.57 0.16 -5.18

Coverage 94.76 65.18 78.83 84.26 99.97 74.79 87.27 99.46 56.93

Connectivity 99.97 82 75 50 88 59.5 72.5 54.5 67 U=4

Energy 49.76 56.35 50.31 57.85 63.19 54.1 57.64 48.66 46.68

Load 0.02 19.71 2.23 10.08 227 1.99 2.16 431 21.49

Fitness 0.21 -4.52 -4.79 -3 -0.34 -3.84 -3.32 -0.8 -4.86

Coverage 89.2 58.7 64.21 80.19 96.2 66.44 66.99 92.6 45.66

Connectivity 99.13 732 712 42.8 92 56.8 79.6 82 91.6 U=5

Energy 51.26 56.62 4291 70.07 57.42 45.34 41.6 42.28 41.85

Load 0.55 18.84 2.19 12.54 2.15 2.02 2.10 433 20.4

Fitness -0.06 -3.54 -3.6 -3.22 -0.49 -3.3 -2.68 -0.13 -3.88

Coverage 96.1 83.87 84.13 56.69 94.04 65.86 72.29 95.99 50.67

Connectivity 99.3 83 83.67 100 82.67 57.67 94.67 90 83.67 U=6

Energy 43.52 48.12 62.48 51.84 50.6 43.77 57.22 42.59 44.25

Load 1.77 15.36 222 13.94 2.17 2.02 2.15 4.36 16.4

Fitness -0.58 -3.08 -3.69 -243 -0.68 -3.24 -2.1 -1.39 -3.33

Coverage 91.87 57.44 57.79 78.93 92.7 55.36 73.5 85.86 51.19

Connectivity 91.71 85.71 94.29 100 85.14 70.57 76.86 90.57 98.29 Uu=r7

Energy 40.03 49.13 57.24 62.07 46.59 36.38 46.9 35.48 35.68

Load 3.78 13.25 2.15 10.9 221 2.02 2.18 4.42 14.46

Fitness -0.88 -3.1 -3.23 -2.49 -0.71 -29 -2.42 -0.95 -3.4

Coverage 87.63 51.91 61.73 56.8 90.9 53.34 67.41 86.86 40.47

Connectivity 98.5 93.25 64.75 88.5 96.5 68 97 98.75 84.25 U=38

Energy 44.15 41.4 53.13 34.05 43.79 36.28 53.99 31.74 40.29

Load 4.97 13.44 2.23 11.08 227 2.07 222 4.48 14.44

Fitness -0.61 -2.89 =277 2 -1.32 -2.62 -2.48 -0.8 -2.98

Coverage 88.79 45.96 59.69 79.21 79.87 52.43 52.14 87.44 33.63

Connectivity 99.78 93.56 100 99.11 96.89 70.67 96 90.89 99.56 U=9

Energy 34.35 4224 35.96 58.69 35.11 33.81 42.36 47.71 27.89

Load 3.98 12.52 2.26 9.2 2.23 2.20 2.16 4.58 12.98

Fitness -0.71 -2.73 -2.63 -2.26 -1.28 -2.17 -2.12 -0.79 -2.57

Coverage 86.88 52.21 53.13 59.11 76.74 59.6 55.47 84.61 50.73

Connectivity 99.4 90.8 90.4 87.8 99.4 79.2 89.6 99.4 90.2 U =10
Energy 38.44 47.74 43.08 58.18 35.21 38.38 32.59 39.59 50.98

Load 4.33 11.87 2.23 9.93 2.25 2.18 2.24 4.64 11.17

Fitness -0.69 -2.33 -2.49 -1.56 -1.24 -2.18 -1.95 -0.9 -2.57

Coverage 85.89 40.14 69.04 66.44 73.09 52.99 53.43 81.71 36.8

Connectivity 98.73 91.64 100 97.64 98.73 83.09 86.73 99.09 98.91 U=11
Energy 40.71 44.57 56.97 49.89 29.47 35.33 42.46 37.41 46

Load 4.22 10.2 2.3 7.39 2.27 2.18 2.25 4.68 11.18

Fitness -0.9 -2.21 -2.3 -1.83 -1.23 -2.11 -1.81 -1.21 -2.28

Coverage 79.27 65.04 31.21 53.2 69.55 37.9 51.76 71.49 26.3

Connectivity 98.17 93.5 100 100 98.67 89.5 99.17 99.83 99.67 U=12
Energy 37.21 46.54 33.11 46.01 27.69 22.69 30.3 27.28 23.21

Load 5 9.95 2.22 8.38 2.28 2.20 2.26 4.57 10.14

Fitness -0.93 -2.11 -2.12 -1.69 -1.24 -1.89 -1.76 -1.1 -2.01

Coverage 74.44 43.14 34.37 64.79 65.49 48.63 49.57 71.81 34.29

Connectivity 99.23 93.38 92.77 86.46 99.54 93.69 99.23 99.54 100 U=13
Energy 36.05 43.16 36.5 62.64 2791 38.61 37.58 38.08 28.67

Load 5.1 9.42 2.29 7.75 2.33 2.27 2.29 4.67 9.1

Fitness -0.95 -2.05 -1.89 -1.32 -1.19 -1.78 -1.71 -1.11 -1.99

Coverage 72.94 20.66 65.44 61.47 63.41 40.67 38 69.57 23.53

Connectivity 99 97.14 100 99.86 99.29 93.57 99.14 99.71 96 U=14
Energy 36.48 41.32 40.43 54.34 28.49 30.9 19.36 2891 24.8

Load 5.15 8.96 2.38 6.35 2.38 2.32 2.27 4.77 8.9

Fitness -1 -1.82 -1.8 -1.45 -1.17 -1.79 -1.65 -1 -1.76

Coverage 68.23 37.11 25.71 50.14 59.34 30.26 37.56 65.51 30.31

Connectivity 99.86 99.6 100 99.87 99.87 92.93 98.53 100 100 U=15
Energy 37.54 435 40.13 48.77 23.95 22.14 31.2 27.16 25.69

Load 5.44 8.19 2.33 6.83 2.40 2.31 2.36 4.82 8.08

Fitness -1.05 -1.78 -1.84 -1.42 -1.12 -1.71 -1.59 -1.12 -1.65

Coverage 59.54 39.74 29.81 49.31 56.79 23.14 29.4 58.61 27.1

Connectivity 100 99.87 94.12 100 100 96.25 98.62 99.62 99.37 U =16
Energy 12.87 36.81 41.57 53.09 24.4 15.31 20.98 29.6 20.44

Load 5.54 8.14 2.35 6.63 2.44 2.33 2.35 4.89 7.67

obtained by IMRFO-TS algorithm is decreasing. It can be
explained by the fact that the number of covered users is
decreasing due to the impact of energy metric. IMRFO-TS
results are considered optimal since the gap of load distri-
bution between UAVs does not exceed 3%. In this scenario,
load results of BA, GWO, SCA, and WOA algorithms are
optimal and less than the one given by IMRFO-TS. But, these
values are small only because the coverage rate is reduced.
Regarding TS, FA, and RSA results, load values are remark-
able and not optimal.
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E. COMPARISON BETWEEN DIFFERENT CASES

Comparing tables 5, 15, 16, and 14, we can notice that
varying the number of users effects on the optimiza-
tion results provided by the algorithms. By increasing the
number of users, the performance of most algorithms, except
IMRFO-TS is decreasing. It can be explained by the fact
that the complexity of the problem is increasing with the
number of users which make it hard for them to maintain
the same solution quality. In the most complex scenario
(G = 16), IMRFO-TS provides its best fitness value com-
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TABLE 15. Results obtained from different algorithms in the second case.

Results IMRFO-TS TS BA FA GWO SCA WOA MRFO RSA

Fitness 0.23 -1.88 -1.88 -1.59 0.17 -1.02 -0.07 -0.38 -1.75

Coverage 98.8 65.63 63.6 74.3 98.2 82.3 93.8 90.4 68.73

Connectivity 74.5 75 71.5 100 85.5 69.5 73 80.5 50 U=4
Energy 50.84 52.44 40.62 56.62 57.80 61.81 62.65 44.04 38.62

Load 0.3 8.44 8.53 7.52 0.56 4.97 1.31 2.8 7.78

Fitness 0.06 -1.71 -1.48 -1.05 0.2 -1.42 -1.16 -0.42 -1.99

Coverage 95.65 58.37 61.2 71.73 97.4 68.2 72.5 88.2 56.13

Connectivity 84.4 62 100 99.6 98.4 73.2 94 78.8 77.2 U=5
Energy 41.89 49.36 38.28 62.02 51.83 44.18 56.35 38.61 43.47

Load 1.14 7.54 7.17 5.3 0.65 6.67 5.73 2.95 8.85

Fitness 0 -1.58 -1.46 -1.21 0.11 -1.11 -0.86 0.2 -1.39

Coverage 91.84 59.1 57.5 69.47 96.6 72.8 69 96 62.4

Connectivity 98 73.33 76 92.67 99.67 63 86 99.67 98.67 U=6
Energy 32.04 49.33 45.58 65.74 51.73 44.96 40.71 40.84 44.34

Load 1.94 7.16 6.73 5.82 1 5.34 4.6 0.75 6.71

Fitness -0.11 -1.37 -1.39 -1.03 -0.34 -1.21 -1.22 -0.12 -1.31

Coverage 91.87 51.5 39.1 61.07 86.4 59.7 53.8 91.4 49.67

Connectivity 97.43 95.43 100 99.71 98.86 82.29 89.14 98 68.86 Uu=r7
Energy 36.87 42.38 42.03 49.39 37.45 41.62 39.46 33.42 42.69

Load 1.99 6.53 6.53 5.24 2.85 5.84 5.92 2.04 6.01

Fitness -0.05 -1.13 -1.33 -0.87 -0.23 -1.03 -1.05 0 -1.29

Coverage 92.9 62.3 41.9 62.67 88.9 55.5 51.8 98.5 35.7

Connectivity 99.75 87.75 71 100 98.5 86.5 98.75 94.07 96 U=38
Energy 33.68 45.69 41.9 47.17 39.27 33.92 38.35 34.33 37.32

Load 1.80 5.58 4.98 4.65 2.42 5.22 5.33 1.57 6.1

Fitness -0.16 -1.1 -1.20 -0.69 -0.35 -0.98 -0.68 -0.27 -1.02

Coverage 85.47 62.07 48.2 71.57 80.2 46.4 66.4 83 35.87

Connectivity 100 83.33 100 99.78 98.22 92.89 99.78 96.89 100 U=9
Energy 31.29 40.82 52.05 5251 34.15 26.23 49.08 26.33 27.15

Load 2.21 5.43 5.76 3.95 2.83 5.05 3.89 2.6 5.19

Fitness -0.23 -0.97 -1.04 -0.7 -0.5 -0.85 -0.9 -0.26 -1.02

Coverage 83.03 57.87 51.7 62.63 72.4 49.2 48.27 80.3 32.07

Connectivity 100 90.6 99.6 98.4 98.8 93.8 99.8 100 99 U =10
Energy 34.48 46.01 43.27 42.17 28.98 27.21 37.52 31.88 29.6

Load 2.43 491 5.23 3.98 34 4.54 4.71 2.52 5.08

Fitness -0.23 -0.89 -0.91 -0.71 -0.33 -0.75 -0.72 -0.29 -0.76

Coverage 79.87 69.53 34.8 56.47 76.9 50 50.1 78.7 49.27

Connectivity 99.45 100 100 97.45 100 95.64 99.45 99.45 98.73 U=11
Energy 31.11 39.46 40.46 48.23 29.05 28.6 34.14 28.8 33.65

Load 2.42 4.85 4.59 3.92 2.79 4.17 4.05 2.93 4.19

Fitness -0.27 -0.64 -0.89 -0.62 -0.32 -0.72 -0.68 -0.32 -0.74

Coverage 77.8 68.33 314 60.5 74.9 41.8 45.27 72.2 36.27

Connectivity 99.83 91.67 92.33 100 99.33 97.17 100 99.67 99.5 U=12
Energy 34.87 38.03 40.87 51.15 23.92 21.05 31.32 23.13 20.85

Load 2.52 3.8 4.4 3.59 2.78 4.07 3.86 2.76 4.09

Fitness -0.23 -0.74 -0.76 -0.46 -0.36 -0.73 -0.6 -0.36 -0.76

Coverage 75.07 35 60.6 67.77 65.4 31 50.9 64.5 20.13

Connectivity 99.84 100 100 92.15 99.54 96.92 99.85 100 99.85 U=13
Energy 25.81 36.19 37.74 44 25.17 22.11 39.91 25.87 15.66

Load 2.41 3.92 4.28 3.01 2.83 4 3.49 2.81 4.1

Fitness -0.29 -0.75 -0.74 -0.51 -0.4 -0.56 -0.63 -0.3 -0.68

Coverage 71.36 529 44.4 59.9 60.7 54.6 36.2 66.7 39.8

Connectivity 100 98.71 99 100 99.57 97.29 99.71 99.86 99.71 U=14
Energy 32.79 44.04 31.36 52.45 23.43 33.76 27.76 25.77 35.55

Load 2.55 4.08 4.08 3.11 2.95 3.42 3.58 2.63 3.77

Fitness -0.17 -0.65 -0.68 -0.49 -0.29 -0.63 -0.58 -0.35 -0.59

Coverage 73.67 43.43 25.6 55.87 69.2 27.1 333 62.9 33.47

Connectivity 99.87 99.87 99.87 100 99.87 98.4 99.73 99.87 99.37 U=15
Energy 22.53 43.76 36.44 49.13 25.18 17.86 25.39 28.67 33.97

Load 2.19 3.6 3.62 3.04 2.59 3.6 3.41 2.74 3.33

Fitness -0.25 -0.63 -0.68 -0.36 -0.29 -0.49 -0.46 -0.35 -0.56

Coverage 61.87 41.47 68.7 61.4 59.2 47 63.6 48.7 31.2

Connectivity 100 99.37 99.75 100 99.87 97.18 99.87 99.75 99.75 U =16
Energy 19.65 40.74 47.15 45.38 19.97 38.48 47.31 14.35 16.04

Load 2.46 3.53 3.92 2.59 2.53 3.02 3 2.74 3.39

paring to the other scenarios. The reason behinds is that
the improvement and hybridization strategies of IMRFO-TS
algorithm are efficient and make difference compared to other
algorithms.

The coverage quality is also impacted by the number of
users. Comparing the optimal coverage value given by the

VOLUME 11, 2023

algorithms using different users, we can conclude that the
coverage rate is increasing with the number of users. It can
be justified by the fact that more users are present within
the coverage area. From another side, keeping the same
coverage quality, additional UAVs are required. In fact, the
coverage rate is calculated based on the distance between
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TABLE 16. Results obtained from different algorithms in the third case.

Results IMRFO-TS TS BA FA GWO SCA WOA MRFO RSA

Fitness 0.19 -3.04 -3.6 -2.85 -0.08 -1.57 -2.774 -0.18 -2.97

Coverage 99.1 70.58 55.16 76.14 96.7 83.18 76.04 92.22 73.58

Connectivity 69 60.5 76 100 94 58 78 76.5 50 U=4
Energy 44.29 42.23 56.23 64.64 58.47 57.34 48.87 51.34 5491

Load 0.45 13.07 1.8 12.51 1.67 1.62 1.74 3.6 12.56

Fitness -0.23 -3.05 -3.58 2 -0.71 -2.75 -1.34 -0.34 -3

Coverage 78.4 71.9 37.66 77.52 91.12 60.84 83.78 99.82 59

Connectivity 94.2 89.6 99.6 99.6 84.8 68.4 90.8 91.2 60 U=5
Energy 39.82 54.21 42.46 57.1 48.28 44.90 67.52 47.10 43.81

Load 2.27 13.27 1.74 9.22 1.81 1.64 1.79 3.61 12.74

Fitness 0.11 -2.67 -2.72 -1.38 -0.07 -2.65 -1.92 -0.24 -2.55

Coverage 98.16 63.64 50.58 85.86 96.94 53.28 68.1 93.54 53.54

Connectivity 99.3 71.3 85.67 100 97.67 63 94.33 90.67 91 U=6
Energy 37.389 50.46 30.18 54.07 49.52 38.97 51.08 41.55 44.18

Load 1.17 11.64 1.77 6.83 1.85 1.65 1.77 3.62 11.21

Fitness -0.35 -2.29 -2.36 -1.98 -0.54 -2.04 -1.63 -0.37 -1.74

Coverage 91.62 65.64 75.46 53.62 90.24 62.76 72.54 96.57 79.88

Connectivity 98.28 88.29 62.29 84.86 95.53 62.29 100 90.32 87.14 U="17
Energy 35.67 56.48 53.45 41.05 45.13 38.74 41.6 43.78 44.78

Load 2.95 10.12 1.88 8.88 1.84 1.72 1.79 2.93 8.16

Fitness -0.25 -2.25 -2.31 -1.64 -0.57 -2.06 -1.96 -0.35 -2.45

Coverage 92.28 48.48 50.4 64.84 88.88 49.58 53.1 88.36 27.66

Connectivity 98.75 61.5 95.5 100 97 70 98.5 98.5 97.25 U=38
Energy 30.9 40.27 31.98 52.04 40.97 32.16 47.17 36.73 36.53

Load 2.64 9.7 1.84 7.68 1.89 1.73 1.79 3.66 10.68

Fitness -0.36 -2.03 -1.85 -1.66 -0.72 -1.83 -1.62 -0.4 -2.12

Coverage 88.4 47.56 43.66 58.56 83.14 57.28 58.9 87.48 45.28

Connectivity 99.33 84.89 100 93.11 96.89 91.11 98.11 97.78 98.22 U=9
Energy 40.43 42.29 39.96 47.64 35.36 46.23 44.65 35.93 44.12

Load 291 9.02 1.81 7.67 1.88 1.77 1.79 3.65 9.46

Fitness -0.65 -1.84 -1.62 -1.3 -0.66 -1.73 -1.5 -0.78 -1.69

Coverage 79.66 46.38 63 64.66 81.4 40.36 53.84 75.88 41.32

Connectivity 97.2 94.2 100 100 99.2 87.6 98.2 99.4 100 U =10
Energy 30.45 39.94 33.88 54.47 35.06 27.23 50.85 28.2 35.29

Load 4.10 8.34 1.88 6.29 1.9 1.77 1.83 3.67 7.81

Fitness -0.43 -1.62 -1.71 -1.2 -0.8 -1.52 -1.41 -0.54 -1.61

Coverage 82.76 49.2 31.52 55.34 75.08 50.04 49.36 82.04 43.58

Connectivity 99.45 99.82 99.45 99.45 99.82 86.91 99.09 99.64 94.91 U=11
Energy 33.24 46.77 35.79 32.12 28.44 31.8 37.53 33.81 38.59

Load 3.24 7.52 1.84 6.02 1.93 1.85 1.84 3.79 7.46

Fitness -0.74 -1.6 -1.5 -1.45 -0.84 -1.4 -1.23 -0.81 -1.62

Coverage 73.80 55.9 43.18 44.48 68.56 42.56 53.74 71.96 18.98

Connectivity 98.3 99.33 100 94.17 98.5 90.5 80.5 99.17 99.33 U=12
Energy 35.74 42.25 38.89 49.17 28 28.59 39.77 34.02 15.83

Load 4.36 7.51 1.87 6.7 1.94 1.88 1.89 3.84 7.49

Fitness -0.53 -1.41 -1.57 -1.12 -0.8 -1.41 -1.16 -0.48 -1.38

Coverage 77.48 33.16 23.68 48.62 54 28.6 48.9 80.34 38.56

Connectivity 99.54 93.54 92.77 99.69 99.85 96.77 93.54 99.85 99.85 U=13
Energy 38.39 39.04 39.19 45.99 24.86 20.08 33.42 31.97 25.47

Load 3.54 6.52 1.86 5.49 1.96 1.88 1.89 3.89 6.65

Fitness -0.65 -1.35 -1.27 -1.07 -0.78 -1.18 -1.02 -0.66 -1.27

Coverage 69 62.6 40.6 53.2 62.74 47.38 53.7 69.74 35.68

Connectivity 100 94.29 71.43 98.86 100 93.14 99.71 99.57 99.57 U=14
Energy 29.82 47.77 37.31 48.52 23.55 32.24 31.38 25.8 27.25

Load 3.9 6.48 1.92 53 1.98 1.95 1.93 3.93 6.14

Fitness -0.62 -1.31 -1.29 -0.96 -0.7 -1.21 -0.96 -0.62 -1.18

Coverage 68.28 45.98 239 59.68 62.56 28.16 54 67.2 29.26

Connectivity 100 97.87 100 98.67 100 96 100 99.87 100 U=15
Energy 37.22 46.28 41.68 50.15 27.11 18.66 40.11 25.48 23.69

Load 3.87 6.23 1.91 4.91 2.02 1.95 1.98 3.97 5.79

Fitness -0.64 -1.22 -1.14 -0.9 -0.65 -1.09 -0.91 -0.64 -1.16

Coverage 64.54 40.46 55.58 57.08 65.48 28.14 59.82 61.62 19.1

Connectivity 99.75 99.62 100 100 99.5 96.12 99.87 99.87 99.75 U=16
Energy 25.86 43.28 4851 45.51 25.13 16.98 33.13 24.64 17.85

Load 3.97 5.83 2.01 4.71 2.05 1.98 2.09 4.02 5.66

UAVs and users. Additional users involve additional dis-
tances to take into consideration. Since the users are ran-
domly distributed to the area and the coverage radius is
limited, the probability of the calculated distances to exceed
the coverage radius is increasing with the number of users.
From one case of users to another, IMRFO-TS requires
only 1 more UAV that is considered optimal in terms of
costs.
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As for the connectivity rate, the number of users is not
really affecting on the UAVs connectivity. Most algorithms
were able to keep the same connectivity quality for different
number of users. The connectivity metric is impacted only by
the number of UAVs since the network links are established
only between UAVs.

Regarding the energy metric, it can be noticed that it
changes according to the number of users. The energy
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consumption is related to users via the coverage metric.
As mentioned before, coverage rate is increasing with the
users which implies the rise of UAVs’ height. As results,
the energy efficiency is decreasing. From this fact, we can
conclude that the energy and coverage metrics are trade-offs.
In most user cases, the proposed IMRFO-TS approach offers
a good balance between them. MRFO and GWO also present
good results. SCA, and RSA algorithms tend to optimize the
energy parameter over the coverage. The other algorithms
provide high energy results.

Load distribution metric is impacted directly by the number
of covered users. By adding more users, the coverage quality
is improved. As results, the UAVs are able to share more users
which reduces the gap of the load distribution. Considering
the optimal load distribution results, IMRFO-TS outperforms
all meta-heuristics by given the smallest value.

VIl. CONCLUSION
In this paper, we have introduced a hybrid solution (IMRFO-
TS) based on the combination of improved MRFO with
TS algorithm for solving the UAV deployment issue in a
smart city. A fitness function is modeled considering the user
coverage, UAV connectivity, energy consumption, and load
distribution parameters. The effectiveness of the proposed
IMRFO-TS algorithm is assessed using 52 benchmarks in
comparison with the original MRFO and eight competitor
optimization meta-heuristics such as TS, BA, FA, GWO,
SCA, WOA, and RSA. Evaluation of the simulation results
demonstrated the performance and efficiency of the proposed
IMRFO-TS algorithm by finding optimal locations of UAVs.
As for future works, several research directions can be con-
sidered. First, the UAV placement problem can be modeled as
a multi-objective problem based on the Pareto front. Second,
to deal with real-time applications, UAVs and users mobility
can be considered. Finally, resource allocation for users is an
important point that can be addressed.

APPENDIX
See Tables 15 and 16.
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