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Abstract 43 

Context There is a long-standing quest in landscape ecology for holistic biodiversity metrics 44 

accounting for multi-taxa diversity in heterogeneous habitat mosaics. Passive Acoustic Monitoring of 45 

biodiversity may provide integrative indices allowing to investigate how soundscapes are shaped by 46 

compositional and configurational heterogeneity of mosaic landscapes.  47 

Objectives We tested the effects of dominant habitat and landscape heterogeneity on acoustic 48 

diversity indices across a large range of mosaic landscapes from two long-term socio-ecological 49 

research areas in Occitanie, France and Arizona, USA.  50 

Methods We assessed acoustic diversity by automated recording for 44 landscapes distributed along 51 

gradients of compositional and configurational heterogeneity. We analyzed the responses of six 52 

acoustic indices and a composite multiacoustic index to habitat type and multi-scale landscape 53 

metrics for three time periods: 24hr-diel cycles, dawns and nights. 54 

Results Landscape mosaics dominated by permanent grasslands in Occitanie and woodlands in 55 

Arizona produced the highest values of acoustic diversity. Moreover, several indices including H, ADI, 56 

NDSI, NP and the multiacoustic index consistently responded to edge density in both study regions, 57 

but with contrasting patterns, increasing in Occitanie and decreasing in Arizona. Landscape 58 

configuration was a key driver of acoustic diversity for diel and nocturnal soundscapes, while dawn 59 

soundscapes depended more on landscape composition.  60 

Conclusions Acoustic diversity correlated more with configurational than compositional 61 

heterogeneity in both regions, with contrasting effects explained by the interplay between 62 

biogeography and land use history. We suggest that multiple acoustic indices are needed to properly 63 

account for complex responses of soundscapes to large-scale habitat heterogeneity in mosaic 64 

landscapes. 65 

 66 
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Introduction 70 

Assessing the relative importance of habitat amount and configuration at the landscape level is 71 

critical to understand how biodiversity cope with loss and fragmentation of semi-natural land covers 72 

worldwide (Fahrig et al. 2011; Fletcher et al. 2018; Betts et al. 2019). Animal diversity is generally 73 

considered to increase with habitat heterogeneity in mosaic landscapes (Tews et al. 2004; Fahrig et 74 

al. 2011). However, whether species richness or abundance, ecological traits, behavioural parameters 75 

or biotic interactions are accounted for when analyzing the responses to heterogeneity often leads to 76 

contradictory conclusions (Fletcher et al. 2018; Betts et al. 2019; Semper-Pascual et al. 2021). 77 

Furthermore, there are still few studies exploring the potential change in the direction of effects 78 

between different biomes and habitats, because sampling biodiversity simultaneously on large 79 

geographical gradients without observer biases remains difficult. Recording the sound of biodiversity 80 

with autonomous devices is a promising way of limiting such observer biases in large-scale sampling 81 

schemes (Ross et al. 2021; Yip et al. 2021). However, few studies to date have investigated how more 82 

integrative biodiversity metrics such as multi-species acoustic indices could respond to landscape 83 

heterogeneity at wider scales (but see Fuller et al. 2015; Dein and Rüdisser 2020; Dooley and Brown 84 

2020).  85 

Acoustic diversity is a major component of biodiversity which can be investigated at the landscape 86 

level in the framework of soundscape ecology (Krause 2008; Pijanowski et al. 2011) and ecoacoustics 87 

(Sueur and Farina 2015). It can be defined as a greater complexity of sounds in a given soundscape 88 

and measured through either a higher number of occupied frequency bands, greater levels of 89 

acoustic activity or sound energy, or more biophony, geophony and anthrophony intertwined (Sueur 90 

et al. 2014). Acoustic diversity can therefore account for multiple biotic interactions and species 91 

coexistence through the acoustic niche hypothesis (Farina et al. 2011; Azar and Bell 2016). Its large-92 

scale assessment has been strengthened in the recent years according to rapid technological 93 

developments in Passive Acoustic Monitoring (Bradfer-Lawrence et al. 2019; Gibb et al. 2019; Sugai 94 
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et al. 2020; Wood et al. 2021). Passive Acoustic Monitoring (PAM) provides a holistic picture of 95 

biodiversity through the recording and analysis of intricate patterns of sound, especially at larger 96 

spatial scales (Krause 2008Drake et al. 2021; Ross et al. 2021; Yip et al. 2021). Not only biodiversity - 97 

notably breeding bird -surveys will benefit from the large-scale deployment of automated recorders, 98 

but this will give more insights on how bird song attractiveness is connected to human well-being 99 

and will help considering soundscape conservation as a cultural value (Ferraro et al. 2020; Barbaro et 100 

al. 2021; Morrison et al. 2021). 101 

Land use gradients and edge effects between adjacent habitats are expected to change the 102 

interactions among soundscape components (Pijanowski et al. 2011), which can be captured by using 103 

a large range of complementary indices of acoustic activity and diversity (Sueur et al. 2014; Buxton et 104 

al. 2018; Bradfer-Lawrence et al. 2020). Such indices are not only useful for overall biodiversity 105 

assessment (Gibb et al. 2019), they also allow tracking the spatio-temporal dynamics of multi-taxa 106 

acoustic communities and how they respond to, or interact with, sound-producing human activities 107 

(Fairbrass et al. 2017; Eldridge et al. 2018). Using a large range of acoustic metrics is considered 108 

necessary because of their complementary performance and sensitivity to different sonic conditions 109 

of background sound (Sueur et al. 2014; Ross et al. 2021). These indices are thus expected to respond 110 

differently along habitat and landscape gradients (Fuller et al. 2015; Grant and Samways 2016) 111 

because they reflect different facets of acoustic diversity, acoustic species richness and community 112 

structure (Gasc et al. 2015; Machado et al. 2017; Eldridge et al. 2018).  113 

Despite the study of spatial heterogeneity in sounds being one of the main objectives of soundscape 114 

ecology (Pijanowski et al. 2011; Bormpoudakis et al. 2013), the relationships between acoustic 115 

indices and landscape metrics are still unclear. Among landscape metrics measuring compositional 116 

and configurational heterogeneity, only patch-scale fragmentation effects (i.e., their size and 117 

connectivity) on acoustic diversity have been investigated to date (Tucker et al. 2014; Fuller et al. 118 

2015; Dixon et al. 2020; Müller et al. 2020). The effect of land use intensity has been explored more 119 
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extensively (Joo et al. 2011; Dein and Rüdisser 2020; Dooley and Brown 2020; Dröge et al. 2021; 120 

Shamon et al. 2021), yet few studies have attempted to compare the response of acoustic indices to 121 

a large range of landscape structures measured at several spatial scales in different biomes. 122 

Investigating the acoustic diversity of mosaic landscapes using standard recording devices and 123 

sampling schemes is now easier, for example to compare the relative effects of habitat composition 124 

and configuration on multi-taxa biodiversity metrics based on replicated acoustic sampling across 125 

wide landscape gradients. Soundscape ecology may also contribute to both the Several Small Or 126 

Single Large habitat patches (SLOSS) and land sharing vs land sparing debates, by providing 127 

meaningful insights on the coexistence between biodiversity and human activities in heterogenous 128 

habitat mosaics (Fahrig 2020; Grass et al. 2021). 129 

Here, we aimed at analyzing the relationships between acoustic diversity and landscape 130 

compositional and configurational heterogeneity in two biogeographically contrasted areas with 131 

different land use histories, in Occitanie, France and Arizona, USA. Both study regions were located 132 

within long-term socio-ecological research areas (Zone Atelier Pyrénées Garonne, Occitanie, 133 

France and Observatoire Hommes Milieux Pima County, Arizona, USA) holding large amounts of 134 

semi-natural habitats of high importance for biodiversity conservation (Felger and Wilson 1995; 135 

Gaüzère et al. 2020). These habitats included woodlands, permanent grasslands, scrublands and 136 

semi-deserts, all hosting species-rich acoustic bird, mammal and insect communities, and where 137 

human-driven processes of land management were predominant (urban, agriculture and forestry). 138 

We selected these two contrasting study regions to build on local long-term biodiversity and land use 139 

change surveys, and in order to (i) test whether acoustic indices showed consistent responses to the 140 

same set of landscape metrics applied to mosaic landscapes mixing anthropized and natural habitats 141 

in different bioclimatic contexts, and (ii) to challenge the generality of these relationships between 142 

AIs and landscape heterogeneity across study regions that have experienced different historical rates 143 

of human disturbance (Betts et al. 2019).  144 
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We specifically tested the response of six acoustic indices (BI, H, ACI, ADI, NDSI and NP) and their 145 

combination into a new multiacoustic index summing their scaled values for three different time 146 

periods (24hr-diel cycles, dawns and nights) to (i) the dominant habitat type of the landscape mosaic 147 

where the recorder was installed; and (ii) the compositional and configurational heterogeneity of the 148 

surrounding landscapes measured at increasing buffer scales. We predicted contrasting responses of 149 

AIs to landscape composition and configuration in the two regions in accordance with distinct land 150 

use histories, and an increase in the diversity of multi-taxa acoustic communities with the amount of 151 

semi-natural habitats at both local and landscape scales. 152 

 153 

Methods 154 

Study areas 155 

The first study region is the Aurignac county, located between the Garonne and Gers rivers in 156 

Occitanie, south-western France (43°12'58.1"N; 0°52'51.4"E). The area is part of the European 157 

network of Long-Term Ecological Research sites (https://www.lter-europe.net) as ‘Zone Atelier 158 

Pyrénées Garonne’ (http://www.za-inee.org/fr/reseau). Elevation ranges from 200m to 400m asl, 159 

with an Atlantic sub-climate subject to Mediterranean influences. The main habitat types include 160 

farmland, meadows, grasslands, scrubland, hedgerows and oak woodlands (Fig. 1a). In that area, we 161 

acoustically sampled 30 sites of comparable sizes located along a landscape gradient spanning from 162 

only agricultural to large woodlands through mosaics mixing crops, grasslands and forests, as 163 

follows : farmlands (n = 5), mixed farmland-grassland mosaics (n = 10), permanent grasslands (n = 9) 164 

and woodlands (n = 6). 165 

The second study region is located in the Pima county, southern Arizona, USA, within the Man-166 

Environment Observatory OHMi (https://ohmi-pima-county.in2p3.fr/en) around the city of Tucson 167 

(32°12'17.2"N; 110°57'45.2"W) and in the Santa Rita range north of Patagonia (31°32'25.4"N 168 

110°45'18.2"W), close to the Mexican border (Fig. 1b). Elevation spans between 800 and 1800 m asl 169 
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and climate is semi-arid with summer monsoon, with an Alpine influence at higher altitudes. We 170 

sampled 14 sites on a landscape gradient ranging from periurban areas mixing gardens and deserts-171 

scrubland patches to saguaro and mesquite deserts, and higher-elevation grasslands and forests, as 172 

follows : periurban gardens (n = 4), saguaro deserts (n = 4), mesquite deserts (n = 3) and mountain 173 

oak-pine-aspen woodlands (n = 3). 174 

 175 

Sound recording methods and sampling scheme 176 

The same standard recording methods were used in both Occitanie and Arizona to allow 177 

reproducible and comparable recordings and analyses. We used a total of six identical SoundMeter4 178 

devices (SM4, Wildlife Acoustics, Inc., Maynard, Massachusetts, USA), with a minimal distance 179 

between two adjacent recorders of 1 km. We recorded with the two internal omnidirectional 180 

microphones at a sample rate of 24 kHz to capture overall sound activity within the human audible 181 

range, and used only recordings from the left channel to compute acoustic indices (Gasc et al. 2018). 182 

A discontinuous recording schedule was set to record 30 minute per hour (30 min on / 30 min off) 183 

during a continuous time period of several 24-hr diel periods in a row for each site (Burivalova et al. 184 

2018). We used relatively short recording periods compared to the ones conducted in tropical 185 

biomes, to allow sampling the acoustic diversity of multiple sites by rotating the recorders across the 186 

landscape (Sugai et al. 2020; Cifuentes et al. 2021), while still being within the peak seasonal period 187 

of breeding bird vocal activity in both study regions. 188 

In Occitanie, devices were installed between 21st of April and 19th of June in spring 2019, 2020 and 189 

2021, and in Arizona, between 10th April and 18th of June in spring 2018 and 2019. These recording 190 

time periods encompassed the local peaks in songbird choruses during the core of breeding season in 191 

each study area, but also in amphibian choruses at dusk and night and in vocalizing mammal activity 192 

(e.g., roe deer Capreolus capreolus in Occitanie or coyotes Canis latrans in Arizona) as well as the 193 

beginning of the period of acoustically active insects such as orthopterans or cicadas (Grant and 194 
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Samways 2016; Gasc et al. 2018). The period also matches a peak in agricultural activities, especially 195 

in Occitanie, that results in typical rural soundscapes of low-intensity farming mixing crops, 196 

permanent grasslands and pastures, all producing significant anthrophony intertwined with local 197 

biophony. Such a recording time period is therefore relevant to capture diel patterns of multi-species 198 

acoustic activity and overall sound diversity in mosaic landscapes of temperate and semi-arid biomes 199 

(Depraetere et al. 2012; Gasc et al. 2018; Müller etal. 2020). Compared to tropical biomes, temperate 200 

and semi-arid bioclimates show more seasonality and diel variation in temperature, so that acoustic 201 

activity peaks in spring or summer periods, contrarily to what is observed in tropical biomes (Joo et 202 

al. 2011; Eldridge et al. 2018; Bateman et al. 2021). High seasonality also implies that intra-day 203 

acoustic activity varies more than between several consecutive days, pointing out the importance of 204 

analyzing dawn and nocturnal soundscapes separately. We also made careful attention not to record 205 

during periods of high geophony (heavy rain or wind), or to discard recordings obtained during bad 206 

weather periods (Fairbrass et al. 2017; Ross et al. 2021).  207 

 208 

Acoustic diversity indices 209 

We obtained 1,251 recordings of 30 min wav files totalling 625.5 hr that were further cut down in 210 

37,530 one-minute samples for acoustic analyses (Towsey et al. 2014). For each one-minute sample, 211 

we calculated 10 acoustic indices (Table 1) as follows: Acoustic Complexity Index ACI ; Acoustic 212 

Diversity Index ADI ; Acoustic Evenness Index AEI; Bioacoustic Index BI ; temporal, spectral and total 213 

acoustic entropy Ht, Hf and H ; median of amplitude envelope M ; Normalised Difference Sound 214 

Index NDSI and Number of frequency Peaks NP (Sueur et al. 2014; Bradfer-Lawrence et al. 2019) 215 

using soundecology version 1.3.3 (Villanueva-Rivera and Pijanowski 2014) and seewave version 2.1.6 216 

R-packages (Sueur et al. 2008) and a R-script from A.G. available in GitHub 217 

(https://github.com/agasc/Soundscape-analysis-with-R). We used the default parameters available 218 

for each index for all calculations (Machado et al. 2017). We calculated the means and medians of 219 
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the 10 AIs for three complementary time periods (Dröge et al. 2021): 24hr-diel cycles (720 one-220 

minute periods from 00.00 am to 23.30 pm per site), dawns (120 one-minute periods from 6.00 am 221 

to 9.30 am) and nights (240 one-minute periods from 22.00 pm to 05.30 am). We selected these time 222 

periods because they are biologically relevant (Metcalf et al. 2021), while also capturing substantial 223 

sound-producing human activities. Dawns are the peak periods for quantifying multi-species songbird 224 

vocalizations (i.e., morning choruses) and nocturnal acoustic surveys are especially relevant for 225 

amphibian or insect sound diversity, while diel cycles of 24 hours summarize all possible patterns of 226 

acoustic activity and account for all possible sound sources in a given day (Tucker et al. 2014; Grant 227 

and Samways 2016; Dröge et al. 2021).  228 

We discarded four indices that were highly redundant with others by construction (Hf, Ht and M with 229 

H, and AEI with ADI; see Villanueva-Rivera et al. 2011 and Sueur et al. 2014) and further analyzed the 230 

responses of six remaining AIs (see below). High and low values of these AIs indicate high and low 231 

acoustic diversity levels, respectively, as illustrated by example sonograms (Fig. 2). We also 232 

computed for each time period a new index combining the scaled median values of these six indices 233 

into a multiacoustic index in order to summarize the response of acoustic diversity to landscape 234 

metrics (Gasc et al. 2015; Buxton et al. 2018), as follows: 235 

Multiacoustic index = Σ (scaled BI + scaled H + scaled ACI + scaled ADI + scaled NDSI + scaled NP) 236 

We constructed our index in a way to be as simple as possible both in terms of calculation and 237 

computation, while giving the same weight to all AIs regardless of their absolute values, variation of 238 

magnitude and direction of response patterns. We therefore used the sum of the scaled median 239 

values, as used for example in the multidiversity index of Allan et al. (2014). Scaling the values of all 240 

AIs allowed both their direct comparisons and their combination into a single index designed to 241 

capture the dominant patterns in acoustic activity and diversity across all sites and time periods 242 

sampled, as well as their response to habitat type and landscape metrics. We used the generic ‘scale’ 243 

function in R which centers all values by the mean and scales them by dividing the values by standard 244 
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deviation. We further tested for other scaling options, such as the maximum values (Allan et al. 2014) 245 

and we tested its sensitivity to the sequential removing of AIs. We also computed intra-set 246 

correlations to check that the multiacoustic index was positively correlated with all six AIs in all sites 247 

and time periods (Appendix S1). 248 

 249 

Landscape metrics 250 

Landscape metrics were computed from GIS mapping (ArcGIS 10.6, ESRI, Redlands, CA, USA) using 251 

online available land cover databases of OSO2018 at 10 m of pixel spatial resolution for France 252 

(http://osr-cesbio.ups-tlse.fr/oso) and North American Land Cover 2015 at 30m of pixel spatial 253 

resolution for Arizona, USA (https://www.mrlc.gov/data). The same four metrics were calculated in 254 

circular buffers of 250, 500, 1000, 2500m and 5000m-radii around recorders in both study regions, as 255 

follows : two metrics of habitat composition, i.e., the covers of woodlands and urban areas; and two 256 

standardized metrics of landscape compositional and configurational heterogeneity, namely Shannon 257 

habitat diversity and total edge density (Fahrig et al. 2011), using Fragstats software version 4.2 258 

(https://www.umass.edu/landeco/research/fragstats).  259 

These buffer scales were selected because they were biologically meaningful for most vocalizing taxa 260 

recorded regarding habitat selection, daily movements and dispersal ecology, for birds, mammals 261 

and insects (Paradis et al. 1998; Holland et al. 2004; Laforge et al. 2021). They have also proven 262 

relevant for soundscape assessment in previous studies and were compatible with the resolution of 263 

land cover maps from both areas (Dein and Rüdisser 2020). While most previous soundscape studies 264 

have generally focused on finer landscape scales (typically 500m; see Fuller et al. 2015), we included 265 

also larger buffer scales because we attempted to question the effect of landscape matrix 266 

composition and configuration on AIs at larger scales than previously investigated. Using five 267 

distance radii allowed us testing for the scale of effect (Holland et al. 2004) by building correlation 268 

matrices between the two best performing landscape metrics and AIs diel values for the two study 269 
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regions (Appendix S2). As we used GIS land cover data with different pixel resolutions between the 270 

two study regions (10 m for France and 30 m for USA), we also checked that resampling the region 271 

with finer resolution of 10 m (France) at the coarser resolution of 30 m did not affect the values of 272 

the two main landscape predictors (Appendix S3).  273 

 274 

Data analysis 275 

Median and mean AIs were calculated for each three recording time scales (24hr-diel cycles, dawns 276 

and nights). We systematically found during exploratory analyses that median values performed 277 

better than means, likely because they are non-parametric and less sensitive to extreme values, as 278 

shown by other studies (Eldridge et al. 2018; Bradfer-Lawrence et al. 2019; Dröge et al. 2021). We 279 

therefore used medians of each index values across three time periods as response metrics of 280 

soundscape acoustic diversity. To avoid collinearity in response metrics, we discarded four indices 281 

that were highly redundant from further analyses (Ht, Hf, M and AEI) and modelled the responses of 282 

the six remaining indices (BI, ACI, NDSI, ADI and NP) and the multiacoustic index. We also conducted 283 

preliminary analyses to reduce collinearity among landscape predictors and test the predictive 284 

efficiency of the same landscape metrics measured at five different scales, at 250, 500, 1000, 2500 285 

and 5000 m-radii around recorders. We found that 2500 m was the best trade-off scale to optimize 286 

correlations between AIs and landscape metrics for both study regions (Appendix S2). Moreover, the 287 

same metrics had significant effects at all scales and their directions were consistent across scales, 288 

especially edge density and woodland cover (Appendix S2). We therefore used further only the 2500 289 

m scale for modelling AIs responses to habitat type and landscape metrics.  290 

To compare their responses to the same set of predictors, we built a full model with identical 291 

structure for all six AIs and multiacoustic index in the two areas for the three recording time periods 292 

(24hr-diel cycles, dawns and nights) leading to six models for each AIs. We performed Linear Mixed 293 

Models (LMMs) using Gaussian family models in glmmTMB R-package (Brooks 2020) with recording 294 
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year as random factor. AIs such as NDSI and H have bounded scales and were therefore logit-295 

transformed before modelling. We first tested the separate effect of dominant habitat type on the 296 

AIs median values. Habitat type was defined as a fixed factor with four categories in each study 297 

region, i.e., farmland, grassland, mixed farmland-grassland and woodland for Occitanie and 298 

periurban gardens, mesquite, saguaro desert and woodland for Arizona. Post-hoc Tukey tests were 299 

applied with the Kenward-Roger method to adjust for multiple comparisons.  300 

In a second step, we modelled the responses of the six median AIs and the multiacoustic index to the 301 

same four landscape metrics, measured at 2500 m around recorders, which were included in the full 302 

model as four scaled fixed predictors as follows: (i) woodland cover, (ii) urban area cover, (iii) edge 303 

density and (iv) landscape-scale Shannon’s habitat diversity. To fit the responses of AIs to landscape 304 

predictors irrespective of dominant habitat type, we added to these full models a second random 305 

habitat effect in addition to the year effect. We performed automatic backward selection from the 306 

full model using step function in lmerTest R-package to drop out non-significant predictors by 307 

stepwise elimination using AICc and considered the final best model for each response variable 308 

(Kuznetsova et al. 2017). We computed marginal and conditional R² of significant predictors for each 309 

best model to account for variances explained by fixed effects and fixed and random effects, using 310 

MuMin R package (Barton 2020). We checked all LMMs residuals for normality, homoscedasticity and 311 

the absence of spatial autocorrelation. Prediction plots were obtained with ggplot2 R-package 312 

(Wickham 2016) using 100 bootstrap iterations. 313 

 314 

Results 315 

Effect of habitat type on acoustic diversity  316 

In Occitanie, the effect of dominant habitat type was significant on 24h-diel medians for ACI, ADI, NP 317 

and multiacoustic index (Fig. 3 and Appendix S4). Post-hoc tests performed after LMMs indicated 318 

that grasslands had significantly higher ADI, NP and multiacoustic index than farmlands and higher 319 
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ACI than woodlands (see Appendix S4). For dawns, we found significantly higher BI in grasslands and 320 

woodlands than farmlands, higher ADI and multiacoustic index in grasslands than farmlands and 321 

mixed farmlands, and higher ACI in grasslands than woodlands (Fig. 3). Nocturnal values of ACI, NP 322 

and multiacoustic index were also significantly higher in grasslands than farmlands and woodlands 323 

(Appendix S4).  324 

In Arizona, woodlands displayed significant greater H, ADI and multiacoustic index for 24hr-diel 325 

cycles than periurban areas, mesquite and saguaro deserts (Fig. 4 and Appendix S4), while other AIs 326 

did not significantly differ between habitats. For dawns, BI was significantly higher in periurban 327 

gardens than in saguaro deserts while, in contrast, H was significantly higher in woodlands and 328 

saguaro deserts compared to gardens (Fig. 4). For nocturnal soundscapes, H and multiacoustic index 329 

were significantly higher in woodlands than in mesquite (Appendix S4). 330 

 331 

Effect of landscape metrics on acoustic diversity 332 

In Occitanie, edge density at 2500 m around recorders was the best predictor of acoustic indices, 333 

having a positive effect on median values for ADI, NDSI, NP and multiacoustic index during 24hr-diel 334 

cycles (see Table 2, Appendix S5 and Fig. 5 for the most significant biplots). Woodland cover at 2500 335 

m was the only other significant predictor, with a negative effect on ACI. No landscape metrics were 336 

significantly correlated to BI and H. For dawns, H and multiacoustic index were positively correlated 337 

to edge density, while woodland cover had positive effects on H and negative effects on ACI and NP 338 

(Table 2 and Fig. 6). No landscape metrics were correlated with BI, ADI or NDSI. For nocturnal 339 

soundscapes, edge density was also the best predictor and was positively correlated to ACI, ADI, 340 

NDSI, NP and multiacoustic index (Table 2 and Fig. 6). In addition, woodland cover had reverse 341 

effects on H and ACI, respectively positive and negative.  342 

For 24hr-diel cycles in Arizona, we found significant negative effects of edge density at 2500 m on 343 

ADI, NDSI and multiacoustic index (Table 2; see Fig. 7 for significant biplots). Woodland cover at 2500 344 
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m had a positive effect on H while NP decreased with landscape diversity. For dawns, woodland 345 

cover had a positive effect on BI and multiacoustic index, edge density had a negative effect on H and 346 

urban cover a negative effect on NDSI (Table 2). No predictors were significant for ACI, ADI and NP. 347 

Finally, woodland cover positively affected H and edge density negatively affected ADI, NDSI and 348 

multiacoustic index for nocturnal soundscapes (Table 2).  349 

In Occitanie, random effects of year and habitat measured by the difference between marginal and 350 

conditional effects are ca 15-20% of additional variance explained for diel periods for all AIs except 351 

NDSI (Table 2). For dawns, the random effects became negligible except for the multiacoustic index, 352 

while for nights it was variable, depending on the AI considered, from 0% for H and NDSI to 29% for 353 

the multiacoustic index. In Arizona, the additional variance explained by the random effects of year 354 

and habitat is also variable for diel periods and dawns, ranging between 0 for NDSI to 46% for BI, and 355 

became negligible for nocturnal soundscapes (Table 2). 356 

 357 

Discussion 358 

Our aim was to assess how median values of six complementary acoustic indices and a composite 359 

multiacoustic index computed for three recording periods could be modelled by landscape 360 

composition and configuration metrics at large spatial scales in two contrasting regions. We found 361 

that (i) permanent grasslands in Occitanie and woodlands in Arizona produced the highest acoustic 362 

diversity (i.e., the highest diversity of sounds across frequency bands, see Fig. 2), and that (ii) edge 363 

density at 2500 m around recorders was the best predictor of acoustic indices in both Occitanie and 364 

Arizona, but with contrasting patterns. In Occitanie, median values for all AIs except H and BI 365 

increased with landscape configurational heterogeneity in all time periods and spatial scales, while 366 

they decreased with landscape heterogeneity in Arizona (Appendix S2). Consistently with the local 367 

habitat effect, BI, H, ADI and multiacoustic index increased with woodland cover and NDSI decreased 368 

with urban cover in Arizona, while all AIs except H tended to decrease with woodland cover in 369 
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Occitanie. Overall, surrounding landscape composition (i.e., individual land cover types) had weaker 370 

effects on acoustic diversity than landscape configurational heterogeneity (i.e., edge density) in both 371 

study areas, especially for diel and nocturnal soundscapes. 372 

 373 

Effect of habitat type on acoustic diversity 374 

One key assumption of soundscape ecology is that ambient sound is not only spatially heterogeneous 375 

by nature, but that it directly relates to habitat type and structure, and therefore produces distinct 376 

habitat-specific acoustic signatures (Bormpoudakis et al. 2013; Grant and Samways 2016). These 377 

signatures are not only linked to habitat structure but indirectly reflect habitat-specific composition 378 

of multi-species acoustic communities (Merchant et al. 2015), which can only be accounted for by 379 

the computation of multiple AIs (Eldridge et al. 2018). In forests, vegetation structure influences 380 

directly acoustic diversity, which peaks in higher-complexity habitats, such as old-growth tree 381 

patches (Machado et al. 2017; Müller et al. 2020). Most AIs are expected to increase with vegetation 382 

complexity, i.e., local habitat heterogeneity, including ADI, NDSI, ACI, BI, AEI and H (Myers et al. 383 

2019; Dröge et al. 2021; Shamon et al. 2021). However, we found that higher-complexity habitats 384 

with greater vegetation heterogeneity (woodlands and shrublands) supported the highest acoustic 385 

diversity in Arizona, but not in Occitanie where permanent grasslands were on the contrary the 386 

acoustically-richer habitats. This is in support of temperate semi-natural grasslands supporting high 387 

biodiversity of vocal taxa (birds, mammals, anurans and orthopterans), while it also means that 388 

landscape-level habitat structure has a mitigating effect on acoustic activity in local habitats. 389 

In accordance with other studies indicating that more intensively managed or disturbed habitats had 390 

lower acoustic diversity (Burivalova et al. 2018; Gasc et al. 2018; Myers et al. 2019), we found less 391 

diverse soundscapes in landscapes dominated by homogeneous farmland with low edge density than 392 

in more complex mosaics of high edge density mixing crops, hedgerows and grasslands in Occitanie. 393 

Surprisingly, we found that periurban gardens had high bioacoustic activity measured by BI in Arizona 394 
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while NDSI or H were low in the same sites, which may be an indication of high acoustic coexistence 395 

between anthrophony and biophony (Sueur et al. 2008; Carruthers-Jones et al. 2019). In southern 396 

Arizona, the extensive use of bird feeders and the low urban density allow gardens to support 397 

species-rich urban bird communities, including several hummingbird species (Trochilidae) whose 398 

buzzes produce acoustic signals that are typical components of garden soundscapes in semi-arid 399 

regions (Emlen 1974; McCaffrey and Wethington 2008; see Appendix S6).  400 

We also found a significant variation in AIs among habitat types between the different recording 401 

periods considered, pointing out the usefulness of investigating dawn and nocturnal soundscapes 402 

separately. For example, there was higher acoustic diversity at night in semi-natural permanent 403 

grasslands, shrublands and saguaro deserts due to insect sounds as well as to intense activity of 404 

nocturnal birds and mammals (Gasc et al. 2015; Grant and Samways 2016). Nocturnal soundscapes of 405 

semi-natural permanent grasslands or saguaro deserts are particularly important to quantify because 406 

of their importance for diel rhythms in activity for many taxa of high conservation interest and/or 407 

more sensitive to human disturbance (e.g., bats, terrestrial mammals, amphibians, nocturnal birds, 408 

bush-crickets) while also constituting a key issue in soundscape management (Dumyahn and 409 

Pijanowski 2011). Grassland soundscapes are less well-known and studied than forest soundscapes 410 

but appears as contributing significantly to acoustic diversity at the landscape scale and their 411 

importance for biodiversity conservation is increasingly acknowledged (Shamon et al. 2021). As dawn 412 

choruses are important to songbird fitness and long-term survival and are regulated by coexisting 413 

acoustic niches of vocalizing passerines (Duquette et al. 2021), it is interesting to note that we found 414 

a positive effect of woodland cover on dawn acoustic diversity in Arizona, irrespective of landscape 415 

configuration. The importance of riparian woodlands under semi-arid climate to sustain bird diversity 416 

has been also pointed out by other bioacoustic studies in the same area (Bateman et al. 2021). These 417 

results tend to support the idea that even small patches of semi-natural habitats sustain significant 418 

songbird activity and are highly beneficial to both bird conservation and function in fragmented 419 

landscapes (Barbaro et al. 2014; Müller et al. 2020). 420 
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 421 

Effect of landscape heterogeneity on acoustic diversity 422 

A second key assumption of soundscape ecology is that acoustic diversity is also driven by the spatial 423 

heterogeneity of habitats at larger scales (Bormpoudakis et al. 2013). However, soundscape 424 

ecologists have rarely attempted to directly relate AIs to landscape metrics of compositional and 425 

configurational heterogeneity, especially at wider scales (but see Fuller et al. 2015 and Dixon et al. 426 

2020), while patch-scale fragmentation has been consistently proven detrimental to acoustic activity 427 

and diversity in various biomes (Tucker et al. 2014; Burivalova et al. 2018; Müller et al. 2020). To 428 

date, landscape-scale fragmentation effects on acoustic diversity are still virtually unexplored, 429 

although they likely constitute key drivers of all bio-, geo- and anthrophony components of 430 

soundscapes in various field conditions (Krause 2008; Pijanowski et al. 2011), as expected by 431 

landscape ecology theory (Fahrig et al. 2011). Another key question rarely investigated to date is the 432 

grain (i.e., its spatial extent) of the soundscape mosaic (Sueur and Farina 2015), as well as the ‘best 433 

scale’ for landscape effects on acoustic diversity (Holland et al. 2004).  434 

Here, we show that acoustic diversity is primarily driven by landscape configurational heterogeneity 435 

at large scale (i.e., edge density at 2500m around recorders), and that the direction of the effect 436 

reverses between temperate and semi-arid biomes. Such a positive or negative effect of edge density 437 

on acoustic diversity likely depends on surrounding matrix composition (Barbaro et al. 2021), socio-438 

ecological legacy of mosaic soundscapes and their historical habitat uses (Semper-Pascual et al. 439 

2021), as well as the evolutionary responses of vocalizing species to long-term experienced 440 

disturbances and ambient noise (Paton et al. 2012; Duquette et al. 2021). Our results confirm 441 

previous findings of soundscape studies, such as a large scale of effect of landscape metrics on 442 

acoustic diversity (well above 1000m around recorders), the predominance of landscape over local 443 

habitat effects, as well as the effect of individual land cover classes on acoustic diversity (Dein and 444 

Rüdisser 2020; Dixon et al. 2020). We also found that, together with our multiacoustic index, H, ADI, 445 
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NP and NDSI were the AIs performing best to relate overall soundscape diversity to landscape 446 

configuration in two contrasting study regions and across a large range of acoustic habitats (Fuller et 447 

al. 2015; Ross et al. 2021; Shamon et al. 2021). As a ratio measuring the relative dominance of 448 

biophony or anthrophony, NDSI is also best to capture the effect of urbanization on soundscapes at 449 

large spatial scales (Fairbrass et al. 2017; Machado et al. 2017; Doser et al. 2020).  450 

 451 

Monitoring acoustic diversity in mosaic landscapes 452 

Our study follows previous recommendations in Passive Acoustic Monitoring and soundscape 453 

assessment methodology that rotating recorders across the landscape is the most cost-efficient 454 

design for the best trade-off in sound data acquisition at larger spatial and temporal scales (Sugai et 455 

al. 2020; Drake et al. 2021), while keeping the volume of data storage under a reasonable threshold 456 

(Cifuentes et al. 2021; Wood et al. 2021). While in tropical forest biomes, the minimal recording time 457 

period required to stabilize the variance in acoustic indices across time for a given site is ca 120hr 458 

(Bradfer-Lawrence et al. 2019), in temperate and semi-arid biomes where intra-day variation is often 459 

higher than inter-day variation due to higher seasonality in acoustic activity (Gasc et al. 2018), 460 

continuous recording across 24-48hr is generally accurate if the relevant season is targeted for 461 

surveys (Metcalf et al. 2021). Here, we targeted spring to account for peaks in both breeding 462 

songbird, mammal and insect acoustic activity.  463 

A second requirement for an adequate soundscape assessment is the computation of multiple AIs to 464 

capture the variability of sounds from different biophonic, geophonic or anthrophonic sources across 465 

sites and time periods. While several indices are needed to reveal diel and seasonal soundscape 466 

patterns (Bradfer-Lawrence et al. 2019), AIs have been shown to be often weakly correlated to 467 

biophony assessed independently because of signal masking by non-target sounds (Fairbrass et al. 468 

2017; Metcalf et al. 2021). Moreover, a combination of indices is generally required to successfully 469 

predict biodiversity values (Towsey et al. 2014; Buxton et al. 2018; Yip et al. 2021). Here, we 470 
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modelled the responses of six AIs that are increasingly used as a standard analysis path to 471 

characterize spatial or temporal changes in acoustic biodiversity (Sueur et al. 2014; Bradfer-Lawrence 472 

et al. 2020). As most previous studies, we found limited congruence among metrics, but 473 

complementary patterns in soundscape characterization for each suite of indices (Fuller et al. 2015; 474 

Eldridge et al. 2018; Ross et al. 2021), while using a multiacoustic index helped summarizing the 475 

dominant response of acoustic diversity to landscape heterogeneity. 476 

 477 

Relative performance of acoustic indices in complex soundscapes 478 

We found that correlative patterns in AIs were remarkably similar across study regions and time 479 

periods. Our results support previous findings that ADI, H and NDSI are especially suitable at 480 

predicting acoustic diversity across different habitats under various ambient sound conditions, 481 

possibly because they reflect better the intertwining of biophony and anthrophony in complex 482 

soundscapes (Fuller et al. 2015; Machado et al. 2017; Ross et al. 2021). Moreover, NDSI also tended 483 

to better account for diel acoustic patterns while H and ADI seemed more efficient at characterizing 484 

nocturnal soundscapes often dominated by pure tone signals such as owl calls, insect stridulations or 485 

amphibian choirs (Gasc et al. 2015; Ross et al. 2021). In our study, H and NDSI were the two indices 486 

that responded significantly to both local habitat and landscape metrics for all recording periods in 487 

the two study regions. As pointed out by several authors, NDSI is designed to capture daily shifts 488 

between dominant anthrophony and biophony while diversity-based indices such as H or ADI 489 

incorporate anthrophony levels into biophonic soundscapes to produce high diversity values (Fuller 490 

et al. 2015; Eldridge et al. 2018; Ross et al. 2021). By contrast, BI, NP and ACI are designed to capture 491 

biophony and to be less sensitive to anthrophonic noise (Gasc et al. 2015). However, ACI does not 492 

account for constant sound signal produced by many arthropods (Pieretti et al. 2011; Gasc et al. 493 

2015; Fairbrass et al. 2017) and can therefore display inverse responses to habitat heterogeneity and 494 

bird diversity, especially in grasslands (Shamon et al. 2021). While most AIs can be potentially biased 495 
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by high road traffic noise in urban habitats, ACI was specifically developed to be impervious to 496 

constant sound (Pieretti et al. 2011; Fairbrass et al. 2017; Carruthers-Jones et al. 2019; Bradfer-497 

Lawrence et al. 2020; Ross et al. 2021). Using NDSI and ADI, Machado et al. (2017) concluded that 498 

they were both affected by the distance with anthropic sound sources. As a result, the use of 499 

compound indices might be relevant to survey acoustic diversity in mosaic soundscapes of various 500 

biomes where biophony and anthrophony narrowly intertwine to shape complex spatio-temporal 501 

sound patterns (Eldridge et al. 2018). 502 

 503 

Conclusion : socio-ecological processes underlying soundscape dynamics 504 

Our results suggest that edge density and landscape configurational heterogeneity are key to 505 

understand soundscape structure and dynamics at larger scales in complex habitat mosaics. While 506 

habitat heterogeneity generally increases animal diversity (Tews et al 2004; Fahrig et al. 2011), edges 507 

enhance biotic interactions and are increasingly created by land use changes in mosaic landscapes 508 

(Barbaro et al. 2014; Fletcher et al. 2018). Acoustic diversity can be affected by edge effects and 509 

landscape configuration through multiple processes, including bird habitat selection based on 510 

acoustic cues implying various tolerance to noise among species (Paton et al. 2012); soundscape 511 

patchiness created by anthropophony (low frequency permanent sounds) altering key sensorial traits 512 

and communication for vital behaviours in the most sensitive vocalizing organisms (Duquette et al. 513 

2021); and complex phonic interactions between bio-, geo- and anthrophony in mosaic landscapes 514 

(Joo et al. 2011; Fuller et al. 2015). As soundscape structure depends on the surrounding 515 

environment where the sound source is transmitted (Krause 2008), it is not surprising that landscape 516 

heterogeneity affects acoustic diversity at larger scales than previously investigated. Consequently, 517 

the grain of the soundscape mosaic is likely larger than expected, and an increase in anthrophony 518 

does not necessarily coincide with decreased biophony in heterogeneous landscapes (Pijanowski et 519 

al. 2011; Sueur and Farina 2015).  520 



23 
 

As concluding remarks, we suggest that soundscape conservation is narrowly connected to human 521 

well-being (Dumyahn and Pijanowski 2011; Morrison et al. 2021), notably because biophony and bird 522 

songs have high cultural and emotional significance  for humankind (Moscoso et al. 2018; Ferraro et 523 

al. 2020). More insights on how acoustic diversity correlates with other cultural services provided by 524 

landscapes are now required to go further into an integrated management of soundscapes. We thus 525 

advocate for systematically integrating acoustic diversity as a key socio-ecological cue to understand 526 

complex processes linking biodiversity and spatial heterogeneity in mosaic landscapes. By providing 527 

relevant measures of the intertwining between biodiversity and human activities, it would also help 528 

to solve some issues in landscape conservation planning arising from the land sharing vs land sparing 529 

debates (Grass et al. 2021). Further research is needed to test the hypothesis that land sharing would 530 

increase the diversity of soundscapes while land sparing would create acoustic preserves for 531 

maintaining long-term relationships between biodiversity and human well-being across a large 532 

diversity of landscapes worldwide.  533 
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Fig. 1. Location of the two study areas and 44 sampling sites: a) Aurignac county, Occitanie, France; 708 

b) Pima county, Arizona, USA. Main land cover types are indicated. 709 

Fig. 2. Examples of 30s-sonograms with high and low acoustic diversity, i.e., high and low values for 5 710 

acoustic diversity indices (BI, H, ACI, ADI and NP). a) semi-natural grassland; Benque, Aurignac 711 

county, Occitanie, France; 6th of May 2021 at 7.00 am. Sounds include species-rich bird morning 712 

chorus with wryneck Jynx torquilla, great tit Parus major, carrion crows Corvus corone, common 713 

nightingale Luscinia megarhynchos, wood pigeon Columba palumbus and golden oriole Oriolus 714 

oriolus, while human sounds include church bells, cars passing by and cattle calls. b) saguaro desert;  715 

North Kinney Road, Tucson, Arizona, USA; 25th of May 2019 at 0.00 am. Sounds include a single 716 

orthopteran calling song. See Table 1 for AIs’ codes. 717 

Fig. 3. Effect of dominant habitat type on median acoustic indices AIs computed for three time 718 

periods (clock icon = 24hr-diel; bird icon = dawns 6.00 am – 9.30 am; moon icon = nights 22.00 pm – 719 

5.30 am) in Aurignac county, Occitanie, France (N = 30). Codes and definitions of AIs are listed in 720 

Table 1. Significance levels from post-hoc Tukey tests adjusted for multiple comparisons as follows: 721 

*** P < 0.001 ; ** P < 0.01 ; * P < 0.05. 722 

Fig. 4. Effect of dominant habitat type on median acoustic indices AIs computed for three time 723 

periods (clock icon = 24hr-diel; bird icon = dawns 6.00 am – 9.30 am; moon icon = nights 22.00 pm – 724 

5.30 am) in Pima county, Arizona, USA (N = 14). Codes and definitions of AIs are listed in Table 1. 725 

Significance levels from post-hoc Tukey tests adjusted for multiple comparisons as follows: *** P < 726 

0.001 ; ** P < 0.01 ; * P < 0.05. 727 

Fig. 5. LMM prediction biplots of the effects of landscape composition and configuration on median 728 

AIs for 24hr-diel cycles (clock icon) in Aurignac county, Occitanie, France (N = 30). Marginal R² values 729 

of fixed effect are indicated. See Table 1 for AIs codes and definitions and Table 2 for significance 730 

levels. Dotted lines indicate 95% confidence intervals. 731 

Fig. 6. LMM prediction biplots of the effects of landscape composition and configuration on median 732 

AIs for dawns (bird icon = 6.00 am – 9.30 am) and nights (moon icon = 22.00 pm – 5.30 am) in 733 

Aurignac county, Occitanie, France (N = 30). Marginal R² values of fixed effect are indicated. See 734 

Table 1 for AIs codes and definitions and Table 2 for significance levels. Dotted lines indicate 95% 735 

confidence intervals. 736 

Fig. 7. LMM prediction biplots of the effects of landscape composition and configuration on median 737 

AIs for three time periods (clock icon = 24hr-diel; bird icon = dawns 6.00 am – 9.30 am; moon icon = 738 

nights 22.00 pm – 5.30 am) in Pima county, Arizona, USA (N = 14). Marginal R² values of fixed effect 739 

are indicated. See Table 1 for AIs codes and definitions and Table 2 for significance levels. Dotted 740 

lines indicate 95% confidence intervals. 741 
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Appendix S4. Results of post-hoc tests on Linear Mixed Models of AIs’ responses to the dominant 754 
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Significance levels from post-hoc Tukey tests adjusted for multiple comparisons as follows: *** P < 756 
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indicated. 760 

Appendix S6. Examples of 30s-spectrograms for dawn and nocturnal soundscapes in different 761 

habitats of Aurignac county, Occitanie, France and Pima county, Arizona, USA. Spectrograms were 762 

drawn with RavenLite software (Cornell Lab of Ornithology), using short-time Fourier transform 763 
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Table 1. Summary of 10 acoustic indices (AIs) definitions and properties. The six AIs used in the present study are indicated in bold. 768 

 769 

Acoustic indices 
 

Code Definition High expected values Low expected values Main reference 

Acoustic complexity index ACI Mean relative change in sound intensity 
across consecutive 5s time periods and 
frequency bins 

High variation in sound intensity 
across frequencies and times 

Constant levels of similar sound 
intensity, such as most 
anthropogenic sources 

Pieretti et al. 2011 
 

Acoustic diversity index ADI Shannon index adapted to measures the 
evenness of sound signals across 
frequency bins 

Even sound across all frequencies 
or silent recordings 

Pure tones dominating single 
frequency band 

Villanueva-Rivera et al. 2011 
 

Acoustic evenness index AEI Equal to the reverse of ADI, it measures 
unevenness of sound across frequencies 
 

High sound intensity in a 
restricted range of frequencies 

Either high or no acoustic activity 
across all frequency bins 

Villanueva-Rivera et al. 2011 
 

Bioacoustic index  BI Area under the mean spectrum between 
2-10 kHz in dB minus the minimum dB 
value  

Increases with higher variation 
between loud and quiet 
frequency bins 

Silent recordings above 2 kHz 
indicating no or low biophony 

Gasc et al. 2018 

Temporal entropy Ht Shannon evenness applied to the 
amplitude envelope 
 

Sub-index used to calculate H Sub-index used to calculate H Sueur et al. 2008 
 

Spectral entropy  Hf Shannon evenness applied to the 
average frequency spectrum 
 

Sub-index used to calculate H Sub-index used to calculate H Sueur et al. 2008 
 

Total acoustic entropy H Product of Ht and Hf, it varies between 0 
for pure tones and 1 for even signals or 
silence 

Silent recordings or evenly 
distributed sounds across 
frequencies 

Pure tones dominating single 
frequency band 

Sueur et al. 2008 
 

Median of amplitude envelope M Measures the sound amplitude of a 
recording  
 

Increases with noise and sound 
intensity 

Silent or very quiet recordings with 
low sound intensity 

Depraetere et al. 2012 
 

Normalised Difference Sound 
Index 

NDSI Ratio of biophony on anthrophony where 
anthrophony is the sum of sound below 
and biophony above 2 kHz 

Tends towards 1 with no 
anthrophony and only biophony 

Tends towards -1 with only 
anthrophony and no biophony 

Eldridge et al. 2018 

Number of frequency peaks NP Numbers of major frequency peaks from 
a mean spectrum scaled between 0 and 1 
 

Increases with the level of 
vocalizing animal activity 

Decreases with the level of 
vocalizing animal activity 

Gasc et al. 2013 
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Table 2. Summary results for linear mixed models linking acoustic indices to landscape metrics. H and NDSI values were logit-transformed prior to modelling. 772 

Predictor codes as follows : WOOD = woodland cover, EDGE = edge density, SHDIV = Shannon landscape diversity, URB = urban area cover. R²m indicates 773 

marginal R² for fixed effects and R²c conditional R² for fixed and random effects. Significance levels are indicated as follows: * P < 0.05 ; ** P < 0.01 ; *** P < 774 

0.001 775 

 776 

Acoustic indices France – Aurignac county Arizona – Pima county 
 24hr R²m R²c Dawns R²m R²c Nights R²m R²c 24hr R²m R²c Dawns R²m R²c Nights R²m R²c 

Bioacoustic index BI 
 

ns - - ns - - ns - - ns - - WOOD* 
 

0.18 0.64 ns - - 

Acoustic entropy H 
 

ns - - EDGE* 
WOOD* 

0.15 0.15 WOOD* 
 

0.16 0.16 WOOD* 
 

0.29 0.66 -EDGE*** 0.61 
 

0.62 
 

WOOD* 0.29 0.29 

Acoustic complexity ACI -WOOD*** 
 

0.25 0.46 -WOOD*** 
 

0.32 0.39 -WOOD* 
 

0.11 0.26 ns - - ns - - ns - - 

Acoustic diversity ADI 
 

EDGE** 0.24 0.39 ns - - ns - - -EDGE* 
 

0.34 0.56 ns - - -EDGE** 0.40 0.40 

NDSI EDGE** 0.22 0.23 ns - - EDGE** 
 

0.20 0.20 -EDGE** 
 

0.45 0.45 -URB* 0.31 0.31 -EDGE*** 0.59 0.60 

Number of peaks NP 
 

EDGE*** 
 

0.36 0.57 -WOOD* 0.15 0.18 EDGE** 
 

0.21 0.44 -SHDIV* 
 

0.21 
 

0.21 
 

ns - - ns - - 

Multiacoustic index 
 

EDGE** 0.26 0.41 EDGE* 0.11 0.47 EDGE** 
 

0.18 0.47 -EDGE** 0.41 0.61 WOOD* 0.23 0.33 -EDGE*** 0.55 0.55 
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Fig. 1. Location of the two study areas and 44 sampling sites: a) Aurignac county, Occitanie, France; 

b) Pima county, Arizona, USA. Main land cover types are indicated. 
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Fig. 2. Examples of 30s-sonograms with high and low acoustic diversity, i.e., high and low values for 5 

acoustic diversity indices (BI, H, ACI, ADI and NP). a) semi-natural grassland; Benque, Aurignac 

county, Occitanie, France; 6th of May 2021 at 7.00 am. Sounds include species-rich bird morning 

chorus with wryneck Jynx torquilla, great tit Parus major, carrion crows Corvus corone, common 

nightingale Luscinia megarhynchos, wood pigeon Columba palumbus and golden oriole Oriolus 

oriolus, while human sounds include church bells, cars passing by and cattle calls. b) saguaro desert;  

North Kinney Road, Tucson, Arizona, USA; 25th of May 2019 at 0.00 am. Sounds include a single 

orthopteran calling song. See Table 1 for AIs’ codes. 
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Fig. 3. Effect of dominant habitat type on median acoustic indices AIs computed for three time 

periods (clock icon = 24hr-diel; bird icon = dawns 6.00 am – 9.30 am; moon icon = nights 22.00 pm – 

5.30 am) in Aurignac county, Occitanie, France (N = 30). Codes and definitions of AIs are listed in 

Table 1. Significance levels from post-hoc Tukey tests adjusted for multiple comparisons as follows: 

*** P < 0.001 ; ** P < 0.01 ; * P < 0.05. 
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Fig. 4. Effect of dominant habitat type on median acoustic indices AIs computed for three time 

periods (clock icon = 24hr-diel; bird icon = dawns 6.00 am – 9.30 am; moon icon = nights 22.00 pm – 

5.30 am) in Pima county, Arizona, USA (N = 14). Codes and definitions of AIs are listed in Table 1. 

Significance levels from post-hoc Tukey tests adjusted for multiple comparisons as follows: *** P < 

0.001 ; ** P < 0.01 ; * P < 0.05. 
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Fig. 5. LMM prediction biplots of the effects of landscape composition and configuration on median 

AIs for 24hr-diel cycles (clock icon) in Aurignac county, Occitanie, France (N = 30). Marginal R² values 

of fixed effect are indicated. See Table 1 for AIs codes and definitions and Table 2 for significance 

levels. Dotted lines indicate 95% confidence intervals. 
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Fig. 6. LMM prediction biplots of the effects of landscape composition and configuration on median 

AIs for dawns (bird icon = 6.00 am – 9.30 am) and nights (moon icon = 22.00 pm – 5.30 am) in 

Aurignac county, Occitanie, France (N = 30). Marginal R² values of fixed effect are indicated. See 

Table 1 for AIs codes and definitions and Table 2 for significance levels. Dotted lines indicate 95% 

confidence intervals. 
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Fig. 7. LMM prediction biplots of the effects of landscape composition and configuration on median 

AIs for three time periods (clock icon = 24hr-diel; bird icon = dawns 6.00 am – 9.30 am; moon icon = 

nights 22.00 pm – 5.30 am) in Pima county, Arizona, USA (N = 14). Marginal R² values of fixed effect 

are indicated. See Table 1 for AIs codes and definitions and Table 2 for significance levels. Dotted 

lines indicate 95% confidence intervals. 
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