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CONVERGENCE OF MESSAGE PASSING GRAPH NEURAL

NETWORKS WITH GENERIC AGGREGATION ON LARGE

RANDOM GRAPHS

MATTHIEU CORDONNIER†, NICOLAS KERIVEN‡, NICOLAS TREMBLAY†,

AND SAMUEL VAITER§

Abstract. We study the convergence of message passing graph neural networks
on random graph models to their continuous counterpart as the number of

nodes tends to infinity. Until now, this convergence was only known for

architectures with aggregation functions in the form of normalized means, or,
equivalently, of an application of classical operators like the adjacency matrix

or the graph Laplacian. We extend such results to a large class of aggregation

functions, that encompasses all classically used message passing graph neural
networks, such as attention-based message passing, max convolutional message

passing or (degree-normalized) convolutional message passing. Under mild

assumptions, we give non-asymptotic bounds with high probability to quantify
this convergence. Our main result is based on the McDiarmid inequality.

Interestingly, this result does not apply to the case where the aggregation is a
coordinate-wise maximum. We treat this case separately and obtain a different

convergence rate.

1. Introduction

Graph Neural Networks (GNNs) [SGT+09,GMS05] are deep learning architectures
largely inspired by Convolutional Neural Networks, that aim to extend convolutional
methods to signals on graphs. Indeed, in many domains the measured data live
on a graph structure: examples for which GNNs have achieved state-of-the-art
performance include molecules, proteins and node clustering [GSR+17, CLB19,
FBSBH17]. Nevertheless, it has been observed that GNNs have limitations, both
in practice [WSZ+19, HFZ+20] and in their theoretical understanding. Hence, the
design of more reliable and powerful architectures is a current active and fast
evolving area of research.

From a theoretical perspective, a large part of the literature has focused on the
expressive power of GNNs, i.e. what class of functions can GNNs approximate.
This notion is fundamental in classical Deep Learning and is related to the so-
called Universal Approximation Theorem [KH91, Cyb89]. Studying the expressive
power of GNNs is however more involved, as they are by definition designed to
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be invariant or equivariant to the relabelling of nodes in a graph (see Sec. 3).
Hence, in [XHLJ19] the authors relate their expressivity to the graph isomorphism
problem, that is, deciding if two graphs are permutation of one another, a long-
standing combinatorial problem in graph theory. The main avenue to analyze
the expressive power of GNNs compares their performances to the traditional
Weisfeiler-Lehman algorithm (WL) [WL68], which process is very similar to the
message-passing paradigm at the core of GNNs. Hence, by construction, basic
GNNs are at most as powerful as WL [XHLJ19]. From this point, a lot of effort has
been made on designing innovative GNN architectures to outperform the classical
WL [MFSL19,MBHSL19,KP19,VLF20,PW22,MRM20].

Nevertheless, while this combinatorial approach is worth considering for reasonably
small graphs, its relevance in the context of large graphs is somewhat limited.
Two real large graphs may share similar patterns, but will never be isomorphic,
one main simple reason being that they most likely do not even share the same
number of nodes. Large graphs are better described by some global properties
such as edge density or number of communities. To that extent, the privileged
mathematical tools are random graph models [Cra18, GZF+10]. A generic family
of models of interest to study GNNs on large graphs is the class of Latent Position
Models [KBV20,KBV21,RCR20,RCR21a,LHB+21,MLLK22]. Such random graphs
first sample node latent variables randomly from a probability space (X , P ), and
then decides the adjacency between two nodes via the sampling of a connectivity
kernel W : X 2 → [0, 1] between their associated latent variables. This encompasses
models like stochastic block models [LR15] (SBM) or graphon models [Lov12],
depending on how exactly we define the edge appearance procedure.

The key idea in studying GNNs on large random graphs is to embed the discrete
problem into a continuous setting for which we expect to understand their properties
with more ease [KBV20,KBV21,RCR20,LHB+21]. To achieve this, we match the
GNN on a random graph to a “continuous” counterpart, referred to as a continuous-
GNN (cGNN) [KBV20,RCR21a]. While the discrete GNN propagates a signal over
the nodes of the graph, the cGNN propagates a mapping over the latent space X .
Such a map can be interpreted as a signal over the graph where the “continuum”
of nodes would be all the points of X . Then, as the random graph grows large, the
GNN must behave similarly to its cGNN counterpart. To justify this, it is necessary
to describe the cGNN as a limit of GNNs on random graphs and to ensure that the
GNN converges to the cGNN as the number of nodes increases [KBV20,MLLK22].
This convergence problem is precisely the focus of the present work.

The duality of the convolutional product has led to two ways of defining GNNs.
On the one hand, convolution as a pointwise product of frequencies in the Fourier
domain has justified the design of so-called Spectral Graph Neural Networks [DBV16]
(SGNNs), in which one introduces a graph Fourier transform through a chosen
graph shift operator [TGB18] to legitimate the use of polynomial filters. On the
other hand, the spatial interpretation sees the convolution as local aggregations of
neighborhood information, leading to Message Passing Neural Networks (MPGNNs) [GSR+17,
KW17]. The message passing paradigm consists of iteratively updating each node
via the aggregation of messages from each of its neighbors. This framework is
often favored due to its inherent flexibility: messages and aggregation functions
are unconstrained as long as they stay invariant to node reordering, i.e., as long
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as they match on isomorphic graphs. Besides, SGNNs layers are mostly made of
polynomials of graph shift operators which are a form of message passing, defined
by a choice of graph shift operator and a polynomial degree. As such, SGNNs can
be seen as a subcase of the more versatile message-passing framework.

Contributions. In this paper, we study the convergence toward a continuous
counterpart of MPGNNs with a generic aggregation function, whereas previous
work [KBV20, KBV21, RCR21b, MLLK22] are restricted to SGNNs or MPGNNs
with specific aggregations. We use a simple version of the Latent Space Model where
random graphs are totally connected and weighted accordingly the sampling of the
kernel W at the latent positions. Our main result, Theorem 5.7, states that for
MPGNNs having a Lipschitz-type regularity, the discrete network on a large random
graph is close to its continuous counterpart with high probability. We quantify this
convergence via a non asymptotic bound based on the McDiarmid concentration
inequality for multivariate functions of independent random variables. A special
treatment is given to the case where the aggregation is a coordinate-wise maximum [FL19].
For that particular case, Theorem 5.7 does not hold. Thus, we provide another proof
of convergence based on a specific concentration inequality, in Theorem 5.12. This
results in a significantly different theoretical convergence rate.

Related work. The closest related works to ours are the results from Keriven et
al. [KBV20,KBV21], where they establish convergence of SGNN on Latent Position
random graphs. We also mention Maskey et al. [MLLK22] that studies a particular
case of MPGNN on large random graphs, where the aggregation is defined to be a
mean normalized by the degree of the node. The present paper can be considered
as a direct extension of both these works in the setting of MPGNNs with generic
aggregation.

Further, the concept of limit of a SGNN on large random graphs has shown fruitful
to tackle several problems. For instance, multiple works from different authors,
among which [KBV20,MLK23a,LHB+21,RCR21b,CRR23], have focus on stability
to deformation or transferability. The idea being that, since the same GNN can be
applied to any graph, no matter its size or structure, we expect the outputs to be
close on similar graphs, which is particularly relevant for large random graphs drawn
from the same (or almost same) model. Concerning the expressive power on large
graphs, Keriven et al. exploit their convergence theorems from [KBV20, KBV21]
to propose a description of the function space that SGNNs on random graphs
can approximate in [KV23] and derive certain properties of universality. About
other topics related to the learning procedure such as generalization as well as
oversmoothing, the authors in [MLLK22] derive a generalization bound that gets
tighter for large graphs, while the results described in [Ker22] make use of Latent
Position random graphs to search a threshold between beneficial finite smoothing
and oversmoothing.

Beyond random graphs, large (dense) graphs can be described through the theory
of graphons [Lov12]. Indeed, with the so-called cut metric, the space of all graphs
can be completed to obtain a compact space: the space of graphons, in which
any graphon is a limit of discrete graphs. Several works aim to characterize the
convergence of GNNs on large graphs with these mathematical tools. In [RCR20,
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MLK23b], the authors define limits of graph polynomial filters of SGNNs designed
from graph shift operators as integral operators w.r.t. the underlying graphon, and
make use of the theory of self adjoint operators and Hilbert spaces to study them.
More recently, authors in [BLH+23] consider a continuous version of the WL test
via graphon estimation to study expressive power and the paper [Lev23] is devoted
to extend the concept of sampling graphs from graphon to sampling graph signals
from graphon signals.

Outline. In Section 2, we give some basic definitions. In Section 3 we define
MPGNNs with a generic aggregation function, that is, any function on sets used to
gather and combine neighborhood information in the message-passing paradigm. In
Section 4 we introduce continuous-MPGNNs (cMPGNNs) which are the counterpart
of discrete MPGNNs that propagate a function over a compact probability space,
alongside a connectivity kernel. As a discrete MPGNN must be coherent with
graph isomorphism, we give mild conditions under which the cMPGNN is coherent
with respect to some notion of probability space isomorphism. In Section 5, we
focus on MPGNNs when applied on random graphs and describe what class of
cMPGNN would be their natural limit. Our main result is Theorem 5.7: it provides
necessary conditions under which the discrete network converges to its continuous
counterpart. We make use of the McDiarmid concentration inequality to derive a
non asymptotic bound with high probability of the deviation between the outputs
of the MPGNN and its limit cMPGNN. Overall, we conclude that a sufficient
condition of convergence is for the aggregation to have sharp bounded differences.
All along the paper, we illustrate our concepts on classical GNN examples from the
basic Graph Convolutional Network to the more sophisticated Graph Attentional
Network [VCC+17]. We give a particular treatment to the case of the maximum
aggregation. Indeed, its behavior turns out to be significantly different than the
other examples and do not fit into the class of MPGNNs having sharp bounded
differences. Nevertheless, in Theorem 5.12 we make use of other specific concentrat-
ion bounds to prove another non asymptotic bound between max MPGNN and its
limit cMPGNN, with a significantly different convergence rate.

2. Notations and Definitions

We start by introducing the notations that will hold throughout the paper. The
letter d (and its derived d0, d

(0), . . .) will represent the dimension of a real vector
space, the letter n will denote the number of nodes in a graph, and L will refer
to the total number of layers in a deep architecture. Whenever we need to index
something relatively to vertices of a graph, we use a subscript indexation (e.g., zi)
and in the case of layers, we employ a superscript (e.g., z(l)).

We fix a positive integer d and (Rd, ‖ · ‖∞,B(Rd)) the d-dimensional real vector
space endowed with the infinite norm ‖x‖∞ = maxi |xi| as well as its Borel sigma
algebra. Except when specified differently, any topological concept, such as balls,
continuity, etc., will be considered relatively to the norm ‖ · ‖∞. All along this
paper, X is a compact subset of Rd and B(X ) its Borel sigma algebra defined as
the sigma algebra generated by the U ∩ X , for the open sets U of Rd.
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The group of permutations of {1, . . . , n} is denoted as Sn. If x = (x1, . . . , xn)
is an n-tuple and σ an element of Sn, we define the n-tuple σ · x as σ · x =
(xσ−1(1), . . . , xσ−1(n)).

The set of bijections φ of X such that both φ and φ−1 are measurable is a group
for the composition of functions. We call it the group of automorphisms of X
and denote it as Aut(X ). We denote as P(X ) the set of probability measures on
(X ,B(X )). For a measure P ∈ P(X ) and a bijection φ ∈ Aut(X ), the push forward
measure of P through φ is defined as φ#P (A) = P (φ−1(A)) for all A in B(X ). Since
this makes the group Aut(X ) acting on the set of probability measures on X , we also
use the notation φ · P = φ#P , which is standard for a (left) group action. For the
same reason, we shall use the notation φ ·f = f ◦φ−1 and φ ·W = W (φ−1(·), φ−1(·))
whenever f is a measurable function on X and W is a bivariate measurable function
on X × X .

For P ∈ P(X), the space L∞P (X ,Rp) is the space of essentially bounded (equivalence
classes of) maps from X to Rp endowed with the norm ‖f‖P,∞ = ess sup

P, x∈X
‖f(x)‖∞.

When there is no ambiguity on P , the norm ‖ · ‖P,∞ is noted ‖ · ‖∞. The space
C(X ,Rp) is made of the continuous functions from X to Rp. Since X is compact,
any continuous map is bounded thus essentially bounded, which makes C(X ,Rp) a
subspace of L∞P (X ,Rp).

Sets are represented between braces {·}, whereas multisets, that is, sets in which
an element is allowed to appear twice or more, are represented by double braces
{{·}}. If m and m′ are two multisets of same size, say n, containing elements from
a metric space (E , δ), we define their distance by:

(2.1) δ(m,m′) = min
σ∈Sn

max
xi∈m,x′i∈m′

δ(xi, x
′
σ(i)).

We define the sampling operator the following way. If f : E0 → E1 and X =
(x1, . . . , xn) ∈ En0 :

(2.2) SXf = (f(xi), . . . , f(xn)) ∈ En1 .

2.1. Graph-related definitions

In this subsection, we introduce the concepts of discrete graph, graph signal and
graph isomorphism.

Graph. A non oriented weighted graph G with n vertices is defined by a triplet
(V,E,w), where V = {v1, . . . , vn} is a finite set called the set of vertices (or nodes)
and E is the set of edges. The set of neighbors of a vertex vi in G is referred
to as NG(vi) or simply N (vi) when the underlying graph is clear from context.
The weight function w assigns a nonnegative number to each edge. It is often
represented by a symmetric function w : V 2 → R+ and the abbreviation wi,j is
used to denote the weight w(vi, vj) = w(vj , vi) where {vi, vj} ∈ E. In this paper,
“graph” will always mean “undirected and weighted graph”. The set of graphs
defined on the vertex set V is denoted as G(V ).

Graph signal. Given a graph G ∈ G(V ), where |V | = n, a signal on G is a map
from the set of vertices V to Rd that assigns a d-dimensional vector zi to each
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vertex vi. The images from all vertices are stacked into a matrix Z of size n × d.
Abusing notations, we may not distinguish between the map and its image Z, the
latter being also named the signal.

Graph isomorphism. Two graphs G1 = (V1, E1, w1) and G2 = (V2, E2, w2) in
G(V ), where |V | = n, are said to be isomorphic if there is a permutation σ ∈ Sn such
that E2 = {{vσ−1(i), vσ−1(j)}| {vi, vj} ∈ E1} and w2(vi, vj) = w1(vσ−1(i), vσ−1(j)).
In this case we note G2 = σ ·G1. Moreover, if Z is a signal on G1 and σ ∈ Sn, σ ·Z
is an isomorphic signal on the graph σ ·G1.

2.2. Random Graph Models

Random Graph Model. A random graph model is a couple (W,P ) where P
is a Borel probability measure on X and W : X × X 7→ [0, 1] is a kernel, i.e., a
symmetric measurable function. One can interpret W as a totally connected graph
on the vertex set X and whose weight function is W .

Random Graph. We generate random graphs from a random graph model
(W,P ) as follows. Given a positive integer n, we first draw n independent and
identically distributed random variables from the distribution P , represented by
X1, . . . , Xn, which form the vertex set of the graph. The random graph is fully
connected and has weight function W :

X1, . . . , Xn
iid∼ P, wi,j = wj,i = W (Xi, Xj).

When convenient, we will use the short notation X = (X1, . . . , Xn) for the tuple
of the vertices of a random graph. We call Gn(W,P ) the distribution from which
random graphs with n nodes are drawn. We bring the reader’s attention to the
fact that in the above definition, a random graph is always fully connected but
edges may have a weight equal to zero. Another common model [KBV20, LR15]
is to add a Bernoulli distribution to the connectivity, similarly to SBM models, in
order to model unweighted random graphs, potentially with prescribed expected
sparsity. It is not done here for the sake of simplicity: indeed weighted random
graphs without Bernoulli edges are routinely used to analyze machine learning
algorithms [VBB08,MLLK22], as they essentially model the underlying phenomena
of interest in many cases.

Random Graph Model isomorphism. Two probability measures P1 and P2

on X are said isomorphic if there is some φ in Aut(X ) such that P2 = φ#P1.
Similarly, two random graph models (W1, P1) and (W2, P2) on X are said to be
isomorphic if there is a φ in Aut(X ) such that (W2, P2) = (φ ·W1, φ · P1), in this
case, we will note (W2, P2) = φ · (W1, P1).

3. Message Passing Graph Neural Networks (MPGNNs)

A multilayer MPGNN iteratively propagates a signal over a graph. At each step,
the current representation of every node’s neighbors are gathered, transformed, and
combined to update the node’s representation. Broadly speaking, a MPGNN can
be defined as a collection of L applications (F (l))1≤l≤L that act as follows. Let

G ∈ G(V ) be a graph with n nodes, and Z = Z(0) ∈ Rn×d0 be a signal on it.
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At each layer, denoting Z(l) as the current state of the signal, Z(l+1) is computed
node-wise by:

(3.1) z
(l+1)
i = F (l+1)

(
z
(l)
i ,
{{(

z
(l)
j , wi,j

)}}
vj∈N (vi)

)
∈ Rdl+1 .

So Z(l+1) is an n×dl+1 matrix. In (3.1), the F (l) take as arguments a vector, which
is the current node’s representation, and a multiset of pairs. Each pair is composed
of a node from the neighborhood of the running node, along with the corresponding
edge weight. In the literature, the F (l) are often referred to as aggregations [Jeg22].
Their main property is to ignore the order in which the neighborhood information
is collected, through the use of a multiset.

Depending on the context, the final output of the MPGNN may be a signal over
the graph, or a single vector representation for the entire graph. Following the
literature, we call these two versions respectively the equivariant and the invariant
versions of the network. We denote ΘG(Z) as the output in the first case and
Θ̄G(Z) in the second case, where Θ̄G use an additional pooling operation over the
nodes, R : Rn×dL → RdL , called the readout [Jeg22] function:

(3.2) ΘG(Z) = Z(L) ∈ Rn×dL , Θ̄G(Z) = R
({{

z
(L)
1 , . . . , z(L)n

}})
∈ RdL

A fundamental property of GNNs is that they are consistent with graph isomorphism.
More precisely, relabeling the nodes of the input graph signal must be the same
as relabeling the nodes of the output in the equivariant case, and must leave the
output unchanged in the invariant case. This exactly corresponds to the concepts
of invariance and equivariance for group actions and follows naturally from the
definition of MPGNNs, as stated in the following proposition.

Proposition 3.1 (Invariance and equivariance of MPGNNs). Let G ∈ G(V ) with
|V | = n. Then, Θ and Θ̄ are respectively Sn-equivariant and Sn-invariant, in the
sense that for all σ ∈ Sn, for all Z ∈ Rn×d0 , we have Θσ·G(σ ·Z) = σ ·ΘG(Z) and
Θ̄σ·G(σ · Z) = Θ̄G(Z).

Proof. We prove the equivariant case. Let us introduce Λ
(l)
G : Z(l−1) 7→ Z(l) the

layer functions such that ΘG = Λ
(L)
G ◦ · · · ◦ Λ

(1)
G by construction. Let Z ∈ Rn×dl−1

be a signal on G. On the one hand, Λ
(l)
σ·G(σ ·Z) = Y is the signal on σ ·G such that

yi = F (l)

(
zσ−1(i),

{{(
zσ−1(j), wσ−1(i),σ−1(j)

)}}
vσ−1(j)∈Nσ·G(vσ−1(i))

)
,

by definition of σ · G and σ · Z. On the other hand, σ · Λ(l)
G (Z) = Y ′ is the signal

on σ ·G such that

y′i = F (l)

(
zσ−1(i),

{{(
zj , wσ−1(i),j

)}}
vj∈NG(vσ−1(i))

)
= F (l)

(
zσ−1(i),

{{(
zσ−1(j), wσ−1(i),σ−1(j)

)}}
vσ−1(j)∈Nσ·G(vσ−1(i))

)
.

So Y = Y ′ which means that Λ
(l)
σ·G(σ · Z) = σ · Λ(l)

G (Z) is equivariant for all l.
Thereby Θσ·G(σ · Z) = σ · ΘG(Z) by composition. For the invariant case, R is
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clearly Sn-invariant since it has a multiset as input. The fact that the composition
of an equivariant map followed by an invariant map is invariant yields the result. �

The role of the functions F (l) in (3.1) is crucial and there is a wide range of designs
for them [WPC+21]. Nevertheless, they mostly take the following “message-then-
combine” form. At layer l+1, the signals of the neighbors of a node are transformed
by a learnable operation which is usually a classical multilayer perceptron (MLP)

denoted as ψ(l+1). Then these messages ψ(l+1)(z
(l)
j ) are aggregated along with some

optional weight coefficients, whose expression are very general here:

(3.3) c
(l+1)
i,j = c(l+1)

(
z
(l)
i , z

(l)
j , wi,j

)
,

in a way that is invariant to node relabeling. It appears that a natural way of doing
the aggregation step is to perform a mean, in a broad sense: an arithmetic mean,
a weighted mean, a maximum, etc. Thus, we have a mean operator M (l+1) such
that (3.1) is expressed as

F (l+1)

(
z
(l)
i ,
{{(

z
(l)
j , wi,j

)}}
vj∈N (vi)

)
= M (l+1)

({{(
ψ(l+1)(z

(l)
j ), c

(l+1)
i,j

)}}
vj∈N (vi)

)(3.4)

Up to our knowledge, (3.4) encompasses all existing popular MPGNN architectures
of the literature. We note that it is essentially a more verbose reformulation of (3.1),
the two different expressions mostly provide a different level of intuition on the
message-passing process. In the sequel, we discuss four examples that follow (3.4).
For each example, we also give the corresponding readout function that will be used
in our results, for the invariant case.

Example 1 (Convolutional Message Passing [KW17,DBV16,WPC+21]). The ci,j
are the graph weights wi,j. Each neighbor representation is multiplied by its corresponding
weight and we combine them with an arithmetic mean. Notice that this is equivalent
to a Convolutional Graph Neural Network (GCN) with polynomial filters of degree
one.

z
(l+1)
i =

1

|N (vi)|
∑

vj∈N (vi)

wi,jψ
(l+1)

(
z
(l)
j

)
.

In the invariant case, the readout function is an arithmetic mean:

R
({{

z
(L)
1 , . . . , z(L)n

}})
=

1

n

n∑
i=1

z
(L)
i .

Example 2 (Degree normalized convolution). The ci,j are still the graph weights
wi,j but a weighted mean is performed [MLLK22].

z
(l+1)
i =

∑
j∈N (vi)

wi,j∑
k∈N (vi)

wi,k
ψ(l+1)

(
z
(l)
j

)
.

In the invariant case, the readout function is again an arithmetic mean.
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Example 3 (Attention based Message Passing). Unlike the two examples above,
the attentional coefficients are learnable and depend on all the possible parameters
mentioned in (3.3) [VCC+17]. A weighted mean is then used.

z
(l+1)
i =

∑
j∈N (vi)

c(l+1)
(
z
(l)
i , z

(l)
j , wi,j

)
∑
k∈N (vi)

c(l+1)
(
z
(l)
i , z

(l)
k , wi,k

)ψ(l+1)
(
z
(l)
j

)
.

In the invariant case, the readout function is again an arithmetic mean.

Example 4 (Max Convolutional Message Passing). The aggregation maximum is
often mentioned as a possibility in the literature [HYL17], but we note that it is less
common in practice. Here the ci,j are also the graph weights wi,j but a coordinate-
wise maximum is used to combine the messages:

z
(l+1)
i = max

vj∈N (vi)
wi,jψ

(l+1)
(
z
(l)
j

)
.

In the invariant case, the readout function is a coordinate-wise maximum.

R
({{

z
(L)
1 , . . . , z(L)n

}})
= max
i=1,...,n

z
(L)
i .

4. Continuous MPGNNs (cMPGNNs) on random graph models

We define the continuous counterpart of MPGNNs, that we call continuous MPGNNs
(cMPGNNs). Analogously to the discrete case, a cMPGNN is defined to be L
operators (F (l))1≤l≤L that propagate a function on X relatively to a random graph

model. Let (W,P ) be a random graph model and f = f (0) ∈ L∞P (X ,Rd0), f (l+1) is
recursively computed by:

(4.1) ∀x ∈ X f (l+1)(x) = F (l+1)
P

(
f (l)(x),

(
f (l),W (x, ·)

))
∈ Rdl+1 .

Notice that F (l+1) depends on the measure P . Considering the functions f (l) as
signals on the vertex set X , the update f (l+1)(x) of a node x ∈ X is calculated
from the knowledge of its current representation f (l)(x) and all its “weighted
neighborhood” (f (l),W (x, ·)). The latter is a short notation for the map y 7→
(f (l)(y),W (x, y)) at x fixed, which is the continuum equivalent of the multiset of

pairs of weighted neighbors {{(z(l)j , wi,j)}}vj∈N (vi) from (3.1).

The formulation (4.1) of cMPGNN is intuitive in terms of “continuous message
passing” but quite heavy. Hence, for notational convenience in the sequel, we

immediately reformulate (4.1) by overloading the notations F (l)
P with the functions

F (l+1)
P (f (l),W ) : x 7→ F (l+1)

P (f (l)(x), (f (l),W (x, ·))).
In this manner, (4.1) is reformulated more synthetically as:

(4.2) f (l+1) = F (l+1)
P (f (l),W ).

We denote ΘW,P (f) = f (L) the output in the equivariant case and Θ̄W,P (f) in the
invariant case.

(4.3) ΘW,P (f) = f (L) ∈ L∞P (X ,RdL), Θ̄W,P (f) = RP (ΘW,P (f)) ∈ RdL

Where Θ̄W,P involves an additional continuum readout operator R : P(X ) ×
L∞P (X ,RdL) → RdL . Naturally, we also demand the equivariant and invariant
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versions of the cMPGNN to respectively be equivariant and invariant to random
graph model isomorphism. To that extent, we impose the following assumption on
the operators F (l) and on R:

Assumption 4.1. There is a subgroup H ⊂ Aut(X ) such that ∀ 1 ≤ l ≤ L,
∀f ∈ L∞P (X ,Rdl),∀φ ∈ H:

F (l)
φ·P (φ · f, φ ·W ) = φ · F (l)

P (f,W )

and
Rφ·P (φ · f)) = RP (f).

Assumption 4.1 is largely inspired by the classical change of variable formula by
push forward measure in Lebesgue integration. This formula states that for any
φ ∈ Aut(X ) and any measurable map f ,

(4.4)

∫
fdP =

∫
φ · fd(φ · P ) .

It is easy to check that if, for example, FP (f,W ) =
∫
f(y)W (x, y)dP (y) and

RP (f) =
∫
fdP , then (4.4) implies Assumption 4.1 with H = Aut(X ).

Contrary to the discrete case, where the symmetry is valid for the full group Sn,
we require here a symmetry for a subgroup of Aut(X ) only. Ideally, one would
like Assumption 4.1 to hold for H = Aut(X ). However, in the next section, we
will interpret some cMPGNN as limits of discrete MPGNN, such that the graph
isomorphism symmetry becomes a random graph model isomorphism symmetry as
the number of nodes tends to infinity. In this context, the example of maximum
aggregation (Example 4-d in the next section) will highlight the fact that, for a
matter of existence of such a limit, one may have to impose some conditions on P ,
and thus restrict to a subgroup of Aut(X ).

Proposition 4.2 (Invariance and equivariance of cMPGNNs). Let (W,P ) be a
random graph model on X . Then, under Assumption 4.1, Θ and Θ̄ are respectively
H-equivariant and H-invariant. Meaning that for any f , for any φ ∈ H, Θφ·(W,P )(φ·
f) = φ ·ΘW,P (f) and Θ̄φ·(W,P )(φ · f) = Θ̄W,P (f).

Proof. We start by the equivariant case and the invariant one follows directly by

composition with R. Let Λ
(l)
W,P be the layer operators such that Θ

(L)
W,P = Λ

(L)
W,P ◦

· · · ◦ Λ
(1)
W,P . Let f ∈ L∞P (X ,Rdl−1). Using Assumption 4.1 we obtain:

φ · Λ(l)
W,P (f) = φ · F (l)

P (f,W ) = F (l)
φ·P (φ · f, φ ·W ) = Λ

(L)
φ·(W,P )(φ · f)

So the Proposition is true on all the Λ
(l)
W,P , thus also true on Θ

(L)
W,P by composition.

For the invariant case, it is clear from Assumption 4.1 that R is H-invariant. The
fact that the composition of an equivariant map followed by an invariant map is
invariant yields the result. �

In the following are some examples of cMPGNN. The reader will of course see the
intuitive connection to the previous Examples 1, 2, 3 and 4. In the next section, we
will precisely see in what sense Examples 1 to 4, when applied on random graphs
and as n grows large, converge to the following cMPGGNs.
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Example a (Convolutional Message Passing). The arithmetic mean becomes an
integral over the probability space:

f (l+1)(x) =

∫
y∈X

W (x, y)ψ(l+1)
(
f (l)(y)

)
dP (y)

and, in the invariant case, the continuous readout is:

RP
(
f (L)

)
=

∫
X
f (L)dP.

Example b (Degree Normalized Convolutional Message Passing). The continuous
counterpart is:

f (l+1)(x) =

∫
y∈X

W (x, y)∫
t∈X W (x, t)dP (t)

ψ(l+1)
(
f (l)(y)

)
dP (y).

In the invariant case, the readout is again the integral relatively to P .

Example c (Attention based Message Passing). The continuous counterpart is:

f (l+1)(x) =

∫
y∈X

c(l+1)
(
f (l)(x), f (l)(y),W (x, y)

)∫
t∈X c

(l+1)
(
f (l)(x), f (l)(t),W (x, t)

)
dP (t)

ψ
(
f (l)(y)

)
dP (y).

In the invariant case, the readout is again the integral relatively to P .

Example d (Max Convolutional Message Passing). The maximum becomes a
coordinate-wise essential supremum according to the probability measure P :

f (l+1)(x) = ess sup
y∈X , P

W (x, y)ψ(l+1)
(
f (l)(y)

)
and, in the invariant case, the final readout is the coordinate-wise:

RP
(
f (L)

)
= ess sup

y∈X , P
f (L)(y).

Remark 4.3. It can be easily verified that for all these examples, the underlying
F (l) functions satisfy Assumption 4.1 with H = Aut(X ). For the integral, it is
ensured by the classical change of variable formula (4.4).

As for the essential supremum, a similar formula holds. Indeed, recall that for any
measurable g, for any measurable bijection φ, one has

ess sup
P

g ◦ φ = inf{M |P (g ◦ φ > M) = 0}.

However, (g ◦ φ > M) = {x|g ◦ φ(x) > M} = {φ−1(y)|g(y) > M} = φ−1(g > M),
such that one finally has:

inf{M |P (g ◦ φ > M) = 0} = inf{M |P (φ−1(g > M)) = 0} = ess sup
φ#P

g.
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5. cMPGNNs as limits of MPGNNs on large random graphs

This section contains the core of our contributions. We focus on MPGNNs when
applied on random graphs Gn drawn from Gn(W,P ). Specifically, given such a
MPGNN, we are interested in its limit as n tends to infinity. We show that under
mild regularity conditions, such a limit exists and is a cMPGNN. Furthermore, we
provide some non-asymptotic bounds to control the deviation between a MPGNN
and its limit cMPGNN with high probability.

This section is divided in two parts. In the first part (Section 5.1), given a MPGNN,
we define, when it exists, its associated canonical cMPGNN on (W,P ) that we
call continuous counterpart. The precise definition of this central concept is
Definition 5.2: it states how that continuous counterpart is built out of the discrete
network as a limit on random graphs Gn ∼ Gn(W,P ) of growing sizes. Then, we
show that under mild regularity conditions, Examples a, b, c and d are indeed the
continuous counterparts of Examples 1, 2, 3, and 4 according to our definition.

Note that, in general, all MPGNNs do not necessarily have a continuous counterpart
in the sense of Definition 5.2: indeed, the definition is based on the existence of a
limit (Eq. (5.8)). In addition, when the continuous counterpart exists, the MPGNN
may not “easily” converge to its continuous counterpart as n tends to infinity. In
the second part of this section (Section 5.2), we study this convergence: we give
sufficient conditions for this convergence to occur and provide convergence rates in
the form of non-asymptotic bounds with high probability.

Our main result, Theorem 5.7 in Section 5.2.1, concerns a class of MPGNN that
have a certain kind of Lipschitz continuity among other mild assumptions: in a few
words, it states that such MPGNNs have a continuous counterpart to which they
converge as n grows, with a controlled rate that we specify. The result we obtain is
based on the so-called McDiarmid inequality [McD89], that says that a multivariate
function of independent random variable has a sub-Gaussian concentration around
its mean if it satisfies the following notion of bounded differences.

Definition 5.1 (Bounded Differences Property). Let f : En → R be a function
of n variables. We say that f has the bounded differences property if there exist n
nonnegative constants c1, . . . , cn such that for any 1 ≤ i ≤ n:

(5.1) |f(x1 . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci,

For any x1, . . . , xn, x
′
i ∈ E.

In plain terms, whenever one fixes all but one of the components of f , the variations
should be bounded.

Our second result, Theorem 5.12 in Section 5.2.2, is specific to the case of maximum
aggregation, as in this case the bounded difference property is not verified and
Theorem 5.7 is not applicable. It is based on another concentration inequality and
leads to a convergence rate with a dependence on the input dimension d (recall
X ⊂ Rd), contrary to the bounded differences method.
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5.1. Limit of MPGNNs on large random graphs

Let (W,P ) be a random graph model and f ∈ L∞P (X ,Rd). In this subsection, we
consider a single layer MPGNN applied on a random graph Gn ∼ Gn(W,P ) and
input node features Z = SXf as a sampling of some function (recall the definition
of the sampling operator in Eq. (2.2)). We define a corresponding cMPGNN layer
on (W,P ) with input map f . Since there is only one layer in this section, we drop
the superscript indexation.

To motivate the next definition – that may seem overly technical at first sight – let
us consider the simplest example, namely Examples 1 and a. Let us examine how
Example a can be recovered from Example 1 at the limit.

Consider a one-layer convolutional cMPGNN from Example a, with input signal f ,
for which the update of f(x) is given by

(5.2) FP (f,W )(x) =

∫
y∈X

W (x, y)ψ (f(y)) dP (y).

It is fairly clear that, by the law of large numbers, this integral equals the limit of

(5.3)
1

n

n∑
i=1

W (x,Xi)ψ(f(Xi))

for X1, . . . , Xn
iid∼ P . Moreover, Eq. (5.3) is exactly the discrete message passing of

Example 1 around a certain node on a certain graph: let G := Gn∪{x} be the graph
Gn to which a (deterministic) vertex x along with all its associated edges {x,Xi}
are added. Given the extended graph signal (f(x), f(X1), . . . , f(Xn)), Eq. (5.3) is
precisely an iteration of convolutional message passing from Example 1, around the
vertex x, for the graph G, that gives the update of f(x). We have thus obtained
the cMPGNN of Example a via a limit of the MPGNN of Example 1 on random
graphs.

Back to the general case, given an abstract discrete (single-layer) MPGNN with
aggregation F , we want to define a cMPGNN from its limit on random graphs.
Following the path of the above example, we look at the following limit:

(5.4) lim
n→∞

F (f(x), {{(f(Xk),W (x,Xk))}}1≤k≤n)

If it appears that this limit exists and that it defines the update of f(x) via some
cMPGNN, then we have found the continuous counterpart of F . Unfortunately, this
existence is far from obvious and F does not always have a continuous counterpart.
Moreover, convergence of (5.4), as presented in the example of convolutional message
passing, is an almost sure convergence of random variable, which is quite a strong
requirement. We rather relax it to the convergence of

(5.5) EX1,...,Xn [F (f(x), {{(f(Xk),W (x,Xk))}}1≤k≤n)] .

instead. In the first part of the upcoming definition, we say that if there is an F
structured as in Eq. (4.2), such that the limit of Eq. (5.4) is

(5.6) FP (f,W )

then F is a good candidate to be the continuous counterpart of F . Remark that
for now, such an F is still only a “candidate” because Eq. (5.6) is not enough to
define a cMPGNN. As we saw in Section 4, F must also be coherent to random
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graph model isomorphism, i.e., must verify Assumption 4.1. This is precisely the
purpose of the second part of the following definition.

Definition 5.2 (Continuous counterpart). Let F be a MPGNN layer. For f ∈
L∞P (X ,Rd), W : X 2 → [0, 1] and P ∈ P(X ), define the sequence of functions in

L∞P (X ,Rd′):

(5.7) FP,n(f,W )) : x 7→ EX1,...,Xn [F (f(x), {{(g(Xk),W (x,Xk))}}1≤k≤n)]

where the expected value is taken over all the X1, . . . , Xn
iid∼ P.

Let F be an operator of the form (4.2) taking value in L∞P (X ,Rd′) and suppose that
there exists H, a non-trivial subgroup of Aut(X ), such that for any f ∈ L∞P (X ,Rd),
for any φ ∈ H, Fφ·P,n(φ · f, φ ·W ) converges to Fφ·P (φ · f, φ ·W ) in the L∞P (X ,Rd)
norm, i.e.:

(5.8) Fφ·P,n(φ · f, φ ·W )
L∞φ·P (X ,Rd)
−−−−−−−→ Fφ·P (φ · f, φ ·W ).

Then we say that F is the continuous counterpart of F for H. When H =
Aut(X ), or when H is obvious from the context, we simply say that F is the
continuous counterpart of F .

Note that this definition does not immediately imply that the continuous counterpart
F of the MPGNN F is a valid cMPGNN. The reason being that a cMPGNN must
be equivariant to the action of automorphisms of X which is not straightforward
from the above definition. Nevertheless, the stability condition (5.8) will ensure
that Assumption 4.1 is satisfied by the continuous counterpart, as shown in the
next proposition.

Proposition 5.3. Let F be the continuous counterpart of F as defined in Definition 5.2.
Then it satisfies Assumption 4.1 for any φ ∈ H.

Proof. Let f ∈ L∞P (X ,Rd), φ ∈ H, and X1, . . . , Xn
iid∼ P , we have for P -almost all

x:

φ · FP,n(f,W ))(x)

= EX1,...,Xn

[
F
(
f(φ−1(x)), {{

(
f(Xk)),W (φ−1(x), Xk)

)
}}1≤k≤n

)]
= EY1,...,Yn [F (φ · f(x), {{(φ · f(Yk)), φ ·W (x, Yk))}}1≤k≤n)](5.9)

= Fφ·P,n (φ · f, φ ·W ) (x).

Where in (5.9), we have set Yk = φ(Xk), ∀k, which have all law φ ·P , and used the
classical change of variable formula (4.4). Thus, by taking the limit, (5.8) implies:

Fφ·P (φ · f, φ ·W ) = φ · FP (f,W )

�

The same definition can be given for a readout layer.
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Definition 5.4. Let R be a MPGNN readout layer and P ∈ P(X ). For f ∈
L∞P (X ,Rd), we define the sequence of functions

RP,n(f) = EX1,...,Xn [R ({{f(X1), . . . , f(Xn)}})] ∈ Rd
′
,

where the expected value is taken over all the X1, . . . , Xn
iid∼ P.

Let R be a continuum readout operator of the form (4.3) taking values in Rd′ .
Suppose we have H a non-trivial subgroup of Aut(X ) such that for any f ∈ L∞P (X ,Rd),
for any φ ∈ H, Rφ·P,n(φ · f) converges to Rφ·P (φ · f) in the ‖ · ‖∞ norm of Rd:

Rφ·P,n(φ · f)→ Rφ·P (φ · f).

Then we say that R is the continuous counterpart of R for H, unless H =
Aut(X ) or H is obvious from context, in which case we simply say that R is the
continuous counterpart of R.

Proposition 5.5. Let R be the continuous counterpart of R as in definition 5.4.
Then it satisfies Assumption 4.1 for any φ ∈ H.

Going back to our four examples of Sections 3 and 4, we now show that a, b and c
are the continuous counterparts of 1, 2 and 3 for the full Aut(X ) under a positivity
condition for the coefficients in the degree normalized and GAT examples. The
case 4- d is however more involved, as one has to be careful with the shape of X
and the properties of P to avoid null set issues at the boundary ∂X . We show
that if X contains no nonempty open null set, and if W, f are continuous, then d is
the continuous counterpart of 4 for the subgroup H of Aut(X ) consisting of all the
homeomorphisms from X into itself.

Examples 1-a. With no additional restriction on W , f , nor P , a is the continuous
counterpart of 1 for the full Aut(X ).

Proof. By independence and identical distribution of the random variables and
linearity of the expected value, the convergence in (5.8) is actually an equality for
all integer n.

E

[
1

n

∑
i

W (x,Xi)ψ(f(Xi))

]
= E [W (x,X1)ψ(f(X1))] =

∫
X
W (x, y)ψ(y)dP (y).

Clearly this remains true replacing P by φ · P , f by φ · f and W by φ ·W for any
φ ∈ Aut(X ). �

Examples 2-b. Suppose that ψ is bounded and that there is a strictly positive α
such that α < W . Then b is the continuous counterpart of 2 for the full Aut(X ).

Proof. For X1, . . . , Xn
iid∼ P , we have ∀x∫

X

W (x, y)ψ(f(y))∫
X W (x, t)dP (t)

dP (y) =
E [W (x,X1)ψ(f(X1))]

E [W (x,X1)]
,

and

E
[∑

iW (x,Xi)ψ(f(Xi))∑
kW (x,Xk)

]
= E

[ 1
n

∑
iW (x,Xi)ψ(f(Xi))
1
n

∑
kW (x,Xk)

]
.
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Then ∥∥∥∥E [ 1
n

∑
iW (x,Xi)ψ(f(Xi))
1
n

∑
kW (x,Xk)

]
− E [W (x,X1)ψ(f(X1))]

E [W (x,X1)]

∥∥∥∥
∞

=

∥∥∥∥E [ 1
n

∑
iW (x,Xi)ψ(f(Xi))
1
n

∑
kW (x,Xk)

− E [W (x,X1)ψ(f(X1))]

E [W (x,X1)]

]∥∥∥∥
∞

≤ E

[∥∥∥∥∥E [W (x,X1)] 1
n

∑
iW (x,Xi)ψ(f(Xi))

1
n

∑
kW (x,Xk)E [W (x,X1)]

−
1
n

∑
kW (x,Xk)E [W (x,X1)ψ(f(X1))]
1
n

∑
kW (x,Xk)E [W (x,X1)]

∥∥∥∥∥
∞

]

≤ 1

α2
E

[∥∥∥∥∥E [W (x,X1)]
1

n

∑
i

W (x,Xi)ψ(f(Xi))

− 1

n

∑
k

W (x,Xk)E [W (x,X1)ψ(f(X1))]

∥∥∥∥∥
∞

]

≤ 1

α2
E

[∥∥∥∥∥E [W (x,X1)]
1

n

∑
i

W (x,Xi)ψ(f(Xi))

− E [W (x,X1)]E [W (x,X1)ψ(f(X1))]

∥∥∥∥∥
∞

+

∥∥∥∥∥E [W (x,X1)]E [W (x,X1)ψ(f(X1))]

− 1

n

∑
k

W (x,Xk)E [W (x,X1)ψ(f(X1))]

∥∥∥∥∥
∞

]

≤ 1

α2
E

[∥∥∥∥∥ 1

n

∑
i

W (x,Xi)ψ(f(Xi))− E [W (x,X1)ψ(f(X1))]

∥∥∥∥∥
∞

]

+
‖ψ‖∞
α2

E

[ ∣∣∣∣∣E [W (x,X1)]− 1

n

∑
k

W (x,Xk)

∣∣∣∣∣
]
.

Using the formula E(X) =
∫
t>0

P (X > t)dt for X nonnegative, we get that this
last quantity is equal to

1

α2

∫
t>0

P

(∥∥∥∥∥ 1

n

∑
i

W (x,Xi)ψ(f(Xi))− E [W (x,X1)ψ(f(X1))]

∥∥∥∥∥
∞

> t

)
dt

+
‖ψ‖∞
α2

∫
t>0

P

(∣∣∣∣∣E [W (x,X1)]− 1

n

∑
k

W (x,Xk)

∣∣∣∣∣ > t

)
dt.

(5.10)

Finally, we use McDiarmid inequality (which turns out to be the same as Hoeffding
inequality for a sum of independent random variables). It is easy to check that the
concerned multivariate maps have bounded differences of the form ci = K/n for
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all i. Therefore, there are some positive constants K1,Ks,K3,K4 independent of
x such that (5.10) is bounded by

1

α2

∫
t>0

K1e
−nK1t

2

dt+
‖ψ‖∞
α2

∫
t>0

K3e
−nK4t

2

dt = O(1/
√
n)→ 0.

This remains true replacing P by φ · P , f by φ · f and W by φ ·W for any φ ∈
Aut(X ). �

Examples 3-c. Call V (x, y) = c(f(x), f(y),W (x, y)) and suppose that ψ is bounded
and that there is two strictly positive constants 0 < α < β such that α < V < β.
Then c is the continuous counterpart of 3 for the full Aut(X ).

Proof. We are brought to the previous example with V instead of W . �

Examples 4-d. Suppose that W , ψ, and f are continuous and that the measure P
is strictly positive on X i.e, any nonempty relative open of X has a strictly positive
measure by P . Then d is the continuous counterpart of 4 for Hom(X ): the subgroup
of Aut(X ) made of the φ ∈ Aut(X ) that are homeomorphisms.

Proof. We call g(x, y) = W (x, y)ψ(f(y)). We start by the case when g is real
valued, since g is continuous and P is strictly positive, ess sup

P
g(x, ·) = sup g(x, ·)∀x

by Lemma 10.3 in the Appendix. Let ε > 0, By definition of the supremum and by
independence of the Xi, we have that

P(|max
i
g(x,Xi)− sup g(x, ·)| ≥ ε)

= P(max
i
g(x,Xi) ≤ sup g(x, ·)− ε)

= P(g(x,X1) ≤ sup g(x, ·)− ε)n

= P(|g(x,X1)− sup g(x, ·)| ≥ ε)n.

(5.11)

By continuity and compactness, there is x∗ ∈ X such that sup g(x, ·) = g(x, x∗),
so (5.11) is equal to

P(|g(x,X1)− g(x, x∗)| ≥ ε)n

= (1− P(|g(x,X1)− g(x, x∗)| < ε))
n
.

(5.12)

By continuity and compactness again, g is uniformly continuous so there is δ > 0
such that ‖(x,X1) − (x, x∗)‖ = ‖X1 − x∗‖ < δ implies |g(x,X1) − g(x, x∗))| < ε.
Thus (5.12) is bounded from above by

(5.13) (1− P(‖X1 − x∗‖ < δ))
n

= (1− P (B(x∗, δ) ∩ X ))
n

where B(x∗, δ) is the open ball of center x∗ and radius δ in Rd. To finish let
us justify that the measure of the B(x∗, δ) ∩ X when x runs over X is bounded
from below. Suppose this would not be the case, i.e. that the measure of a ball
of radius δ centered in X could be arbitrary small. By compactness, up to sub-
sequence extraction, we can assume there is (xk) ∈ XN such that xn → x ∈ X
and P (B(xk, δ) ∩ X ) ≤ 1/2k. Call U = B(x, δ/2) ∩ X , there is rank k0 such that
∀k ≥ k0, xk ∈ U . Thus U ⊂ B(xk, δ) ∩ X ∀k ≥ k0 yielding P (U) ≤ 1/2k ∀k ≥ k0
i.e. P (U) = 0. Impossible since U is nonempty relative open of X .
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So there is η > 0 independent of x such that P (B(x∗, δ)∩X ) > η and, coming back
to (5.13):

(5.14) P(|max
i
g(x,Xi)− sup g(x, ·)| ≥ ε) ≤ (1− η)n.

If g is vector valued, say in Rd′ , call g1, . . . , gd′ its components and ηk such that gk
satisfies (5.14) with η = ηk. Then by a union bound we have

(5.15) P(‖max
i
g(x,Xi)− sup g(x, ·)‖∞ ≥ ε) ≤

d′∑
k=1

(1− ηk)n.

At the end of the day, by letting Z = ‖maxi g(x,Xi) − sup g(x, ·)‖∞, we have for
any ε > 0:

‖E(max
i
g(x,Xi))− sup g(x, ·)‖∞ ≤ E(Z)

= E(Z1Z≥ε) + E(Z1Z<ε)

≤ 2‖g‖∞
d′∑
k=1

(1− ηk)n + ε.

(5.16)

This concludes the uniform convergence. To conclude the proof, we are left to check
that the strict positiveness of P as well as the continuity of f and W are preserved
by the action of homeomorphisms. It is clear for maps’ continuity. Let φ ∈ Hom(X )
and U ⊂ X a relative nonempty open of X ,

φ · P (U) = P (φ−1(U)) > 0

since φ−1(U) is a nonempty open of X as φ is continuous. �

5.2. Convergence of MPGNN on random graphs

Let (W,P ) be a random graph model, and (Gn)n≥1 be a sequence of random graphs
drawn from Gn(W,P ). We go back to the multi layer setup: consider a MPGNN
(F (l))1≤l≤L, a readout R and their continuous counterparts (F (l))1≤l≤L and R in
the sense of Definitions 5.2 and 5.4. For an f ∈ L∞P (X ,Rd0), does the MPGNN on
Gn with input signal SXf actually converge to the cMPGNN on (W,P ) with input
signal f? If yes, at which speed? In this section we provide non-asymptotic bounds
with high probability to quantify this convergence.

Our main theorems state that, under mild regularity condition and with high
probability, ΘGn(SX(f)) is close to ΘW,P (f) in the equivariant case and that
Θ̄Gn(SX(f)) is close to Θ̄W,P (f) in the invariant case. For the latter, we can
compare both the outputs directly since they belong to the same vector space. The
comparison is however more involved in the equivariant case since ΘGn(SX(f)) is
a tensor and ΘW,P (f) is a function. In this case, we measure their deviation with
the Maximum Absolute Error (MAE) defined by

MAEX(Z, f) = max
1≤i≤n

‖zi − f(Xi)‖∞.

Our first theorem is based on the Mcdiarmid inequality 10.2. It encompasses a whole
class of MPGNNs that includes Examples 1, 2 and 3 but not 4. For the latter, we
obtain a different bound based on other concentration inequalities similar to what
has been done for the case 4-d in the previous section.
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5.2.1. Bounded differences method

Since for all l, F (l) is the continuous counterpart of F (l), and using the notations

of Definition 5.2, we let (a
(l)
n ) be a sequence of positive reals such that a

(l)
n → 0 and

(recall the definitions of FP,n and FP from Definition 5.2):

(5.17) ‖F (l)
P,n(f (l−1),W )−F (l)

P (f (l−1),W )‖∞ ≤ a(l)n .

for all n.

Similarly, we let (bn) be another sequence of positive reals verifying bn → 0 and
such that (recall the definitions of RP,n and RP from Definition 5.4)

(5.18) ‖RP,n(f (L))−RP (f (L))‖∞ ≤ bn

for all n.

For a fixed x1 ∈ X , we are interested in the bounded differences (recall Definition 5.1
of

(5.19) (x2, . . . , xn) 7→ F (l)(f (l−1)(x1), {{(f (l−1)(xk),W (x1, xk))}}k≥2)

as a map of the n−1 variables x2, . . . , xn. These bounded differences depend on x1
and we call them c2(x1) . . . , cn(x1). Since (5.19) is invariant to the permutations of

x2, . . . , xn, they can be taken all equal. We call D
(l)
n (x1) = c2(x1) = · · · = cn(x1).

Moreover, since (5.19) belongs to L∞P (X ,Rdl) as a function of x1, it is P -essentially
bounded by compactness. Define

(5.20) D(l)
n = ess sup

P,x1∈X
D(l)
n (x1)

Similarly, we call Cn the bounded difference of

(x1, . . . , xn) 7→ R(f (L)(x1), . . . , f (L)(xn)).

Finally, we add a “Lipschitz-type” regularity assumption on the F (l). To sum up
we suppose:

Assumption 5.6. (i) The F (l) as well as R are the continuous counterparts
of the F (l), and R as defined is Definitions 5.2, and 5.4.

(ii) There exist some D
(l)
n such as defined in (5.20).

(iii) There exist some a
(l)
n and bn such as defined in (5.17) and (5.18).

(iv) For all 1 ≤ l ≤ L, we endow Rdl−1 × [0, 1] with the norm ‖(y, t)‖1 =
‖y‖∞ + |t| and call δ1 the corresponding distance on multisets as defined
in (2.1). Let x, x′ ∈ Rdl−1 and m,m′ be two multisets of same cardinal n
containing elements of Rdl−1 × [0, 1], then there exist two constants µ(l) ≥ 0

and λ
(l)
F,n > 0 such that the aggregations F (l) satisfy:∥∥∥F (l)(x,m)− F (l)(x′,m′)

∥∥∥
∞
≤ µ(l)

F ‖x− x
′‖∞ + λ

(l)
F,nδ1(m,m′).
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(v) For m,m′ being two multisets of same cardinal n containing elements of
RdL , we define the distance δ∞(m,m′) relatively to the ‖ · ‖∞ norm in RdL
as in (2.1). Then there exists λR,n > 0 such that

‖R(m)−R(m′)‖∞ ≤ λR,nδ∞(m,m′).

(vi) The sequences
(
λ
(l)
F,n

)
and

(
λ
(l)
R,n

)
are bounded over n.

Theorem 5.7 (MPGNN convergence towards cMPGNN). Under Assumption 5.6
for any 0 < ρ ≤ 1, with probability at least 1 − ρ, the following assertions are
verified:

(5.21) MAEX (ΘGn(SX(f)),ΘW,P (f)) . LDn

√
n ln

(
n2Ldmax

ρ

)
+ Lan−1.

∥∥Θ̄Gn(SX(f))− Θ̄W,P (f)
∥∥
∞ . LDn

√
n ln

(
n2L+1dmax

ρ

)
+ Cn

√
n ln

(
4dL
ρ

)
+ Lan−1 + bn.

(5.22)

Where Dn = maxlD
(l)
n , dmax = maxl dl, an = maxl a

(l)
n and . hides some multiplicative

constants which depend polynomially on λ
(1)
F,n, . . . λ

(L)
F,n, λR,n, µ

(l)
F and are bounded

over n.

Sketch of proof. (See Appendix 7 for full proof) We prove the result by induction

on the number of layers L. At each step, we bound ‖(SXf)
(L)
i − f (L)(Xi)‖ for all

i. This is done by conditioning over xi and finding a bound of∥∥∥F (L)
(
f (L−1)(xi), {{

(
f (L−1)(Xk),W (xi, Xk)

)
}}k 6=i

)
− f (L−1)(x1)

∥∥∥
∞

that does not depend on xi, using a succession of triangular inequalities, the
Lipschitz-type property from (v) of Assumption 5.6 and McDiarmid’s inequality.

We then turn it into a bound for ‖(SXf)
(L)
i − f (L)(Xi)‖ via the law of total

probability and conclude with a union bound over i. �

The asymptotic behavior of (5.21) is determined by Dn: if it does not decrease fast
enough, the inequality becomes meaningless. This suggests the following important
corollary.

Corollary 5.8 (Sufficient condition for MPGNN convergence on a random graph).

If Dn = o
(

1/
√
n lnn

)
then MAEX(ΘGn(SX(f)),ΘW,P (f)) converges in probability

towards 0.

This corollary provides a sufficient condition for a MPGNN on a random graph to
converge to its continuous counterpart on the random graph model: in words,
its aggregation function needs to have sharp enough bounded differences. We
investigate whether our Examples 1, 2, 3 and 4 have such sharp bounded differences
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Example Dn an bn Convergence by Th. 5.7
1-a O(1/n) 0 0 X
2-b O(1/n) O(1/

√
n) 0 X

3-c O(1/n) O(1/
√
n) 0 X

4-d Ω(1) − − 7

Table 1. Table summing up the results of Proposition 5.9.

and verify Assumption 5.6. Under mild regularity conditions this is the case for all
examples but Example 4.

Proposition 5.9. We present application of Theorem 5.7 on the Examples 1, 2
and 3 but not 4, the ψ(l) are supposed Lipschitz continuous and bounded. Additional
regularity assumptions are needed for some examples.

1-a Dn = O(1/n), an = bn = 0.

2-b Suppose there is α > 0 such that W > α. Then Dn = O(1/n), an =
O(1/

√
n) and bn = 0.

3-c Suppose there is α, β > 0 and λc > 0 such that α < c(x, y, t) < β and
|c(x, y, t)−c(x′, y′, t′)| ≤ λc(‖x−x′‖∞+‖y−y′‖∞+|t−t′|), ∀x, x′, y, y′, t, t′.
Then Dn = O(1/n), an = O(1/

√
n) and bn = 0.

4-d The bounded differences do not satisfy Corollary 5.8.

Proof. Calculation and verification of the Theorem’s assumptions are done in Appendix 9.
�

Table 1 sums up these results. For a network with max aggregation, the bounded
differences are not sharp enough for theorem 5.7 to conclude. We thus treat this
case separately in the next section.

5.2.2. Convergence of max aggregation MPGNNs

We would like to follow the same line of proof used in the proof of 4-d, but when
we reach Eq. (5.13), we need to be able to give an approximation of the measure
of a ball in X . To this end, we introduce the notion of volume retaining property.
The purpose is to estimate from below the measure of a ball centered anywhere in
X .

Definition 5.10 (Volume retaining property). We say that the probability space
(X , P ) has the (r0, κ)-volume retaining property if for any r ≤ r0 and for any
x ∈ X ,

(5.23) P (B(x, r) ∩ X ) ≥ κm(B(x, r))

Where B(x, r) is the ball of center x and radius r and m is the classical d-dimensional
Lebesgue measure in Rd.

This condition prevent X from having pathological shape at the boundary, such
as arbitrarily sharp peaks. When P itself is the Lebesgue measure on X , ts
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has a clear geometrical interpretation. For example, the complementary of the
union of two tangent open balls does not satisfy volume retention, since the peak
at the tangency point is too sharp. Whereas it is easy to see that the unit
hypercube [0, 1]d has the (1, 1/2d)-volume retaining property. This hypothesis
is standard in other related problems where one needs to estimate the measure
of balls in order to obtain some convergence rate, when it is also referred to as
the space being standard w.r.t.P . In Set Estimation, the goal is to estimate
the compact support of a probability distribution on a metric space. This is
typically done by considering the union of balls centered at points drawn from that
distribution [CF97, CRC04]. More contemporary, in Topological Data Analysis, it
is used to measure the convergence rate of persistence diagrams, when the data
is assumed to be drawn from a probability distribution supported on a compact
metric space [CGLM14].

For a volume retaining probability space, we prove the following concentration
inequality.

Lemma 5.11 (Concentration inequality for volume retaining space). Let g : X 2 →
Rd′ be λg-Lipschitz and (X , P ) have the (r, κ)-volume retaining property for some

r, κ > 0. Then for any ρ ≥ e−nκr
d
02
d

, for any random variables X1, . . . , Xn
iid∼ P ,

with probability at least 1− ρ:

‖ max
1≤i≤n

g(x,Xi)− sup g(x, ·)‖∞ ≤
λg
2

(
ln(d′/ρ)

nκ

)1/d

.

Proof. We write the proof assuming d′ = 1, the case d′ ≥ 1 follows easily by a union
bound. Clearly, volume-retention implies strict positiveness of the measure. The
proof is exactly the same as 4-d, until (5.12) where we use Lipschitz continuity to
get the bound

(5.24)
∣∣∣max

i
g(x,Xi)− sup g(x, ·)

∣∣∣ ≤ (1− P (B(x∗, ε/λg) ∩ X ))
n

By volume retention, for ε ≤ r0λg, (5.24) is bounded by

(5.25)

(
1− κ

(
2ε

λg

)d)n
≤ e
−nκ 2dεd

λdg ,

Which implies that for ρ ≥ e−nκrd02d with probability at least 1− ρ:

| max
1≤i≤n

g(x,Xi)− sup g(x, ·)| ≤ λg
2

(
ln(1/ρ)

nκ

)1/d

.

�

Armed with this lemma, we are now ready to state the non-asymptotic bound for
a MPGNN with max aggregation.

Theorem 5.12 (Non-asymptotic convergence of max-MPGNN towards cMPGNN).
Suppose, (X , P ) has the (r0, κ)-volume retaining property and that f,W and the ψ(l)
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are Lipschitz continuous. Let ρ ≥ 2L−1ne−nκr
d
02
d

and n large enough for 0 < ρ < 1
to hold. Then with probability at least 1− ρ:

(5.26) MAEX(ΘGn(SX(f)),ΘW,P (f) . L

(
1

n− 1
ln

(
2L−1ndmax

ρ

))1/d

,

and ∥∥Θ̄Gn(SX(f))− Θ̄W,P (f)
∥∥
∞(5.27)

. L

(
1

n− 1
ln

(
2Lndmax

ρ

))1/d

+

(
1

n
ln

(
2dL
ρ

))1/d

,

where dmax = maxl dl.

Since we made an assumption that involves the volume of a d-dimensional ball,
the convergence rate for max convolution depends on the dimension of the latent
space X ⊂ Rd, where it is roughly equal to O(n−1/d), as opposed to the generally
faster rate O(n−1/2) obtained with the McDiarmid’s method from Theorem 5.7.
Intuitively, this is to be expected, as the fast rate is akin to the central limit theorem,
while the rate for max convolution follows from the number of balls necessary
to cover the latent space (covering numbers), which scales exponentially in its
dimension.

5.3. Experimental illustrations

We illustrate the convergence rates from both Theorems 5.7 and 5.12 on toy examples.
The goal is to highlight the influence of the input dimension d on the convergence
rate. For both experiments, the MPGNN has four layers. Each layer uses a single
layer MLP with sigmoid activation function, and random weights in [0, 1] as the
message. A max and a mean aggregation are respectively used on the left and the
right sides of Figure 1. The input signal is a dot product with a random vector in
[0, 1]d, and the latent variables are uniformly distributed in [0, 1]d. Each experiment
is run for d = 2, 3, 5 and 10. The output of the limit c-MPGNN is approximated by
averaging over multiple experiments on large graphs in the mean case. Interestingly,
since we use only non-negative weights in the GNN and sigmoid preserves the sign,
the theoretical limit is known in the max case: it is obtained when all xi are equal
to the 1d vector.

We indeed observe that the convergence rate is in O(1/
√
n) for a mean aggregation,

no matter the dimension of the latent space. Whereas for a max aggregation, the
speed follows O(1/ d

√
n), with d being the latent space’s dimension.

6. Conclusion

In this work, we have defined continuous counterparts of MPGNNs with very
generic aggregation functions on a probability space with respect to a transition
kernel. We then have shown that under certain conditions, cMPGNNs are limits
of discrete MPGNNs on random graphs sampled from the corresponding random
graph model. Until now, similar result were known for SGNNs, which are more
restricted architectures, or for MPGNNs with a degree normalized mean aggregat-
ion. Our main contribution is to extend this to abstract MPGNNs with generic
aggregation functions. All along this paper, a focus is given on examples based on
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Figure 1. For both figures, the dashed lines represent the experimental
error as the graph size increases, while the full lines represent the
theoretical rates arising from Ths. 5.7 and 5.12. This experiment has
been conducted for various values of the latent space dimension d. The
theoretical rates are 1/

√
n for a mean aggregation and 1/ d

√
n for a max

aggregation. The plots are log scaled and the full lines have manually
been translated to improve readability.

mean or weighted mean aggregation (Examples 1, 2 and 3) and max aggregation
(Example 4), but our theorems are not limited to these examples and is in fact
verified for mild assumptions on the underlying model.

Throughout this paper, we have emphasized the fact that mean and max aggregat-
ion behave differently. Albeit, a link between the two still exists. One could consider
an aggregation function using a Lp-mean (a.k.a. generalized mean, or power mean,
or also Hölder mean). In this setup, assuming positive values everywhere, the mean
and max aggregation correspond to the cases p = 1 and p = ∞, respectively.
Nevertheless, a straightforward application of the McDiarmid inequality for a Lp-
mean MPGNN would give a convergence rate that involves O(1/ p

√
n), and this does

not match with the case p =∞, for which we obtained a rate in O(1/ d
√
n) using a

different concentration bound. Future work could try to come up with a proof on
Lp, which could unify the two approaches described in this paper.
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Appendices

7. Proof of Theorem 5.7

7.1. Equivariant case

We start with the equivariant case. We seek to bound:

MAEX (ΘGn(SX(f)),ΘW,P (f)) = max
1≤i≤n

∥∥∥(SXf)
(L)
i − SX(f (L))i

∥∥∥
= max

1≤i≤n

∥∥∥(SXf)
(L)
i − f (L)(Xi)

∥∥∥ .
We will prove the following sharper version of Theorem 5.7.

Theorem 7.1. Under same assumptions that Theorem 5.7 Let ρ > 0, then with
probability at least 1− ρ:

max
1≤i≤n

∥∥∥(SXf)
(L)
i − f (L)(Xi)

∥∥∥
≤

L∑
l=1

A(l,L)
n

[
D(l)
n

√
1

2
n ln

(
2L+2−lndl

ρ

)
+ a

(l)
n−1

](7.1)

Where A
(l,L)
n =

∏L
k=l+1(µ

(k)
F + λ

(k)
F,n−1) with the conventions

∏b
k=a(. . . ) = 1 and∑b

k=a(. . . ) = 0 if a > b.

Then Theorem 5.7 in the main text is actually the following corollary.

Corollary 7.2 (Theorem 5.7 in the main text). With probability at least 1− ρ:

max
i

∥∥∥(SXf)
(L)
i − f (L)(Xi)

∥∥∥
∞
. LDn

√
n ln

(
n2Ldmax

ρ

)
+ Lan.

Proof. The A
(l,L)
n =

∏L
k=l+1(µ

(k)
F + λ

(k)
F,n−1) are bounded over n by assumption.

Thus, the corollary comes directly from Theorem 7.1. �

Proof of Theorem 7.1. We prove the result by induction on L. Let ρ > 0, until the
end of this proof we denote by H(L)(ρ) the bound (7.1):

H(L)(ρ) =

L∑
l=1

A(l,L)
n

[
D(l)
n

√
1

2
n ln

(
2L+2−lndl

ρ

)
+ a

(l)
n−1

]
.

We recall those notations from Definition 5.2

F
(l+1)
P,n (f (l),W )(x)

= EX1,...,Xn

[
F (l+1)

(
f (l)(x), {{

(
f (l)(Xk),W (x,Xk)

)
}}1≤k≤n

)]
,

and,

F (l+1)
P (f (l),W )(x) = F (l+1)

P

(
f (l)(x),

(
f (l),W (x, ·)

))
= f (l+1)(x).
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Suppose L = 1, we shall find a quantity that bounds all the
∥∥∥(SXf)

(1)
i − f (1)(Xi)

∥∥∥
for i = 1, . . . , n with probability at least 1− ρ/n. Thereby, by a union bound, this
quantity will bound their maximum with probability at least 1− ρ.

Choose i ∈ {1, . . . , n} and xi ∈ X , consider∥∥∥F (1)
(
f (0)(xi), {{

(
f (0)(Xk),W (xi, Xk)

)
}}k 6=i

)
− f (1)(xi)

∥∥∥
∞
.

From a triangular inequality,∥∥∥F (1)
(
f0)(xi), {{

(
f (0)(Xk),W (xi, Xk)

)
}}k 6=i

)
− f (1)(xi)

∥∥∥
∞

≤
∥∥∥F (1)

(
f (0)(xi), {{

(
f (0)(Xk),W (xi, Xk)

)
}}k 6=i

)
− F (1)

P,n−1(f (0),W )(xi)
∥∥∥
∞

+
∥∥∥F (1)

P,n−1(f (0),W )(xi)− f (1)(x1)
∥∥∥
∞

≤
∥∥∥F (1)

(
f (0)(xi), {{

(
f (0)(Xk),W (xi, Xk)

)
}}k 6=i

)
− F (1)

P,n−1(f (0),W )(xi)
∥∥∥
∞

+ a
(1)
n−1.

(7.2)

by definition of an. Now we bound (7.2) with high probability using McDiarmid’s
inequality 10.2 on

F (1)
(
f (0)(xi), {{

(
f (0)(xk),W (xi, xk)

)
}}k 6=i

)
as a multivariate function of the n− 1 variables x2, . . . , xn.

We obtain that for any x1, with probability at least 1− ρ/n,∥∥∥F (1)
(
f (0)(xi), {{

(
f (0)(Xk),W (xi, Xk)

)
}}k 6=i

)
− f (1)(x1)

∥∥∥
∞

≤ D(1)
n

√
1

2
(n− 1) ln

(
2d1n

ρ

)
+ a

(1)
n−1

≤ D(1)
n

√
1

2
n ln

(
2d1n

ρ

)
+ a

(1)
n−1.

(7.3)

Hence, by conditioning over Xi and applying the law of total probability, (7.3)
yields with probability at least 1− ρ/n:

(7.4)
∥∥∥(SXf)

(1)
i − f

(1)(Xi)
∥∥∥
∞
≤ D(1)

n

√
1

2
n ln

(
2d1n

ρ

)
+ a

(1)
n−1.

And by a union bound, we can conclude that with probability at least 1− ρ:

(7.5) max
i

∥∥∥(SXf)
(1)
i − f

(1)(Xi)
∥∥∥
∞
≤ D(1)

n

√
1

2
n ln

(
2d1n

ρ

)
+ a

(1)
n−1 ≤ H(1)(ρ).
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Now suppose the theorem true for L ≥ 1. For any node i,

∥∥∥(SXf)
(L+1)
i − f (L+1)(Xi)

∥∥∥
∞

≤
∥∥∥(SXf)

(L+1)
i − F (L+1)

P,n−1(f (L),W )(Xi)
∥∥∥
∞

+
∥∥∥F (L+1)

P,n−1(f (L),W )(Xi) + f (L+1)(Xi)
∥∥∥
∞

≤
∥∥∥(SXf)

(L+1)
i − F (L+1)

P,n−1(f (L),W )(Xi)
∥∥∥
∞

+ a
(L+1)
n−1

≤
∥∥∥(SXf)

(L+1)
i − F (L+1)

(
f (L)(Xi), {{

(
f (L)(Xk),W (Xi, Xk)

)
}}k 6=i

)∥∥∥
∞

+
∥∥∥F (L+1)

(
f (L)(Xi), {{

(
f (L)(Xk),W (Xi, Xk)

)
}}k 6=i

)
− F (L+1)

P,n−1(f (L),W )(Xi)
∥∥∥
∞

+ a
(L+1)
n−1

≤ µ(L+1)
F

∥∥∥(SXf)
(L)
i − f (L)(Xi)

∥∥∥
∞

+ λ
(L+1)
F,n−1 max

j 6=i

∥∥∥(SXf)
(L)
j − f (L)(Xj)

∥∥∥
∞

+
∥∥∥F (L+1)

(
f (L)(Xi), {{

(
f (L)(Xk),W (Xi, Xk)

)
}}k 6=i

)
− F (L+1)

P,n−1(f (L),W )(Xi)
∥∥∥
∞

+ a
(L+i)
n−1 .

(7.6)

Where the last inequality comes from the Lipschitz-like regularity Assumption 5.6
(iv) on F (L+1). Now taking the maximum over the vertices:

max
i

∥∥∥(SXf)
(L+1)
i − f (L+1)(Xi)

∥∥∥
∞

≤ µ(L+1)
F max

i

∥∥∥(SXf)
(L)
i − f (L)(Xi)

∥∥∥
+ λ

(L+1)
F,n−1 max

i
max
j 6=i

∥∥∥∞(SXf)
(L)
j − f (L)(Xj)

∥∥∥
∞

+ max
i

∥∥∥F (L+1) (f(Xi), {{(f(Xk),W (Xi, Xk))}}k 6=i)− F (L+1)
P,n−1(f (L),W )(Xi)

∥∥∥
∞

+ a
(L+1)
n−1

≤ (µ
(L+1)
F + λ

(L+1)
F,n−1) max

i

∥∥∥(SXf)
(L)
i − f (L)(Xi)

∥∥∥
∞

+ max
i

∥∥∥F (L+1) (f(Xi), {{(f(Xk),W (Xi, Xk))}}k 6=i)− F (L+1)
P,n−1(f (L),W )(Xi)

∥∥∥
∞

+ a
(L+1)
n−1

(7.7)

because maxi maxj 6=i ai = maxi ai.

Finally, we bound (7.7) with high probability. The first term is handled by the
induction hypothesis. For the second term, by conditioning overXi, using McDiarmid
and a union bound, the same way we did in the case L = 1, we obtain with
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probability at least 1− ρ:

max
i

∥∥∥(SXf)
(L+1)
i − f (L+1)(Xi)

∥∥∥
∞

≤ (µ
(L+1)
F + λ

(L+1)
F,n−1)H(L)(ρ/2) +D(L+1)

n

√
1

2
n ln

(
4dL+1n

ρ

)
+ a

(L+1)
n−1

=

L∑
l=2

(µ
(L+1)
F + λ

(L+1)
F,n−1)A(l,L)

n D(l)
n

√
1

2
n ln

(
2L+1+2−lndl

ρ

)

+ (µ
(L+1)
F + λ

(L+1)
F,n−1)A(1,L)

n D(1)
n

√
1

2
n ln

(
2L+1nd1

ρ

)

+ (µ
(L+1)
F + λ

(L+1)
F,n−1)

L∑
l=1

A(l,L)
n a

(l)
n−1 +D(L+1)

n

√
1

2
n ln

(
4dL+1n

ρ

)
+ a

(L+1)
n−1

=

L∑
l=2

A(l,L+1)
n D(l)

n

√
1

2
n ln

(
2L+1+2−lndl

ρ

)

+A(1,L+1)
n D(1)

n

√
1

2
n ln

(
2L+1nd1

ρ

)

+

L∑
l=1

A(l,L+1)
n a

(l)
n−1 +D(L+1)

n

√
1

2
n ln

(
4dL+1n

ρ

)
+ a

(L+1)
n−1

=

L+1∑
l=2

A(l,L+1)
n D(l)

n

√
1

2
n ln

(
2L+1+2−lndl

ρ

)

+A(1,L+1)
n D(1)

n

√
1

2
n ln

(
2L+1nd1

ρ

)
+

L+1∑
l=1

A(l,L+1)
n a

(l)
n−1

≤
L+1∑
l=1

A(l,L+1)
n

[
D(l)
n

√
1

2
n ln

(
2L+1+2−lndl

ρ

)
+ a

(l)
n−1

]
= H(L+1)(ρ).

�

7.2. Invariant case

For the invariant case, we use the bound of the equivariant case previously obtained,
and we make an additional use of McDiarmid’s concentration bound.
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Proof. ∥∥Θ̄Gn(SX(f))− Θ̄W,P (f)
∥∥
∞

≤
∥∥∥R({{(SXf)

(L)
1 , . . . , (SXf)(L)n }}

)
−R

(
{{f (L)(X1), . . . , f (L)(Xn)}}

)∥∥∥
∞

+
∥∥∥R({{f (L)(X1), . . . , f (L)(Xn)}}

)
−RP,n(f (L))

∥∥∥
∞

+
∥∥∥RP,n(f (L))−RP (f (L))

∥∥∥
∞

≤ λR,n max
i

∥∥∥(SXf)
(L)
i − f (L)(Xi)

∥∥∥
∞

+
∥∥∥R({{f (L)(X1), . . . , f (L)(Xn)}}

)
−RP,n(f (L))

∥∥∥
∞

+ bn

(7.8)

Using the bound of the equivariant case, McDiarmid’s inequality and the fact that
(λR,n) is bounded, we get that, with probability at least 1− ρ:∥∥Θ̄Gn(SX(f))− Θ̄W,P (f)

∥∥
∞ . LDn

√
n ln

(
n2L+1dmax

ρ

)
+ Cn

√
n ln

(
4dL
ρ

)
+ Lan−1 + bn

�

8. Proof of Theorem 5.12

We will need the following property.

Proposition 8.1. Under the hypothesis of Theorem 5.12, The functions f (0), . . . , f (L)

are Lipschitz continuous. We denote by λf = λf(0) , . . . , λf(L) their Lipschitz constants.

Proof. It is already assumed for l = 0. Suppose it is true for l ≥ 1, f (l+1)(x) =
supyW (x, y)ψ(l+1)(f (l)(y)) = supy g(x, y) where g is λW ‖ψ(l+1)◦f (l)‖∞+λψ(l)λf(l)

Lipschitz. Then from Lemma 10.5 f (l+1) is also Lipschitz. �

8.1. Equivariant case

We will prove the following sharper version of Theorem 5.12

Theorem 8.2. Suppose, (X , P ) has the (r0, κ)-volume retaining property and that

f,W and the ψ(l) are Lipschitz continuousLet ρ ≥ 2L−1ne−nκr
d
02
d

and n large
enough for 0 < ρ < 1 to hold. Then with probability at least 1− ρ:

max
1≤i≤n

∥∥∥(SXf)
(L)
i − f (L)(Xi)

∥∥∥
∞

≤
L∑
l=1

B(l,L)λf(l)

2

(
1

nκ
ln

(
2L+1−lndl

ρ

))1/d(8.1)

Where B(l,L) =
∏L
k=l+1 λψ(k) with the conventions

∏b
k=a = 1 and

∑b
k=a = 0 if

a > b.

Corollary 8.3 (Theorem 5.12 in the main text). Suppose, (X , P ) has the (r0, κ)-
volume retaining property and that f,W and the ψ(l) are Lipschitz continuous. Let
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ρ ≥ 2L−1ne−nκr
d
02
d

and n large enough for 0 < ρ < 1 to hold. Then with probability
at least 1− ρ:

max
1≤i≤n

∥∥∥(SXf)
(L)
i − f (L)(Xi)

∥∥∥
∞
. L

(
1

n
ln

(
2L−1ndmax

ρ

))1/d

Proof of theorem 8.2. Let ρ > 0. We will prove the theorem by induction on L.
Until the end of the proof, we denote by H(L)(ρ) the bound (8.1):

H(L)(ρ) =

L∑
l=1

B(l,L)λf(l)

2

(
1

nκ
ln

(
2L+1−lndl

ρ

))1/d

.

For L = 1, let us note g(x, y) = W (x, y)ψ(1)(f (0)(y)). The map g is λf(1) =

λψ(1)λf(0) + ‖ψ(1) ◦ f (0)‖∞λW Lipschitz continuous from Property 8.1. Fix i ∈
{1, . . . , n} and xi ∈ X , by lemma 5.11, for ρ ≥ ne−nκrd02d , with probability at least
1− ρ/n, we have∥∥∥∥max

j 6=i
g(x,Xj)− sup

y∈X
g(x, y)

∥∥∥∥
∞
≤
λf(1)

2

(
1

(n− 1)κ
ln

(
nd0
ρ

))1/d

∀x ∈ X .

Thus, by the law of total probability, with probability at least 1− ρ/n,∥∥∥∥max
j 6=i

g(Xi, Xj)− sup
y∈X

g(Xi, y)

∥∥∥∥
∞
≤
λf(1)

2

(
1

(n− 1)κ
ln

(
nd0
ρ

))1/d

.

And by maximizing over i and doing a union bound, for ρ ≥ ne−nκr
d
02
d

, with
probability at least 1− ρ:

max
i

∥∥∥(SXf)
(1)
i − f

(1)(Xi)
∥∥∥
∞
≤
λf(1)

2

(
1

(n− 1)κ
ln

(
nd0
ρ

))1/d

≤ H(1)(ρ).

That concludes the case L = 1. Now let L ≥ 1, fix i ∈ {1, . . . , n}:

∥∥∥(SXf)
(L+1)
i − f (L+1)(Xi)

∥∥∥
∞

=

∥∥∥∥max
j 6=i

W (Xi, Xj)ψ
(L+1)((SXf)

(L)
j )− f (L+1)(Xj)

∥∥∥∥
∞

≤
∥∥∥∥max
j 6=i

W (Xi, Xj)ψ
(L+1)((SXf)

(L)
j )−max

j 6=i
W (Xi, Xj)ψ

(L+1)(f (L)(Xj))

∥∥∥∥
∞

+

∥∥∥∥max
j 6=i

W (Xi, Xj)ψ
(L+1)(f (L)(Xj))− sup

y∈X
W (Xi, y)ψ(L+1)(f (L)(y))

∥∥∥∥
∞

≤ λψ(L+1) max
j 6=i

∥∥∥(SXf)
(L)
j − f (L)(Xj)

∥∥∥
∞

+

∥∥∥∥max
j 6=i

W (Xi, Xj)ψ
(L+1)(f (L)(Xj))− sup

y∈X
W (Xi, y)ψ(L+1)(f (L)(y))

∥∥∥∥
∞

(8.2)
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Where the last inequality uses Lemma 10.4, |W | ≤ 1, and Lipschitz continuity of
ψ(L+1). Thus taking the maximum over i:

max
i

∥∥∥(SXf)
(L+1)
i − f (L+1)(Xi)

∥∥∥
∞

≤ λψ(L+1) max
i

∥∥∥(SXf)
(L)
j − f (L)(Xj)

∥∥∥
∞

+ max
i

∥∥∥∥max
j 6=i

W (Xi, Xj)ψ
(L+1)(f (L)(Xj))− sup

y∈X
W (Xi, y)ψ(L+1)(f (L)(y))

∥∥∥∥
∞

(8.3)

Now we bound (8.3) with high probability. We use the induction hypothesis for the
first term. For the second term, we set g(x, y) = W (x, y)ψ(L+1)(f (L)(y)) and use
lemma 5.11 on g which is λf(L+1) = λψ(L+1)λf(L) + ‖ψ(L+1) ◦ f (L)‖∞λW Lipschitz.
The method is the same as in the case L = 1 and by conditioning over Xi followed

by a union bound. We obtain that for ρ ≥ 2Lne−nκr
d
02
d

, with probability at least
1− ρ:

max
i

∥∥∥(SXf)
(L+1)
i − f (L+1)(Xi)

∥∥∥
∞

≤ λψ(L+1)H(L)(ρ/2) +
λf(L+1)

2

(
1

(n− 1)κ
ln

(
2ndL
ρ

))1/d

=

L∑
l=2

λψ(L+1)B(l,L)λf(l)

2

(
1

(n− 1)κ
ln

(
2L+2−lndl

ρ

))1/d

+ λψ(L+1)B(1,L)λf(1)

2

(
1

(n− 1)κ
ln

(
2Lnd0
ρ

))1/d

+
λf(L+1)

2

(
1

(n− 1)κ
ln

(
2ndL
ρ

))1/d

=

L∑
l=2

B(l,L+1)λf(l)

2

(
1

(n− 1)κ
ln

(
2L+2−lndl

ρ

))1/d

+B(1,L+1)λf(1)

2

(
1

(n− 1)κ
ln

(
2Lnd0
ρ

))1/d

+
λf(L+1)

2

(
1

(n− 1)κ
ln

(
2ndL
ρ

))1/d

=

L+1∑
l=2

B(l,L+1)λf(l)

2

(
1

(n− 1)κ
ln

(
2L+2−lndl

ρ

))1/d

+B(1,L+1)λf(1)

2

(
1

(n− 1)κ
ln

(
2Lnd0
ρ

))1/d

≤ H(L+1)(ρ).

�
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8.2. Invariant case

Theorem 8.4. Suppose, (X , P ) has the (r0, κ)-volume retaining property and that

f,W and the ψ(l) are Lipschitz continuous. Let ρ ≥ 2L−1ne−nκr
d
02
d

and n large
enough for 0 < ρ < 1 to hold. Then with probability at least 1− ρ:∥∥Θ̄Gn(SX(f))− Θ̄W,P (f)

∥∥
∞ . L

(
1

n− 1
ln

(
2Lndmax

ρ

))1/d

+

(
1

n
ln

(
2dL
ρ

))1/d

.

Proof. ∥∥Θ̄Gn(SX(f))− Θ̄W,P (f)
∥∥
∞ =

∥∥∥max
i

(SXf)
(L)
i − sup f (L)

∥∥∥
∞

≤
∥∥∥max

i
(SXf)

(L)
i −max

i
f (L)(Xi)

∥∥∥
∞

+
∥∥∥max

i
f (L)(Xi)− sup f (L)

∥∥∥
∞

≤ max
i

∥∥∥(SXf)
(L)
i − f (L)(Xi)

∥∥∥
∞

+
∥∥∥max

i
f (L)(Xi)− sup f (L)

∥∥∥
∞
.

Using the bound for the equivariant case and Lemma 5.11 on f (L), we obtain the
result. �

9. Examples

For notational convenience, we drop any subscript or superscript referring to layers.
Recall that ψ is supposed Lipschitz and bounded, we denote λψ its Lipschitz
constant and ‖ψ‖∞ = supx ‖ψ(x)‖∞. For Examples 1, 2 and 3,

• We check Assumptions 5.6.

• We compute the an from (5.17).

• We compute the bounded differences

For Example 4, we show that the bounded differences are not sharp enough.

9.1. Examples 1 and a: Convolutional message passing with mean aggregation

Check of Assumptions 5.6. Let x, x′ ∈ Rdl−1 and m = {{(yi, ti), }}1≤i≤n,m′ =
{{(y′i, t′i)}}1≤i≤n ⊂ Rdl−1 × [0, 1].

‖F (x,m)− F (x′,m′)‖∞ ≤
1

n

∑
1≤i≤n

‖tiψ(yi)− t′iψ(y′i)‖∞

≤ 1

n

∑
1≤i≤n

‖tiψ(yi)− tiψ(y′i)‖∞ + ‖tiψ(y′i)− t′iψ(y′i)‖∞

≤ 1

n

∑
1≤i≤n

λψ ‖yi − y′i‖+ ‖ψ‖∞ |ti − t′i|

≤ max (λψ, ‖ψ‖∞) max
1≤i≤n

‖yi − y′i‖∞ + |ti − t′i|.

This inequality does not depend on any ordering of the (y′i, t
′
i) so that

‖F (x,m)− F (x′,m′)‖∞ ≤ max (λψ, ‖ψ‖∞) max
1≤i≤n

‖yi − y′σ(i)‖∞ + |ti − t′σ(i)|

for any permutation σ. Taking the minimum over Sn we get the Assumption with
µF = 0 and λF,n = max (λψ, ‖ψ‖∞) which is bounded over n.
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Calculation of an. By linearity of the expected value, it is clear that for any

X1, . . . , Xn
iid∼ P and any f ,

E

[
1

n

∑
i

W (x,Xi)ψ(Xi)

]
= E [W (x,X1)ψ(X1)] =

∫
X
W (x, y)ψ(y)dP (y) ∀x

So an = 0.

Calculation of bounded differences Dn. Let x1, xn and x′2, . . . , x
′
n be such

that xi = x′i except at i = 2

‖F (f(x1), {{(f(xk),W (x1, xk))}}2≤k≤n)− F (f(x1), {{(f(x′k),W (x1, x
′
k))}}2≤k≤n)‖∞

=
1

n− 1

∥∥∥W (x1, x2)ψ(f(x2))−W (x1, x
′
2)ψ(l)(f(x′2))

∥∥∥
= O(1/n).

Since ψ ◦ f is bounded.

9.2. Example 2 and b: Degree normalized convolutional message passing with

sum aggregation

We make the additional assumption that there exists α > 0 such that W (x, y) >
α, ∀x, y.

Check of Assumption 5.6. Let x, x′ ∈ Rd and m = {{(yi, ti), }}1≤i≤n,m′ =
{{(y′i, t′i)}}1≤i≤n ⊂ Rdl−1 × [α, 1].

‖F (x,m)− F (x′,m′)‖∞ ≤
∑

1≤i≤n

∥∥∥∥ tiψ(yi)∑
k tk

− t′iψ(yi)∑
k t
′
k

∥∥∥∥
∞

=
∑

1≤i≤n

∥∥∥∥∑k t
′
ktiψ(yi)−

∑
k tkt

′
iψ(y′i)∑

k tk
∑
k t
′
k

∥∥∥∥
∞

≤ 1

n2α2

∑
1≤i,k≤n

‖t′ktiψ(yi)− tkt′iψ(y′i)‖∞

≤ 1

n2α2

∑
1≤i,k≤n

‖t′ktiψ(yi)− t′kt′iψ(y′i)‖∞ + ‖t′kt′iψ(y′i)− tkt′iψ(y′i)‖∞

≤ 1

n2α2

∑
1≤i,k≤n

‖tiψ(yi)− t′iψ(y′i)‖∞ + ‖t′kψ(y′i)− tkψ(y′i)‖∞

≤ 1

n2α2

∑
1≤i,k≤n

‖tiψ(yi)− tiψ(y′i)‖∞ + ‖tiψ(y′i)− t′iψ(y′i)‖∞ + ‖ψ‖∞|tk − t′k|

≤ 1

n2α2

∑
1≤i,k≤n

λψ ‖yi − y′i‖∞ + ‖ψ‖∞|ti − t′i|+ ‖ψ‖∞|tk − t′k|

≤ 1

α2

(
λψ max

i
‖yi − y′i‖∞ + 2‖ψ‖∞max

i
|ti − t′i|

)
=

max (λψ, 2‖ψ‖∞)

α2
max
1≤i≤n

‖yi − y′i‖∞ + |ti − t′i|.
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This inequality does not depend on any ordering of the (y′i, t
′
i) so that

‖F (x,m)− F (x′,m′)‖∞ ≤
max (λψ, 2‖ψ‖∞)

α2
max
1≤i≤n

‖yi − y′σ(i)‖∞ + |ti − t′σ(i)|

for any permutation σ. Taking the minimum over Sn we get the Assumption with

µF = 0 and λF,n =
max(λψ,2‖ψ‖∞)

α2 which is bounded over n.

Calculation of an. This calculation has already been done in Example 2-b. We
obtain an = O(1/

√
n).

Calculation of bounded differences Dn. Let x1, . . . , xn and x′2, . . . , x
′
n be such

that xi = x′i except at i = 2. This is the same calculation as the previous paragraph
where x = x′ = f(x1), yi = f(xi), y

′
i = f(x′i), ti = W (x1, xi) and t′i = W (x1, x

′
i)

for i ≥ 2. We get

‖F (f(x1), {{(f(xk),W (x1, xk))}}2≤k≤n)− F (f(x1), {{(f(x′k),W (x1, x
′
k))}}2≤k≤n)‖∞

≤ 1

(n− 1)2α2

∑
1≤i,k≤n−1

λψ ‖f(xi)− f(x′i)‖∞ + ‖ψ‖∞|W (x1, xi)−W (x1, x
′
i)|

+ ‖ψ‖∞|W (x1, xk)−W (x1, x
′
k)|

=
1

(n− 1)2α2
((n− 1)λψ ‖f(x2)− f(x′2)‖∞ + (n− 1)‖ψ‖∞|W (x1, x2)−W (x1, x

′
2)|

+ (n− 1)‖ψ‖∞|W (x1, x2)−W (x1, x
′
2)|)

≤ 2λψ‖f‖∞ + 4‖ψ‖∞
(n− 1)α2

= O(1/n)

= Dn.

So Dn = O(1/n).

9.3. Example 3 and c: Attentional message passing with sum aggregation

We make the additional assumption that there exists α, β > 0 and λc > 0 such that
α < c(x, y, t) < β and |c(x, y, t)− c(x′, y′, t′)| ≤ λc(‖x−x′‖∞+‖y−y′‖∞+ |t− t′|),
∀x, x′, y, y′, t, t′. As a consequence, c is bounded on any compact set.

Check of Assumption 5.6. Let x, x′ ∈ Rd and m = {{(yi, ti), }}1≤i≤n,m′ =
{{(y′i, t′i)}}1≤i≤n ⊂ Rdl−1 × [0, 1]. Let us shorten c(x, yi, ti) and c(x, y′i, t

′
i) as ci and

c′i.
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‖F (x,m)− F (x′,m′)‖∞ ≤
∑

1≤i≤n

∥∥∥∥ciψ(yi)∑
k ck

− c′iψ(yi)∑
k c
′
k

∥∥∥∥
∞

=
∑

1≤i≤n

∥∥∥∥∑k c
′
ktiψ(yi)−

∑
k ckc

′
iψ(y′i)∑

k ck
∑
k c
′
k

∥∥∥∥
∞

≤ 1

n2α2

∑
1≤i,k≤n

‖c′kciψ(yi)− ckc′iψ(y′i)‖∞

≤ 1

n2α2

∑
1≤i,k≤n

‖c′kciψ(yi)− c′kc′iψ(y′i)‖∞ + ‖c′kc′iψ(y′i)− ckc′iψ(y′i)‖∞

≤ β

n2α2

∑
1≤i,k≤n

‖ciψ(yi)− c′iψ(y′i)‖∞ + ‖c′kψ(y′i)− ckψ(y′i)‖∞

≤ β

n2α2

∑
1≤i,k≤n

‖ciψ(yi)− ciψ(y′i)‖∞ + ‖ciψ(y′i)− c′iψ(y′i)‖∞ + ‖ψ‖∞|ck − c′k|

≤ β

n2α2

∑
1≤i,k≤n

λψβ ‖yi − y′i‖∞ + ‖ψ‖∞|ci − c′i|+ ‖ψ‖∞|ck − c′k|

≤ β

n2α2

∑
1≤i,k≤n

λψβ ‖yi − y′i‖∞ + ‖ψ‖∞λc(‖x− x′‖∞ + ‖yi − y′i‖∞ + |ti − t′i|)

+ ‖ψ‖∞λc(‖x− x′‖∞ + ‖yk − y′k‖∞ + |tk − t′k|)

≤ 2β‖ψ‖∞λc
α2

‖x− x′‖∞ +
βmax (βλψ, 2‖ψ‖∞λc)

α2
max
1≤i≤n

‖yi − y′i‖∞ + |ti − t′i|.

This inequality does not depend on any ordering of the (y′i, t
′
i) so that

‖F (x,m)− F (x′,m′)‖∞ ≤
2β‖ψ‖∞λc

α2
‖x− x′‖∞

+
βmax (βλψ, 2‖ψ‖∞λc)

α2
max
1≤i≤n

‖yi − y′σ(i)‖∞ + |ti − t′σ(i)|

for any permutation σ. Taking the minimum over Sn we get the Assumption with

µF = 2β‖ψ‖∞λc
α2 and λF,n =

βmax(βλψ,2‖ψ‖∞λc)
α2 which are bounded over n.

Calculation of an. Let us denote V (x, y) = c(f(x), f(y),W (x, y)). ForX1, . . . , Xn
iid∼

P , we have ∀x∫
X

c(f(x), f(y),W (x, y))ψ(f(y))∫
X c(f(x), f(y),W (x, y))dP (t)

dP (y) =

∫
X

V (x, y)ψ(f(y))∫
X V (x, t)dP (t)

dP (y)

=
E [V (x,X1)ψ(f(X1))]

E [V (x,X1)]
,

and

E
[∑

i V (x,Xi)ψ(f(Xi))∑
kW (x,Xk)

]
= E

[ 1
n

∑
i V (x,Xi)ψ(f(Xi))
1
n

∑
k V (x,Xk)

]
.

This is the same setup as in example 2, with V instead of W and α < V < β
instead of α < W < 1. So the same calculation gives the result with an = O(1/

√
n)
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Calculation of bounded differences Dn. Let x1, xn and x′2, . . . , x
′
n be such

that xi = x′i except at i = 2. Using again the notation V (x, y) = c(f(x), f(y),W (x, y))
and the fact that V is bounded by β, we end up performing the same calculation
as in the case of example 3-c. We get

‖F (f(x1), {{(f(xk),W (x1, xk))}}2≤k≤n)− F (f(x1), {{(f(x′k),W (x1, x
′
k))}}2≤k≤n)‖∞

≤ 1

(n− 1)2α2

∑
1≤i,k≤n−1

λψβ ‖f(xi)− f(x′i)‖∞ + ‖ψ‖∞|V (x1, xi)− V (x1, x
′
i)|

+ ‖ψ‖∞|V (x1, xk)− V (x1, x
′
k)|

=
1

(n− 1)2α2
((n− 1)λψβ ‖f(x2)− f(x′2)‖∞ + (n− 1)‖ψ‖∞|V (x1, x2)− V (x1, x

′
2)|

+ (n− 1)‖ψ‖∞|V (x1, x2)− V (x1, x
′
2)|)

≤ 2λψ‖f‖∞β + 4‖ψ‖∞β
(n− 1)α2

= O(1/n)

= Dn.

So Dn = O(1/n).

9.4. Example 4 and d Convolutional Message Passing with max aggregation

Here we check the bounded differences are not sharp.

Bounded differences are not sharp. We show that the function mapping
(x1, . . . , xn) to maxiW (x, xi)ψ(f(xi)) has no bounded differences in o(1/

√
n lnn).

Call g(x, y) = W (x, y)f (l−1)(y), and (g1, . . . , gdl) its components which are real
functions. We suppose g not constant, so there is k such that gk is not constant,
say k = 1. By compactness and continuity of g1 there is x∗ such that g(x, x∗) =
supyg(x, y). Since g1 is not constant, for any n, there exist x1, . . . , xn such that
g(x, x1), . . . , g(x, xn) are all strictly smaller that g(x, x∗). Up to reordering them
we suppose g(x, x1) = max2≤i≤n g(x, xi) and call α = |g1(x, x∗)− g1(x, x1)| > 0.

‖max{g(x, x∗), g(x, x2), . . . , g(x, xn)} −max{g(x, x1), g(x, x2), . . . , g(x, xn)}‖∞
≥ |max{g1(x, x∗), g1(x, x2), . . . , g1(x, xn)} −max{g1(x, x1), g1(x, x2), . . . , g1(x, xn)}|
= |g1(x, x∗)− g1(x, x1)|
> α.

So for any n

α < sup ‖max{g(x, x1), . . . , g(x, xn)} −max{g(x, x′1), . . . , . . . , g(x, x′n)}‖∞
where the supremum is taken over x, x2, . . . , xn, x

′
2, . . . , x

′
n ∈ X such that (x2, . . . , xn)

and (x′2, . . . , x
′
n) differ from only one component. That proves that the bounded

differences are not o(1/
√
n lnn).

10. Useful results

The following remark can be useful,



CONVERGENCE OF MPGNN WITH GENERIC AGGREGATION 37

Theorem 10.1 (McDiarmid inequality [BLM13]). Suppose E is a probability space
and let f : En → R be a function of n variables. Suppose that f satisfies the
bounded differences property with the n nonnegative constants c1, . . . , cn. Then for
any independent random variables X1, . . . , Xn in E, for any ε > 0:

P(|f(X1, . . . , Xn)− E(f(X1, . . . , Xn))| > ε) ≤ 2e
− 2ε2∑n

i=1
c2
i .

Notice that the Xi are not required to be identically distributed. By a union bound
and reformulating Proposition 10.1 to a bound with high probability one can obtain
the following result for function taking multidimensional values.

Corollary 10.2 (Multi dimensional McDiarmid inequality). Suppose that f : En →
Rd satisfies a vectorial version on the bounded difference: ‖f(x) − f(x′)‖∞ ≤ ci
whenever x and x′ differ only from the i-th component. Then for any independent
random variables X1, . . . , Xn in E, for any ρ > 0:

‖f(X1, . . . , Xn)− E(f(X1, . . . , Xn))‖∞ ≤

√√√√1

2

n∑
i=1

c2i ln

(
2d

ρ

)
holds with probability at least 1− ρ.

Lemma 10.3. Suppose P is strictly positive i.e.: for all U ⊂ Rd, P (U ∩X ) > 0 if
and only if U ∪ X is nonempty. Then for any continuous map f : X → R,

ess sup
P

f = sup f < +∞.

Proof. Clearly ess sup
P

f ≤ sup f and sup f < +∞ by continuity and compactness.

Suppose that ess sup
P

f < sup f then there is M such that ess sup
P

f < M < sup f .

By definition of sup f , the set (f > M) = f−1(]M ; +∞[) is nonempty, it is also a
relative open of X since it is the inverse image of an open by a continuous map.
Thus, this set has strictly positive measure, which yields a contradiction with the
fact that ess sup

P
f < M . �

Lemma 10.4. Let (ai)i∈I and (bi)i∈I be two finite families of vectors in Rm. We
have the following properties:

(i) ‖maxi ai‖∞ ≤ maxi ‖ai‖∞.

(ii) ‖maxi ai −maxi bi‖∞ ≤ maxi ‖ai − bi‖∞.

Proof. (i)For m = 1, ai ≤ |ai| =⇒ maxi ai ≤ maxi |ai| =⇒ |maxi ai| ≤
|maxi |ai|| = maxi |ai|. Form ≥ 1, ‖maxi ai‖∞ = maxk |maxi a

(k)
i | ≤ maxk maxi |a(k)i | =

maxi maxk |a(k)i | = maxi ‖ai‖∞.

(ii) For m = 1. Let ia (resp. ib) be an index that realizes maxi ai (resp. maxi bi).
We have

max
i
ai −max

i
bi = aia − bib = aia − bia + bia − bib︸ ︷︷ ︸

≤0

≤ aia − bia ≤ max
i
ai − bi ≤ |max

i
ai − bi| ≤ max

i
|ai − bi|.
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Then analogously maxi bi −maxi ai ≤ maxi |bi − ai| = maxi |ai − bi|.
Form ≥ 1, ‖maxi ai−maxi bi‖∞ = maxk |maxi a

(k)
i −maxi b

(k)
i | ≤ maxk maxi |a(k)i −

b
(k)
i | = maxi ‖ai − bi‖∞. �

Lemma 10.5. Let g : X × X → Rm be λg-Lipschitz continuous. Then f : x 7→
supy∈X g(x, y) is also λg-Lipschitz continuous.

Proof. For m = 1. Let x, x′ ∈ X , by continuity on a compact, ∃ x∗, x′∗ such that
f(x) = g(x, x∗) and f(x′) = g(x′, x′∗). Then f(x) − f(x′) = g(x, x∗) − g(x′, x∗) +
g(x′, x∗)− g(x′, x′∗)︸ ︷︷ ︸

≤0

≤ λg‖x−x′‖∞, and permuting x and x′ we obtain the Lipschitz

condition.
Form ≥ 1, ‖f(x)−f(x′)‖∞ = maxi | supy gi(x, y)−supy gi(x

′, y)| = maxi |gi(x, x∗)−
gi(x

′, x′∗)| ≤ maxi λg‖x− x′‖∞ = λg‖x− x′‖∞. �
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