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CONVERGENCE OF MESSAGE PASSING GRAPH NEURAL

NETWORKS WITH GENERIC AGGREGATION ON LARGE

RANDOM GRAPHS

MATTHIEU CORDONNIER†, NICOLAS KERIVEN‡, NICOLAS TREMBLAY†,
AND SAMUEL VAITER§

Abstract. We study the convergence of message passing graph neural networks
on random graph models to their continuous counterpart as the number of

nodes tends to infinity. Until now, this convergence was only known for

architectures with aggregation functions in the form of degree-normalized means.
We extend such results to a very large class of aggregation functions, that

encompasses all classically used message passing graph neural networks, such

as attention-based mesage passing or max convolutional message passing on
top of (degree-normalized) convolutional message passing. Under mild assum-

ptions, we give non asymptotic bounds with high probability to quantify

this convergence. Our main result is based on the McDiarmid inequality.
Interestingly, we treat the case where the aggregation is a coordinate-wise

maximum separately, at it necessitates a very different proof technique and
yields a qualitatively different convergence rate.

1. Introduction

Graph Neural Networks (GNNs) [1,2] are deep learning architectures largely inspired
by Convolutional Neural Networks, that aim to extend convolutional methods to
signal on graphs. GNNs are in practice of great interest as a large variety of real
data live on an underlying graph structure. Examples of data for which GNNs
have achieved state-of-the-art performance in the recent past include chemistry
molecules, biological proteins and node clustering [3–5].

The duality of the convolutional product has led to two ways of defining GNNs.
On the one hand, convolution as a pointwise product of frequencies in the Fourier
domain has justified the design of so-called Spectral Graph Neural Networks [6]
(SGNNs), in which one introduces a graph Fourier transform through a chosen
graph shift operator [7] to legitimate the use of polynomial filters. On the other
hand, the spatial interpretation sees the convolution as local aggregations of neigh-
borhood information, leading to Message Passing Neural Networks (MPGNNs) [3,
8]. The message passing paradigm consists of iteratively updating each node via the
aggregation of messages from each of its neighbors. This framework is often favored
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due to its inherent flexibility: messages and aggregation functions are unconstrained
as long as they stay invariant to node reordering, i.e., as long as they match on
isomorphic graphs. Besides, SGNNs layers are mostly made of polynomials of graph
shift operators which are a form of message passing, defined by a choice of graph
shift operator and a polynomial degree. As such, SGNNs can be seen as a subcase
of the more versatile message-passing framework.

From a theoretical perspective, the study of GNNs’ expressivity, i.e., the class of
functions that GNNs can approximate, is an active research topic. While it is well
known that multi-layer perceptrons are universal approximators [9, 10], the case
is more involved for GNNs. Recent research has shown that their approximation
power is equivalent to their ability to distinguish non isomorphic graphs [11], but
cannot significantly outperform the so-called Weisfeiler-Lehman algorithm [12].
However, that point of view becomes questionable when dealing with very large
graphs: it may turn irrelevant to focus on one-to-one correspondences between
nodes and edges, especially given that real-world networks are rarely fully known
and their structure may evolve quickly over time. In such cases, one should rather
focus on global properties such as the degree distribution, the size of connected
components, etc.

For that purpose, random graph models with growing number of nodes are privileged
tools. Several papers have therefore focused on GNNs for large random graphs.
In [13], it is shown that some class of GNN classifier will map a graph to a certain
output with probability either zero or one, in the large graph limit. In [14–17],
the authors show that SGNNs or MPGNNs with degree normalized aggregation,
converge to a limit continuous architecture, which is called cGNN in [14, 15]. The
discriminative power of those cGNNs have been studied in [18]. Most of them use
dense random graph models where nodes are sampled from a compact metric space
(X , P ) and randomly connected through a kernelW : X 2 → [0, 1] according to their
latent positions. More precisely, they define a continuous equivalent of the discrete
GNN as a deep architecture that propagates functions over the latent space and
they show that, under mild regularity conditions, the discrete network converges to
the continuous counterpart.

Contributions. In this paper, we study the convergence toward a continuous
counterpart of MPGNNs with a generic aggregation function, whereas previous
work [14–17] are restricted to SGNNs or MPGNNs with specific aggregations.
Our main result, Theorem 5.7, states that for MPGNNs having a Lipschitz-type
regularity, the discrete network on a large random graph is closed to is continuous
counterpart with high probability. We quantify this convergence via a non asympto-
tic bound based on the well-known McDiarmid concentration inequality for multi-
variate functions of independent random variables. A special treatment is given to
the case where the aggregation is a coordinate-wise maximum, for which Theorem 5.7
does not hold. In this case, we provide another non asymptotic proof of convergence
towards a continuous counterpart, based on different concentration inequalities, in
Theorem 5.12.

Related work. A classical method to gain insights on limits of discrete mathema-
tical concepts is to embed them into a continuous framework. The Stirling formula
or the Central Limit Theorem are two such examples. For graphs, a limit theory
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has been initiated in the 2000’s mainly by Lováz ans Szegedy [19]. They define
a limit of graph as a kernel W : X 2 → [0, 1] and call such a kernel a graphon.
Further, they show that if one endows the space of graphons with a wisely chosen
metric, one obtains a complete compact metric space. Moreover one can embed
the set of all finite graphs in the space of graphons in such a way that makes
this embedding dense. Conversely, a graphon on a probability space defines a
random graph model. This type of random graphs model is very general and
encompasses a lot of other models such as stochastic block models or Erdős–Rényi
models. The idea of studying GNN limits from the point of view of graphons is not
new: for instance, authors in [20] show that a SGNN trained on a random graph
will perform well on another graph drawn from the same graphon. In [13], it is
shown that GNN classifiers will match Erdős–Rényi random graphs to a particular
output with probability either zero or one in the limit. Closer to this work are
our previous articles [14, 15] in which we prove the convergence of SGNNs defined
on a random graph model to continuous equivalents and then study their stability
to deformation of the underlying graph model. Also, in [17], the authors prove
convergence of MPGNNs in the particular case where the aggregation is a degree
normalized mean, and use this result to further establish a generalization bound.
The case where the aggregation function is a maximum is often mentioned as a
straightforward possibility for MPGNNs, it is even implemented as a default option
in popular python library such as PyTorch [21]. However, it is actually rarely
considered in the literature: to our knowledge, [22] is the only work that makes
significant use of it.

Outline In Section 2, we give some basic definitions. In Section 3 we define
MPGNNs with a generic aggregation function as deep architectures that propagate
a signal over a graph and that must be coherent to graph isomorphism. In Section 4
we introduce continuous-MPGNN (cMPGNN) which are the counterpart of discrete
MPGNNs that propagate a function over a compact probability space, alongside a
connectivity kernel. As a discrete MPGNNmust be symmetric to graph isomorphism,
we demand the cMPGNN to be symmetric to probability space isomorphism. In
Section 5, we focus on MPGNNs when applied on random graphs and describe what
class of cMPGNN would be their natural limit. Our main result is Theorem 5.7:
it provides necessary conditions under which the discrete network converges to its
continuous counterpart. We make use of the McDiarmid concentration inequality
to derive a non asymptotic bound with high probability of the deviation between
the outputs of the MPGNN and its limit cMPGNN. Overall, we conclude that a
sufficient condition of convergence is for the aggregation to have sharp bounded
differences. All along the paper, we illustrate our concepts on classical GNN
examples from the basic Graph Convolutional Network to the more sophisticated
Graph Attentional Network [23]. We give a particular treatment to the case of the
maximum aggregation. Indeed, its behavior turns out to be significantly different
than for the other examples and do not fit into the class of MPGNNs having
sharp bounded differences. Nevertheless, in Theorem 5.12 we make use of other
specific concentration bounds to prove another non asymptotic bound between max
MPGNN and its limit cMPGNN.
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2. Notations and Definitions

We start by expliciting the notations that will hold throughout the paper. The
letter d (and its derived d0, d

(0), . . .) will represent the dimension of a real vector
space, the letter n will denote the number of nodes in a graph, and the letter L
will refer to the total number of layers in a deep architecture. Whenever we need
to index something relatively to vertices of a graph, we use a subscript indexation
(e.g., zi) and in the case of layers, we employ a superscript (e.g., z(l)).

We fix a positive integer d and (Rd, ∥ · ∥∞,B(Rd)) the d-dimensional real vector
space endowed with the infinite norm ∥x∥∞ = maxi |xi| as well as its Borel sigma
algebra. Except when specified differently, any topological concept, such as balls,
continuity, etc., will be considered relatively to the norm ∥ · ∥∞. All along this
paper, X is a compact subset of Rd and B(X ) its Borel sigma algebra defined as
the sigma algebra generated by the U ∩ X , for the open sets U of Rd.

The group of permutations of {1, . . . , n} is denoted as Sn. If x = (x1, . . . , xn)
is a n-tuple and σ an element of Sn, we define the n-tuple σ · x as σ · x =
(xσ−1(1), . . . , xσ−1(n)).

The set of bijections ϕ of X such that both ϕ and ϕ−1 are measurable is a group
for the composition of functions. We call this group the group of automorphisms of
X and denote it as Aut(X ). We denote as P(X ) the set of probability measures on
(X ,B(X )). For a measure P ∈ P(X ) and a bijection ϕ ∈ Aut(X ), the push forward
measure of P through ϕ is defined as ϕ#P (A) = P (ϕ−1(A)) for all A in B(X ). Since
this makes the group Aut(X ) acting on the set of probability measures on X , we also
use the notation ϕ · P = ϕ#P , which is standard for a (left) group action. For the
same reason, we shall use the notation ϕ ·f = f ◦ϕ−1 and ϕ ·W =W (ϕ−1(·), ϕ−1(·))
whenever f is a measurable function on X andW is a bivariate measurable function
on X × X .

For P ∈ P(X), the space L∞
P (X ,Rp) is the space of essentially bounded (equivalence

classes of) maps from X to Rp endowed with the norm ∥f∥P,∞ = ess sup
P, x∈X

∥f(x)∥∞.

When there is no ambiguity on P , The norm ∥ · ∥P,∞ is noted ∥ · ∥∞. The space
C(X ,Rp) is made of the continuous functions from X to Rp. Since X is compact,
any continuous map is bounded thus essentially bounded, which makes C(X ,Rp) a
subspace of L∞

P (X ,Rp).

Sets are represented between braces {·}, whereas multisets, that is, sets in which
an element is allowed to appear twice or more, are represented by double braces
{{·}}. If m and m′ are two multisets of same size, say n, containing elements from
a metric space (E , δ), we define their distance by:

(2.1) δ(m,m′) = min
σ∈Sn

max
xi∈m,x′

i∈m′
δ(xi, x

′
σ(i)).

We define the sampling operator the following way. If f : E0 → E1 and X =
(x1, . . . , xn) ∈ En0 :

(2.2) SXf = (f(xi), . . . , f(xn)) ∈ En1 .
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2.1. Graph-related definitions

In this subsection, we introduce the concepts of discrete graph, graph signal and
graph isomorphism.

Graph. A non oriented weighted graph G with n vertices is defined by a triplet
(V,E,w), where V = {v1, . . . , vn} is a finite set called the set of vertices (or nodes)
and E is the set of edges. The set of neighbors of a vertex vi in G is referred
to as NG(vi) or simply N (vi) when the underlying graph is clear from context.
The weight function w assigns a nonnegative number to each edge. It is often
represented by a symmetric function w : V 2 → R+ and the abbreviation wi,j is
used to denote the weight w(vi, vj) = w(vj , vi) where {vi, vj} ∈ E. In this paper,
“graph” will always mean “undirected and weighted graph”. The set of graphs
defined on the vertex set V is denoted as G(V ).

Graph signal. Given a graph G ∈ G(V ), where |V | = n, a signal on G is a map
from the set of vertices V to Rd that assigns a d-dimensional vector zi to each
vertex vi. The images from all vertices are stacked into a tensor Z of size n × d.
Abusing notations, we may not distinguish between the map and its image Z, the
latter being also named the signal.

Graph isomorphism. Two graphs G1 and G2 in G(V ), where |V | = n , are said to
be isomorphic if there is a permutation σ ∈ Sn such that E2 := {{vσ−1(i), vσ−1(j)}| {vi, vj} ∈
E1} and w2(vi, vj) = w1(vσ−1(i), vσ−1(j)). In this case we note G2 = σ · G1.
Moreover, if Z is a signal on G1 and σ ∈ Sn, σ · Z is an isomorphic signal on
the graph σ ·G1.

2.2. Random Graph Models

Random Graph Model. A random graph model is a couple (W,P ) where P
is a Borel probability measure on X and W : X × X 7→ [0, 1] is a kernel, i.e., a
symmetric measurable function. One can interpret W as a totally connected graph
on the vertex set X and whose weight function is W .

Random Graph. We generate random graphs from a random graph model (W,P )
as follows. Given a positive integer n, we first draw n independent and identically
distributed random variables from the distribution P , represented by X1, . . . , Xn,
which form the vertex set of the graph. The random graph is fully connected and
has weight function W :

X1, . . . , Xn
iid∼ P, wi,j = wj,i =W (Xi, Xj).

When convenient, we will use the short notation X = (X1, . . . , Xn) for the tuple
of the vertices of a random graph. We call Gn(W,P ) the distribution from which
random graphs with n nodes are drawn. We bring the reader’s attention to the fact
that in the above definition, a random graph is always fully connected and edge
may have a weight equal to zero. A common approach [14] is to add a Bernoulli
distribution to the connectivity in order to model random graphs with prescribed
expected sparsity, but it is not done here for the sake of simplicity.

Random Graph Model isomorphism. Two probability measures P1 and P2 on
X are said isomorphic if there is some ϕ in Aut(X ) such that P2 = ϕ#P1. Similarly,
two random graph models (W1, P1) and (W2, P2) on X are said to be isomorphic
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if there is a ϕ in Aut(X ) such that (W2, P2) = (ϕ ·W1, ϕ · P1), in this case, we will
note (W2, P2) = ϕ · (W1, P1).

3. Message Passing Graph Neural Networks (MPGNNs)

A multilayer MPGNN iteratively propagates a signal over a graph. At each step,
the current representation of every node’s neighbors are gathered, transformed, and
combined to update the node’s representation. Broadly speaking, a MPGNN can
be defined as a collection of L applications (F (l))1≤l≤L that act as follows. Let

G ∈ G(V ) be a graph with n nodes, and Z = Z(0) ∈ Rn×d0 be a signal on it.
At each layer, denoting Z(l) as the current state of the signal, Z(l+1) is computed
node-wise by:

(3.1) z
(l+1)
i = F (l+1)

(
z
(l)
i ,
{{(

z
(l)
j , wi,j

)}}
vj∈N (vi)

)
∈ Rdl+1 .

So Z(l+1) is a n × dl+1 tensor. In (3.1), the F (l) take as arguments a vector,
which is the current node’s representation, and a multiset of pairs. Each pair is
composed of a node from the neighborhood of the aforementioned running node,
along with the corresponding weight. In the literature, the F (l) are often referred
to as aggregations [24]. Their major property is to ignore the order in which the
neighborhood information is collected, which is handeled by the use of a multiset.

Depending on the context, the final output of the MPGNN may be a signal over
the graph, or a single vector representation for the entire graph. We call these two
versions respectively the equivariant and the invariant versions of the network. We
denote ΘG(Z) as the output in the first case and Θ̄G(Z) in the second case, where
Θ̄G use an additional pooling operation over the nodes, R : Rn×dL → RdL , called
the readout [24] function :

(3.2) ΘG(Z) = Z(L) ∈ Rn×dL , Θ̄G(Z) = R
({{

z
(L)
1 , . . . , z(L)n

}})
∈ RdL

A fundamental requirement for graph neural networks is to be consistent with graph
isomorphism. More precisely, relabeling the nodes of the input graph signal must
be the same as relabeling the nodes of the output in the equivariant case, and must
must leave the output unchanged in the invariant case. This exactly corresponds to
the concepts of invariance and equivariance for group actions and follows naturally
from the definition of MPGNNs, as stated in the following proposition.

Proposition 3.1 (Invariance and equivariance of MPGNNs). Let G ∈ G(V ) with
|V | = n. Then, Θ and Θ̄ are respectively Sn-equivariant and Sn-invariant, in the
sense that for all σ ∈ Sn, for all Z ∈ Rn×d0 , we have Θσ·G(σ ·Z) = σ ·ΘG(Z) and
Θ̄σ·G(σ · Z) = Θ̄G(Z).

Proof. We prove the equivariant case. Let us introduce Λ
(l)
G : Z(l−1) 7→ Z(l) the

layer functions such that ΘG = Λ
(L)
G ◦ · · · ◦ Λ(1)

G by construction. Let Z ∈ Rn×dl−1

be a signal on G. On the one hand, Λ
(l)
σ·G(σ ·Z) = Y is the signal on σ ·G such that

yi = F (l)

(
zσ−1(i),

{{(
zσ−1(j), wσ−1(i),σ−1(j)

)}}
vσ−1(j)∈Nσ·G(vσ−1(i))

)
,
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by definition of σ · G and σ · Z. On the other hand, σ · Λ(l)
G (Z) = Y ′ is the signal

on σ ·G such that

y′i = F (l)

(
zσ−1(i),

{{(
zj , wσ−1(i),j

)}}
vj∈NG(vσ−1(i))

)
= F (l)

(
zσ−1(i),

{{(
zσ−1(j), wσ−1(i),σ−1(j)

)}}
vσ−1(j)∈Nσ·G(vσ−1(i))

)
.

So Y = Y ′ which means that Λ
(l)
σ·G(σ · Z) = σ · Λ(l)

G (Z) is equivariant for all l.
Thereby Θσ·G(σ · Z) = σ · ΘG(Z) by composition. For the invariant case, R is
clearly Sn-invariant since it has a multiset as input. The fact that the composition
of an equivariant map followed by an invariant map is invariant yields the result. □

The role of the functions F (l) in (3.1) is crucial and there is a wide range of designs
for them [25]. Nevertheless, we can encompass a large class of those designs in
the following description. Fix a layer F (l+1) and a node vi. After being gathered,
the signals on the neighbors of this node are transformed by a learnable operation
which is usually a classical multilayer perceptron (MLP) denoted as ψ(l+1). Then
the transformed neighbors ψ(l)(zj) are combined along with some coefficients

(3.3) c
(l+1)
i,j = c(l+1)

(
z
(l)
i , z

(l)
j , wi,j

)
in a way that is invariant to node relabeling. It appears that a natural way of doing
so is to perform a mean, in a broad sense: an arithmetic mean, a weighted mean,
a maximum, etc. Thus, we have a mean operator M (l+1) such that (3.1) can be
rewritten as

F (l+1)

(
z
(l)
i ,
{{(

z
(l)
j , wi,j

)}}
vj∈N (vi)

)
= M (l+1)

({{(
ψ(l+1)(zj)

(l), c
(l+1)
i,j

)}}
vj∈N (vi)

)(3.4)

In the sequel, we discuss four examples that follow (3.4), the first three of which
are very popular in the literature.

Example 1 (Convolutional Message Passing [6, 8, 25]). The ci,j are the graph
weights wi,j. Each neighbor representation is multiplied by its corresponding weight
and we combine them with an arithmetic mean. Notice that this is equivalent to a
Convolutional Graph Neural Network (GCN) with polynomial filters of degree one.

z
(l+1)
i =

1

|N (vi)|
∑

vj∈N (vi)

wi,jψ
(l+1)

(
z
(l)
j

)
.

In the invariant case, the readout function is an arithmetic mean:

R
({{

z
(L)
1 , . . . , z(L)n

}})
=

1

n

n∑
i=1

z
(L)
i .

Example 2 (Degree normalized convolution). The ci,j are still the graph weights
wi,j but a weighted mean is performed [17].

z
(l+1)
i =

∑
j∈N (vi)

wi,j∑
k∈N (vi)

wi,k
ψ(l+1)

(
z
(l)
j

)
.
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In the invariant case, the readout function is an arithmetic mean.

Example 3 (Attention based Message Passing). Unlike the two examples above,
the attentional coefficients are learnable and depend on all the possible parameters
mentioned in (3.3) [23]. A weighted mean is then used.

z
(l+1)
i =

∑
j∈N (vi)

c(l+1)
(
z
(l)
i , z

(l)
j , wi,j

)
∑
k∈N (vi)

c(l+1)
(
z
(l)
i , z

(l)
k , wi,k

)ψ(l+1)
(
z
(l)
j

)
.

In the invariant case, the readout function is an arithmetic mean.

Example 4 (Max Convolutional Message Passing). The aggregation maximum is
often mentioned as a possibility in the literature but is rarely treated [22]. Here
the ci,j are also the graph weights wi,j but an element-wise maximum is used to
combine everything:

z
(l+1)
i = max

vj∈N (vi)
wi,jψ

(l+1)
(
z
(l)
j

)
.

In the invariant case, the readout function is an element-wise maximum.

R
({{

z
(L)
1 , . . . , z(L)n

}})
= max
i=1,...,n

z
(L)
i .

4. Continuous MPGNNs (cMPGNNs) on random graph models

We define the continuous counterpart of MPGNNs, that we call continuous MPGNNs
(cMPGNNs). Analogously to the discrete case, a cMPGNN is defined to be L
operators (F (l))1≤l≤L that propagate a function on X relatively to a random graph

model. Let (W,P ) be a random graph model and f = f (0) ∈ L∞
P (X ,Rd0), f (l+1) is

recursively computed by:

(4.1) ∀x ∈ X f (l+1)(x) = F (l+1)
P

(
f (l)(x),

(
f (l),W (x, ·)

))
∈ Rdl+1 .

Notice that F (l+1) depends on the measure P . Considering the functions f (l) as
signals on the vertex set X , the update f (l+1)(x) of a node x ∈ X is calculated
from the knowledge of its current representation f (l)(x) and all its “weighted
neighborhood” (f (l),W (x, ·)). The latter being a short notation for the map y 7→
(f (l)(y),W (x, y)) at x fixed, which is the continuum equivalent of the multiset of

pairs of weighted neighbors {{(z(l)j , wi,j)}}vj∈N (vi) from (3.1). We denote ΘW,P (f) =

f (L) the output in the equivariant case and Θ̄W,P (f) in the invariant case.

(4.2) ΘW,P (f) = f (L) ∈ L∞
P (X ,RdL), Θ̄W,P (f) = RP (ΘW,P (f)) ∈ RdL

Where Θ̄W,P involves an additional continuum readout operator R : P(X ) ×
L∞
P (X ,RdL) → RdL . Naturally, we also demand the equivariant and invariant

versions of the cMPGNN to respectively be equivariant and invariant to random
graph model isomorphisms. To that extent, we impose the following assumption
on the operators F (l) and on R:

Assumption 4.1. There is a subgroup H ⊂ Aut(X ) such that ∀ 1 ≤ l ≤ L,
∀f ∈ L∞

P (X ,Rdl),∀ϕ ∈ H:

F (l)
ϕ·P (f(x), (ϕ · f,W (x, ϕ−1(·)))) = F (l)

P (f(x), (f,W (x, ·))) a. s .
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and

Rϕ·P (ϕ · f)) = RP (f).

Assumption 4.1 is largely inspired by the classical change of variable formula by
push forward measure in Lebesgue integration. This formula states that for any ϕ
bijective and measurable (ϕ−1 need not to be measurable here) and any measurable
map f ,

(4.3)

∫
f ◦ ϕdP =

∫
fdϕ#P.

It is easy to check that if, for example, RP (f) =
∫
fdP , then (4.3) implies Assumpt-

ion 4.1 when ϕ is an automorphism of X . Contrary to the discrete case, where the
symmetry is valid for the full group Sn, we require here a symmetry for a subgroup
of Aut(X ) only. Ideally, one would like Assumption 4.1 to hold for H = Aut(X ).
However, in the next section, we will interpret some cMPGNN as limits of discrete
MPGNN such that the graph isomorphism symmetry becomes a random graph
model isomorphism symmetry as the number of nodes tends to infinity. In this
context, the example of maximum aggregation (Example 4-d in the next section)
will highlight the fact that, for a matter of existence of such a limit, one may have
to restrict to a subgroup of Aut(X ).

Proposition 4.2 (Invariance and equivariance of cMPGNNs). Let (W,P ) be a
random graph model on X . Then, under Assumption 4.1, Θ and Θ̄ are respectively
H-equivariant and H-invariant. Meaning that for any f , for any ϕ ∈ H, Θϕ·(W,P )(ϕ·
f) = ϕ ·ΘW,P (f) and Θ̄ϕ·(W,P )(ϕ · f) = Θ̄W,P (f).

Proof. We start by the equivariant case and the invariant one follows directly by

composition with R. Let Λ
(l)
W,P be the layer operators such that Θ

(L)
W,P = Λ

(L)
W,P ◦

· · · ◦ Λ(1)
W,P . Let f ∈ L∞

P (X ,Rdl−1). On the one hand, ϕ · Λ(l)
W,P (f) is the map

ϕ · Λ(l)
W,P (f)(x) = F (l)

P

(
ϕ · f(x),

(
f,W (ϕ−1(x), ·)

))
.

On the other hand, Λ
(L)
ϕ·(W,P )(ϕ · f) is the map

Λ
(L)
ϕ·(W,P )(ϕ · f)(x) = F (l)

ϕ#P

(
ϕ · f(x),

(
ϕ · f,W (ϕ−1(x), ϕ−1(·))

))
= F (l)

P

(
ϕ · f(x),

(
f,W (ϕ−1(x), ·)

))
by the assumption 4.1. So the Proposition is true on all the Λ

(l)
W,P , thus also true

on Θ
(L)
W,P by composition. For the invariant case, it is clear from Assumption 4.1

that R is Aut(X )-invariant. The fact that the composition of an equivariant map
followed by an invariant map is invariant yields the result. □

In the following are some examples of cMPGNN. The reader will of course see the
connection to the previous Examples 1, 2, 3 and 4. In the next section, we will
precisely see in what sense Examples 1 to 4, when applied on random graphs and
as n grows large, tend to the following cMPGGNs.
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Example a (Convolutional Message Passing). The arithmetic mean becomes an
integral over the probability space:

f (l+1)(x) =

∫
y∈X

W (x, y)ψ(l+1)
(
f (l)(y)

)
dP (y)

and, in the invariant case, the continuous readout is :

RP

(
f (L)

)
=

∫
X
f (L)dP.

Example b (Degree Normalized Convolutional Message Passing). The continuous
counterpart is:

f (l+1)(x) =

∫
y∈X

W (x, y)∫
t∈X W (x, t)dP (t)

ψ(l+1)
(
f (l)(y)

)
dP (y).

In the invariant case, the readout is the integral relatively to P .

Example c (Attention based Message Passing). The continuous counterpart is:

f (l+1)(x) =

∫
y∈X

c(l+1)
(
f (l)(x), f (l)(y),W (x, y)

)∫
t∈X c

(l+1)
(
f (l)(x), f (l)(t),W (x, t)

)
dP (t)

ψ
(
f (l)(y)

)
dP (y).

In the invariant case, the readout is the integral relatively to P .

Example d (Max Convolutional Message Passing). The maximum becomes a
component-wise essential supremum according to the probability measure P :

f (l+1)(x) = ess sup
y∈X , P

W (x, y)ψ(l+1)
(
f (l)(y)

)
and, in the invariant case, the final readout is the component-wise :

RP

(
f (L)

)
= ess sup

y∈X , P
f (L)(y).

Remark 4.3. It can be easily verified that for all these examples, the underlying
F (l) functions satisfy Assumption 4.1. For the integral, it is ensured by the classical
change of variable formula (4.3).

As for the essential supremum, a similar formula holds. Indeed, recall that for any
measurable g, for any measurable bijection ϕ, one has

ess sup
P

g ◦ ϕ = inf{M |P (g ◦ ϕ > M) = 0}.

However, (g ◦ ϕ > M) = {x|g ◦ ϕ(x) > M} = {ϕ−1(y)|g(y) > M} = ϕ−1(g > M),
such that one finally has:

inf{M |P (g ◦ ϕ > M) = 0} = inf{M |P (ϕ−1(g > M)) = 0} = ess sup
ϕ#P

g.
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5. cMPGNNs as limits of MPGNNs on large random graphs

This section contains the core of our contributions. We focus on MPGNNs when
applied on random graphs Gn drawn from Gn(W,P ). Specifically, given such a
MPGNN, we are interested in its limit as n tends to infinity. We show that under
mild regularity conditions, such a limit exists and is a cMPGNN. We further provide
some non asymptotic bounds to control the deviation between a MPGNN and its
limit cMPGNN with high probability.

This section is divided in two parts. In the first part (section 5.1), given a MPGNN,
we define, when it exists, its associated canonical cMPGNN on (W,P ) that we
call continuous counterpart. The precise definition of this central concept is
Definition 5.2: it states how that continuous counterpart is built out of the discrete
network as a limit on random graphs Gn ∼ Gn(W,P ) of growing sizes. Then, we
show that under mild regularity conditions, Examples a, b, c and d are indeed the
continuous counterparts of Examples 1, 2, 3, and 4 according to our definition.

Note that all MPGNNs do not have a continuous counterpart in the sense of
Definition 5.2: indeed, the definition is based on the existence of a limit (Eq. (5.8)).
In addition, when the continuous counterpart exists, the MPGNN may not converge
to its continuous counterpart as n tends to infinity. In the second part of this
section (section 5.2), we study this convergence: we give sufficient conditions for
this convergence to occur and provide convergence rates in the form of non asympto-
tic bounds with high probability.

Our main result, Theorem 5.7 in section 5.2.1, concerns a class of MPGNN that
have a certain kind of Lipschitz continuity among other mild assumptions: in a few
words, it states that such MPGNNs have a continuous counterpart to which they
converge as n grows, with a controlled rate that we specify. The result we obtain
is based on the so called McDiarmid inequality [26], that says that a multivariate
function of independent random variable has a sub-Gaussian concentration around
its mean if it satisfies the following notion of bounded differences.

Definition 5.1 (Bounded Differences Property). Let f : En → R be a function
of n variables. We say that f has the bounded differences property if there exist n
nonnegative constants c1, . . . , cn such that for any 1 ≤ i ≤ n :

(5.1) |f(x1 . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci,

For any x1, . . . , xn, x
′
i ∈ E.

In plain terms, whenever one fixes all but one of the components of f , the variations
should be bounded.

Our second result, Theorem 5.12 in section 5.2.2, is specific to the case of maximum
aggregation (indeed, in this case, the bounded difference property is not verified
and Theorem 5.7 is not applicable). It is based on another concentration inequality
and leads to a bound with a dependence on the input dimension d (recall X ⊂ Rd),
as opposed to the bounded differences method.
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5.1. Limit of MPGNNs on large random graphs

Let (W,P ) be a random graph model and f ∈ L∞
P (X ,Rd). In this subsection, we

consider a single layer MPGNN applied on a random graph Gn ∼ Gn(W,P ) and
input tensor SXf (recall the definition of Eq. (2.2)). We define a corresponding
canonical cMPGNN layer on (W,P ) with input map f . Since there is only one layer
in this section, we drop the superscript indexation.

To motivate the next definition – that may seem overly technical at first sight– let
us consider the simplest example, namely Examples 1 and a. Let us examine how
Example a can be recovered from Example 1 at the limit.

Consider a one-layer convolutional cMPGNN from Example a, with input signal f,
for which the update of f(x) is given by

(5.2)

∫
y∈X

W (x, y)ψ (f(y)) dP (y).

It is fairly clear that, by the law of large numbers, this integral equals the limit of

(5.3)
1

n

n∑
i=1

W (x,Xi)ψ(f(Xi))

for X1, . . . , Xn
iid∼ P . Moreover, Eq. (5.3) is exactly the discrete message passing of

Example 1 around a certain node on a certain graph. To be precise, let G := Gn ∪
{x} be the graph Gn to which a (deterministic) vertex x along with all its associated
edges {x,Xi} are added. Given the extended graph signal (f(x), f(X1), . . . , f(Xn)),
Eq. (5.3) is precisely an iteration of convolutional message passing from Example 1,
around the vertex x, for the graph G, that gives the update of f(x). We have thus
obtained the cMPGNN of Example a via a limit of the MPGNN of Example 1 on
random graphs.

Back to the general case, given an abstract discrete MPGNN F , we want to define
a cMPGNN from the limit of the former on random graphs. Following the path of
the above example, we look at the following limit :

(5.4) lim
n→∞

F (f(x), {{(f(Xk),W (x,Xk))}}1≤k≤n)

If it appears that this limit exists and that it defines the update of f(x) via some
cMPGNN, then we have found the continuous counterpart of F . Unfortunately, this
existence is far from obvious and F must not always have a continuous counterpart.
Actually, convergence of (5.4), as presented in the example of convolutional message
passing, is an almost sure convergence of random variable. It is itself quite a strong
requirement and we rather relax it to the convergence of

(5.5) EX1,...,Xn [F (f(x), {{(f(Xk),W (x,Xk))}}1≤k≤n)] .

instead. In the first part of the upcoming definition, we say that if there is a F
such as in Eq. (4.1) and such that the limit of Eq. (5.4) is

(5.6) FP (f(x), (f,W (x, ·)))

then F is a good candidate to be the continuous counterpart of F . It is still only
a candidate because Eq. (5.6) is not enough to define a cMPGNN. As we saw in
Section 4, F must also be coherent to random graph model isomorphism, i.e., must
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verify Assumption 4.1. This is precisely the purpose of the second part of the
following definition.

Definition 5.2 (Continuous counterpart). Let F be a MPGNN layer. For f, g ∈
L∞
P (X ,Rd), W : X 2 → [0, 1] and P ∈ P(X ), define the sequence of functions in

L∞
P (X ,Rd′):

(5.7) FP,n(f, (g,W ))(x) =̂ EX1,...,Xn [F (f(x), {{(g(Xk),W (x,Xk))}}1≤k≤n)]

where the expected value is taken over all the X1, . . . , Xn
iid∼ P.

Let F be an operator of the form (4.1) taking value in L∞
P (X ,Rd′) and denote

FP (f, (g,W )) the function

FP (f, (g,W ))(x) = FP (f(x), (g,W (x, ·))) .

Suppose that there exists H, a non trivial subgroup of Aut(X ), such that for any f ∈
L∞
P (X ,Rd), for any ϕ ∈ H, Fϕ·P,n(f, (ϕ · f,W (·, ϕ−1(·)))) converges to Fϕ·P (f, (ϕ ·

f,W (·, ϕ−1(·)))) in the L∞
P (X ,Rd) norm, i.e.:

(5.8) Fϕ·P,n(f, (ϕ · f,W (·, ϕ−1(·)))) L∞
P (X ,Rd)−−−−−−−→ Fϕ·P (f, (ϕ · f,W (·, ϕ−1(·)))).

Then we say that F is the continuous counterpart of F for H. When H =
Aut(X ), or when H is obvious from the context, we simply say that F is the
continuous counterpart of F .

Note that this definition does not say that the continuous counterpart of the
MPGNN F is a cMPGNN. The reason being that a cMPGNN must be equivariant
to the action of automorphisms of X which is not straightforward from the above
definition. Nevertheless the stability condition (5.8) will ensure that Assumption 4.1
is satisfied by the continuous counterpart, as shown in the next proposition.

Proposition 5.3. Let F be the continuous counterpart of F as defined in Definition 5.2.
Then it satisfies Assumption 4.1 for any ϕ ∈ H.

Proof. Let f ∈ L∞
P (X ,Rd), ϕ ∈ H, and X1, . . . , Xn

iid∼ P , by (5.8) , we have for
P -almost all x :

FP (f(x), (f,W (x, ·)))
= lim
n→∞

EX1,...,Xn [F (f(x), {{(f(Xk)),W (x,Xk))}}1≤k≤n)]

= lim
n→∞

EX1,...,Xn

[
F
(
f(x), {{

(
ϕ · f(ϕ(Xk))),W (x, ϕ−1(ϕ(Xk)))

)
}}1≤k≤n

)]
= lim
n→∞

EY1,...,Yn

[
F
(
f(x), {{

(
ϕ · f(Yk))),W (x, ϕ−1(Yk)))

)
}}1≤k≤n

)]
= lim
n→∞

Fϕ·P,n(f, (ϕ · f,W (·, ϕ−1(·))))

where Yi = ϕ(Xi)
iid∼ ϕ · P , then by (5.8) this is equal to

Fϕ#P

(
f(x),

(
ϕ · f,W (x, ϕ−1(·))

))
which concludes the proof. □

The same definition can be given for a readout layer.
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Definition 5.4. Let R be a MPGNN readout layer and P ∈ P(X ). For f ∈
L∞
P (X ,Rd), we define the sequence of terms

RP,n(f) = EX1,...,Xn [R ({{f(X1), . . . , f(Xn)}})] ∈ Rd
′
,

where the expected value is taken over all the X1, . . . , Xn
iid∼ P.

Let R be a continuum readout operator of the form (4.2) taking values in Rd′ .
Suppose we have H a non trivial subgroup of Aut(X ) such that for any f ∈
L∞
P (X ,Rd), for any ϕ ∈ H, Rϕ·P,n(ϕ · f) converges to Rϕ·P (ϕ · f) in the ∥ · ∥∞

norm of Rd :
Rϕ·P,n(ϕ · f) → Rϕ·P (ϕ · f).

Then we say that R is the continuous counterpart of R for H, unless H =
Aut(X ) or H is obvious from context, in which case we simply say that R is the
continuous counterpart of R.

Proposition 5.5. Let R be the continuous counterpart of R as in definition 5.4.
Then it satisfies Assumption 4.1 for any ϕ ∈ H.

Going back to our four examples of Sections 3 and 4, we now show that a, b and c
are the continuous counterparts of 1, 2 and 3 for the full Aut(X ) under a positivity
condition for the coefficients in the degree normalized and GAT examples. The
case 4- d is however more involved, as one has to be careful with the shape of X
and the properties of P to avoid nullset issues at the boundary ∂X . We show that
if X contains no nonvoid open nullset, and if W, f are continuous, then d is the
continuous counterpart of 4 for the subgroup H of Aut(X ) consisting of all the
homeomorphisms from X into itself.

Examples 1-a. With no additional restriction on W , f , nor P , a is the continuous
counterpart of 1 for the full Aut(X ).

Proof. By iid of the random variables an linearity of the expected value, the
convergence in (5.8) is actually an equality for all integer n.

E

[
1

n

∑
i

W (x,Xi)ψ(f(Xi))

]
= E [W (x,X1)ψ(f(X1))] =

∫
X
W (x, y)ψ(y)dP (y).

Clearly this remains true replacing P by ϕ · P , f by ϕ · f and W by W (·, ϕ−1(·))
for any ϕ ∈ Aut(X ). □

Examples 2-b. Suppose that ψ is bounded and that there is a strictly positive α
such that W > α almost surely. Then b is the continuous counterpart of 2 for the
full Aut(X ).

Proof. For X1, . . . , Xn
iid∼ P , we have ∀x∫

X

W (x, y)ψ(f(y))∫
X W (x, t)dP (t)

dP (y) =
E [W (x,X1)ψ(f(X1))]

E [W (x,X1)]
,

and

E
[∑

iW (x,Xi)ψ(f(Xi))∑
kW (x,Xk)

]
= E

[ 1
n

∑
iW (x,Xi)ψ(f(Xi))
1
n

∑
kW (x,Xk)

]
.
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Then ∥∥∥∥E [ 1
n

∑
iW (x,Xi)ψ(f(Xi))
1
n

∑
kW (x,Xk)

]
− E [W (x,X1)ψ(f(X1))]

E [W (x,X1)]

∥∥∥∥
∞

=

∥∥∥∥E [ 1
n

∑
iW (x,Xi)ψ(f(Xi))
1
n

∑
kW (x,Xk)

− E [W (x,X1)ψ(f(X1))]

E [W (x,X1)]

]∥∥∥∥
∞

≤E

[∥∥∥∥∥E [W (x,X1)]
1
n

∑
iW (x,Xi)ψ(f(Xi))

1
n

∑
kW (x,Xk)E [W (x,X1)]

−
1
n

∑
kW (x,Xk)E [W (x,X1)ψ(f(X1))]
1
n

∑
kW (x,Xk)E [W (x,X1)]

∥∥∥∥∥
∞

]

≤ 1

α2
E

[∥∥∥∥∥E [W (x,X1)]
1

n

∑
i

W (x,Xi)ψ(f(Xi))

− 1

n

∑
k

W (x,Xk)E [W (x,X1)ψ(f(X1))]

∥∥∥∥∥
∞

]

≤ 1

α2
E

[∥∥∥∥∥E [W (x,X1)]
1

n

∑
i

W (x,Xi)ψ(f(Xi))

− E [W (x,X1)]E [W (x,X1)ψ(f(X1))]

∥∥∥∥∥
∞

+

∥∥∥∥∥E [W (x,X1)]E [W (x,X1)ψ(f(X1))]

− 1

n

∑
k

W (x,Xk)E [W (x,X1)ψ(f(X1))]

∥∥∥∥∥
∞

]

≤ 1

α2
E

[∥∥∥∥∥ 1n∑
i

W (x,Xi)ψ(f(Xi))− E [W (x,X1)ψ(f(X1))]

∥∥∥∥∥
∞

]

+
∥ψ∥∞
α2

E

[ ∣∣∣∣∣E [W (x,X1)]−
1

n

∑
k

W (x,Xk)

∣∣∣∣∣
]
.

Using the formula E(X) =
∫
t>0

P (X > t)dt for X nonnegative, we get that this
last quantity is equal to

1

α2

∫
t>0

P

(∥∥∥∥∥ 1n∑
i

W (x,Xi)ψ(f(Xi))− E [W (x,X1)ψ(f(X1))]

∥∥∥∥∥
∞

> t

)
dt

+
∥ψ∥∞
α2

∫
t>0

P

(∣∣∣∣∣E [W (x,X1)]−
1

n

∑
k

W (x,Xk)

∣∣∣∣∣ > t

)
dt.

(5.9)

Finally we use McDiarmid inequality (which turns out to be the same as Hoeffding
inequality for a sum of independent random variables). It is easy to check that the
concerned mutivariate maps have bounded differences of the form ci = K/n for all
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i. Therefore, there is some positive constants K1,Ks,K3,K4 independent of x such
that (5.9) is bounded by

1

α2

∫
t>0

K1e
−nK1t

2

dt+
∥ψ∥∞
α2

∫
t>0

K3e
−nK4t

2

dt = O(1/
√
n) → 0.

This remains true replacing P by ϕ · P , f by ϕ · f and W by W (·, ϕ−1(·)) for any
ϕ ∈ Aut(X ). □

Examples 3-c. Call V (x, y) = c(f(x), f(y),W (x, y)) and suppose that ψ is bounded
and that there is two strictly positive constants 0 < α < β such that α < V < β a. s.
Then c is the continuous counterpart of 3 for the full Aut(X ).

Proof. We are brought to the previous example with V instead of W . □

Examples 4-d. Suppose that W , ψ, and f are continuous and that the measure P
is strictly positive on X i.e, any nonvoid relative open of X has a strictly positive
measure by P . Then d is the continuous counterpart of 4 for Hom(X ) : the subgroup
of Aut(X ) made of the ϕ ∈ Aut(X ) that are homeomorphisms.

Proof. We call g(x, y) = W (x, y)ψ(f(y)). We start by the case when g is real
valued, since g is continuous and P is strictly positive, ess sup

P
g(x, ·) = sup g(x, ·)∀x

by Lemma D.4 in the Appendix. Let ϵ > 0, By definition of the supremum and by
independence of the Xi, we have that

P(|max
i
g(x,Xi)− sup g(x, ·)| ≥ ϵ)

=P(max
i
g(x,Xi) ≤ sup g(x, ·)− ϵ)

=P(g(x,X1) ≤ sup g(x, ·)− ϵ)n

=P(|g(x,X1)− sup g(x, ·)| ≥ ϵ)n.

(5.10)

By continuity and compactness, there is x∗ ∈ X such that sup g(x, ·) = g(x, x∗),
so (5.10) is equal to

P(|g(x,X1)− g(x, x∗)| ≥ ϵ)n

=(1− P(|g(x,X1)− g(x, x∗)| < ϵ))
n
.

(5.11)

By continuity and compactness again, g is uniformly continuous so there is δ > 0
such that ∥(x,X1) − (x, x∗)∥ = ∥X1 − x∗∥ < δ implies |g(x,X1) − g(x, x∗))| < ϵ.
Thus (5.11) is bounded from above by

(5.12) (1− P(∥X1 − x∗∥ < δ))
n
= (1− P (B(x∗, δ) ∩ X ))

n

where B(x∗, δ) is the open ball of center x∗ and radius δ in Rd. To finish let
us justify that the measure of the B(x∗, δ) ∩ X when x runs over X is bounded
from below. Suppose this would not be the case, i.e that the measure of a ball
of radius δ centered in X could be arbitrary small. By compactness, up to sub-
sequence extraction, we can assume there is (xk) ∈ XN such that xn → x ∈ X
and P (B(xk, δ) ∩ X ) ≤ 1/2k. Call U = B(x, δ/2) ∩ X , there is rank k0 such that
∀k ≥ k0, xk ∈ U . Thus U ⊂ B(xk, δ) ∩ X ∀k ≥ k0 yielding P (U) ≤ 1/2k ∀k ≥ k0
i.e P (U) = 0. Impossible since U is nonempty relative open of X .
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So there is η > 0 independent of x such that P (B(x∗, δ)∩X ) > η and, coming back
to (5.12):

(5.13) P(|max
i
g(x,Xi)− sup g(x, ·)| ≥ ϵ) ≤ (1− η)n.

If g is vector valued, say in Rd′ , call g1, . . . , gd′ its components and ηk such that gk
satisfies (5.13) with η = ηk. Then by an union bound we have

(5.14) P(∥max
i
g(x,Xi)− sup g(x, ·)∥∞ ≥ ϵ) ≤

d′∑
k=1

(1− ηk)
n.

A the end of the day, by letting Z = ∥maxi g(x,Xi) − sup g(x, ·)∥∞, we have for
any ϵ > 0:

∥E(max
i
g(x,Xi))− sup g(x, ·)∥∞

≤E(Z)
=E(Z1Z≥ϵ) + E(Z1Z<ϵ)

≤2∥g∥∞
d′∑
k=1

(1− ηk)
n + ϵ.

(5.15)

This concludes the uniform convergence. To conclude the proof, we are left to check
that the strict positiveness of P as well as the continuity of f and W are preserved
by the action of homeomorphisms. It is clear for maps’ continuity. Let ϕ ∈ Hom(X )
and U ⊂ X a relative non empty open of X ,

ϕ · P (U) = P (ϕ−1(U)) > 0

since ϕ−1(U) is a non empty open of X as ϕ is continuous. □

5.2. Convergence of MPGNN on random graphs

Let (W,P ) be a random graph model, and (Gn)n≥1 be a sequence of random graphs
drawn from Gn(W,P ). We go back to the multi layer setup: consider a MPGNN
(F (l))1≤l≤L, a readout R and their continuous counterparts (F (l))1≤l≤L and R in
the sense of Definitions 5.2 and 5.4. For a f ∈ L∞

P (X ,Rd0), does the MPGNN on
Gn with input signal SXf actually converge to the cMPGNN on (W,P ) with input
signal f? If yes, at which speed? In this section we provide non asymptotic bounds
with high probability to quantify this convergence.

Our main theorems state that, under mild regularity condition and with high
probability, ΘGn(SX(f)) is close to ΘW,P (f) in the equivariant case and that
Θ̄Gn(SX(f)) is close to Θ̄W,P (f) in the invariant case. For the latter, we can
compare both the outputs directly since they belong to the same vector space. The
comparison is however more involved in the equivariant case since ΘGn(SX(f)) is
a tensor and ΘW,P (f) is a function. In this case, we measure their deviation with
the Maximum Absolute Error (MAE) defined by

MAEX(Z, f) = max
1≤i≤n

∥zi − f(Xi)∥∞.

Our first theorem is based on the Mcdiarmid inequality D.3. It encompasses a whole
class of MPGNNs that includes Examples 1, 2 and 3 but not 4. For the latter, we
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obtain a different bound based on other concentration inequalities similar to what
has been done for the case 4-d in the previous section.

5.2.1. Bounded differences method

Since for all l, F (l) is the continuous counterpart of F (l), and using the notations

of Definition 5.2, we let (a
(l)
n ) be a sequence of positive reals such that a

(l)
n → 0 and

(recall the definitions of FP,n and FP from Definition 5.2):

(5.16) ∥F (l)
P,n(f

(l−1), (f (l−1),W ))− F
(l)
P (f (l−1), (f (l−1),W ))∥∞ ≤ a(l)n .

for all n.

Similarly, we let (bn) be another sequence of positive reals verifying bn → 0 and
such that (recall the definitions of RP,n and RP from Definition 5.4)

(5.17) ∥RP,n(f (L))−RP (f
(L))∥∞ ≤ bn

for all n.

For a fixed x1 ∈ X , we are interested in the bounded differences of

(5.18) F (l)(f (l−1)(x1), {{(f (l−1)(xk),W (x1, xk))}}k≥2)

as a map of the n − 1 variables x2, . . . , xn. If c1(x1) . . . , cn(x1) satisfy (5.1),
since (5.18) is invariant to the permutations of x2, . . . , xn, they can be taken all

equal. We call D
(l)
n (x1) = c1(x1) = · · · = cn(x1). Moreover, since (5.18) belongs to

L∞
P (X ,Rdl) as a function of x1, it is P -essentially bounded by compactness. Define

(5.19) D(l)
n = ess sup

P,x1∈X
D(l)
n (x1)

Similarly, we call Cn the bounded difference of

(x1, . . . , xn) 7→ R(f (L)(x1), . . . , f
(L)(xn)).

Finally, we add a “Lipschitz-type” regularity assumption on the F (l). To sum up
we suppose :

Assumption 5.6. (i) The F (l) as well as R are the continuous counterparts
of the F (l), and R as defined is Definitions 5.2, and 5.4.

(ii) There exist some D
(l)
n such as defined in (5.19).

(iii) There exist some a
(l)
n and bn such as defined in (5.16) and (5.17).

(iv) For all 1 ≤ l ≤ L, we endow Rdl−1 × [0, 1] with the norm ∥(y, t)∥1 =
∥y∥∞ + |t| and call δ1 the corresponding distance on multisets as defined
in (2.1). Let x, x′ ∈ Rdl−1 and m,m′ be two multisets of same cardinal n
containing elements of Rdl−1 × [0, 1], then there exist two constants µ(l) ≥ 0

and λ
(l)
F,n > 0 such that :∥∥∥F (l)(x,m)− F (l)(x′,m′)

∥∥∥
∞

≤ µ
(l)
F ∥x− x′∥∞ + λ

(l)
F,nδ1(m,m

′).
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(v) For m,m′ being be two multisets of same cardinal n containing elements of
RdL , we define the distance δ∞(m,m′) relatively to the ∥ · ∥∞ norm in RdL
as in (2.1). Then there exists λR,n > 0 such that

∥R(m)−R(m′)∥∞ ≤ λR,nδ∞(m,m′).

(vi) The sequences
(
λ
(l)
F,n

)
and

(
λ
(l)
R,n

)
are bounded over n.

Theorem 5.7 (MPGNN convergence towards cMPGNN). Under Assumption 5.6
for any 0 < ρ ≤ 1, with probability at least 1 − ρ, the following assertions are
verified:

(5.20) MAEX (ΘGn(SX(f)),ΘW,P (f)) ≲ LDn

√
n ln

(
n2Ldmax

ρ

)
+ Lan−1.

∥∥Θ̄Gn(SX(f))− Θ̄W,P (f)
∥∥
∞ ≲ LDn

√
n ln

(
n2L+1dmax

ρ

)
+ Cn

√
n ln

(
4dL
ρ

)
+ Lan−1 + bn.

(5.21)

Where Dn = maxlD
(l)
n , dmax = maxl dl, an = maxl a

(l)
n and ≲ hides some multiplicative

constants which depend polynomially on λ
(1)
F,n, . . . λ

(L)
F,n, λR,n, µ

(l)
F and are bounded

over n.

Sketch of proof. (See Appendix A for full proof) We prove the result by induction

on the number of layers L. At each step, we bound ∥(SXf)(L)i − f (L)(Xi)∥ for all
i. This is done by conditioning over xi and finding a bound of∥∥∥F (L)

(
f (L−1)(xi), {{

(
f (L−1)(Xk),W (xi, Xk)

)
}}k ̸=i

)
− f (L−1)(x1)

∥∥∥
∞

that does not depend on xi, using a succession of triangular inequalities, the
Lipschitz-type property from Assumption 5.6 (v) and McDiarmid’s inequality. We

then turn it into a bound for ∥(SXf)(L)i −f (L)(Xi)∥ via the law of total probability
and conclude with an union bound over i. □

The asymptotic behavior of (5.20) is determined by Dn : if it does not decrease fast
enough, the inequality becomes meaningless. This suggests the following important
corollary.

Corollary 5.8 (Sufficient condition for MPGNN convergence on a random graph).

If Dn = o
(
1/
√
n lnn

)
then MAEX(ΘGn(SX(f)),ΘW,P (f)) converges in probability

towards 0.

This corollary provides a sufficient condition for a MPGNN on a random graph to
converge to its continuous counterpart on the random graph model: in words,
its aggregation function needs to have sharp enough bounded differences. We
investigate whether our Examples 1, 2, 3 and 4 have such sharp bounded differences
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Example Dn an bn Convergence by Th. 5.7
1-a O(1/n) 0 0 ✓
3-c O(1/n) O(1/

√
n) 0 ✓

4-d O(1/n) O(1/
√
n) 0 ✓

4-d Ω(1) − − ✗

Table 1. Table summing up the results of Proposition 5.9.

and verify Assumption 5.6. Under mild regularity conditions this is the case for all
examples but Example 4:

Proposition 5.9. We present application of Theorem 5.7 on the Examples 1, 2
and 3 but not 4, the ψ(l) are supposed Lipschitz continuous and bounded. Additional
regularity assumptions are needed for some examples.

1-a Dn = O(1/n), an = bn = 0.

2-b Suppose there is α > 0 such that W > α. Then Dn = O(1/n), an =
O(1/

√
n) and bn = 0.

3-c Suppose there is α, β > 0 and λc > 0 such that α < c(x, y, t) < β and
|c(x, y, t)−c(x′, y′, t′)| ≤ λc(∥x−x′∥∞+∥y−y′∥∞+|t−t′|), ∀x, x′, y, y′, t, t′.
Then Dn = O(1/n), an = O(1/

√
n) and bn = 0.

4-d The bounded differences do not satisfy Corollary 5.8.

Proof. Calculation and verification of the Theorem’s assumptions are done in App-
endix C. □

Table 1 sums up theses results. For a network with max aggregation, the bounded
differences are not sharp enough for theorem 5.7 to conclude. We thus treat this
case separately in the next section.

5.2.2. Convergence of max aggregation MPGNNs

We would like to follow the same line of proof used in the proof of 4-d, but when
we reach Eq. (5.12), we need to be able to give an approximation of the measure of
a ball in X . To this end, we introduce the notion of volume retaining property.

Definition 5.10 (Volume retaining property). We say that the probability space
(X , P ) has the (r0, κ)-volume retaining property if for any r ≤ r0 and for any
x ∈ X ,

(5.22) P (B(x, r) ∩ X ) ≥ κm(B(x, r))
Where B(x, r) is the ball of center x and radius r andm is the classical d-dimensional
Lebesgue measure in Rd

Clearly, volume-retention implies strict positiveness of the measure. This property
ensures that the measure of the intersection of small ball centered in a point of
X with X is at least a portion of the volume of that ball in Rd. That enables
us to estimate from below the measure of balls anywhere in X , due to translation
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invariance of Lebesgue measure. To provide an example of volume retaining probability
space, consider X the unit hypercube [0, 1]d and P is the Lebesgue measure itself,
it is easy to check that this has the (1, 1/2d)-volume retaining property.

For a volume retaining probability space, we obtain the following new concentration
inequality

Lemma 5.11 (Concentration inequality for volume retaining space). Let g : X 2 →
Rd′ be λg-Lipschitz and (X , P ) have the (r, κ)-volume retaining property for some

r, κ > 0. Then for any ρ ≥ e−nκr
d
02
d

, for any random variables X1, . . . , Xn
iid∼ P ,

with probability at least 1− ρ :

∥ max
1≤i≤n

g(x,Xi)− sup g(x, ·)∥∞ ≤ λg
2

(
ln(d′/ρ)

nκ

)1/d

.

Proof. We write the proof assuming d′ = 1, the case d′ ≥ 1 follows easily by an
union bound. The proof is exactly the same than 4-d, with g having a single variable
here, until (5.11) where we use Lipschitz continuity to get the bound

(5.23)
∣∣∣max

i
g(x,Xi)− sup g(x, ·)

∣∣∣ ≤ (1− P (B(x∗, ϵ/λg) ∩ X ))
n

By volume retention, for ϵ ≤ r0λg, (5.23) is bounded by

(5.24)

(
1− κ

(
2ϵ

λg

)d)n
≤ e

−nκ 2dϵd

λdg ,

Which implies that for ρ ≥ e−nκr
d
02
d

with probability at least 1− ρ:

| max
1≤i≤n

g(x,Xi)− sup g(x, ·)| ≤ λg
2

(
ln(1/ρ)

nκ

)1/d

.

□

Armed with this lemma, we are now ready to state the non asymptotic bound for
a MPGNN with max aggregation.

Theorem 5.12 (Nonasymptotic convergence of max-MPGNN towards cMPGNN).
Suppose, (X , P ) has the (r0, κ)-volume retaining property and that f,W and the ψ(l)

are Lipschitz continuous. Let ρ ≥ 2L−1ne−nκr
d
02
d

and n large enough for 0 < ρ < 1
to hold. Then with probability at least 1− ρ:

(5.25) MAEX(ΘGn(SX(f)),ΘW,P (f) ≲ L

(
1

n− 1
ln

(
2L−1ndmax

ρ

))1/d

,

and
(5.26)∥∥Θ̄Gn(SX(f))− Θ̄W,P (f)

∥∥
∞ ≲ L

(
1

n− 1
ln

(
2Lndmax

ρ

))1/d

+

(
1

n
ln

(
2dL
ρ

))1/d

,

where dmax = maxl dl.
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Remark 5.13. Since we made an assumption that involves the volume of a d-
dimensional ball, the convergence rate for max convolution depends on the dimension
of the latent space (X ⊂ Rd). Overall, it is slower than for the McDiarmid’s method
from Theorem 5.7 for high dimensional latent spaces.

6. Conclusion

In this work, we have defined continuous counterparts of MPGNNs with very
generic aggregation functions on a probability space with respect to a transition
kernel. We then have shown that under certain conditions, cMPGNNs are limits
of discrete MPGNNs on random graphs sampled from the corresponding random
graph model. Until now, similar result were known for SGNNs, which are more
restricted architectures, or for MPGNNs with a degree normalized mean aggregat-
ion. Our main contribution is to extend this to abstract MPGNNs with generic
aggregation functions. All along this paper, a focus is given on examples based on
mean or weighted mean aggregation (Examples 1, 2 and 3) and max aggregation
(Example 4), but our theorems are not limited to these examples and is in fact
verified for mild assumptions on the underlying model.

The techniques used for the three first examples are very different from the ones
used for the “max example”. As the max is the limit of Lp-means as p increases,
future work could try to come up with a proof on Lp, which could perhaps bridge
the two worlds and unify the two approaches described in this paper.



CONVERGENCE OF MPGNN WITH GENERIC AGGREGATION 23

Appendices

A. Proof of Theorem 5.7

A.1. Equivariant case

We start with the equivariant case. We seek to bound:

max
1≤i≤n

∥∥∥(SXf)(L)i − SX(f (L))i

∥∥∥ = max
1≤i≤n

∥∥∥(SXf)(L)i − f (L)(Xi)
∥∥∥ .

We will prove the following sharper version of Theorem 5.7.

Theorem A.1. Under same assumptions that Theorem 5.7 Let ρ > 0, then with
probability at least 1− ρ :

max
1≤i≤n

∥∥∥(SXf)(L)i − f (L)(Xi)
∥∥∥ ≤

L∑
l=1

A(l,L)
n

[
D(l)
n

√
1

2
n ln

(
2L+2−lndl

ρ

)
+ a

(l)
n−1

](A.1)

Where A
(l,L)
n =

∏L
k=l+1(µ

(k)
F + λ

(k)
F,n−1) with the conventions

∏b
k=a(. . . ) = 1 and∑b

k=a(. . . ) = 0 if a > b.

Then Theorem 5.7 in the main text is actually the following corollary.

Corollary A.2 (Theorem 5.7 in the main text). With probability at least 1− ρ:

max
i

∥∥∥(SXf)(L)i − f (L)(Xi)
∥∥∥
∞

≲ LDn

√
n ln

(
n2Ldmax

ρ

)
+ Lan.

Proof. The A
(l,L)
n =

∏L
k=l+1(µ

(k)
F + λ

(k)
F,n−1) are bounded over n by assumption.

Thus the corollary comes directly from Theorem A.1. □

Proof of Theorem A.1. We prove the result by induction on L. Let ρ > 0, until the
end of this proof we denote by H(L)(ρ) the bound (A.1) :

H(L)(ρ) =

L∑
l=1

A(l,L)
n

[
D(l)
n

√
1

2
n ln

(
2L+2−lndl

ρ

)
+ a

(l)
n−1

]
.

We recall those notations from Definition 5.2

F
(l+1)
P,n (f (l), (f (l),W ))(x)

=EX1,...,Xn

[
F (l+1)

(
f (l)(x), {{

(
f (l)(Xk),W (x,Xk)

)
}}1≤k≤n

)]
,

and

F
(l+1)
P (f (l), (f (l),W ))(x) = F (l+1)

P

(
f (l)(x),

(
f (l),W (x, ·)

))
= f (l+1)(x).

Suppose L = 1, we shall find a quantity that bounds all the
∥∥∥(SXf)(1)i − f (1)(Xi)

∥∥∥
for i = 1, . . . , n with probability at least 1−ρ/n. Thereby, by an union bound, this
quantity will bound their maximum with probability at least 1− ρ.
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Choose i ∈ {1, . . . , n} and xi ∈ X , consider

∥∥∥F (1)
(
f (0)(xi), {{

(
f (0)(Xk),W (xi, Xk)

)
}}k ̸=i

)
− f (1)(xi)

∥∥∥
∞
.

From a triangular inequality,

∥∥∥F (1)
(
f0)(xi), {{

(
f (0)(Xk),W (xi, Xk)

)
}}k ̸=i

)
− f (1)(xi)

∥∥∥
∞

≤
∥∥∥F (1)

(
f (0)(xi), {{

(
f (0)(Xk),W (xi, Xk)

)
}}k ̸=i

)
− F

(1)
P,n−1(f

(0), (f (0),W ))(xi)
∥∥∥
∞

+
∥∥∥F (1)

P,n−1(f
(0), (f (0),W ))(xi)− f (1)(x1)

∥∥∥
∞

≤
∥∥∥F (1)

(
f (0)(xi), {{

(
f (0)(Xk),W (xi, Xk)

)
}}k ̸=i

)
− F

(1)
P,n−1(f

(0), (f (0),W ))(xi)
∥∥∥
∞

+ a
(1)
n−1.

(A.2)

by definition of an. Now we bound (A.2) with high probability using McDiarmid’s
inequality D.3 on

F (1)
(
f (0)(xi), {{

(
f (0)(xk),W (xi, xk)

)
}}k ̸=i

)
as a multivariate function of the n− 1 variables x2, . . . , xn.

We obtain that for any x1, with probability at least 1− ρ/n,

∥∥∥F (1)
(
f (0)(xi), {{

(
f (0)(Xk),W (xi, Xk)

)
}}k ̸=i

)
− f (1)(x1)

∥∥∥
∞

≤ D(1)
n

√
1

2
(n− 1) ln

(
2d1n

ρ

)
+ a

(1)
n−1 ≤ D(1)

n

√
1

2
n ln

(
2d1n

ρ

)
+ a

(1)
n−1.

(A.3)

Hence, by conditioning over Xi and applying the law of total probability, (A.3)
yields with probability at least 1− ρ/n:

(A.4)
∥∥∥(SXf)(1)i − f (1)(Xi)

∥∥∥
∞

≤ D(1)
n

√
1

2
n ln

(
2d1n

ρ

)
+ a

(1)
n−1.

And by an union bound, we can conclude that with probability at least 1− ρ :

(A.5) max
i

∥∥∥(SXf)(1)i − f (1)(Xi)
∥∥∥
∞

≤ D(1)
n

√
1

2
n ln

(
2d1n

ρ

)
+ a

(1)
n−1 ≤ H(1)(ρ).
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Now suppose the theorem true for L ≥ 1. For any node i,

∥∥∥(SXf)(L+1)
i − f (L+1)(Xi)

∥∥∥
∞

≤
∥∥∥(SXf)(L+1)

i − F
(L+1)
P,n−1(f

(L), (f (L),W ))(Xi)
∥∥∥
∞

+
∥∥∥F (L+1)

P,n−1(f
(L), (f (L),W ))(Xi) + f (L+1)(Xi)

∥∥∥
∞

≤
∥∥∥(SXf)(L+1)

i − F
(L+1)
P,n−1(f

(L), (f (L),W ))(Xi)
∥∥∥
∞

+ a
(L+1)
n−1

≤
∥∥∥(SXf)(L+1)

i − F (L+1)
(
f (L)(Xi), {{

(
f (L)(Xk),W (Xi, Xk)

)
}}k ̸=i

)∥∥∥
∞

+
∥∥∥F (L+1)

(
f (L)(Xi), {{

(
f (L)(Xk),W (Xi, Xk)

)
}}k ̸=i

)
− F

(L+1)
P,n−1(f

(L), (f (L),W ))(Xi)
∥∥∥
∞

+ a
(L+1)
n−1

≤ µ
(L+1)
F

∥∥∥(SXf)(L)i − f (L)(Xi)
∥∥∥
∞

+ λ
(L+1)
F,n−1 max

j ̸=i

∥∥∥(SXf)(L)j − f (L)(Xj)
∥∥∥
∞

+
∥∥∥F (L+1)

(
f (L)(Xi), {{

(
f (L)(Xk),W (Xi, Xk)

)
}}k ̸=i

)
− F

(L+1)
n−1 (f (L), (f (L),W ))(Xi)

∥∥∥
∞

+ a
(L+i)
n−1 .

Where the last inequality comes from the Lipschitz-like regularity Assumption 5.6
(v) on F (L+1). Now taking the maximum over the vertices :

max
i

∥∥∥(SXf)(L+1)
i − f (L+1)(Xi)

∥∥∥
∞

≤ µ
(L+1)
F max

i

∥∥∥(SXf)(L)i − f (L)(Xi)
∥∥∥

+ λ
(L+1)
F,n−1 max

i
max
j ̸=i

∥∥∥∞(SXf)
(L)
j − f (L)(Xj)

∥∥∥
∞

+max
i

∥∥∥F (L+1) (f(Xi), {{(f(Xk),W (Xi, Xk))}}k ̸=i)− F
(L+1)
P,n−1(f

(L), (f (L),W ))(Xi)
∥∥∥
∞

+ a
(L+1)
n−1

≤ (µ
(L+1)
F + λ

(L+1)
F,n−1)max

i

∥∥∥(SXf)(L)i − f (L)(Xi)
∥∥∥
∞

+max
i

∥∥∥F (L+1) (f(Xi), {{(f(Xk),W (Xi, Xk))}}k ̸=i)− F
(L+1)
P,n−1(f

(L), (f (L),W ))(Xi)
∥∥∥
∞

+ a
(L+1)
n−1

(as maximaxj ̸=i ai = maxi ai). Finally, we bound this last equation with high
probability. The first term is handled by the induction hypothesis. For the second
term, by conditioning over Xi, using McDiarmid and a union bound, the same way
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we did in the case L = 1, we obtain with probability at least 1− ρ :

max
i

∥∥∥(SXf)(L+1)
i − f (L+1)(Xi)

∥∥∥
∞

≤ (µ
(L+1)
F + λ

(L+1)
F,n−1)H

(L)(ρ/2) +D(L+1)
n

√
1

2
n ln

(
4dL+1n

ρ

)
+ a

(L+1)
n−1

=

L∑
l=2

(µ
(L+1)
F + λ

(L+1)
F,n−1)A

(l,L)
n D(l)

n

√
1

2
n ln

(
2L+1+2−lndl

ρ

)

+ (µ
(L+1)
F + λ

(L+1)
F,n−1)A

(1,L)
n D(1)

n

√
1

2
n ln

(
2L+1nd1

ρ

)

+ (µ
(L+1)
F + λ

(L+1)
F,n−1)

L∑
l=1

A(l,L)
n a

(l)
n−1 +D(L+1)

n

√
1

2
n ln

(
4dL+1n

ρ

)
+ a

(L+1)
n−1

=

L∑
l=2

A(l,L+1)
n D(l)

n

√
1

2
n ln

(
2L+1+2−lndl

ρ

)

+A(1,L+1)
n D(1)

n

√
1

2
n ln

(
2L+1nd1

ρ

)

+

L∑
l=1

A(l,L+1)
n a

(l)
n−1 +D(L+1)

n

√
1

2
n ln

(
4dL+1n

ρ

)
+ a

(L+1)
n−1

=

L+1∑
l=2

A(l,L+1)
n D(l)

n

√
1

2
n ln

(
2L+1+2−lndl

ρ

)

+A(1,L+1)
n D(1)

n

√
1

2
n ln

(
2L+1nd1

ρ

)
+

L+1∑
l=1

A(l,L+1)
n a

(l)
n−1

≤
L+1∑
l=1

A(l,L+1)
n

[
D(l)
n

√
1

2
n ln

(
2L+1+2−lndl

ρ

)
+ a

(l)
n−1

]
= H(L+1)(ρ).

□

A.2. Invariant case

For the invariant case, we use the bound of the equivariant case previously obtained,
and we make an additional use of McDiarmid’s concentration bound.



CONVERGENCE OF MPGNN WITH GENERIC AGGREGATION 27

Proof. ∥∥Θ̄Gn(SX(f))− Θ̄W,P (f)
∥∥
∞

≤
∥∥∥R({{(SXf)(L)1 , . . . , (SXf)

(L)
n }}

)
−R

(
{{f (L)(X1), . . . , f

(L)(Xn)}}
)∥∥∥

∞

+
∥∥∥R({{f (L)(X1), . . . , f

(L)(Xn)}}
)
−RP,n(f

(L))
∥∥∥
∞

+
∥∥∥RP,n(f (L))−RP (f

(L))
∥∥∥
∞

≤λR,nmax
i

∥∥∥(SXf)(L)i − f (L)(Xi)
∥∥∥
∞

+
∥∥∥R({{f (L)(X1), . . . , f

(L)(Xn)}}
)
−RP,n(f

(L))
∥∥∥
∞

+ bn

(A.6)

Using the bound of the equivariant case, McDiarmid’s inequality and the fact that
(λR,n) is bounded, we get that, with probability at least 1− ρ :∥∥Θ̄Gn(SX(f))− Θ̄W,P (f)

∥∥
∞ ≲ LDn

√
n ln

(
n2L+1dmax

ρ

)
+ Cn

√
n ln

(
4dL
ρ

)
+ Lan−1 + bn

□

B. Proof of Theorem 5.12

We will need the following property.

Proposition B.1. Under the hypothesis of Theorem 5.12, The functions f (0), . . . , f (L)

are Lipschitz continuous. We denote by λf = λf(0) , . . . , λf(L) their Lipschitz constants.

Proof. It is already assumed for l = 0. Suppose it is true for l ≥ 1, f (l+1)(x) =
supyW (x, y)ψ(l+1)(f (l)(y)) = supy g(x, y) where g is λW ∥ψ(l+1)◦f (l)∥∞+λψ(l)λf(l)

Lipschitz. Then from Lemma D.6 f (l+1) is also Lipschitz. □

B.1. Equivariant case

We will prove the following sharper version of Theorem 5.12

Theorem B.2. Suppose, (X , P ) has the (r0, κ)-volume retaining property and that

f,W and the ψ(l) are Lipschitz continuousLet ρ ≥ 2L−1ne−nκr
d
02
d

and n large
enough for 0 < ρ < 1 to hold. Then with probability at least 1− ρ :

max
1≤i≤n

∥∥∥(SXf)(L)i − f (L)(Xi)
∥∥∥
∞

≤
L∑
l=1

B(l,L)λf(l)

2

(
1

nκ
ln

(
2L+1−lndl

ρ

))1/d(B.1)

Where B(l,L) =
∏L
k=l+1 λψ(k) with the conventions

∏b
k=a = 1 and

∑b
k=a = 0 if

a > b.

Corollary B.3 (Theorem 5.12 in the main text). Suppose, (X , P ) has the (r0, κ)-
volume retaining property and that f,W and the ψ(l) are Lipschitz continuousLet
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ρ ≥ 2L−1ne−nκr
d
02
d

and n large enough for 0 < ρ < 1 to hold. Then with probability
at least 1− ρ:

max
1≤i≤n

∥∥∥(SXf)(L)i − f (L)(Xi)
∥∥∥
∞

≲ L

(
1

n
ln

(
2L−1ndmax

ρ

))1/d

Proof of theorem B.2. Let ρ > 0. We will prove the theorem by induction on L.
Until the end of the proof, we denote by H(L)(ρ) the bound (B.1) :

H(L)(ρ) =

L∑
l=1

B(l,L)λf(l)

2

(
1

nκ
ln

(
2L+1−lndl

ρ

))1/d

.

For L = 1, let us note g(x, y) = W (x, y)ψ(1)(f (0)(y)). The map g is λf(1) =

λψ(1)λf(0) + ∥ψ(1) ◦ f (0)∥∞λW Lipschitz continuous from Property B.1. Fix i ∈
{1, . . . , n} and xi ∈ X , by lemma 5.11, for ρ ≥ ne−nκr

d
02
d

, with probability at least
1− ρ/n, we have∥∥∥∥max

j ̸=i
g(x,Xj)− sup

y∈X
g(x, y)

∥∥∥∥
∞

≤
λf(1)

2

(
1

(n− 1)κ
ln

(
nd0
ρ

))1/d

∀x ∈ X .

Thus, by the law of total probability, with probability at least 1− ρ/n,∥∥∥∥max
j ̸=i

g(Xi, Xj)− sup
y∈X

g(Xi, y)

∥∥∥∥
∞

≤
λf(1)

2

(
1

(n− 1)κ
ln

(
nd0
ρ

))1/d

.

And by maximizing over i and doing an union bound, for ρ ≥ ne−nκr
d
02
d

, with
probability at least 1− ρ :

max
i

∥∥∥(SXf)(1)i − f (1)(Xi)
∥∥∥
∞

≤
λf(1)

2

(
1

(n− 1)κ
ln

(
nd0
ρ

))1/d

≤ H(1)(ρ).

That concludes the case L = 1. Now let L ≥ 1, fix i ∈ {1, . . . , n} :

∥∥∥(SXf)(L+1)
i − f (L+1)(Xi)

∥∥∥
∞

=

∥∥∥∥max
j ̸=i

W (Xi, Xj)ψ
(L+1)((SXf)

(L)
j )− f (L+1)(Xj)

∥∥∥∥
∞

≤
∥∥∥∥max
j ̸=i

W (Xi, Xj)ψ
(L+1)((SXf)

(L)
j )−max

j ̸=i
W (Xi, Xj)ψ

(L+1)(f (L)(Xj))

∥∥∥∥
∞

+

∥∥∥∥max
j ̸=i

W (Xi, Xj)ψ
(L+1)(f (L)(Xj))− sup

y∈X
W (Xi, y)ψ

(L+1)(f (L)(y))

∥∥∥∥
∞

≤λψ(L+1) max
j ̸=i

∥∥∥(SXf)(L)j − f (L)(Xj)
∥∥∥
∞

+

∥∥∥∥max
j ̸=i

W (Xi, Xj)ψ
(L+1)(f (L)(Xj))− sup

y∈X
W (Xi, y)ψ

(L+1)(f (L)(y))

∥∥∥∥
∞

(B.2)
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Where the last inequality uses Lemma D.5, |W | ≤ 1, and Lipschitz continuity of
ψ(L+1). Thus taking the maximum over i :

max
i

∥∥∥(SXf)(L+1)
i − f (L+1)(Xi)

∥∥∥
∞

≤ λψ(L+1) max
i

∥∥∥(SXf)(L)j − f (L)(Xj)
∥∥∥
∞

+max
i

∥∥∥∥max
j ̸=i

W (Xi, Xj)ψ
(L+1)(f (L)(Xj))− sup

y∈X
W (Xi, y)ψ

(L+1)(f (L)(y))

∥∥∥∥
∞

(B.3)

Now we bound (B.3) with high probability. We use the induction hypothesis for the
first term. For the second term, we set g(x, y) = W (x, y)ψ(L+1)(f (L)(y)) and use
lemma 5.11 on g which is λf(L+1) = λψ(L+1)λf(L) + ∥ψ(L+1) ◦ f (L)∥∞λW Lipschitz.
The method is the same than in the case L = 1 and by conditioning overXi followed

by an union bound. We obtain that for ρ ≥ 2Lne−nκr
d
02
d

, with probability at least
1− ρ:

max
i

∥∥∥(SXf)(L+1)
i − f (L+1)(Xi)

∥∥∥
∞

≤ λψ(L+1)H(L)(ρ/2) +
λf(L+1)

2

(
1

(n− 1)κ
ln

(
2ndL
ρ

))1/d

=

L∑
l=2

λψ(L+1)B(l,L)λf(l)

2

(
1

(n− 1)κ
ln

(
2L+2−lndl

ρ

))1/d

+ λψ(L+1)B(1,L)λf(1)

2

(
1

(n− 1)κ
ln

(
2Lnd0
ρ

))1/d

+
λf(L+1)

2

(
1

(n− 1)κ
ln

(
2ndL
ρ

))1/d

=

L∑
l=2

B(l,L+1)λf(l)

2

(
1

(n− 1)κ
ln

(
2L+2−lndl

ρ

))1/d

+B(1,L+1)λf(1)

2

(
1

(n− 1)κ
ln

(
2Lnd0
ρ

))1/d

+
λf(L+1)

2

(
1

(n− 1)κ
ln

(
2ndL
ρ

))1/d

=

L+1∑
l=2

B(l,L+1)λf(l)

2

(
1

(n− 1)κ
ln

(
2L+2−lndl

ρ

))1/d

+B(1,L+1)λf(1)

2

(
1

(n− 1)κ
ln

(
2Lnd0
ρ

))1/d

≤ H(L+1)(ρ).

□
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B.2. Invariant case

Theorem B.4. Suppose, (X , P ) has the (r0, κ)-volume retaining property and that

f,W and the ψ(l) are Lipschitz continuousLet ρ ≥ 2L−1ne−nκr
d
02
d

and n large
enough for 0 < ρ < 1 to hold. Then with probability at least 1− ρ:∥∥Θ̄Gn(SX(f))− Θ̄W,P (f)

∥∥
∞ ≲ L

(
1

n− 1
ln

(
2Lndmax

ρ

))1/d

+

(
1

n
ln

(
2dL
ρ

))1/d

.

Proof. ∥∥Θ̄Gn(SX(f))− Θ̄W,P (f)
∥∥
∞ =

∥∥∥max
i

(SXf)
(L)
i − sup f (L)

∥∥∥
∞

≤
∥∥∥max

i
(SXf)

(L)
i −max

i
f (L)(Xi)

∥∥∥
∞

+
∥∥∥max

i
f (L)(Xi)− sup f (L)

∥∥∥
∞

≤ max
i

∥∥∥(SXf)(L)i − f (L)(Xi)
∥∥∥
∞

+
∥∥∥max

i
f (L)(Xi)− sup f (L)

∥∥∥
∞
.

Using the bound for the equivariant case and Lemma 5.11 on f (L), we obtain the
result. □

C. Examples

For notational convenience, we drop any subscript or superscript referring to layers.
Recal that ψ is supposed Lipschitz and bounded, we denote λψ its Lipschitz constant
and ∥ψ∥∞ = supx ∥ψ(x)∥∞. For Examples 1, 2 and 3,

• We check Assumptions 5.6.

• We compute the an from (5.16).

• We compute the bounded differences

For Example 4, we show that the bounded differences are not sharp enough.

C.1. Examples 1 and a: Convolutional message passing with mean aggregation

Check of Assumptions 5.6. Let x, x′ ∈ Rdl−1 and m = {{(yi, ti), }}1≤i≤n,m′ =
{{(y′i, t′i)}}1≤i≤n ⊂ Rdl−1 × [0, 1].

∥F (x,m)− F (x′,m′)∥∞ ≤ 1

n

∑
1≤i≤n

∥tiψ(yi)− t′iψ(y
′
i)∥∞

≤ 1

n

∑
1≤i≤n

∥tiψ(yi)− tiψ(y
′
i)∥∞ + ∥tiψ(y′i)− t′iψ(y

′
i)∥∞

≤ 1

n

∑
1≤i≤n

λψ ∥yi − y′i∥+ ∥ψ∥∞ |ti − t′i| ≤ max (λψ, ∥ψ∥∞) max
1≤i≤n

∥yi − y′i∥∞ + |ti − t′i|.

This inequality does not depend on any ordering of the (y′i, t
′
i) so that

∥F (x,m)− F (x′,m′)∥∞ ≤ max (λψ, ∥ψ∥∞) max
1≤i≤n

∥yi − y′σ(i)∥∞ + |ti − t′σ(i)|

for any permutation σ. Taking the minimum over Sn we get the Assumption with
µF = 0 and λF,n = max (λψ, ∥ψ∥∞) which is bounded over n.
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Calculation of an By linearity of the expected value, it is clear that anyX1, . . . , Xn
iid∼

P and any f ,

E

[
1

n

∑
i

W (x,Xi)ψ(Xi)

]
= E [W (x,X1)ψ(X1)] =

∫
X
W (x, y)ψ(y)dP (y) ∀x

So an = 0.

Calculation of bounded differences Dn. Let x1, xn and x′2, . . . , x
′
n be such that

xi = x′i except at i = 2

∥F (f(x1), {{(f(xk),W (x1, xk))}}2≤k≤n)− F (f(x1), {{(f(x′k),W (x1, x
′
k))}}2≤k≤n)∥∞

=
1

n− 1

∥∥∥W (x1, x2)ψ(f(x2))−W (x1, x
′
2)ψ

(l)(f(x′2))
∥∥∥

= O(1/n).

Since ψ ◦ f is bounded by continuity and compactness.

C.2. Example 2 and b : Degree normalized convolutional message passing with

sum aggregation

We make the additional assumption that there exists α > 0 such that W (x, y) >
α, ∀x, y.

Check of Assumption 5.6. Let x, x′ ∈ Rd and m = {{(yi, ti), }}1≤i≤n,m′ =
{{(y′i, t′i)}}1≤i≤n ⊂ Rdl−1 × [α, 1].

∥F (x,m)− F (x′,m′)∥∞ ≤
∑

1≤i≤n

∥∥∥∥ tiψ(yi)∑
k tk

− t′iψ(yi)∑
k t

′
k

∥∥∥∥
∞

=
∑

1≤i≤n

∥∥∥∥∑k t
′
ktiψ(yi)−

∑
k tkt

′
iψ(y

′
i)∑

k tk
∑
k t

′
k

∥∥∥∥
∞

≤ 1

n2α2

∑
1≤i,k≤n

∥t′ktiψ(yi)− tkt
′
iψ(y

′
i)∥∞

≤ 1

n2α2

∑
1≤i,k≤n

∥t′ktiψ(yi)− t′kt
′
iψ(y

′
i)∥∞ + ∥t′kt′iψ(y′i)− tkt

′
iψ(y

′
i)∥∞

≤ 1

n2α2

∑
1≤i,k≤n

∥tiψ(yi)− t′iψ(y
′
i)∥∞ + ∥t′kψ(y′i)− tkψ(y

′
i)∥∞

≤ 1

n2α2

∑
1≤i,k≤n

∥tiψ(yi)− tiψ(y
′
i)∥∞ + ∥tiψ(y′i)− t′iψ(y

′
i)∥∞ + ∥ψ∥∞|tk − t′k|

≤ 1

n2α2

∑
1≤i,k≤n

λψ ∥yi − y′i∥∞ + ∥ψ∥∞|ti − t′i|+ ∥ψ∥∞|tk − t′k|

≤ 1

α2

(
λψmax

i
∥yi − y′i∥∞ + 2∥ψ∥∞ max

i
|ti − t′i|

)
=

max (λψ, 2∥ψ∥∞)

α2
max
1≤i≤n

∥yi − y′i∥∞ + |ti − t′i|.
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This inequality does not depend on any ordering of the (y′i, t
′
i) so that

∥F (x,m)− F (x′,m′)∥∞ ≤ max (λψ, 2∥ψ∥∞)

α2
max
1≤i≤n

∥yi − y′σ(i)∥∞ + |ti − t′σ(i)|

for any permutation σ. Taking the minimum over Sn we get the Assumption with

µF = 0 and λF,n =
max(λψ,2∥ψ∥∞)

α2 which is bounded over n.

Calculation of an For X1, . . . , Xn
iid∼ P , we have ∀x∫

X

W (x, y)ψ(f(y))∫
X W (x, t)dP (t)

dP (y) =
E [W (x,X1)ψ(f(X1))]

E [W (x,X1)]
,

and

E
[∑

iW (x,Xi)ψ(f(Xi))∑
kW (x,Xk)

]
= E

[ 1
n

∑
iW (x,Xi)ψ(f(Xi))
1
n

∑
kW (x,Xk)

]
.

∥∥∥∥E [ 1
n

∑
iW (x,Xi)ψ(f(Xi))
1
n

∑
kW (x,Xk)

]
− E [W (x,X1)ψ(f(X1))]

E [W (x,X1)]

∥∥∥∥
∞

=

∥∥∥∥E [ 1
n

∑
iW (x,Xi)ψ(f(Xi))
1
n

∑
kW (x,Xk)

− E [W (x,X1)ψ(f(X1))]

E [W (x,X1)]

]∥∥∥∥
∞

≤ E

[∥∥∥∥E [W (x,X1)]
1
n

∑
iW (x,Xi)ψ(f(Xi))− 1

n

∑
kW (x,Xk)E [W (x,X1)ψ(f(X1))]

1
n

∑
kW (x,Xk)E [W (x,X1)]

∥∥∥∥
∞

]

≤ 1

α2
E

[∥∥∥∥∥E [W (x,X1)]
1

n

∑
i

W (x,Xi)ψ(f(Xi))−
1

n

∑
k

W (x,Xk)E [W (x,X1)ψ(f(X1))]

∥∥∥∥∥
∞

]

≤ 1

α2
E

[∥∥∥∥∥E [W (x,X1)]
1

n

∑
i

W (x,Xi)ψ(f(Xi))− E [W (x,X1)]E [W (x,X1)ψ(f(X1))]

∥∥∥∥∥
∞

+

∥∥∥∥∥E [W (x,X1)]E [W (x,X1)ψ(f(X1))]−
1

n

∑
k

W (x,Xk)E [W (x,X1)ψ(f(X1))]

∥∥∥∥∥
∞

]

≤ 1

α2
E

[∥∥∥∥∥ 1n∑
i

W (x,Xi)ψ(f(Xi))− E [W (x,X1)ψ(f(X1))]

∥∥∥∥∥
∞

]

+
∥ψ∥∞
α2

E

[ ∣∣∣∣∣E [W (x,X1)]−
1

n

∑
k

W (x,Xk)

∣∣∣∣∣
]

Using the formula E(X) =
∫
t>0

P (X > t)dt for X nonnegative,

=
1

α2

∫
t>0

P

(∥∥∥∥∥ 1n∑
i

W (x,Xi)ψ(f(Xi))− E [W (x,X1)ψ(f(X1))]

∥∥∥∥∥
∞

> t

)
dt

+
∥ψ∥∞
α2

∫
t>0

P

(∣∣∣∣∣E [W (x,X1)]−
1

n

∑
k

W (x,Xk)

∣∣∣∣∣ > t

)
dt
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Using McDiarmid (or Hoeffding) inequality, there is some positive constantsK1,Ks,K3,K4

independent of x such that this is bounded by

1

α2

∫
t>0

K1e
−nK1t

2

dt+
∥ψ∥∞
α2

∫
t>0

K3e
−nK4t

2

dt = O(1/
√
n) = an.

Calculation of bounded differences Dn. Let x1, xn and x′2, . . . , x
′
n be such that

xi = x′i except at i = 2. This is the same calculation than the previous paragraph
where x = x′ = f(x1), yi = f(xi), y

′
i = f(x′i), ti = W (x1, xi) and t′i = W (x1, x

′
i)

for i ≥ 2. We get

∥F (f(x1), {{(f(xk),W (x1, xk))}}2≤k≤n)− F (f(x1), {{(f(x′k),W (x1, x
′
k))}}2≤k≤n)∥∞

≤ 1

(n− 1)2α2

∑
1≤i,k≤n−1

λψ ∥f(xi)− f(x′i)∥∞ + ∥ψ∥∞|W (x1, xi)−W (x1, x
′
i)|+ ∥ψ∥∞|W (x1, xk)−W (x1, x

′
k)|

=
1

(n− 1)2α2
((n− 1)λψ ∥f(x2)− f(x′2)∥∞ + (n− 1)∥ψ∥∞|W (x1, x2)−W (x1, x

′
2)|

+ (n− 1)∥ψ∥∞|W (x1, x2)−W (x1, x
′
2)|)

≤ 2λψ∥f∥∞ + 4∥ψ∥∞
(n− 1)α2

= O(1/n)

= Dn.

So Dn = O(1/n).

C.3. Example 3 and c : Attentional message passing with sum aggregation

We make the additional assumption that there exists α, β > 0 and λc > 0 such that
α < c(x, y, t) < β and |c(x, y, t)− c(x′, y′, t′)| ≤ λc(∥x−x′∥∞+∥y−y′∥∞+ |t− t′|),
∀x, x′, y, y′, t, t′. As a consequence, c is bounded on any compact set.

Check of Assumption 5.6. Let x, x′ ∈ Rd and m = {{(yi, ti), }}1≤i≤n,m′ =
{{(y′i, t′i)}}1≤i≤n ⊂ Rdl−1 × [0, 1]. Let us shorten c(x, yi, ti) and c(x, y

′
i, t

′
i) as ci and
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c′i.

∥F (x,m)− F (x′,m′)∥∞ ≤
∑

1≤i≤n

∥∥∥∥ciψ(yi)∑
k ck

− c′iψ(yi)∑
k c

′
k

∥∥∥∥
∞

=
∑

1≤i≤n

∥∥∥∥∑k c
′
ktiψ(yi)−

∑
k ckc

′
iψ(y

′
i)∑

k ck
∑
k c

′
k

∥∥∥∥
∞

≤ 1

n2α2

∑
1≤i,k≤n

∥c′kciψ(yi)− ckc
′
iψ(y

′
i)∥∞

≤ 1

n2α2

∑
1≤i,k≤n

∥c′kciψ(yi)− c′kc
′
iψ(y

′
i)∥∞ + ∥c′kc′iψ(y′i)− ckc

′
iψ(y

′
i)∥∞

≤ β

n2α2

∑
1≤i,k≤n

∥ciψ(yi)− c′iψ(y
′
i)∥∞ + ∥c′kψ(y′i)− ckψ(y

′
i)∥∞

≤ β

n2α2

∑
1≤i,k≤n

∥ciψ(yi)− ciψ(y
′
i)∥∞ + ∥ciψ(y′i)− c′iψ(y

′
i)∥∞ + ∥ψ∥∞|ck − c′k|

≤ β

n2α2

∑
1≤i,k≤n

λψβ ∥yi − y′i∥∞ + ∥ψ∥∞|ci − c′i|+ ∥ψ∥∞|ck − c′k|

≤ β

n2α2

∑
1≤i,k≤n

λψβ ∥yi − y′i∥∞ + ∥ψ∥∞λc(∥x− x′∥∞ + ∥yi − y′i∥∞ + |ti − t′i|)

+ ∥ψ∥∞λc(∥x− x′∥∞ + ∥yk − y′k∥∞ + |tk − t′k|)

≤ 2β∥ψ∥∞λc
α2

∥x− x′∥∞ +
βmax (βλψ, 2∥ψ∥∞λc)

α2
max
1≤i≤n

∥yi − y′i∥∞ + |ti − t′i|.

This inequality does not depend on any ordering of the (y′i, t
′
i) so that

∥F (x,m)− F (x′,m′)∥∞ ≤ 2β∥ψ∥∞λc
α2

∥x−x′∥∞+
βmax (βλψ, 2∥ψ∥∞λc)

α2
max
1≤i≤n

∥yi−y′σ(i)∥∞+|ti−t′σ(i)|

for any permutation σ. Taking the minimum over Sn we get the Assumption with

µF = 2β∥ψ∥∞λc
α2 and λF,n =

βmax(βλψ,2∥ψ∥∞λc)
α2 which are bounded over n.

Calculation of an Let us denote V (x, y) = c(f(x), f(y),W (x, y)). ForX1, . . . , Xn
iid∼

P , we have ∀x∫
X

c(f(x), f(y),W (x, y))ψ(f(y))∫
X c(f(x), f(y),W (x, y))dP (t)

dP (y) =

∫
X

V (x, y)ψ(f(y))∫
X V (x, t)dP (t)

dP (y) =
E [V (x,X1)ψ(f(X1))]

E [V (x,X1)]
,

and

E
[∑

i V (x,Xi)ψ(f(Xi))∑
kW (x,Xk)

]
= E

[ 1
n

∑
i V (x,Xi)ψ(f(Xi))
1
n

∑
k V (x,Xk)

]
.

This is the same setup than in example 2, with V instead of W and α < V < β
instead of α < W < 1. So the same calculation gives the result with an = O(1/

√
n)

Calculation of bounded differences Dn. Let x1, xn and x′2, . . . , x
′
n be such that

xi = x′i except at i = 2. Using again the notation V (x, y) = c(f(x), f(y),W (x, y))
and the fact that V is bounded by β, we end up performing the same calculation
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than in the case of example 3-c. We get

∥F (f(x1), {{(f(xk),W (x1, xk))}}2≤k≤n)− F (f(x1), {{(f(x′k),W (x1, x
′
k))}}2≤k≤n)∥∞

≤ 1

(n− 1)2α2

∑
1≤i,k≤n−1

λψβ ∥f(xi)− f(x′i)∥∞ + ∥ψ∥∞|V (x1, xi)− V (x1, x
′
i)|+ ∥ψ∥∞|V (x1, xk)− V (x1, x

′
k)|

=
1

(n− 1)2α2
((n− 1)λψβ ∥f(x2)− f(x′2)∥∞ + (n− 1)∥ψ∥∞|V (x1, x2)− V (x1, x

′
2)|

+ (n− 1)∥ψ∥∞|V (x1, x2)− V (x1, x
′
2)|)

≤ 2λψ∥f∥∞β + 4∥ψ∥∞β
(n− 1)α2

= O(1/n)

= Dn.

So Dn = O(1/n).

C.4. Example 2 and b Convolutional Message Passing with max aggregation

Here we check the bounded differences are not sharp. Recall the hypothesis

Bounded differences are not sharp. We show that (x1, . . . , xn) 7→ maxiW (x, xi)ψ(f(xi))

has no bounded differences in o(1/
√
n lnn). Call g(x, y) = W (x, y)f (l−1)(y), and

(g1, . . . , gdl) its components which are real functions. We suppose g not constant,
so there is k such that gk is not constant, say k = 1. By compactness and continuity
of g1 there is x∗ such that g(x, x∗) = supyg(x, y). Since g1 is not constant, for any
n, there exist x1, . . . , xn such that g(x, x1), . . . , g(x, xn) are all strictly smaller that
g(x, x∗). Up to reordering them we suppose g(x, x1) = max2≤i≤n g(x, xi) and call
α = |g1(x, x∗)− g1(x, x1)| > 0.

∥max{g(x, x∗), g(x, x2), . . . , g(x, xn)} −max{g(x, x1), g(x, x2), . . . , g(x, xn)}∥∞
≥ |max{g1(x, x∗), g1(x, x2), . . . , g1(x, xn)} −max{g1(x, x1), g1(x, x2), . . . , g1(x, xn)}|
= |g1(x, x∗)− g1(x, x1)|
> α.

So for any n

α < sup ∥max{g(x, x1), . . . , g(x, xn)} −max{g(x, x′1), . . . , . . . , g(x, x′n)}∥∞

where the supremum is taken over x, x2, . . . , xn, x
′
2, . . . , x

′
n ∈ X such that (x2, . . . , xn)

and (x′2, . . . , x
′
n) differ from only one component. That proves that the bounded

differences are not o(1/
√
n lnn).

D. Useful results

The following remark can be useful,

Proposition D.1. f has the bounded difference property if and only if f is bounded.

Proof. If f is bounded, clearly c1 = · · · = cn∥f∥∞ are valid bounded differences.
Conversely, if c1, . . . , cn are bounded differences of f , pick a ∈ E and for any x ∈ En,
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introduce xk = (x1, . . . , xk, a . . . , a), 0 ≤ k ≤ n. Then

|f(x)| ≤ |f(a)|+ |f(x)− f(a)| = |f(a)|+

∣∣∣∣∣
n−1∑
k=0

f(xk+1)− f(xk)

∣∣∣∣∣ ≤ |f(a)|+
∑

ci.

□

Theorem D.2 (McDiarmid inequality [27]). Suppose E is a probability space and
let f : En → R be a function of n variables. Suppose that f satisfies the bounded
differences property with the n nonnegative constants c1, . . . , cn. Then for any
independent random variables X1, . . . , Xn in E, for any ϵ > 0:

P(|f(X1, . . . , Xn)− E(f(X1, . . . , Xn))| > ϵ) ≤ 2e
− 2ϵ2∑n

i=1
c2
i .

Notice that the Xi are not required to be identically distributed. By an union
bound and reformulating Proposition D.2 to a bound with high probability one can
obtain the following result for function taking multidimensional values.

Corollary D.3 (Multi dimensional McDiarmid inequality). Suppose that f : En →
Rd satisfies a vectorial version on the bounded difference : ∥f(x) − f(x′)∥∞ ≤ ci
whenever x and x′ differ only from the i-th component. Then for any independent
random variables X1, . . . , Xn in E, for any ρ > 0 :

∥f(X1, . . . , Xn)− E(f(X1, . . . , Xn))∥∞ ≤

√√√√1

2

n∑
i=1

c2i ln

(
2d

ρ

)
holds with probability at least 1− ρ.

Lemma D.4. Suppose P is strictly positive i.e : for all U ⊂ Rd, P (U ∩ X ) > 0 if
and only if U ∪ X is nonvoid. Then for any continuous map f : X → R,

ess sup
P

f = sup f < +∞.

Proof. Clearly ess sup
P

f ≤ sup f and sup f < +∞ by continuity and compactness.

Suppose that ess sup
P

f < sup f then there is M such that ess sup
P

f < M < sup f .

By definition of sup f , the set (f > M) = f−1(]M ; +∞[) is nonempty, it is also a
relative open of X since it is the inverse image of an open by a continuous map.
Thus this set has strictly positive measure, which yields a contradiction with the
fact that ess sup

P
f < M . □

Lemma D.5. Let (ai)i∈I and (bi)i∈I be two finite families of vectors in Rm. We
have the following properties :

(i) ∥maxi ai∥∞ ≤ maxi ∥ai∥∞.

(ii) ∥maxi ai −maxi bi∥∞ ≤ maxi ∥ai − bi∥∞.
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Proof. (i)For m = 1, ai ≤ |ai| =⇒ maxi ai ≤ maxi |ai| =⇒ |maxi ai| ≤
|maxi |ai|| = maxi |ai|. Form ≥ 1, ∥maxi ai∥∞ = maxk |maxi a

(k)
i | ≤ maxkmaxi |a(k)i | =

maximaxk |a(k)i | = maxi ∥ai∥∞.

(ii) For m = 1. Let ia (resp. ib) be an index that realizes maxi ai (resp. maxi bi).
We have

max
i
ai −max

i
bi = aia − bib = aia − bia + bia − bib︸ ︷︷ ︸

≤0

≤ aia − bia ≤ max
i
ai − bi ≤ |max

i
ai − bi| ≤ max

i
|ai − bi|.

Then analogously maxi bi −maxi ai ≤ maxi |bi − ai| = maxi |ai − bi|.

Form ≥ 1, ∥maxi ai−maxi bi∥∞ = maxk |maxi a
(k)
i −maxi b

(k)
i | ≤ maxkmaxi |a(k)i −

b
(k)
i | = maxi ∥ai − bi∥∞. □

Lemma D.6. Let g : X × X → Rm be λg-Lipschitz continuous. Then f : x 7→
supy∈X g(x, y) is also λg-Lipschitz continuous.

Proof. For m = 1. Let x, x′ ∈ X ,by continuity on a compact, ∃ x∗, x′∗ such that
f(x) = g(x, x∗) and f(x′) = g(x′, x′∗). Then f(x) − f(x′) = g(x, x∗) − g(x′, x∗) +
g(x′, x∗)− g(x′, x′∗)︸ ︷︷ ︸

≤0

≤ λg∥x−x′∥∞, and permuting x and x′ we obtain the Lipschitz

condition.

Form ≥ 1, ∥f(x)−f(x′)∥∞ = maxi | supy gi(x, y)−supy gi(x
′, y)| = maxi |gi(x, x∗)−

gi(x
′, x′∗)| ≤ maxi λg∥x− x′∥∞ = λg∥x− x′∥∞. □
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