A remark on the distributional Jacobian

Petru Mironescu

To cite this version:

Petru Mironescu. A remark on the distributional Jacobian. Communications in Contemporary Mathematics, 2024, 26 (02), pp.Article no 2350005. 10.1142/S0219199723500050 . hal-04059250

HAL Id: hal-04059250
https://hal.science/hal-04059250
Submitted on 5 Apr 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A remark on the distributional Jacobian

Petru Mironescu ${ }^{(1)}$

February 22, 2023

Abstract

We investigate the existence of the distributional Jacobian for maps $u \in W_{l o c}^{1,1}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right)$. In 2 D , we present necessary and sufficient existence assumptions. In dimensions 3 and higher, we exhibit sufficient existence conditions weaker than the standard ones.

1 Introduction

This note complements the expository text [2] by H. Brezis, J. Mawhin, and the author, presenting a brief - and personal - history of the (distributional) Jacobian. Given a mapping $u \in W_{l o c}^{1,1}\left(\Omega ; \mathbb{R}^{N}\right)$, where $N \geq 2$ and $\Omega \subset \mathbb{R}^{N}$ is an open set, and indices $1 \leq i, j \leq$ N, we denote by $C_{i, j}$ the cofactor of $\partial_{j} u_{i}$ in the Jacobian $\operatorname{det}(\nabla u)$ of u. Note that $C_{i, j}$ is a measurable function defined a.e., but this function need not belong to $L_{l o c}^{1}(\Omega ; \mathbb{R})$. Assuming extra regularity assumptions on u, e.g.,

$$
\begin{equation*}
u \in W_{l o c}^{1, N-1}\left(\Omega ; \mathbb{R}^{N}\right) \cap L_{l o c}^{\infty}\left(\Omega ; \mathbb{R}^{N}\right) \tag{1.1}
\end{equation*}
$$

or

$$
\begin{equation*}
u \in W_{l o c}^{1, N^{2} /(N+1)}\left(\Omega ; \mathbb{R}^{N}\right), \tag{1.2}
\end{equation*}
$$

we have $u_{i} C_{i, j} \in L_{l o c}^{1}(\Omega ; \mathbb{R})$, and then we may define

$$
\begin{equation*}
T_{i}:=\sum_{j=1}^{N} \partial_{j}\left(u_{i} C_{i, j}\right) \in \mathscr{D}^{\prime}(\Omega ; \mathbb{R}) \tag{1.3}
\end{equation*}
$$

Moreover, under the assumptions (1.1) or (1.2), T_{i} is independent of i, i.e.,

$$
\begin{equation*}
\sum_{j=1}^{N} \partial_{j}\left(u_{i} C_{i, j}\right)=\sum_{j=1}^{N} \partial_{j}\left(u_{\ell} C_{\ell, j}\right) \text { in } \mathscr{D}^{\prime}(\Omega ; \mathbb{R}), \forall 1 \leq i, \ell \leq N, \tag{1.4}
\end{equation*}
$$

and we may thus define

$$
\begin{equation*}
\operatorname{Det}(\nabla u):=T_{i}, \forall 1 \leq i \leq N, \tag{1.5}
\end{equation*}
$$

the distributional Jacobian made popular by the seminal work of J. Ball [1].

[^0]The question we address here is the validity of (1.4) for $u \in W_{l o c}^{1,1}\left(\Omega ; \mathbb{R}^{N}\right)$ under 'minimal' extra assumptions, i.e, we look for 'minimal' assumptions allowing us to define the distributional Jacobian as in (1.5). For the sake of simplicity of the statements, we consider only the case $i=1, \ell=2$. Given the local nature of our problem, we may assume that $\Omega=(-1,1)^{N}$, and discard 'loc'. It will be convenient to use the language of differential forms, and to consider the following more general situation. Let $2 \leq k \leq N$ and

$$
\begin{equation*}
u=\left(u_{1}, \ldots, u_{k}\right) \in W^{1,1}\left(\Omega ; \mathbb{R}^{k}\right) . \tag{1.6}
\end{equation*}
$$

We want to find 'minimal' assumptions implying that

$$
\begin{equation*}
d \omega_{1}+d \omega_{2}=0 \text { in } \mathscr{D}^{\prime}\left(\Omega ; \Lambda^{k}\right), \tag{1.7}
\end{equation*}
$$

where Λ^{k} stands for the space of k-forms and

$$
\begin{equation*}
\omega_{1}:=u_{1} d u_{2} \wedge d u_{3} \wedge \ldots \wedge d u_{k}, \omega_{2}:=u_{2} d u_{1} \wedge d u_{3} \wedge \ldots \wedge d u_{k} \tag{1.8}
\end{equation*}
$$

are ($k-1$)-forms with measurable coefficients. (Our original question corresponds to $N=$ $k \geq 2$.)

Note that, formally, (1.7) is clear, since, for smooth u,

$$
\omega_{1}+\omega_{2}=d\left(u_{1} u_{2} d u_{3} \wedge \ldots \wedge d u_{k}\right),
$$

and thus

$$
d \omega_{1}+d \omega_{2}=d^{2}\left(u_{1} u_{2} d u_{3} \wedge \ldots \wedge d u_{k}\right)=0 .
$$

In order to give a meaning to (1.7), we require

$$
\begin{equation*}
\omega_{1}, \omega_{2} \in L^{1}\left(\Omega ; \Lambda^{k-1}\right) \tag{1.9}
\end{equation*}
$$

In the easier case $k=2$, the minimal conditions (1.6) and (1.9) are sufficient for the validity of (1.7). In fact, more can be said in this case.

Proposition 1. Let $N \geq 1$. Let $u_{1}, u_{2} \in W^{1,1}(\Omega ; \mathbb{R})$. Assume that $u_{1} d u_{2}+u_{2} d u_{1} \in$ $L^{1}\left(\Omega ; \Lambda^{1}\right)$. Then:

1. $u_{1} u_{2} \in W^{1,1}(\Omega ; \mathbb{R})$.
2. $d\left(u_{1} u_{2}\right)=u_{1} d u_{2}+u_{2} d u_{1}$. In particular:
(a) We have $d\left(u_{1} d u_{2}+u_{2} d u_{1}\right)=0$ in $\mathscr{D}^{\prime}\left(\Omega ; \Lambda^{2}\right)$.
(b) Under the stronger assumptions $u_{1} d u_{2} \in L^{1}\left(\Omega ; \Lambda^{1}\right)$ and $u_{2} d u_{1} \in L^{1}\left(\Omega ; \Lambda^{1}\right)$, we have $d\left(u_{1} d u_{2}\right)+d\left(u_{2} d u_{1}\right)=0$ in $\mathscr{D}^{\prime}\left(\Omega ; \Lambda^{2}\right)$. Consequently, (1.7) with $k=2$ holds under the assumptions (1.6) and (1.9).
3. $\left\|u_{1} u_{2}\right\|_{L^{1}} \leq C\left(\left\|u_{1}\right\|_{W^{1,1}}\left\|u_{2}\right\|_{W^{1,1}}+\left\|u_{1} d u_{2}+u_{2} d u_{1}\right\|_{L^{1}}\right)$ (with C depending only on N).

Corollary 1. Let $\Omega \subset \mathbb{R}^{2}$ be an open set. The distributional Jacobian $\operatorname{Det}(\nabla u)$ is welldefined (via (1.5)) for maps $u=\left(u_{1}, u_{2}\right): \Omega \rightarrow \mathbb{R}^{2}$ satisfying

$$
u_{1}, u_{2} \in W_{l o c}^{1,1}(\Omega ; \mathbb{R}), u_{1} d u_{2}, u_{2} d u_{1} \in L_{l o c}^{1}\left(\Omega ; \Lambda^{1}\right) .
$$

When $k \geq 3$, the necessary conditions (1.6) and (1.9) are no more sufficient for the validity of (1.7).

Proposition 2. Let $N \geq k \geq 3$. There exists some $u=\left(u_{1}, \ldots, u_{k}\right) \in W^{1,1}\left(\Omega ; \mathbb{R}^{k}\right)$ such that:
a) $u_{j} \in C^{\infty}(\bar{\Omega} ; \mathbb{R}), j \neq 2,3$.
b) $u_{j} \in W^{1,1}(\Omega ; \mathbb{R}) \cap L^{\infty}$ and $d u_{j} \in L^{2, \infty}\left(\Omega ; \Lambda^{1}\right), j=2,3$. (So that u_{2} and u_{3} are 'almost' in $W^{1,2}$.)
c) $\omega_{1}, \omega_{2} \in L^{2, \infty}\left(\Omega ; \Lambda^{k-1}\right)$.
d) $d \omega_{1}+d \omega_{2} \neq 0$ in $\mathscr{D}^{\prime}\left(\Omega ; \Lambda^{k}\right)$.

Finally, we present an existence result for the distributional Jacobian when $k \geq 3$. Motivated by the example in Proposition 2 (see also Remark 1 in the next section) and the validity of (1.7) under the assumption (1.1), we consider the following assumption, weaker than (1.1):

$$
\begin{equation*}
d u_{j} \in L^{k-1}\left(\left[\varepsilon<\left|u_{j}\right|<M\right]\right), \forall 0<\varepsilon<M<\infty, \forall 1 \leq j \leq k . \tag{1.10}
\end{equation*}
$$

Proposition 3. Assume (1.6), (1.9), and (1.10). Then (1.7) holds.
Corollary 2. Let $N \geq 3$ and let $\Omega \subset \mathbb{R}^{N}$ be an open set. Let $u \in W_{l o c}^{1,1}\left(\Omega ; \mathbb{R}^{N}\right)$ satisfy

$$
\begin{equation*}
|u||d u|^{N-1} \in L^{1}(\Omega ; \mathbb{R}) \tag{1.11}
\end{equation*}
$$

(where \| | stands for the Euclidean length). Then the distributional Jacobian $\operatorname{Det}(\nabla u)$ is well-defined via (1.5).

Acknowldegment. I warmly thank H. Brezis for useful discussions during the writing of [2], and in particular for suggesting (1.11) as a sufficient condition for the existence of the distributional Jacobian.

2 Proofs

Proof of Proposition 1. In what follows, C denotes a generic constant depending only on N.

When $N=1$, the assumption $u_{1} u_{2}^{\prime}+u_{2} u_{1}^{\prime} \in L^{1}$ is always satisfied, part 2 is simply the chain rule $\left(u_{1} u_{2}\right)^{\prime}=u_{1} u_{2}^{\prime}+u_{2} u_{1}^{\prime}$, and the estimate in part 3 follows from the embedding $W^{1,1} \hookrightarrow L^{\infty}$.

Let $N \geq 2$. Using the case $N=1$ and Fubini, we find that parts 1 and 2 hold provided we know that $u_{1} u_{2} \in L^{1}$.

In particular, when $N=2$, parts 1,2 , and 3 follow from the above considerations and the embedding $W^{1,1} \hookrightarrow L^{2}$, which implies that $\left\|u_{1} u_{2}\right\|_{L^{1}} \leq C\left\|u_{1}\right\|_{W^{1,1}}\left\|u_{2}\right\|_{W^{1,1}}$.

The case $N \geq 3$ follows by induction on N. With no loss of generality, we may assume that u_{1} and u_{2} are absolutely continuous on a.e. line segment of the form

$$
L_{\left(x_{1}, \ldots, x_{N-1}\right)}:=\left\{\left(x_{1}, \ldots, x_{N-1}, t\right) ;-1<t<1\right\} .
$$

Pick some $t_{0} \in(-1,1)$ such that the partial functions

$$
(-1,1)^{N-1} \ni\left(x_{1}, \ldots, x_{N-1}\right) \mapsto v_{i}\left(x_{1}, \ldots, x_{N-1}\right):=u_{i}\left(x_{1}, \ldots, x_{N-1}, t_{0}\right), i=1,2,
$$

satisfy $v_{1}, v_{2} \in W^{1,1}\left((-1,1)^{N-1} ; \mathbb{R}\right)$ and the estimates

$$
\begin{align*}
& \left\|v_{i}\right\|_{W^{1,1}} \leq C\left\|u_{i}\right\|_{W^{1,1}}, i=1,2 \tag{2.1}\\
& \left\|v_{1} d v_{2}+v_{2} d v_{1}\right\|_{L^{1}} \leq C\left\|u_{1} d u_{2}+u_{2} d u_{1}\right\|_{L^{1}} . \tag{2.2}
\end{align*}
$$

By (2.1), (2.2), and the induction assumption, we then have $v_{1} v_{2} \in L^{1}\left((-1,1)^{N-1} ; \mathbb{R}\right)$, and the estimate

$$
\begin{equation*}
\left\|v_{1} v_{2}\right\|_{L^{1}} \leq C\left(\left\|u_{1}\right\|_{W^{1,1}}\left\|u_{2}\right\|_{W^{1,1}}+\left\|u_{1} d u_{2}+u_{2} d u_{1}\right\|_{L^{1}}\right) \tag{2.3}
\end{equation*}
$$

On the other hand, for a.e. $\left(x_{1}, \ldots, x_{N-1}\right) \in(-1,1)^{N-1}$, the Leibniz rule applies, on $L_{\left(x_{1}, \ldots, x_{N-1}\right)}$, to the absolutely continuous partial maps

$$
(-1,1) \ni t \mapsto w_{i}(t):=u_{i}\left(x_{1}, \ldots, x_{N-1}, t\right), i=1,2,
$$

which implies, for $\operatorname{such}\left(x_{1}, \ldots, x_{N-1}\right)$, that

$$
\begin{equation*}
\left\|w_{1} w_{2}\right\|_{L^{1}((-1,1))} \leq C\left(\left|w_{1}\left(t_{0}\right) w_{2}\left(t_{0}\right)\right|+\left\|w_{1} w_{2}^{\prime}+w_{2} w_{1}^{\prime}\right\|_{L^{1}((-1,1))}\right) . \tag{2.4}
\end{equation*}
$$

Combining (2.3) and (2.4), we find that item 3 holds, and in particular, that $u_{1} u_{2} \in$ $L^{1}(\Omega ; \mathbb{R})$. As explained above, this also implies the validity of items 1 and 2.

Proof of Proposition 2. Set, for $x \in \Omega, \rho=\rho(x):=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}$, and let

$$
u_{1}(x):=1, u_{2}(x):=\frac{x_{1}}{\rho} e^{x_{3}}, u_{3}(x):=\frac{x_{2}}{\rho} e^{x_{3}}, u_{j}(x):=x_{j}, 4 \leq j \leq k .
$$

Properties a) and b) are straightforward.
We now prove c). Clearly, $\omega_{2}=0$. On the other hand, we have

$$
\begin{aligned}
& d u_{2}=\frac{x_{2}^{2}}{\rho^{3}} e^{x_{3}} d x_{1}-\frac{x_{1} x_{2}}{\rho^{3}} e^{x_{3}} d x_{2}+\frac{x_{1}}{\rho} e^{x_{3}} d x_{3} \text { in } \mathscr{D}^{\prime}\left(\Omega ; \Lambda^{1}\right), \\
& d u_{3}=-\frac{x_{1} x_{2}}{\rho^{3}} e^{x_{3}} d x_{1}+\frac{x_{1}^{2}}{\rho^{3}} e^{x_{3}} d x_{2}+\frac{x_{2}}{\rho} e^{x_{3}} d x_{3} \text { in } \mathscr{D}^{\prime}\left(\Omega ; \Lambda^{1}\right),
\end{aligned}
$$

and therefore, with $\omega_{0}:=d x_{4} \wedge \ldots \wedge d x_{k}\left(\right.$ and the convention $\omega_{0}:=1$ if $\left.k=3\right)$

$$
\begin{equation*}
\omega_{1}=-\left(\frac{x_{1}}{\rho^{2}} e^{2 x_{3}} d x_{2} \wedge d x_{3}+\frac{x_{2}}{\rho^{2}} d x_{3} \wedge d x_{1}\right) \wedge \omega_{0} \text { in } \mathscr{D}^{\prime}\left(\Omega ; \Lambda^{k-1}\right) . \tag{2.5}
\end{equation*}
$$

Thus c) holds.
Finally, using (2.5) and the fact that

$$
\partial_{1}\left(\frac{x_{1}}{\rho^{2}}\right)+\partial_{2}\left(\frac{x_{2}}{\rho^{2}}\right)=2 \pi \delta_{(0,0)} \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{2} ; \mathbb{R}\right),
$$

we find that

$$
d \omega_{1}+d \omega_{2}=d \omega_{1}=-2 \pi \delta_{(0,0)} \otimes e^{2 x_{3}} d x_{1} \wedge \cdots \wedge d x_{k} \operatorname{in} \mathscr{D}^{\prime}\left(\Omega ; \Lambda^{k}\right),
$$

and thus d) holds.

Remark 1. A similar example shows that, in order to insure the validity of (1.4), the condition (1.1) cannot be weakened to $u_{j} \in L_{l o c}^{\infty}(\Omega ; \mathbb{R})$ and $d u_{j} \in L_{l o c}^{N-1, \infty}\left(\Omega ; \Lambda^{1}\right), 1 \leq j \leq N$. Indeed, if we set $r=r(x):=\left(x_{1}^{2}+\cdots+x_{k-1}^{2}\right)^{1 / 2}$ and let

$$
u_{1}(x):=1, u_{j}(x):=\frac{x_{j-1}}{r} e^{x_{k}}, 2 \leq j \leq k
$$

then (by repeating the proof of Proposition 2) we have $u_{j} \in L^{\infty}(\Omega ; \mathbb{R}), d u_{j} \in L^{k-1, \infty}\left(\Omega ; \Lambda^{1}\right)$, $1 \leq j \leq k, \omega_{1}, \omega_{2} \in L^{k-1, \infty}\left(\Omega ; \Lambda^{k-1}\right)$, and $d \omega_{1}+d \omega_{2} \neq 0$ in $\mathscr{D}^{\prime}\left(\Omega ; \Lambda^{k}\right)$.

Proof of Proposition 3. Consider a sequence $\left(\Phi_{\ell}\right)_{\ell \geq 2} \subset C^{\infty}(\mathbb{R} ; \mathbb{R})$ such that $\Phi_{\ell}(t)=0$ if $|t|<$ $1 /(2 \ell), \Phi_{\ell}(t)=(\ell+1) \operatorname{sgn} t$ if $|t|>\ell+1, \Phi_{\ell}(t)=t$ if $1 / \ell \leq|t| \leq \ell$, and $\left|\Phi_{\ell}^{\prime}\right| \leq 2, \forall \ell$. Set $\widetilde{u}_{j}=\widetilde{u}_{j, \ell}:=\Phi_{\ell}\left(u_{j}\right)$. The strategy of the proof consists of proving (1.7) for \widetilde{u}_{j} instead of u_{j}, and then letting $\ell \rightarrow \infty$.

Since $\widetilde{u}_{1}, \widetilde{u}_{2} \in W^{1,1} \cap L^{\infty}$, the Leibniz rule implies that $d\left(\widetilde{u}_{1} \widetilde{u}_{2}\right)=\widetilde{u}_{1} d \widetilde{u}_{2}+\widetilde{u}_{2} d \widetilde{u}_{1}$, and thus

$$
\begin{equation*}
\left(\widetilde{u}_{1} d \widetilde{u}_{2}+\widetilde{u}_{2} d \widetilde{u}_{1}\right) \wedge d \widetilde{u}_{3} \wedge \ldots \wedge d \widetilde{u}_{k}=d\left(\widetilde{u}_{1} \widetilde{u}_{2}\right) \wedge d \widetilde{u}_{3} \wedge \ldots \wedge d \widetilde{u}_{k} \text { in } \mathscr{D}^{\prime}\left(\Omega ; \Lambda^{k-1}\right) . \tag{2.6}
\end{equation*}
$$

We claim that, under the only assumption (1.10), we have

$$
\begin{equation*}
\left.d\left(\widetilde{u}_{1} \widetilde{u}_{2}\right) \wedge d \widetilde{u}_{3} \wedge \ldots \wedge d \widetilde{u}_{k}=d\left(\left(\widetilde{u}_{1} \widetilde{u}_{2}\right) d \widetilde{u}_{3} \wedge \cdots \wedge d \widetilde{u}_{k}\right)\right) \text { in } \mathscr{D}^{\prime}\left(\Omega ; \Lambda^{k}\right) \tag{2.7}
\end{equation*}
$$

(and this also holds for $N=k-1$).
Indeed, (2.7) follows by approximation with smooth maps, using the fact that, by the assumption (1.10) and the chain and Leibniz rules, we have $\widetilde{u}_{1} \widetilde{u}_{2}, \widetilde{u}_{3}, \ldots, \widetilde{u}_{k} \in W^{1, k-1}$.

Combining (2.6) and (2.7), we find that

$$
\begin{equation*}
d\left(\widetilde{u}_{1} d \widetilde{u}_{2} \wedge d \widetilde{u}_{3} \wedge \ldots \wedge d \widetilde{u}_{k}\right)+d\left(\widetilde{u}_{2} d \widetilde{u}_{1} \wedge d \widetilde{u}_{3} \wedge \ldots \wedge d \widetilde{u}_{k}\right)=0 \text { in } \mathscr{D}^{\prime}\left(\Omega ; \Lambda^{k}\right) . \tag{2.8}
\end{equation*}
$$

We obtain (1.7) by letting $\ell \rightarrow \infty$ in (2.8). (Recall that $\widetilde{u}_{j}=\widetilde{u}_{j, \ell}$.) Passing to the limits is justified via the assumption (1.9) and the uniform inequalities

$$
\begin{aligned}
& \left|\widetilde{u}_{1, \ell} d \widetilde{u}_{2, \ell} \wedge d \widetilde{u}_{3, \ell} \wedge \ldots \wedge d \widetilde{u}_{k, \ell}\right| \leq 2^{k-1}\left|u_{1} d u_{2} \wedge d u_{3} \wedge \ldots \wedge d u_{k}\right|, \forall \ell, \\
& \left|\widetilde{u}_{2, \ell} d \widetilde{u}_{1, \ell} \wedge d \widetilde{u}_{3, \ell} \wedge \ldots \wedge d \widetilde{u}_{k, \ell}\right| \leq 2^{k-1}\left|u_{2} d u_{1} \wedge d u_{3} \wedge \ldots \wedge d u_{k}\right|, \forall \ell,
\end{aligned}
$$

inequalities that follow from the properties of Φ_{ℓ} and the chain rule.

References

[1] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 63 (1976/1977), no 4, 337-403.
[2] H. Brezis, J. Mawhin, and P. Mironescu, A brief history of the Jacobian, Comm. Contemp. Math., to appear.
${ }^{(1)}$ Université Claude Bernard Lyon 1; École Centrale de Lyon; INSA Lyon; Université Jean Monnet Saint-Étienne; CNRS UMR 5208 Institut Camille Jordan; 43, boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France mironescu@math.univ-lyon1.fr

[^0]: Keywords: distributional Jacobian
 MSC 2020: 42B35

