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A remark on the distributional Jacobian

Petru Mironescu(1)

February 22, 2023

Abstract

We investigate the existence of the distributional Jacobian for maps u ∈W1,1
loc (RN ;RN ).

In 2D, we present necessary and sufficient existence assumptions. In dimensions 3
and higher, we exhibit sufficient existence conditions weaker than the standard ones.

1 Introduction
This note complements the expository text [2] by H. Brezis, J. Mawhin, and the author,
presenting a brief – and personal – history of the (distributional) Jacobian. Given a
mapping u ∈ W1,1

loc (Ω;RN), where N ≥ 2 and Ω ⊂ RN is an open set, and indices 1 ≤ i, j ≤
N, we denote by Ci, j the cofactor of ∂ jui in the Jacobian det(∇u) of u. Note that Ci, j
is a measurable function defined a.e., but this function need not belong to L1

loc(Ω;R).
Assuming extra regularity assumptions on u, e.g.,

u ∈W1,N−1
loc (Ω;RN)∩L∞

loc(Ω;RN) (1.1)

or

u ∈W1,N2/(N+1)
loc (Ω;RN), (1.2)

we have uiCi, j ∈ L1
loc(Ω;R), and then we may define

Ti :=
N∑

j=1
∂ j(uiCi, j) ∈D ′(Ω;R). (1.3)

Moreover, under the assumptions (1.1) or (1.2), Ti is independent of i, i.e.,

N∑
j=1

∂ j(uiCi, j)=
N∑

j=1
∂ j(u`C`, j) in D ′(Ω;R), ∀1≤ i,`≤ N, (1.4)

and we may thus define

Det(∇u) := Ti, ∀1≤ i ≤ N, (1.5)

the distributional Jacobian made popular by the seminal work of J. Ball [1].
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The question we address here is the validity of (1.4) for u ∈ W1,1
loc (Ω;RN) under ‘mini-

mal’ extra assumptions, i.e, we look for ‘minimal’ assumptions allowing us to define the
distributional Jacobian as in (1.5). For the sake of simplicity of the statements, we con-
sider only the case i = 1, ` = 2. Given the local nature of our problem, we may assume
that Ω = (−1,1)N , and discard ‘loc’. It will be convenient to use the language of differ-
ential forms, and to consider the following more general situation. Let 2 ≤ k ≤ N and

u = (u1, . . . ,uk) ∈W1,1(Ω;Rk). (1.6)

We want to find ‘minimal’ assumptions implying that

dω1 +dω2 = 0 in D ′(Ω;Λk), (1.7)

where Λk stands for the space of k-forms and

ω1 := u1 du2 ∧du3 ∧ . . .∧duk, ω2 := u2 du1 ∧du3 ∧ . . .∧duk (1.8)

are (k−1)-forms with measurable coefficients. (Our original question corresponds to N =
k ≥ 2.)

Note that, formally, (1.7) is clear, since, for smooth u,

ω1 +ω2 = d(u1 u2 du3 ∧ . . .∧duk),

and thus

dω1 +dω2 = d2(u1 u2 du3 ∧ . . .∧duk)= 0.

In order to give a meaning to (1.7), we require

ω1,ω2 ∈ L1(Ω;Λk−1). (1.9)

In the easier case k = 2, the minimal conditions (1.6) and (1.9) are sufficient for the
validity of (1.7). In fact, more can be said in this case.

Proposition 1. Let N ≥ 1. Let u1,u2 ∈ W1,1(Ω;R). Assume that u1 du2 + u2 du1 ∈
L1(Ω;Λ1). Then:

1. u1u2 ∈W1,1(Ω;R).

2. d(u1u2)= u1du2 +u2du1. In particular:

(a) We have d(u1 du2 +u2 du1)= 0 in D ′(Ω;Λ2).

(b) Under the stronger assumptions u1 du2 ∈ L1(Ω;Λ1) and u2 du1 ∈ L1(Ω;Λ1), we
have d(u1 du2)+ d(u2 du1) = 0 in D ′(Ω;Λ2). Consequently, (1.7) with k = 2
holds under the assumptions (1.6) and (1.9).

3. ||u1u2||L1 ≤ C(||u1||W1,1 ||u2||W1,1 +||u1 du2 +u2 du1||L1) (with C depending only on N).

Corollary 1. Let Ω ⊂ R2 be an open set. The distributional Jacobian Det(∇u) is well-
defined (via (1.5)) for maps u = (u1,u2) :Ω→R2 satisfying

u1,u2 ∈W1,1
loc (Ω;R), u1 du2,u2 du1 ∈ L1

loc(Ω;Λ1).
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When k ≥ 3, the necessary conditions (1.6) and (1.9) are no more sufficient for the
validity of (1.7).

Proposition 2. Let N ≥ k ≥ 3. There exists some u = (u1, . . . ,uk) ∈W1,1(Ω;Rk) such that:

a) u j ∈ C∞(Ω;R), j 6= 2,3.

b) u j ∈W1,1(Ω;R)∩L∞ and du j ∈ L2,∞(Ω;Λ1), j = 2,3. (So that u2 and u3 are ‘almost’ in
W1,2.)

c) ω1,ω2 ∈ L2,∞(Ω;Λk−1).

d) dω1 +dω2 6= 0 in D ′(Ω;Λk).

Finally, we present an existence result for the distributional Jacobian when k ≥ 3.
Motivated by the example in Proposition 2 (see also Remark 1 in the next section) and
the validity of (1.7) under the assumption (1.1), we consider the following assumption,
weaker than (1.1):

du j ∈ Lk−1([ε< |u j| < M]), ∀0< ε< M <∞, ∀1≤ j ≤ k. (1.10)

Proposition 3. Assume (1.6), (1.9), and (1.10). Then (1.7) holds.

Corollary 2. Let N ≥ 3 and let Ω⊂RN be an open set. Let u ∈W1,1
loc (Ω;RN) satisfy

|u| |du|N−1 ∈ L1(Ω;R) (1.11)

(where | | stands for the Euclidean length). Then the distributional Jacobian Det(∇u) is
well-defined via (1.5).

Acknowldegment. I warmly thank H. Brezis for useful discussions during the writing
of [2], and in particular for suggesting (1.11) as a sufficient condition for the existence of
the distributional Jacobian.

2 Proofs
Proof of Proposition 1. In what follows, C denotes a generic constant depending only on
N.

When N = 1, the assumption u1 u′
2+u2 u′

1 ∈ L1 is always satisfied, part 2 is simply the
chain rule (u1u2)′ = u1 u′

2 +u2 u′
1, and the estimate in part 3 follows from the embedding

W1,1 ,→ L∞.
Let N ≥ 2. Using the case N = 1 and Fubini, we find that parts 1 and 2 hold provided

we know that u1 u2 ∈ L1.
In particular, when N = 2, parts 1, 2, and 3 follow from the above considerations and

the embedding W1,1 ,→ L2, which implies that ||u1 u2||L1 ≤ C||u1||W1,1 ||u2||W1,1 .
The case N ≥ 3 follows by induction on N. With no loss of generality, we may assume

that u1 and u2 are absolutely continuous on a.e. line segment of the form

L(x1,...,xN−1) := {(x1, . . . , xN−1, t); −1< t < 1}.
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Pick some t0 ∈ (−1,1) such that the partial functions

(−1,1)N−1 3 (x1, . . . , xN−1) 7→ vi(x1, . . . , xN−1) := ui(x1, . . . , xN−1, t0), i = 1,2,

satisfy v1,v2 ∈W1,1((−1,1)N−1;R) and the estimates

||vi||W1,1 ≤ C||ui||W1,1 , i = 1,2, (2.1)
||v1 dv2 +v2 dv1||L1 ≤ C||u1 du2 +u2 du1||L1 . (2.2)

By (2.1), (2.2), and the induction assumption, we then have v1 v2 ∈ L1((−1,1)N−1;R),
and the estimate

||v1 v2||L1 ≤ C(||u1||W1,1 ||u2||W1,1 +||u1 du2 +u2 du1||L1). (2.3)

On the other hand, for a.e. (x1, . . . , xN−1) ∈ (−1,1)N−1, the Leibniz rule applies, on
L(x1,...,xN−1), to the absolutely continuous partial maps

(−1,1) 3 t 7→ wi(t) := ui(x1, . . . , xN−1, t), i = 1,2,

which implies, for such (x1, . . . , xN−1), that

||w1 w2||L1((−1,1)) ≤ C(|w1(t0)w2(t0)|+ ∣∣∣∣w1 w′
2 +w2 w′

1
∣∣∣∣

L1((−1,1))). (2.4)

Combining (2.3) and (2.4), we find that item 3 holds, and in particular, that u1 u2 ∈
L1(Ω;R). As explained above, this also implies the validity of items 1 and 2.

Proof of Proposition 2. Set, for x ∈Ω, ρ = ρ(x) := (x2
1 + x2

2)1/2, and let

u1(x) := 1, u2(x) := x1

ρ
ex3 , u3(x) := x2

ρ
ex3 , u j(x) := x j, 4≤ j ≤ k.

Properties a) and b) are straightforward.
We now prove c). Clearly, ω2 = 0. On the other hand, we have

du2 =
x2

2

ρ3 ex3 dx1 − x1x2

ρ3 ex3 dx2 + x1

ρ
ex3 dx3 in D ′(Ω;Λ1),

du3 =−x1x2

ρ3 ex3 dx1 +
x2

1

ρ3 ex3 dx2 + x2

ρ
ex3 dx3 in D ′(Ω;Λ1),

and therefore, with ω0 := dx4 ∧ . . .∧dxk (and the convention ω0 := 1 if k = 3)

ω1 =−
( x1

ρ2 e2x3 dx2 ∧dx3 + x2

ρ2 dx3 ∧dx1

)
∧ω0 in D ′(Ω;Λk−1). (2.5)

Thus c) holds.
Finally, using (2.5) and the fact that

∂1

( x1

ρ2

)
+∂2

( x2

ρ2

)
= 2πδ(0,0)in D ′(R2;R),

we find that

dω1 +dω2 = dω1 =−2πδ(0,0) ⊗ e2x3 dx1 ∧·· ·∧dxkin D ′(Ω;Λk),

and thus d) holds.
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Remark 1. A similar example shows that, in order to insure the validity of (1.4), the
condition (1.1) cannot be weakened to u j ∈ L∞

loc(Ω;R) and du j ∈ LN−1,∞
loc (Ω;Λ1), 1 ≤ j ≤ N.

Indeed, if we set r = r(x) := (x2
1 +·· ·+ x2

k−1)1/2 and let

u1(x) := 1, u j(x) := x j−1

r
exk , 2≤ j ≤ k,

then (by repeating the proof of Proposition 2) we have u j ∈ L∞(Ω;R), du j ∈ Lk−1,∞(Ω;Λ1),
1≤ j ≤ k, ω1,ω2 ∈ Lk−1,∞(Ω;Λk−1), and dω1 +dω2 6= 0 in D ′(Ω;Λk).

Proof of Proposition 3. Consider a sequence (Φ`)`≥2 ⊂ C∞(R;R) such that Φ`(t)= 0 if |t| <
1/(2`), Φ`(t) = (`+ 1)sgn t if |t| > `+ 1, Φ`(t) = t if 1/` ≤ |t| ≤ `, and |Φ′

`
| ≤ 2, ∀`. Set

ũ j = ũ j,` :=Φ`(u j). The strategy of the proof consists of proving (1.7) for ũ j instead of u j,
and then letting `→∞.

Since ũ1, ũ2 ∈W1,1 ∩L∞, the Leibniz rule implies that d(ũ1ũ2)= ũ1 dũ2 + ũ2 dũ1, and
thus

(ũ1 dũ2 + ũ2 dũ1)∧dũ3 ∧ . . .∧dũk = d(ũ1ũ2)∧dũ3 ∧ . . .∧dũk in D ′(Ω;Λk−1). (2.6)

We claim that, under the only assumption (1.10), we have

d(ũ1ũ2)∧dũ3 ∧ . . .∧dũk = d((ũ1ũ2)dũ3 ∧·· ·∧dũk)) in D ′(Ω;Λk) (2.7)

(and this also holds for N = k−1).
Indeed, (2.7) follows by approximation with smooth maps, using the fact that, by the

assumption (1.10) and the chain and Leibniz rules, we have ũ1ũ2, ũ3, . . . , ũk ∈W1,k−1.
Combining (2.6) and (2.7), we find that

d(ũ1 dũ2 ∧dũ3 ∧ . . .∧dũk)+d(ũ2 dũ1 ∧dũ3 ∧ . . .∧dũk)= 0 in D ′(Ω;Λk). (2.8)

We obtain (1.7) by letting `→∞ in (2.8). (Recall that ũ j = ũ j,`.) Passing to the limits
is justified via the assumption (1.9) and the uniform inequalities

|ũ1,`dũ2,`∧dũ3,`∧ . . .∧dũk,`| ≤ 2k−1|u1 du2 ∧du3 ∧ . . .∧duk|, ∀`,

|ũ2,`dũ1,` ∧dũ3,`∧ . . .∧dũk,`| ≤ 2k−1|u2 du1 ∧du3 ∧ . . .∧duk|,∀`,

inequalities that follow from the properties of Φ` and the chain rule.
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