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We investigate the existence of the distributional Jacobian for maps u ∈ W

In 2D, we present necessary and sufficient existence assumptions. In dimensions 3 and higher, we exhibit sufficient existence conditions weaker than the standard ones.

Introduction

This note complements the expository text [START_REF] Brezis | A brief history of the Jacobian[END_REF] by H. Brezis, J. Mawhin, and the author, presenting a brief -and personal -history of the (distributional) Jacobian. Given a mapping u ∈ W 1,1 loc (Ω; R N ), where N ≥ 2 and Ω ⊂ R N is an open set, and indices 1 ≤ i, j ≤ N, we denote by C i, j the cofactor of ∂ j u i in the Jacobian det (∇u) of u. Note that C i, j is a measurable function defined a.e., but this function need not belong to L 1 loc (Ω; R). Assuming extra regularity assumptions on u, e.g.,

u ∈ W 1,N-1 loc (Ω; R N ) ∩ L ∞ loc (Ω; R N ) (1.1) or u ∈ W 1,N 2 /(N+1) loc (Ω; R N ), (1.2) 
we have u i C i, j ∈ L 1 loc (Ω; R), and then we may define

T i := N j=1 ∂ j (u i C i, j ) ∈ D (Ω; R).
(1.3) Moreover, under the assumptions (1.1) or (1.2), T i is independent of i, i.e.,

N j=1 ∂ j (u i C i, j ) = N j=1 ∂ j (u C , j ) in D (Ω; R), ∀ 1 ≤ i, ≤ N, (1.4) 
and we may thus define

Det (∇u) := T i , ∀ 1 ≤ i ≤ N, (1.5) 
the distributional Jacobian made popular by the seminal work of J. Ball [START_REF] Ball | Convexity conditions and existence theorems in nonlinear elasticity[END_REF].

The question we address here is the validity of (1.4) for u ∈ W 1,1 loc (Ω; R N ) under 'minimal' extra assumptions, i.e, we look for 'minimal' assumptions allowing us to define the distributional Jacobian as in (1.5). For the sake of simplicity of the statements, we consider only the case i = 1, = 2. Given the local nature of our problem, we may assume that Ω = (-1, 1) N , and discard 'loc'. It will be convenient to use the language of differential forms, and to consider the following more general situation. Let 2 ≤ k ≤ N and

u = (u 1 , . . . , u k ) ∈ W 1,1 (Ω; R k ).
(1.6)

We want to find 'minimal' assumptions implying that

dω 1 + dω 2 = 0 in D (Ω; Λ k ), (1.7) 
where Λ k stands for the space of k-forms and

ω 1 := u 1 du 2 ∧ du 3 ∧ . . . ∧ du k , ω 2 := u 2 du 1 ∧ du 3 ∧ . . . ∧ du k (1.8)
are (k -1)-forms with measurable coefficients. (Our original question corresponds to

N = k ≥ 2.)
Note that, formally, (1.7) is clear, since, for smooth u,

ω 1 + ω 2 = d(u 1 u 2 du 3 ∧ . . . ∧ du k ),
and thus

dω 1 + dω 2 = d 2 (u 1 u 2 du 3 ∧ . . . ∧ du k ) = 0.
In order to give a meaning to (1.7), we require

ω 1 , ω 2 ∈ L 1 (Ω; Λ k-1
).

(1.9)

In the easier case k = 2, the minimal conditions (1.6) and (1.9) are sufficient for the validity of (1.7). In fact, more can be said in this case.

Proposition 1. Let N ≥ 1. Let u 1 , u 2 ∈ W 1,1 (Ω; R). Assume that u 1 du 2 + u 2 du 1 ∈ L 1 (Ω; Λ 1 ). Then: 1. u 1 u 2 ∈ W 1,1 (Ω; R). 2. d(u 1 u 2 ) = u 1 du 2 + u 2 du 1 . In particular: (a) We have d(u 1 du 2 + u 2 du 1 ) = 0 in D (Ω; Λ 2 ). (b) Under the stronger assumptions u 1 du 2 ∈ L 1 (Ω; Λ 1 ) and u 2 du 1 ∈ L 1 (Ω; Λ 1 ), we have d(u 1 du 2 ) + d(u 2 du 1 ) = 0 in D (Ω; Λ 2 ). Consequently, (1.7) with k = 2
holds under the assumptions (1.6) and (1.9).

||u

1 u 2 || L 1 ≤ C(||u 1 || W 1,1 ||u 2 || W 1,1 + ||u 1 du 2 + u 2 du 1 || L 1 ) (with C depending only on N). Corollary 1. Let Ω ⊂ R 2 be an open set. The distributional Jacobian Det (∇u) is well- defined (via (1.5)) for maps u = (u 1 , u 2 ) : Ω → R 2 satisfying u 1 , u 2 ∈ W 1,1 loc (Ω; R), u 1 du 2 , u 2 du 1 ∈ L 1 loc (Ω; Λ 1 ).
When k ≥ 3, the necessary conditions (1.6) and (1.9) are no more sufficient for the validity of (1.7).

Proposition 2. Let N ≥ k ≥ 3. There exists some u = (u 1 , . . . , u k ) ∈ W 1,1 (Ω; R k ) such that: a) u j ∈ C ∞ (Ω; R), j = 2, 3. b) u j ∈ W 1,1 (Ω; R) ∩ L ∞ and du j ∈ L 2,∞ (Ω; Λ 1 ), j = 2, 3. (So that u 2 and u 3 are 'almost' in W 1,2 .) c) ω 1 , ω 2 ∈ L 2,∞ (Ω; Λ k-1 ). d) dω 1 + dω 2 = 0 in D (Ω; Λ k ).
Finally, we present an existence result for the distributional Jacobian when k ≥ 3. Motivated by the example in Proposition 2 (see also Remark 1 in the next section) and the validity of (1.7) under the assumption (1.1), we consider the following assumption, weaker than (1.1):

du j ∈ L k-1 ([ε < |u j | < M]), ∀ 0 < ε < M < ∞, ∀ 1 ≤ j ≤ k.
(1.10) Proposition 3. Assume (1.6), (1.9), and (1.10). Then (1.7) holds.

Corollary 2. Let N ≥ 3 and let Ω ⊂ R N be an open set. Let u ∈ W 1,1 loc (Ω; R N ) satisfy |u| |du| N-1 ∈ L 1 (Ω; R) (1.11) 
(where | | stands for the Euclidean length). Then the distributional Jacobian Det (∇u) is well-defined via (1.5).

Acknowldegment. I warmly thank H. Brezis for useful discussions during the writing of [START_REF] Brezis | A brief history of the Jacobian[END_REF], and in particular for suggesting (1.11) as a sufficient condition for the existence of the distributional Jacobian.

Proofs

Proof of Proposition 1. In what follows, C denotes a generic constant depending only on N.

When N = 1, the assumption u 1 u 2 + u 2 u 1 ∈ L 1 is always satisfied, part 2 is simply the chain rule (u 1 u 2 ) = u 1 u 2 + u 2 u 1 , and the estimate in part 3 follows from the embedding

W 1,1 → L ∞ .
Let N ≥ 2. Using the case N = 1 and Fubini, we find that parts 1 and 2 hold provided we know that u 1 u 2 ∈ L 1 .

In particular, when N = 2, parts 1, 2, and 3 follow from the above considerations and the embedding W 1,1 → L 2 , which implies that

||u 1 u 2 || L 1 ≤ C||u 1 || W 1,1 ||u 2 || W 1,1 .
The case N ≥ 3 follows by induction on N. With no loss of generality, we may assume that u 1 and u 2 are absolutely continuous on a.e. line segment of the form

L (x 1 ,...,x N-1 ) := {(x 1 , . . . , x N-1 , t); -1 < t < 1}.
Pick some t 0 ∈ (-1, 1) such that the partial functions (-1, 1) N-1 (x 1 , . . . , x N-1 ) → v i (x 1 , . . . , x N-1 ) := u i (x 1 , . . . , x N-1 , t 0 ), i = 1, 2, satisfy v 1 , v 2 ∈ W 1,1 ((-1, 1) N-1 ; R) and the estimates

||v i || W 1,1 ≤ C||u i || W 1,1 , i = 1, 2,
(2.1)

||v 1 dv 2 + v 2 dv 1 || L 1 ≤ C||u 1 du 2 + u 2 du 1 || L 1 . (2.2)
By (2.1), (2.2), and the induction assumption, we then have v 1 v 2 ∈ L 1 ((-1, 1) N-1 ; R), and the estimate

||v 1 v 2 || L 1 ≤ C(||u 1 || W 1,1 ||u 2 || W 1,1 + ||u 1 du 2 + u 2 du 1 || L 1 ).
(2.3)

On the other hand, for a.e. (x 1 , . . . , x N-1 ) ∈ (-1, 1) N-1 , the Leibniz rule applies, on L (x 1 ,...,x N-1 ) , to the absolutely continuous partial maps

(-1, 1) t → w i (t) := u i (x 1 , . . . , x N-1 , t), i = 1, 2,
which implies, for such (x 1 , . . . , x N-1 ), that

||w 1 w 2 || L 1 ((-1,1)) ≤ C(|w 1 (t 0 ) w 2 (t 0 )| + w 1 w 2 + w 2 w 1 L 1 ((-1,1)) ).
(2.4) Combining (2.3) and (2.4), we find that item 3 holds, and in particular, that u 1 u 2 ∈ L 1 (Ω; R). As explained above, this also implies the validity of items 1 and 2.

Proof of Proposition 2. Set, for x ∈ Ω, ρ = ρ(x) := (x 2 1 + x 2 2 ) 1/2 , and let

u 1 (x) := 1, u 2 (x) := x 1 ρ e x 3 , u 3 (x) := x 2 ρ e x 3 , u j (x) := x j , 4 ≤ j ≤ k.
Properties a) and b) are straightforward.

We now prove c). Clearly, ω 2 = 0. On the other hand, we have

du 2 = x 2 2 ρ 3 e x 3 dx 1 - x 1 x 2 ρ 3 e x 3 dx 2 +
x 1 ρ e x 3 dx 3 in D (Ω; Λ 1 ),

du 3 = - x 1 x 2 ρ 3 e x 3 dx 1 + x 2 1 ρ 3 e x 3 dx 2 +
x 2 ρ e x 3 dx 3 in D (Ω; Λ 1 ), and therefore, with ω 0 := dx 4 ∧ . . . ∧ dx k (and the convention ω 0 := 1 if k = 3)

ω 1 = - x 1 ρ 2 e 2x 3 dx 2 ∧ dx 3 + x 2 ρ 2 dx 3 ∧ dx 1 ∧ ω 0 in D (Ω; Λ k-1
).

(2.5) Thus c) holds.

Finally, using (2.5) and the fact that

∂ 1 x 1 ρ 2 + ∂ 2 x 2 ρ 2 = 2π δ (0,0) in D (R 2 ; R),
we find that

dω 1 + dω 2 = dω 1 = -2π δ (0,0) ⊗ e 2x 3 dx 1 ∧ • • • ∧ dx k in D (Ω; Λ k ),
and thus d) holds.

Remark 1. A similar example shows that, in order to insure the validity of (1.4), the condition (1.1) cannot be weakened to u j ∈ L ∞ loc (Ω; R) and du j ∈ L N-1,∞ loc

(Ω; Λ 1 ), 1 ≤ j ≤ N. Indeed, if we set r = r(x) := (x 2 1 + • • • + x 2 k-1 ) 1/2 and let u 1 (x) := 1, u j (x) := x j-1 r e x k , 2 ≤ j ≤ k,
then (by repeating the proof of Proposition 2) we have

u j ∈ L ∞ (Ω; R), du j ∈ L k-1,∞ (Ω; Λ 1 ), 1 ≤ j ≤ k, ω 1 , ω 2 ∈ L k-1,∞ (Ω; Λ k-1
), and

dω 1 + dω 2 = 0 in D (Ω; Λ k ). Proof of Proposition 3. Consider a sequence (Φ ) ≥2 ⊂ C ∞ (R; R) such that Φ (t) = 0 if |t| < 1/(2 ), Φ (t) = ( + 1) sgn t if |t| > + 1, Φ (t) = t if 1/ ≤ |t| ≤ , and |Φ | ≤ 2, ∀ . Set u j = u j, := Φ (u j ).
The strategy of the proof consists of proving (1.7) for u j instead of u j , and then letting → ∞.

Since Indeed, (2.7) follows by approximation with smooth maps, using the fact that, by the assumption (1.10) and the chain and Leibniz rules, we have u 1 u 2 , u 3 , . . . , u k ∈ W 1,k-1 .

u 1 , u 2 ∈ W 1,1 ∩ L ∞ , the Leibniz rule implies that d( u 1 u 2 ) = u 1 d u 2 + u 2 d u 1 ,
Combining (2.6) and (2.7), we find that (2.8)

We obtain (1.7) by letting → ∞ in (2.8). (Recall that u j = u j, .) Passing to the limits is justified via the assumption (1.9) and the uniform inequalities

  and thus( u 1 d u 2 + u 2 d u 1 ) ∧ d u 3 ∧ . . . ∧ d u k = d( u 1 u 2 ) ∧ d u 3 ∧ . . . ∧ d u k in D (Ω; Λ k-1 ). (2.6)We claim that, under the only assumption (1.10), we haved( u 1 u 2 ) ∧ d u 3 ∧ . . . ∧ d u k = d(( u 1 u 2 ) d u 3 ∧ • • • ∧ d u k )) in D (Ω; Λ k ) (2.7)(and this also holds for N = k -1).

d( u 1 d u 2 ∧

 2 d u 3 ∧ . . . ∧ d u k ) + d( u 2 d u 1 ∧ d u 3 ∧ . . . ∧ d u k ) = 0 in D (Ω; Λ k ).