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A brief history of the Jacobian

Haïm Brezis(1), Jean Mawhin(2), Petru Mironescu(3)
�

February 20, 2023

Abstract

In his pioneering work, Jacobi discovered two remarkable identities related to the
Jacobian. The first one asserts that the Jacobian has a divergence structure. The sec-
ond one, that some vector fields involving the cofactors of the Jacobian are divergence
free. We illustrate the fundamental impact of these properties on research, from the
times of Jacobi to our days.

0 Introduction
Given a mapping u :Ω⊂RN →RN of class C1, recall that its Jacobian is given by

det(∇u)=
N∑

j=1
(∂ jui)Ci, j, i ∈ {1, . . . , N}, (0.1)

where Ci, j denotes the cofactor of ∂ jui in the matrix (∂`uk)`,k.
This short expository text is a tribute to two remarkable (families of) identities related

to the Jacobian of u, with u of class C2, which appear frequently in the literature, usually
without credit. The first one asserts that

det(∇u)=
N∑

j=1
∂ j(uiCi, j), i ∈ {1, . . . , N}, (0.2)

and in particular implies that the Jacobian has a divergence structure. The second
one is

N∑
j=1

∂ jCi, j = 0, i ∈ {1, . . . , N}. (0.3)

These (equivalent) identities were obtained by Jacobi himself and rediscovered, under
possibly different but equivalent forms, a number of times; see Section 1 below.

The distributional Jacobian – which grew out of the identity (0.2) – plays an important
role in topics from the calculus of variations, arising, e.g., in nonlinear elasticity, and
developed in the seminal works of Morrey [37], Reshetnyak [44], and Ball [5]. In this
context, the proofs use the continuity of the mapping u 7→ det(∇u), property which relies
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heavily on the divergence structure of the Jacobian. Section 2 contains some optimal
versions of the continuity properties of the (distributional) Jacobian. In Sections 3 and 4,
we present a partial collection (reflecting our personal taste!) of topics, motivated, e.g., by
liquid crystals, Ginzburg-Landau theories, surfaces of constant mean curvature, which
involve (0.2) and (0.3) and illustrate their important influence on current research.

1 The origins of a formula
Carl Gustav Jacobi (1804–1851) is famous for his pioneering work on elliptic functions,
but most students in mathematics learn his name through the concept of Jacobian of
a C1 mapping of RN into RN , which is the determinant of the matrix of the first order
partial derivatives of its components. The term ‘Jacobian’ refers to an important memoir
(in Latin) of Jacobi on functional determinants (his terminology) published in 1841
[29]. Jacobians occur in an essential way in fundamental questions of analysis like the
implicit functions theorem and the change of variables in multiple integrals. The name
‘Jacobian’ was coined in 1853 by James Joseph Sylvester (1814–1897) [48, p. 476]: ‘where
J indicates the Jacobian of the given functions f and g in respect to the variables x and l,
meaning thereby the so-called Functional Determinant of Jacobi to f and g in respect of x
and l’. The memoir [29] of Jacobi provided the first systematic treatment of the principal
properties of the Jacobians in arbitrary finite dimension.

A few years later, in 1844–45, Jacobi published a substantial memoir [30] on the
method of the multiplier, which extends to systems of ordinary differential equations
the method of the integrating factor for scalar equations. Consider an autonomous sys-
tem x′ = X (x) of N ordinary differential equations, i.e.,

x′i = X i(x1, . . . , xN), i ∈ {1, . . . , N}, (1.1)

and (N −1) functionally independent first integrals of (1.1),

θi = θi(x1, . . . , xN), i ∈ {1, . . . , N −1}.

Let θ = θ(x1, . . . , xN) be a C1 function, and write

det(∇θ,∇θ1, . . . ,∇θN−1)=
N∑

j=1
(∂ jθ)∆ j.

Clearly, the cofactor ∆ j =∆ j(x1, . . . , xN) of ∂ jθ depends only on θ1, . . . ,θN−1.
Note that

N∑
j=1

(∂ jθi)∆ j = 0, i ∈ {1, . . . , N −1}, (1.2)

and, since each θi is a first integral,

N∑
j=1

(∂ jθi) X j = 0, i ∈ {1, . . . , N −1}. (1.3)
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Assuming that X (x) 6= 0, we find, from (1.2), (1.3), and the functional independence of
θ1, . . . ,θN−1, that there exists some M(x) 6= 0 such that M(x)X j =∆ j, j ∈ {1, . . . , N}. Granted
(0.3), one obtains the differential equation satisfied by M,

N∑
j=1

∂ j(MX j)= 0. (1.4)

The paramount importance of M (the celebrated Jacobi multiplier) comes from the
fact that, if M, M′ are solutions of (1.4), the quotient M/M′ is a first integral of (1.1).

The validity of (0.3) was stated and proved by Jacobi on p. 203 of the first part of [30].
With the notation used in the introduction, the result, that Jacobi named ‘fundamental
lemma’, is the following.

Lemma 1.1. If u :Ω⊂RN →RN is of class C2, then

N∑
j=1

∂ jCi, j = 0, i ∈ {1, . . . , N}.

Jacobi’s proof relies on differentiation of functional determinants defined classically
as alternate sums of products of the first partial derivatives of the ui. At the beginning
of his proof [30, p. 203], Jacobi observed that the formula (0.2) can be deduced from the
formula (0.3). Indeed, the elementary identity

N∑
j=1

∂ j(uiCi, j)=
N∑

j=1
(∂ jui)Ci, j +ui

(
N∑

j=1
∂ jCi, j

)
= det(∇u)+ui

(
N∑

j=1
∂ jCi, j

)
,

i ∈ {1, . . . , N},

combined with (0.3) yields (0.2).
On the other hand, note that (by construction) Ci, j is independent of ui, ∀ i, ∀ j.

Therefore, if we define ũ by ũ j := u j for j 6= i and ũi := 1 we have (with obvious nota-
tion) C̃i, j = Ci, j, ∀ j. Applying (0.2) to ũ yields

0= det(∇ũ)=
N∑

j=1
∂ jC̃i, j =

N∑
j=1

∂ jCi, j,

so that (0.3) holds.
An excellent analysis of Lemma 1.1 and of Jacobi’s proof is proposed by T. Muir on p.

230–235 of the second volume of his monumental treatise on the history of determinants
[38].

In his lectures on dynamics delivered in 1842–43, posthumously published in 1866,
reproduced (slightly revised) in 1884 as a supplementary volume of his Gesammelte Werke
[31], and translated in English in [32], Jacobi developed in Lecture 13 the theory of func-
tional determinants, essentially following [29], and, in Chapter 14, the theory of the
multiplier. At this occasion, in [31, p. 104–106] (or [32, p. 112–114]), he proved again
Lemma 1.1, without isolating it as a separate statement.

The multiplier rapidly became a classical tool in analysis and analytical mechanics
and, in particular, it inspired to Henri Poincaré (1854–1912) his theory of the integral
invariants [43]. The Section V of Chapter XXV of the monumental treatise of rational
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mechanics of Paul Appell (1855–1930) [4] is devoted to the Jacobi multiplier. Lemma 1.1
is proved in [4, p. 460–461] following the argument of Jacobi sketched above.

Lemma 1.1 has also found applications outside of the fields of ordinary differential
equations and analytical mechanics. In 1910, Jacques Hadamard (1865–1963) extended,
in an Appendix to Tannery’s textbook on real functions [25], the notion of Kronecker
index to continuous non vanishing mappings u on the smooth boundary ∂Ω of a bounded
open set Ω ⊂ RN . At this occasion, he stated and used in [25, p. 455–456] the following
generalization of the formulas (0.2) and (0.3)), that we formulate keeping the notation
and assumptions of Lemma 1.1.

Lemma 1.2. For any h = h(y)= h(y1, . . . , yN) :RN →RN of class C1, one has

N∑
j=1

∂ j

(
N∑

k=1
(hk ◦u)Ck, j

)
=

[
N∑

k=1
(∂khk)◦u

]
·det(∇u), (1.5)

where, on the left-hand side, ∂ j = ∂/∂x j, while, on the right-hand side, ∂k = ∂/∂yk.

Notice that if, in (1.5), we take hk(y) := δk j yj, k, j ∈ {1, . . . , N}, we recover the formulas
(0.2), while, if we take hk(y) := δk j, k, j ∈ {1, . . . , N}, we recover the formulas (0.3).

Hadamard’s ‘proof ’ of this ‘easy to verify’ identity consists in a footnote asserting that
the formula is ‘well-known when the hk’s are constant and plays a role in the theory of
multipliers’ (referring to the classical treatises on analysis by Jordan, Goursat, etc.). It is
doubtful that the majority of readers of Tannery’s textbook containing Hadamard’s paper
[25] were able to reconstruct a proof of (1.5) from this rough information. We sketch an
argument at the end of this section.

The formulas (0.3) reappear almost fifty years later in the analytical definition of the
Brouwer degree (an extension of Kronecker’s index; see, e.g., Dinca and Mawhin [22])
given by Erhard Heinz (1924–2017) in [27, p. 232]. They are just referred there as ‘well-
known relations’ and stated without proof. They are essential to justify Heinz’ definition
of the Brouwer degree of u in Ω as some integral over Ω of an expression depending on u
and det(∇u).

As noticed in Brezis and Nguyen [19], one also finds the formulas (0.3) (or rather the
version (1.6) below) in the monograph of Charles B. Morrey (1907–1984) on the calculus
of variations and partial differential equations [37, Lemma 4.4.6, p. 122], which has led
the authors of [19] to attribute them to Morrey. The proof in [37] is by induction on N,
and the motivation of Morrey is the study of strongly quasi-convex functions.

Another identity involving Jacobians is fundamental in the analytical proof by Dun-
ford and Schwartz [23, p. 467] of the Brouwer fixed point theorem [23, p. 468–470].

Lemma 1.3. If f : Ω→ RN−1 is of class C2 and, for each j ∈ {1, . . . , N}, E j denotes the
determinant whose columns are the (N−1) partial derivatives ∂1 f , . . . , ∂̂ j f , . . . , ∂N f , then

N∑
j=1

(−1) j−1∂ jE j = 0. (1.6)

(As usual, ∂̂ j f indicates that the factor ∂ j f is missing.)
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Proof. It turns out that (1.6) is actually equivalent to (0.3). Indeed, if u is as in Lemma
1.1 and we set f := (u1, . . . , ûi, . . . ,uN) :Ω→RN−1, then E j = (−1)i+ jCi, j, j ∈ {1, . . . , N}, and
thus (1.6) implies (0.3). On the other hand, if f is as in Lemma 1.3 and we let u :Ω→RN

be any C2 mapping whose first (N−1) components are those of f , then CN, j = (−1)N+ j E j,
j ∈ {1, . . . , N}, and therefore (0.3) implies (1.6).

The modern ‘textbook’ analytical proofs of the Brouwer fixed point theorem (see, e.g.,
Kannai [33] or Evans [24, Section 8.1.4]) follow the lines of [23] and rely on the formulas
(0.3) or cousin formulas, as (1.6).

Finally, let us mention – as suggested to us by Ball – that the formulas (0.3) establish
a connection between Jacobians and null Lagrangians. More specifically, they imply
that L(P) := detP, where P is an N × N matrix, is a null Lagrangian. (More generally,
(0.3) implies that L(P, z) := η(z) detP, with η : RN → R of class C1, is a null Lagrangian.)
This is well explained in [24, Section 8.1.4], where the reader may find a proof of (0.3). For
more insights on the structure of null Lagrangians, see, e.g., Olver and Sivaloganathan
[41] and the survey by Iwaniec [28].

This confirms the ubiquity of (0.3).
Some final comments. The somewhat mysterious character of the formulas (0.2) (or,

equivalently, (0.3)) disappears when they are written in the language of exterior differ-
ential calculus, where they take the form of the trivial results

d
[
(−1)i−1ui du1 ∧ . . .∧ d̂ui ∧ . . .∧duN

]
= du1 ∧ . . .∧duN , i ∈ {1, . . . , N},

where d denotes the exterior differential, ∧ the exterior product, and d̂ui means that the
factor dui is missing. On the other hand, the identities (0.3) correspond to the trivial
property

d(du1 ∧ . . .∧ d̂ui ∧ . . .∧duN)= 0, i ∈ {1, . . . , N},

which follows from the fact that d2u j = 0, ∀ j. This is the reason why the formulas (0.2)
and (0.3) do not appear explicitly in the analytical presentation of the Kronecker index
and of the Brouwer degree in terms of differential forms, given for example in [22].

Here are some more detailed explanations. It is well-known that

du1 ∧ . . .∧duN = det(∇u)dx1 ∧ . . .∧dxN . (1.7)

On the other hand, one may check that

du1 ∧ . . .∧ d̂ui ∧ . . .∧duN =
N∑

j=1
(−1)i+ jCi, j dx1 ∧ . . .∧ d̂x j ∧ . . .∧dxN . (1.8)

Using (1.7), (1.8), the exterior differentiation rules, and the fact that d2u j = 0, ∀ j, we
find that

det(∇u)dx1 ∧ . . .∧dxN =du1 ∧ . . .∧duN

=d[(−1)i−1ui du1 ∧ . . .∧ d̂ui ∧ . . .∧duN]

=d

[
N∑

j=1
(−1) j−1ui Ci, j dx1 ∧ . . . d̂x j ∧ . . .∧dxN

]

=
N∑

j=1
∂ j(ui Ci, j)dx1 ∧ . . .∧dxN ,
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whence (0.2).
Similarly, the formula (1.5) of Hadamard amounts to the straightforward identity

d

[(
N∑

k=1
(−1)k−1hk ◦u

)
du1 ∧ . . .∧ d̂uk ∧ . . .∧duN

]
=

N∑
k=1

(∂khk)◦u du1 ∧ . . .∧duN .

2 The distributional Jacobian
For simplicity, we assume throughout the rest of this paper thatΩ is smooth and bounded.

Taking advantage of the divergence structure (0.2) of the Jacobian, Ball [5] introduced
in 1976 the very useful concept of Jacobian in the sense of distributions, nowadays
rather known as distributional Jacobian. [5] deals only with the cases N = 2 and
N = 3 (see (6.8) and (6.10) in [5]), but the definitions readily extend to any N ≥ 2. More
precisely, given a vector-field u :Ω→RN , set

Det(∇u)= T1 :=
N∑

j=1
∂ j(u1C1, j) (2.1)

whenever the right-hand side of (2.1) is meaningful as a distribution, and, in particular,
if u1C1, j ∈ L1(Ω), ∀ j. This is, e.g., the case if:

u ∈W1,N−1(Ω;RN)∩L∞(Ω;RN) (2.2)

or

u ∈W1,N2/(N+1)(Ω;RN) (2.3)

(thanks to the Sobolev embedding W1,N2/(N+1)(Ω) ,→ LN2
(Ω)).

As noted in [5, Corollary 6.2.1], if u satisfies (2.2) or (2.3), one has

Det(∇u)= Ti :=
N∑

j=1
∂ j(uiCi, j), i ∈ {2, . . . , N}. (2.4)

The identity (2.4) easily follows from (0.2) and a standard approximation argument.
Another sufficient condition for the validity of (2.4) is |u| |∇u|N−1 ∈ L1(Ω) – which is

weaker than (2.2) and (2.3). This assertion is a consequence of a more general result due
to Mironescu [35].

In recent years, it has become customary to use a more symmetric definition of the
distributional Jacobian:

Det(∇u)= 1
N

N∑
i=1

Ti = 1
N

N∑
i=1

N∑
j=1

∂ j(uiCi, j), (2.5)

or, equivalently,

Det(∇u)= 1
N

divD, (2.6)

where D = D(u)= (D1, . . . ,DN) and

D i = D i(u) := det (∂1u, . . . ,∂i−1u,u,∂i+1u, . . . ,∂N u) , i ∈ {1, . . . , N}. (2.7)
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Note that, at least when u satisfies (2.2) or (2.3), the formulas (2.1) and (2.6) yield the
same distributional Jacobian.

Clearly, (0.2) implies that, when u ∈ C2(Ω;RN), we have

Det(∇u)= det(∇u). (2.8)

One can investigate the validity of (2.8) under weaker assumption on u, assuming at
least that u ∈ W1,1

loc (Ω;RN) (so that the right-hand side of (2.8) is a function defined a.e.).
An approximation argument shows that (2.8) still holds when u ∈ C1(Ω;RN), and thus the
distributional Jacobian Det(∇u) generalizes the classical Jacobian det(∇u). Moreover,
the equality (2.8) persists when u ∈ W1,N(Ω;RN); this follows, again, by approximation.
However, Ball noticed that, when u ∈ W1,N−1(Ω;RN)∩ L∞(Ω;RN), (2.8) may fail. His
example [5, Example 6.1] is the following. Let Ω=BN := {x ∈RN ; |x| < 1} and

u(x) := R(|x|)
|x| x, (2.9)

where R is a smooth real-valued function on [0,1] such that R(0) 6= 0. Note that u satisfies
(2.2). (In fact, u ∈ W1,p(Ω;RN), ∀ p < N.) Ball pointed out that ‘Det(∇u) has an atom at
x = 0’, but he didn’t elaborate; a more detailed computation yields

Det(∇u)= RN−1(|x|)R′(|x|)
|x|N−1 +|BN |RN(0)δ0 in D ′(Ω), (2.10)

where |BN | denotes the measure of the unit ball. (We will return to this phenomenon in
Section 3 below.)

However, we have the following noticeable result, obtained by Müller [39].

Theorem 2.1. Assume that (2.3) holds.
If, in addition, Det(∇u) ∈ L1, then Det(∇u)= det(∇u).
More generally, if (2.3) holds and Det(∇u) is a Radon measure, then det(∇u) is (the

density of) the absolutely continuous part of Det(∇u) (with respect to the Lebesgue mea-
sure).

The distributional Jacobian enjoys remarkable continuity (‘stability’) properties, which
rely heavily on its divergence structure, and are relevant for variational problems (which
require passing to the weak limits). Here are some typical examples taken from Brezis
and Nguyen [19].

Theorem 2.2. Assume that

p ≥ N −1 and
N −1

p
+ 1

q
= 1. (2.11)

For all u,v ∈W1,p(Ω;RN)∩Lq(Ω;RN) and ϕ ∈ C1
c(Ω;R), we have

|〈Det(∇u),ϕ〉−〈Det(∇v),ϕ〉| ≤ CN ||u−v||Lq (||∇u||Lp +||∇v||Lp )N−1 ∣∣∣∣∇ϕ∣∣∣∣
L∞ , (2.12)

|〈Det(∇u),ϕ〉−〈Det(∇v),ϕ〉| ≤CN ||∇u−∇v||Lp (||∇u||Lp +||∇v||Lp )N−2

× (||u||Lq +||v||Lq )
∣∣∣∣∇ϕ∣∣∣∣

L∞ .
(2.13)
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Estimate (2.12) illuminates the fact that, if uk * u weakly in W1,r(Ω;RN) for some
r > N2/(N +1), then

Det(∇uk)→Det(∇u) in D ′(Ω). (2.14)

(Indeed, it suffices to apply (2.12) with p = N2/(N +1) and q = N2 and to use the fact
that W1,r(Ω) ,→ LN2

(Ω), with compact injection.) This result is due to Reshetnyak [44]
when r = N. His proof works in the full range r > N2/(N +1), and also yields (2.14) in
the limiting case r = N2/(N + 1), under the extra assumption that uk → u strongly in
LN2

(Ω;RN). However, it lacks the quantitative estimate (2.12).
Dacorogna and Murat [21, proof of Theorem 1] have shown that, when r = N2/(N+1),

the extra assumption that uk → u strongly in LN2
(Ω;RN) cannot be omitted; they have

constructed a sequence (uk) ⊂W1,N2/(N+1)(Ω;RN) such that uk * 0 weakly in W1,N2/(N+1),
while Det(∇uk) does not converge to 0 in D ′(Ω) (see also [19, Proposition 1] for a more
precise conclusion).

It turns out that the space W1,N2/(N+1) is the largest Sobolev space in the scale W1,p,
1 ≤ p <∞, for which the distributional Jacobian makes sense. This is a consequence of
the following result (see [21, proof of Theorem 1] and [19, proof of Lemma 5, Case 1]).

Theorem 2.3. Given any 1≤ p < N2/(N+1), there exists a sequence (uk)⊂ C∞(Ω;RN) such
that, as k →∞, uk → 0 strongly in W1,p and∫

Ω
det(∇uk)ϕ→∞ for some ϕ ∈ C∞

c (Ω;R).

A more general natural question investigated in Brezis and Nguyen [19] is the ex-
istence of a largest fractional Sobolev space W s,p in which Det(∇u) is well-defined and
stable. The answer is given by the following result [19, Theorem 3, Theorem 4].

Theorem 2.4. 1. If u,v ∈ C∞(Ω;RN) and ϕ ∈ C1
c(Ω;R), then

|〈det(∇u),ϕ〉−〈det(∇v),ϕ〉| ≤CN,Ω|u−v|W (N−1)/N,N

×
(
|u|N−1

W (N−1)/N,N +|v|N−1
W (N−1)/N,N

)∣∣∣∣∇ϕ∣∣∣∣
L∞ .

(2.15)

In particular, there exists a unique continuous mapping

W (N−1)/N,N(Ω;RN) 3 u 7→Det(∇u) ∈D ′(Ω)

such that Det(∇u)= det(∇u) when u ∈ C∞(Ω;RN).

2. Let s > 0 and 1≤ p ≤∞. If the mapping

C∞(Ω;RN) 3 u 7→ det(∇u) ∈D ′(Ω)

is continuous with respect to the W s,p-convergence, then W s,p(Ω) ,→W (N−1)/N,N(Ω).

We recall that, when 0< s < 1 and 1≤ p <∞,

W s,p(Ω) := {u ∈ Lp(Ω); |u|W s,p <∞},
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where

|u|W s,p :=
(∫
Ω

∫
Ω

|u(x)−u(y)|p
|x− y|N+sp dxdy

)1/p

is the Gagliardo seminorm.
The proof of (2.15) relies on the identity (2.17) below, with roots in Bourgain, Brezis,

and Mironescu [9] and Hang and Lin [26]. Let U ∈ C∞(Ω×[0,1),RN) be an extension of u,
and let Φ ∈ C1

c(Ω× [0,1),R) be an extension of ϕ. Let, for each j ∈ {1, . . . , N +1}, E j=E j(U)
denote the determinant whose columns are the N partial derivatives ∂1U , . . . , ∂̂ jU ,. . . ,
∂N+1U . By Lemma 1.3, we have

N+1∑
j=1

(−1)N+ j∂ jE j = 0. (2.16)

Combining (2.16) and the divergence theorem, we find that∫
Ω

det(∇u)ϕ=
∫
Ω×(0,1)

N+1∑
j=1

∂ j((−1)N+ jE jΦ)=
∫
Ω×(0,1)

N+1∑
j=1

(−1)N+ jE j ∂ jΦ. (2.17)

The estimate (2.15) follows from (2.17) via estimates of the quantities E j(U)−E j(V ),
where U , respectively V , are well-chosen extensions of u, respectively v.

3 The Jacobian of sphere-valued maps
The distributional Jacobian plays a major role in the study of maps from Ω⊂RN into Sk,
1≤ k ≤ N−1. The analysis of such maps combines analytical, geometrical, and topological
tools. We first present, in Sections 3.1–3.3, some typical results in the case where k = N−
1, in which geometry plays a moderate role. In Section 3.4, we present the counterparts of
these results in the general case 1≤ k ≤ N−1. (For more details and further applications,
we refer to [17, Chapter 4].)

3.1 Vanishing of the Jacobian and approximation by smooth maps
Note that Det(∇u) is well-defined for every u ∈ W1,N−1(Ω;SN−1) (since u ∈ L∞(Ω;RN)).
We claim that

Det(∇u)= 0, ∀u ∈W1,N(Ω;SN−1). (3.1)

Indeed, on the one hand we know (see Section 2) that

Det(∇u)= det(∇u), ∀u ∈W1,N(Ω;RN). (3.2)

On the other hand, by differentiating the identity |u|2 ≡ 1, we find that u · ∂ ju = 0 a.e.
on Ω, ∀ j = 1, . . . , N, ∀u ∈ W1,1(Ω;SN−1). Thus, for a.e. x ∈ Ω, the vectors ∂ ju(x), j =
1, . . . , N, are contained in a hyperplane, so that det(∇u)= 0 a.e. on Ω. (Alternatively, one
could establish (3.1): (i) first, for smooth SN−1-valued maps; (ii) next, for arbitrary maps
u ∈W1,N(Ω;SN−1), using an approximation argument by smooth SN−1-valued maps, due
to Schoen and Uhlenbeck [45] and relying on the embedding W1,N ⊂VMO; see also [17,
Chapter 4].)
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It follows from (3.1) that

Det(∇u)= 0, ∀u ∈W1,p(Ω;SN−1), ∀ p ≥ N. (3.3)

The restriction p ≥ N in (3.3) is optimal. Indeed, as we are going to see in Section 3.2
below, (3.3) fails when N −1≤ p < N. Note however that

Det(∇u)= 0, ∀u ∈W1,N−1(Ω;SN−1)∩C(Ω;SN−1), (3.4)

and, more generally,

Det(∇u)= 0, ∀u ∈ C∞(Ω;SN−1)
W1,N−1

. (3.5)

Surprisingly, the converse of (3.5) is also true; its proof is non-trivial. More specifically,
we have the following

Theorem 3.1. Let N −1≤ p < N. Assume that u ∈W1,p(Ω;SN−1) satisfies

Det(∇u)= 0. (3.6)

Then

u ∈ C∞(Ω;SN−1)
W1,p

. (3.7)

Theorem 3.1 is due to Bethuel [6] when p = N −1 and to Bethuel, Coron, Demengel,
and Hélein [7] when N −1< p < N; see also Ponce and Van Schaftingen [42].

3.2 The Jacobian as a sum of Dirac masses
We now turn to the example considered in (2.9) and to formula (2.10), which implies in
particular that, if u(x)= x−a

|x−a| for some a ∈Ω, then

Det(∇u)= |BN |δa in D ′(Ω). (3.8)

We start with an extension of (3.8).

Theorem 3.2. Let u ∈W1,N−1(Ω;SN−1)∩C(Ω\{a}). Then

Det(∇u)= |BN | deg(u,a)δa in D ′(Ω), (3.9)

where deg(u,a) is the (Brouwer) degree of u computed on a small sphere around a.
More generally, if u ∈W1,N−1(Ω;SN)∩C(Ω\{a1, . . . ,a`}), where a1, . . . ,a` ∈Ω, then

Det(∇u)= |BN | ∑̀
j=1

deg(u,a j)δa j in D ′(Ω). (3.10)
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Theorem 3.2 is due to Brezis, Coron, and Lieb [16]. Its proof relies heavily on the
Kronecker formula which relates the degree to the Jacobian:

deg f = 1
|SN−1|

∫
SN−1

det(∇ f ), ∀ f ∈ C1(SN−1;SN−1), (3.11)

where det(∇ f ) is the Jacobian of f viewed as a map between manifolds. (See [22, Section
1.1, Section 1.2] for various formulas for deg f and further discussions.) Formula (3.10)
implies that the Jacobian of sphere-valued maps conveys information about the location
and ‘topological strength’ of their singularities – a fact that was used and applied in
numerous subsequent works.

In the spirit of (3.10), the Jacobian of a general map u ∈W1,N−1(Ω;SN−1) is given by
the following

Theorem 3.3. Let u ∈W1,N−1(Ω;SN−1). Then there exist points P j, N j ∈Ω (not necessarily
distinct) such that∑

j
|P j −N j| <∞ (3.12)

and

Det(∇u)= |BN | ∑
j

(δP j −δN j ) in D ′(Ω). (3.13)

Conversely, given points P j, N j ∈Ω satisfying (3.12), there exists some u ∈W1,N−1(Ω;SN−1)
such that (3.13) holds.

Note that (3.10) and (3.13) are consistent, since, in D ′(Ω), we may always write∑`
j=1 d j δa j as

∑
j(δP j −δN j ) for some finite collection of P j ’s and N j ’s, by repeating the

a j ’s according to their multiplicity |d j| and adding arbitrary points on ∂Ω.
Theorem 3.3 was announced in [12] and is inspired by an earlier result of Bourgain,

Brezis, and Mironescu [9, Theorem 1], [10, Theorem 1] on S1-valued maps. It is a special
case of Theorem 3.6 in Section 3.4. A sketch of proof of Theorem 3.3 is presented in [17,
Chapter 4].

3.3 Least energy with prescribed singularities/Jacobian
In this subsection we are concerned with a question originally raised in the context of liq-
uid crystals (see [16] and [17, Chapter 4]): study the least energy S1 required to generate
a configuration having singularities located at given points a j, j = 1, . . . ,`, in Ω⊂R3, with
given degrees d j ∈Z, j = 1, . . . ,`. In a simplified model, the least energy is

S1 := inf
{∫

Ω
|∇v|2; v ∈ H1(Ω;S2)∩C(Ω\{a1, . . . ,a`}) such that

deg(v,a j)= d j, ∀ j
}
.

(3.14)

In view of Theorem 3.2, it is reasonable to consider also the quantity

S2 := inf
{∫

Ω
|∇v|2; v ∈ H1(Ω;S2), Det(∇v)= (4π/3)

∑̀
j=1

d j δa j in D ′(Ω)
}
. (3.15)
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Clearly, S2 ≤ S1, and in fact we can prove that S2 = S1 [17, Section 4.6]. Going one
step further, it is natural to introduce, in full generality, the quantity

S := inf
{∫

Ω
|∇v|N−1; v ∈W1,N−1(Ω;SN−1), Det(∇v)= |BN | ∑

j
(δP j −δN j )

in D ′(Ω)
}
,

(3.16)

where Ω⊂RN and the given points P j, N j ∈Ω satisfy (3.12).
There is a remarkable explicit formula for S.

Theorem 3.4. We have

S = cN−1 inf
{∑

j

∣∣P̃ j − Ñ j
∣∣; P̃ j, Ñ j ∈Ω satisfy (3.12) and

∑
j

(δP̃ j
−δÑ j

)=∑
j

(δP j −δN j ) in D ′(Ω)
}
,

(3.17)

where cN−1 := (N −1)(N−1)/2 |SN−1|.
In the special case where the collections (P j), respectively (N j), consist of a finite

number m of points, formula (3.17) becomes

S = cN−1 min
σ∈Sm

m∑
j=1

d(P j, Nσ( j)), (3.18)

where Sm denotes the set of permutations of {1, . . . ,m} and d is the pseudometric given
by

d(P, N) :=min{|P −N|, dist(P,∂Ω)+dist(N,∂Ω}, ∀P, N ∈Ω.

Formula (3.18) was established by Brezis, Coron, and Lieb [16] using tools from Op-
timal Transport. Formula (3.17), which is a generalization of (3.18), is due to Brezis,
Mironescu, and Ponce [18] when N = 2 and Brezis and Mironescu in the general case; a
sketch of proof is presented in [17, Chapter 4].

We point out that Theorem 3.4 asserts that the physical quantity S (or rather S1)
coincides with a geometrical quantity, i.e., the length (with respect to the pseudometric
d) of a ‘minimal connection’ connecting the points P j to the points N j. Its geometrical
nature will become more transparent in the next section, where it will be identified with
the least area spanned by a given ‘contour’ (in the special situation considered in this
subsection, the ‘contour’ corresponds to the points P j, N j).

3.4 Maps with values into lower-dimensional spheres
In this subsection, we consider maps u :Ω→ Rk+1 (and, in particular, maps with values
into Sk ⊂Rk+1), where Ω⊂RN , N ≥ 2, and 1≤ k ≤ N −1.

We first introduce the appropriate concept of Jacobian. As in Section 1, it will be con-
venient to use the language of differential forms, or more precisely the one of `-currents,
i.e., distributions with values into `-forms. (We use below the standard terminology
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about currents. If needed, we refer, e.g., to [17, Chapter 4] for precise definitions.) Given
u ∈W1,k(Ω;Rk+1)∩L∞(Ω;Rk+1), we set

Ju := 1
k+1

d D(u) ∈D ′(Ω;Λk+1), (3.19)

where Λ` denotes the space of `-forms on RN and

D(u) :=
k+1∑
j=1

(−1) j−1 u j du1 ∧ . . . d̂u j ∧ . . .∧duk+1 ∈ L1(Ω;Λk). (3.20)

For many purposes, it is more convenient to consider, instead of the (k+1)-current
Ju, the (N −k−1)-current

Jacu :=∗Ju (3.21)

(where ∗ is the Hodge ∗ operator). This is consistent with Sections 1 and 2, since, when
k = N −1, we have Det(∇u)= Jacu.

Our goal is to present far-reaching extensions of the results in Sections 3.1–3.3, in-
volving Jacu when u ∈ W1,k(Ω;Sk), with arbitrary N > k. We start with an analogue of
Theorem 3.2.

Theorem 3.5. Let Γ⊂Ω be a smooth connected oriented (N −k−1)-submanifold without
boundary (in Ω). Let u ∈W1,k(Ω;Sk)∩C(Ω\Γ). Then, with m := deg(u,Γ), we have

Jacu = |Bk+1|mΓ in D ′(Ω;ΛN−k−1). (3.22)

Here, Γ is identified, as usual, with an (N − k−1)-current, and m ∈ Z is defined as
follows. For any x ∈ Γ, let N = N(x) be the (k+1)-dimensional normal space to Γ at x,
oriented by Γ. Then m is the Brouwer degree of u restricted to the sphere B(x,ε) of N, for
sufficiently small ε. (One may prove that the definition does not depend on x or ε.)

In order to generalize Theorem 3.3, it is convenient to introduce a distinguished class
of currents. Given an integer ` with 0≤ `≤ N −2, set

F ` := {T; T is an `-current such that T = ∂M for some
(`+1)−rectifiable current M on Ω}.

(3.23)

The next result provides a complete geometric description of Jacu for a general u ∈
W1,k(Ω;Sk).

Theorem 3.6. For any u ∈W1,k(Ω;Sk), 1≤ k ≤ N −1, we have

1
|Bk+1| Jacu ∈F N−k−1. (3.24)

Conversely, given any T ∈F N−k−1, there exists some u ∈W1,k(Ω;Sk) such that

Jacu = |Bk+1|T. (3.25)

Theorem 3.6, due to Alberti, Baldo, and Orlandi [2] (see also [1]), is a far-reaching
generalization of Theorem 3.3.

In the general setting considered in this subsection, Theorem 3.4 reads as follows.
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Theorem 3.7. Given any T ∈F N−k−1, set

S := inf
{∫

Ω
|∇v|k; v ∈W1,k(Ω;Sk), Jacv = |Bk+1|T

}
. (3.26)

Then

S = ck inf{|M|; M ⊂Ω is an (N −k)-rectifiable current such that ∂M = T}, (3.27)

where ck := kk/2 |Sk|.
Here, |M| denotes the mass of M (i.e., its (N − k)-dimensional Hausdorff measure,

counted with multiplicities).
We emphasize that Theorem 3.7 asserts that the least ‘energy’ required to produce

singularities on the given ‘contour’ T coincides, up to a constant, with the least ‘surface
area’ spanned by T (as in the Plateau problem).

Theorem 3.7 confirms a conjecture in [16], corresponding roughly speaking to the
special case where N = 3, k = 1, and T is a closed curve Γ ⊂ R3 (as in Theorem 3.5).
The conjecture was settled by Almgren, Browder, and Lieb [3] when the singular set is
nice. In their remarkable paper, they explained that the upper bound ≤ in (3.27) could
be obtained by adapting the dipole construction of [16]; the main new idea in [3] was to
point out the importance, in this context, of the coarea formula, that the authors used to
derive the lower bound ≥ in (3.27). In full generality, Theorem 3.7 is due to Molnar [36];
her proof relies heavily on techniques developed in [2] and [3].

Finally, we mention that, in the spirit of Theorem 2.4, one may investigate the exis-
tence of the largest fractional Sobolev spaces in which one can define a ‘robust’ distribu-
tional Jacobian, and identify the possible distributional Jacobians arising in this setting.
These questions were settled by Bourgain, Brezis, and Mironescu [11] when k = N −1,
respectively Bousquet and Mironescu [8] in the general case.

4 Improved regularity in W1,N(RN;RN)

We conclude our brief excursion into the enchanted world of Jacobians with several re-
markable properties of maps u ∈ W1,N(Ω;RN), where N ≥ 2 and Ω ⊂ RN is an open set.
Their common feature is the crucial role played by the Jacobian and its algebraic proper-
ties.

If u ∈ W1,N(RN ;RN), then, clearly, det(∇u) ∈ L1(RN). The following ‘microscopic’ but
rich of consequences improvement of this property is due to Coifman, Lions, Meyer, and
Semmes [20].

Theorem 4.1. Let u ∈W1,N(RN ;RN). Then det(∇u) ∈H 1(RN).

Here, H 1(RN)⊂ L1(RN) denotes the Hardy space

H 1(RN) := { f ∈ L1(RN); ∃ g ∈ L1(RN) such that | f ∗ϕε(x)| ≤ g(x), ∀x ∈RN , ∀ε> 0},

where ϕ is a bump function. (The definition is independent of ϕ.)
Slightly smaller than L1(RN), the space H 1(RN) is of paramount importance in har-

monic analysis (see, e.g., Stein [47, Chapter III]) and enjoys properties that are ‘barely’
missed by L1(RN), e.g.,

−∆v ∈H 1(RN) =⇒ v ∈W2,1
loc (RN) (4.1)
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(see, e.g., [47, Chapter III, Section 3, Theorem 3]).
Another noticeable property of H 1(RN) is given by ‘Stein’s lemma’ [46]:

[ f ∈H 1(RN), f ≥ 0 a.e. in Ω] =⇒ [ f ln(2+ f ) ∈ L1
loc(Ω)]. (4.2)

The proof of Theorem 4.1 relies on Jacobi’s ‘fundamental Lemma’ 1.1, combined with
the following remarkable result, also from [20].

Theorem 4.2. Let 1< p <∞. If E ∈ Lp(RN ;RN) and B ∈ Lp′
(RN ;RN) satisfy divE = 0 and

curlB = 0 in D ′(RN). then E ·B ∈H 1(RN).

One obtains Theorem 4.1 from Theorem 4.2 by letting p := N/(N −1), and, with the
notation of Section 1, E := (C1, j)1≤ j≤N and B :=∇u1. Indeed, we have

det(∇u)=
N∑

j=1
∂ ju1 C1, j = B ·E,

and, clearly, B and E satisfy B ∈ LN(RN ;RN), E ∈ LN/(N−1)(RN ;RN), curlB = 0 in D ′(RN)
and, by Lemma 1.1, divE = 0 in D ′(RN).

Theorem 4.1 has three noticeable consequences.

Corollary 4.3. Let Ω⊂ R2 be a smooth bounded domain. If u ∈ H1(Ω;R2), then the prob-
lem {

−∆v = det(∇u) in Ω
v = 0 on ∂Ω

(4.3)

has a (unique) solution v ∈ H1
0(Ω)∩C(Ω), satisfying

||∇v||L2 ≤ CΩ||∇u1||L2 ||∇u2||L2 and ||v||L∞ ≤ C′
Ω||∇u1||L2 ||∇u2||L2 . (4.4)

Corollary 4.4. Let Ω ⊂ RN be a smooth bounded domain. If u ∈ W1,N(Ω;RN), then
det(∇u) ∈W−1,N/(N−1)(Ω;R) and

|〈 f ,det(∇u)〉| ≤ CΩ|| f ||LN ||∇u||NLN , ∀ f ∈W1,N
0 (Ω;R), ∀u ∈W1,N(Ω;RN). (4.5)

If, in addition, det(∇u)≥ 0 a.e. on Ω, then

f det(∇u) ∈ L1(Ω) and
∫
Ω

f det(∇u)= 〈 f ,det(∇u)〉, ∀ f ∈W1,N
0 (Ω;R). (4.6)

Corollary 4.5. Let u ∈W1,N
loc (Ω;RN). If det(∇u)≥ 0 a.e. inΩ, then det(∇u) ln(2+det(∇u)) ∈

L1
loc(Ω).

Corollary 4.3 is originally due to Wente [50]; see also Brezis and Coron [15], where it
plays a central role in the solution of Rellich’s conjecture. For optimal constants in (4.4),
see Topping [49] and the references therein. ‘Modern’ proofs of Corollary 4.3 derive it
from Theorem 4.1, (4.1), and the embedding W2,1

loc (R2)⊂ C(R2).
Assertion (4.5) in Corollary 4.4 is a consequence of Theorem 4.1, the embedding

W1,N(RN) ⊂ BMO(RN) (the John-Nirenberg space of bounded mean oscillation func-
tions), and of Fefferman’s theorem asserting that [H 1(RN)]∗ = BMO(RN) [47, Chapter
IV]. Assertion (4.6) in Corollary 4.4 relies on a result of Brezis and Browder [13, 14].

Corollary 4.5, originally due to Müller [40], is a straightforward consequence of Theo-
rem 4.1 and (4.2). For a review of subsequent results in the spirit of Corollary 4.5 (results
that do not follow from Theorem 4.1), we refer the reader to the surveys of Iwaniec [28]
and Mironescu [34].
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