A new record of an Arrenoseius Wainstein species and a new species of Chelaseius Muma and Denmark (Mesostigmata: Phytoseiidae) from Brazil

Vinicius Borges, Gilberto J De Moraes, Raphael de Campos Castilho

- To cite this version:

Vinicius Borges, Gilberto J De Moraes, Raphael de Campos Castilho. A new record of an Arrenoseius Wainstein species and a new species of Chelaseius Muma and Denmark (Mesostigmata: Phytoseiidae) from Brazil. Acarologia, 2023, 63 (2), pp.411-418. 10.24349/soei-hdfd . hal-04059221

HAL Id: hal-04059221

https://hal.science/hal-04059221

Submitted on 5 Apr 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Acarologia

A quarterly journal of acarology, since 1959
Publishing on all aspects of the Acari
All information:
http://www1.montpellier.inra.fr/CBGP/acarologia/ acarologia-contact@supagro.fr

OPEN

ACCESS

Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2023 (Volume 63): $450 €$
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2021): $250 €$ / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the «Investissements d'avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY

A new record of an Arrenoseius Wainstein species and a new species of Chelaseius Muma \& Denmark (Mesostigmata: Phytoseiidae) from Brazil

Vinicius Borges (1) ${ }^{a}$, Gilberto J. de Moraes ${ }^{(1)}{ }^{a}$, Raphael de Campos Castilho (1) ${ }^{a}$
${ }^{a}$ Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo (USP), 13418-900 Piracicaba, São Paulo, Brazil.

Original research

Abstract

In an effort to understand the fauna of Gamasina (Mesostigmata) edaphic mites from Brazil, Arrenoseius robertogonzalezi Trincado \& Martin, 2018, known only from the original description from Chile, was found. Complementary morphological information is provided for this species . Likewise, a new species, Chelaseius pluridentatus n. sp. was found and is here described; it is distinguished from other Chelaseius Muma \& Denmark species mainly by having more teeth on the fixed cheliceral digit, seven instead of 2-5. A key to the world species of Chelaseius is also provided.

Keywords biological control; predatory mite; soil mite; taxonomy
Zoobank http://zoobank.org/98875A01-4AF8-4708-A915-4D7902C65313

Introduction

Phytoseiidae (Mesostigmata: Gamasina) is the most extensively studied family of predatory mites (McMurtry et al. 2015). These are mostly found on plants, although some species are less commonly found in the soil. Some species of this family are broadly used for the biological control of pests, especially mites and small insects (McMurtry et al. 2015; Knapp et al. 2018). About 2,560 valid species are presently placed in this family, divided into three subfamilies, namely Amblyseiinae, Phytoseiinae and Typhlodrominae (Moraes et al. 2004; Demite et al. 2023).

The phytoseiids reported from the litter/soil include species of the genera Arrenoseius Wainstein and Chelaseius Muma \& Denmark; these genera presently comprise respectively 25 and 11 valid species (Moraes et al. 2004; Demite et al. 2023). Arrenoseius has been mostly reported from the Americas, from Canada to Argentina, occasionally from litter. Five species of this genus have been reported from Brazil, namely A. gaucho Ferla, Silva \& Moraes, 2010, A. gloreus (El-Banhawy, 1978), A. lofegoi Barbosa \& Demite, 2023, A. morgani (Chant, 1957) and A. urquharti (Yoshida-Shaul \& Chant, 1988), none from the edaphic environment (Demite et al. 2023; Barbosa and Demite, 2023). Chelaseius has also been mostly reported from the Americas, from Canada to Argentina, by far mostly from litter. Three species have so far been reported from Brazil, namely C. braziliensis Denmark \& Kolodochka, 1990, C. caudatus Karg, 1983 and C. lativentris Karg, 1983, collected in hay, humus and bird nests, respectively (Moraes et al. 2004; Demite et al. 2023).

Received 16 February 2023
Accepted 27 March 2023
Published 03 April 2023
Corresponding author
Vinicius Borges (D:
vini.borges@usp.br
Academic editor
Kreiter, Serge
https://doi.org/10.24349/soei-hdfd
ISSN 0044-586X (print)
ISSN 2107-7207 (electronic)

© ©

Borges V. et al.
Licensed under
Creative Commons CC-BY 4.0

In an effort to understand the fauna of Gamasina edaphic mites from Brazil, the aim of the study is to provide a new record of Arrenoseius and to describe a new species of Chelaseius, providing a key to world species of the latter genus.

Material and methods

Samples of litter/soil were collected in areas of the Brazilian states of Rio Grande do Sul (Pampa biome) and São Paulo (Atlantic Forest biome). In the laboratory, mites were extracted from the samples in a modified Berlese-Tullgren apparatus (Oliveira et al. 2001). All mites were mounted in Hoyer's medium for later examination under phase contrast (Leica, DMLB) and differential interference contrast (Nikon, Eclipse 80i) microscopes. The Mesostigmata were separated into families, based on Lindquist et al. (2009), and the Phytoseiidae were separated into genera, based on Chant and McMurtry (2007). The Arrenoseius and the Chelaseius specimens were compared with the original descriptions and redescriptions of the species presently affiliated to these genera.

Complementary information on the morphology of the Arrenoseius species collected is provided, based on the collected voucher specimens. The Chelaseius species was found to belong to a new species, herein described. Measurements were taken with a graded ocular attached to the phase contrast microscope. For each character, the average measurement is given first, followed (in parentheses) by the respective range, all in micrometers. Shield lengths were taken along the midline from the anterior to the posterior margins, and the width, at the widest level, except where otherwise specified.

The most relevant taxonomic structures of the new species were photographed using a digital camera connected to the differential interference contrast microscope. Illustrations were made using Adobe Illustrator ${ }^{\circledR}$. Dorsal setal nomenclature is based on Lindquist and Evans (1965), as adapted by Rowell et al. (1978); ventral nomenclature is based on Chant and Yoshida-Shaul (1991); idiosomal setal pattern, on Chant and Yoshida-Shaul (1992); and notation of pore-like structures, on Athias-Henriot (1971, 1975).

The key provided for the separation of the Chelaseius species was prepared based on the original descriptions and available redescriptions. The species included were those whose adult females have been described and that were reported in Demite et al. (2023). In the key, only the country of original description is mentioned.

Taxonomy

Family Phytoseiidae Berlese
Genus Arrenoseius Wainstein
Arrenoseius Wainstein, 1962: 12.
Arrenoseius, Moraes et al. 2004: 55.
Arrenoseius robertogonzalezi Trincado \& Martin, 2018
Arrenoseius robertogonzalezi Trincado \& Martin, in Trincado et al. 2018: 324.

Adult female

($\mathrm{n}=8$)
Idiosomal setal pattern - 10A:9B/JV-3:ZV.
Dorsal idiosoma - Dorsal shield 355 (350-360) long and 280 (275-293) wide. Measurements of setae: j1 13 (11-14); j3 19 (18-21); j4 8 (7-9), j5 8 (7-9); j6 7 (6-8); J2 8 (7-9); J5 9 (8-10); z2 17 (16-19); z4 19 (18-20); z5 8; Z1 9 (8-10); Z4 63 (61-64); Z5 85 (84-88); s4

45 (44-46); S2 19 (18-21); S4 15 (13-17); S5 15 (14-16); r3 15 (13-16); R1 13 (11-15); all aciculate and smooth.

Ventral idiosoma - Sternal shield 55 (52-58) long and 75 (73-77) wide at level of st2; distances between stl-st3 60 (59-61) and st2-st2 65 (64-66). Genital shield 110 (108-112) long (including hyaline flap) and 125 (124-129) wide at level of posterior margin; distance between st5-st5 85 (84-86). Ventrianal shield 125 (121-131) long, 165 (162-166) wide at level of $Z V 2$ and 130 (129-133) wide at anus level. Measurements of setae: stl 25 (23-26), st 2 28 (27-30), st 328 (26-29), st4 28 (27-29), st5 30 (29-31), JV1 23 (22-25), JV2 25 (23-26), JV4 13 (12-14), JV5 50 (47-51), ZV1 30 (29-32), ZV2 25 (23-26), ZV3 10 (9-11); all aciculate and smooth.

Peritreme - Extending forward to level of $j 1$.
Chelicera - Fixed cheliceral digit 35 (34-36) long, with eight teeth; movable cheliceral digit 33 (32-34) long, with two teeth.

Spermatheca - Calyx saccular, 18 (17-19) long.
Leg macroseta - Present only on tarsus IV, 60 (59-61) long.

Specimens examined

Eight adult females collected from litter/soil of a soybean plantation [Glycine max (L.) Merrill] at Aceguá ($31^{\circ} 45^{\prime} 11^{\prime \prime} \mathrm{S}, 54^{\circ} 3^{\prime} 22^{\prime \prime} \mathrm{W}$; 204 m above sea level), Rio Grande do Sul state, Brazil, in October 2021. All voucher specimens were collected by A.F. Duarte and deposited in the Mite Reference Collection of Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Piracicaba, São Paulo state, Brazil.

Remarks

This is the first record of this species in Brazil. It was recently described from Chile, based on the holotype and five paratype females collected on Festuca sp. [Poaceae], Viburnum tinus L. [Adoxaceae] and Passiflora incarnata L [Passifloraceae]. Despite the extensive effort dedicated to the edaphic fauna of Mesostigmata in representative sites of all Brazilian ecosystems, this species was only found in the southernmost region of the Brazilian territory, at the border with Uruguay. This is compatible with the relatively high latitude of the type localities of this species, in Chile (Santiago and O'Higgins Regions). According to the original description, the types of A. robertogonzalezi are slightly larger than the specimens collected in this study (dorsal shield length and maximum width respectively $389(360-407)$ and 320 (300-330)), and consequently some of their setae are slightly longer: j3 25 (24-26), z4 24 (23-25) and $s 454$ (50-57). These differences are here considered to be intraspecific variations.

Chelaseius Muma \& Denmark

Chelaseius Muma \& Denmark 1968: 232.
Chelaseius, Denmark \& Kolodochka 1990: 219; Moraes et al. 2004: 56.

Chelaseius pluridentatus n. sp.

Zoobank: 1E6AA830-1630-4063-A05B-A8AE07381936

Diagnosis

Setae $J 5, Z 4$ and $Z 5$ smooth; seta $s 4$ about 20 times as long as $z 4$; seta $Z 4$ about 12 times as long as $S 4$; ventrianal shield smooth, with a lateral constriction at level of $Z V 2$; fixed cheliceral digit with seven teeth; spermatheca trumpet-shaped, calyx about 45 long.

Figure 1 Chelaseius pluridentatus n. sp. Female. A - Dorsal view of idiosoma; B - Ventral view of idiosoma.

Morphological characterization

Adult female

$(\mathrm{n}=4)($ Figures $1-2)$.
Idiosomal setal pattern - 10A:9B/JV-3:ZV.
Dorsal idiosoma - (Figure 1A). Dorsal shield smooth; 360 (350-370) long and 273
(265-290) wide; podonotal region with nine pairs of setae ($j 1, j 3-j 6, z 2, z 4, z 5$ and $s 4$), four pairs of distinguishable lyrifissures and five pairs of distinguishable gland pores; opisthonotal region with eight pairs of setae ($J 2, J 5, Z 1, Z 4, Z 5, S 2, S 4$ and $S 5$), eight pairs of distinguishable lyrifissures and two pairs of distinguishable gland pores. Unsclerotized cuticle along lateral margins of dorsal shield with two pairs of setae ($r 3$ and R1). Measurements of setae: j1 36
(35-38); j3 56 (55-58); j4 6 (5-7), j5 6 (5-7); j6 6 (5-7); J2 11 (10-12); J5 13 (12-15); z2 6 (5-8); z4 6 (5-7); z5 6 (5-8); Z1 15; Z4 158 (157-162); Z5 250 (230-275); s4 119 (118-120); S2 14 (13-15); S4 13 (12-14); S5 16 (15-18); r3 13 (12-14); R1 12 (10-13); all aciculate and smooth.

Ventral idiosoma - (Figure 1B). Sternal shield smooth; 59 (55-60) long and 89 (88-93) wide at level of $s t 2$; with three pairs of setae and two pairs of lyrifissures; distances between st1-st3 58 (57-60) and st2-st2 81 (80-83). Metasternal plates roundish, bearing seta st4 and lyrifissure iv3. Genital shield smooth; 111 (108-113) long (including hyaline flap) and 83 (82-85) wide at level of posterior margin; bearing seta st5; distance between st5-st5 73 (7275); posterior margin slightly convex. Lyrifissure iv 5 posteromesad $s t 5$, on the unsclerotized cuticle. Ventrianal shield pentagonal, with a slight constriction posteriad $Z V 2$ and smooth; $112(110-118)$ long, $104(100-105)$ wide at level of $Z V 2$ and 75 (73-76) wide at anus level; with three pairs of setae $(J V 1, J V 2$ and $Z V 2)$ in addition to three circumanal setae, and a pair of distinguishable pores; cribrum composed of 2-3 irregular rows of spicules along posterior margin of the shield. Unsclerotized cuticle along margins of ventrianal shield with four pairs of setae ($J V 4, J V 5, Z V 1$ and $Z V 3$) and four pairs of distinguishable lyrifissures. Two pairs of ellipsoidal metapodal plates, the anterior smaller. Measurements of setae: stl 31 (30-33), st2 29 (28-30), st3 29 (28-30), st4 26 (25-28), st5 29 (28-30), JV1 24 (22-26), JV2 24 (23-25), JV4 13 (12-14), JV5 109 (107-110), ZV1 25 (23-27), ZV2 13 (12-15), ZV3 13 (12-15); all aciculate and smooth.

Peritreme - Extending forward to level of $j 1$.
Chelicera - (Figure 2A). Fixed cheliceral digit 64 (63-65) long (from dorsal lyrifissure to tip of the digit), with three relatively large teeth followed proximally by four smaller teeth, in addition to the apical tooth, and a long and setiform pilus dentilis set on an ellipsoid tubercle, 22 (21-23) long, at the base; movable cheliceral digit 46 (43-48) long, without teeth; dorsal and antiaxial lyrifissures distinct, dorsal seta indistinct.

Spermatheca - (Figure 2B). Calyx trumpet-shaped, 45 (44-46) long.
Leg macrosetae - (Figure 2C). Sge I 41 (40-43), Sge II 43 (42-45), Sge III 60 (58-62), Sti III 55 (54-56), Sge IV 133 (130-135), Sti IV 101 (100-105), St IV 78 (75-79); all aciculate and smooth. Chaetotaxy: genu II $1-2 / 1,2 / 0-1$, genu III $0-2 / 1,2 / 1-1$.

Adult male

Not known.

Etymology

The name pluridentatus refers to the presence of more teeth on the fixed cheliceral digit of this species than in other Chelaseius species.

Specimens examined

Holotype female and one paratype female from litter/soil of a fragment of the Atlantic Forest biome at Embrapa Pecuária Sudeste ($22^{\circ} 01^{\prime} 10^{\prime \prime} \mathrm{S}, 47^{\circ} 53^{\prime} 38^{\prime \prime} \mathrm{W} ; 860 \mathrm{~m}$ above sea level), São Carlos, São Paulo state, Brazil, December 31, 2021 and January 28, 2022, respectively; two paratype females from litter/soil of an Integrated Crop-Livestock-Forestry (ICLF) area at same locality, March 4, 2022 and April 29, 2022. All types collected by V. Borges and deposited in the Mite Reference Collection of Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Piracicaba, São Paulo state, Brazil.

Remarks

Chelaseius pluridentatus \mathbf{n}. sp. differs from other known Chelaseius species by having seven teeth (instead of 2-5 in other species, according to Denmark \& Kolodochka, 1990; Chant \& McMurtry, 2004). It is most similar to C. austrellus (Athias-Henriot, 1967), but females of the

Figure 2 Chelaseius pluridentatus n. sp. Female. A - Chelicera; B - Spermatheca; C - Genu, tibia and basitarsus of leg IV.
latter have setae $J 5, Z 4$ and $Z 5$ barbed, seta $s 4$ about eight times as long as $z 4$; seta $Z 4$ about 12 times as long as $S 4$; and calyx of spermatheca about 20 long. It is similar to C. braziliensis Denmark \& Kolodochka, concerning the higher number of teeth on the fixed cheliceral digit (five teeth in C. brazilensis, lower number in other species) and an ellipsoid tubercle at the base of the pilus dentilis (this feature may not have been given full attention in the description or redescription of some other species), but the latter differs by having spermathecal calyx cup-shaped.

Key to world species of Chelaseius

1. Seta $s 4$ shorter than distance $s 4-Z 1$; seta $Z 4$ about as long as distance $Z 4-Z 5$ \qquad
\qquad
— Seta $s 4$ at least as long as distance $s 4-Z 1$; seta $Z 4$ much longer than distance $Z 4-Z 5 \ldots2$
2. Spermatheca funnel- or trumpet-shape . 3
— Spermatheca not funnel- or trumpet-shaped 5
3. Fixed cheliceral digit with seven teeth; $s 4$ about 20 times as long as $z 4$; calyx of spermatheca about 45 long. \qquad .C. pluridentatus n. sp.; Brazil —Fixed cheliceral digit with 2-3 teeth; $s 4$ at most 10 times as long as $z 4$; calyx of spermatheca about 20 long
4. Fixed cheliceral digit with three teeth; $S 2$ about 2.5 times as long as $z 5 ; Z 4$ about eight times
 — Fixed cheliceral digit with two teeth; $S 2$ about 1.5 times as long as $z 5 ; Z 4$ about 13 times as long as $S 4$ \qquad C. valliculosus Kolodochka, 1987; Crimea
5. Calyx of spermatheca at most 1.5 times as long as widest diameter 6

- Calyx at least about twice as long as widest diameter.

6. Calyx of spermatheca saccular, about 1.5 times as long as widest diameter; $Z 1$ about four times as long as $z 5$ z5... . C. lativentris Karg, 1983; Brazil - Calyx of spermatheca cup-shaped, at most as long as widest diameter; $Z 1$ at most twice as long as $z 5$ 7
7. Fixed cheliceral digit with five teeth of about uniform sizes; spermathecal atrium undifferentiated; $Z 4$ about eight times as long as $S 4$ \qquad
 - Fixed cheliceral digit with less than five teeth; spermathecal atrium nodular; Z4 at least 20 times as long as $S 4$ 8
8. Fixed cheliceral digit with two teeth; $S 2$ about 1.4 times as long as $z 5$
C. schusterellus (Athias-Henriot, 1967); Argentina — Fixed digit with three distal relatively large teeth and one small proximal tooth; $S 2$ about 2.8 times as long as $z 5$ C. caudatus Karg, 1983; Brazil
9. Ventrianal shield smooth; seta $S 4$ at least about four times as long as $Z 1 \ldots \ldots \ldots \ldots \ldots .$.
— Ventrianal shield lightly imbricate; seta $S 4$ at most twice as long as $Z 1 \ldots \ldots \ldots \ldots \ldots . .$.
10. Seta $Z 4$ at least about five times as long as $S 4$; setae $Z 4$ and $Z 5$ slightly barbed \qquad C. floridanus (Muma, 1955); USA - Seta $Z 4$ at most about 3.5 times as long as $S 4$; setae $Z 4$ and $Z 5$ smooth
C. arnei Faraji \& Karg, 2006; France
11. Setae $Z 4$ and $Z 5$ respectively about 0.3 and 0.4 as long as dorsal shield; seta $Z 4$ at most six times as long as $Z 1$; calyx of spermatheca elongate bell-shaped, length <10 long .
. C. freni Karg, 1976; Chile

- Setae $Z 4$ and $Z 5$ respectively about 0.4 and 0.7 as long as dorsal shield; seta $Z 4$ at least 10 times as long as $Z 1$; calyx of spermatheca tubular to very slightly flaring next toward vesicle, length >20 long.
C. tundra (Chant \& Hansell, 1971); Canada

Acknowlegdments

To CNPq Brazil for the scholarship for the first author. This work was supported by the São Paulo Research Foundation (FAPESP) and was part of BIOTA-FAPESP program (2017/120041). We are grateful to Adriane F. Duarte, for the collection the specimens identified as A. robertogonzalezi.

ORCID

Vinicius Borges (D) https://orcid.org/0000-0003-3986-8504 Gilberto J. de Moraes (D) https://orcid.org/0000-0002-5587-1781 Raphael de Campos Castilho (D) https://orcid.org/0000-0002-1114-8137

References

Athias-Henriot C. 1967. Nouveaux Amblyseius édaphiques d'Amérique Australe (Acariens anactinotriches, Phytoseiidae). In: Deboutteville, C.D. \& Rapoport, E. (Eds.), Biologie de l'Amérique Australe. III. Etudes sur la Faune du Sol. Documents Biogéographiques. Paris: Centre National Recherche Scientifique: 525-539.
Athias-Henriot C. 1971. New notes on Amblyseiini (Podospermic gamasids, Phytoseiidae). 1. The genu and tibia depilation of legs. Acarologia, 13: 4-15.
Athias-Henriot C. 1975. Nouvelles notes sur les Amblyseiini. II - Le relevé organotaxique de la face dorsale adulte (Gamasides protoadéniques, Phytoseiidae). Acarologia, 17: 20-29.
Barbosa M.F.C., Demite P.R. 2023. A new species of Arrenoseius Wainstein (Mesostigmata: Phytoseiidae) from Brazil, with a world key to the genus. Int. J. Acarol. Online, https://doi.org/10.1080/01647954.2023. 2178505
Chant D.A. 1957. Descriptions of some phytoseiid mites (Acarina, Phytoseiidae). Part I. Nine new species from British Columbia with keys to the species of British Columbia. Part II. Redescriptions of eight species described by Berlese. Can. Entomol., 89: 289-308. https://doi.org/10.4039/Ent89289-7
Chant D.A., Hansell, R.I.C. 1971 The genus Amblyseius (Acarina: Phytoseiidae) in Canada and Alaska. Can. J. Zool., 49: 703-758. https://doi.org/10.1139/771-110
Chant D.A., McMurtry J.A. 2007. Illustrated keys and diagnoses for the genera and subgenera of the Phytoseiidae of the world (Acari: Mesostigmata). Michigan: Indira Publishing House, 220. pp.
Chant D.A., Yoshida-Shaul E. 1991. Adult ventral setal patterns in the family Phytoseiidae (Acari: Gamasina). Int. J. Acarol., 17: 187-199. https://doi.org/10.1080/01647959108683906
Chant D.A. Yoshida-Shaul E. 1992. Adult idiosomal setal patterns in the family Phytoseiidae (Acari: Gamasina). Int. J. Acarol., 18: 177-193. https://doi.org/10.1080/01647959208683949
Demite P.R., Moraes G.J., McMurtry J.A., Denmark H.A., Castilho, R.C. 2023. Phytoseiidae Database. [Internet]. [10 January 2023]. Available from: http://www.lea.esalq.usp.br/phytoseiidae
Denmark H.A., Kolodochka L.A. 1990. Revision of the genus Chelaseius Muma and Denmark (Acari: Phytoseiidae). Int. J. Acarol., 16: 219-233. https://doi.org/10.1080/01647959008683871
El-Banhawy E.M. 1978. Description of some unknown phytoseiid mites from Brazil (Mesostigmata: Phytoseiidae). Acarologia, 20: 477-484.
Faraji F., Karg W. 2006. A new species of Chelaseius Muma \& Denmark from France (Acari: Phytoseiidae), with a key to the known species of Chelaseius. Zoosyst. Evol., 82: 264-267. https://doi.org/10.1002/mmnz.200600013
Ferla N.J., Silva G.L., Moraes G.J. 2010. Description of a new species of Arrenoseius Wainstein (Acari: Phytoseiidae) from Brazil and a redescription of a similar species from Argentina. Int. J. Acarol., 36: 15-19. https://doi.org/10.1080/01647950903490095
Karg W. 1976. Zur Kenntnis der Uberfamilie Phytoseioidea Karg, 1965. Zool. Jahrb. Syst., 103: 505-546.
Karg W. 1983. Systematische untersuchung der Gattungen und Untergattungen der Raubmilbenfamilie Phytoseiidae Berlese, 1916, mit der Beschreibung von 8 neuen Arten. Mitt. Zool. Mus. Berl., 59: 293-328. https://doi.org/10.1002/mmnz.4830590203
Knapp M., Van Houten Y., Van Baal E., Groot T. 2018. Use of predatory mites in commercial biocontrol: current status and future prospects. Acarologia, 58: 72-82. https://doi.org/10.24349/acarologia/20184275
Kolodochka L.A. 1987. A new species of the genus Chelaseius (Parasitiformes, Phytoseiidae) from the Crimea. Zool. Zhurnal, 66: 773-775 [in Russian].
Lindquist E.E., Evans G.O. 1965. Taxonomic concepts in the Ascidae, with a modified setal nomenclature for the idiosoma of the Gamasina (Acarina: Mesostigmata). Mem. Entomol. Soc. Can., 47: 1-64. https://doi.org/10.4039/entm9747fv
Lindquist E.E., Krantz G.W., Walter D.E. 2009. Order Mesostigmata. In: Krantz G.W., Walter D.E. (Eds.), A Manual of Acarology. 3rd Edition. Lubbock, Texas: Texas Tech University Press: 124-232.
McMurtry J.A., Sourassou N.F., Demite P.R. 2015. The Phytoseiidae (Acari: Mesostigmata) as biological control agents. In: Carrilo D., Moraes G.J., Pena J.E. (Eds). Prospects for biological control of plant feeding mites and other harmful organisms. Switzerland: Springer International Publishing: 133-149. https://doi.org/10.1007/978-3-319-15042-0_5
Moraes G.J., McMurtry J.A., Denmark H.A., Campos C.B. 2004. A revised catalog of the mite family Phytoseiidae. Zootaxa, 434: 1-494. https://doi.org/10.11646/zootaxa.434.1.1
Muma M.H. 1955. Phytoseiidae (Acarina) associated with citrus in Florida. Ann. Entomol. Soc. Am., 48: 262-272. https://doi.org/10.1093/aesa/48.4.262
Muma M.H. 1965. Eight new Phytoseiidae (Acarina: Mesostigmata) from Florida. Fla. Entomol, 48: 245-254. https://doi.org/10.2307/3493777
Muma M.H., Denmark H.A. 1968. Some generic descriptions and name changes in the family Phytoseiidae (Acarina: Mesostigmata). Fla. Entomol., 51: 229-240. https://doi.org/10.2307/3493424
Oliveira A.R., Moraes G.J., Demétrio C.G.E., Nardo E.A.E. 2001. Efeito do vírus de poliedrose nuclear de Anticarsia gemmatalis sobre Oribatida edáficos (Arachnida: Acari) em um campo de soja. Jaguariúna: Embrapa Meio Ambiente,. 32 pp.
Rowell H.L., Chant D.A., Hansell R.I.C. 1978. The determination of setal homologies and setal patterns on the dorsal shield in the family Phytoseiidae (Acarina: Mesostigmata). Can. Entomol., 110: 859-876. https://doi.org/10.4039/Ent110859-8
Trincado R.D., Martin J.P.I., Méndez Rosa D.D., Lopes P.C., Moraes G.J. 2018. Phytoseiid mites (Acari: Phytoseiidae) from Chile, with descriptions of three new species and a redescription of Chileseius camposi. Zootaxa, 4482: 322-340. https://doi.org/10.11646/zootaxa.4482.2.5
Yoshida-Shaul E., Chant D.A. 1988. Descriptions of two unusual new species in the genus Amblyseius Berlese (Acari: Phytoseiidae). Can. J. Zool., 66: 2053-2056. https://doi.org/10.1139/z88-302

