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Non-local approximations of the gradient

Haïm Brezis(1), Petru Mironescu(2)

April 3, 2023

Abstract

We revisit the proofs of a few basic results concerning non-local approximations of the gradient.
A typical such result asserts that, if (ρε) is a radial approximation to the identity inRN andu belongs
to a homogeneous Sobolev space Ẇ 1,p, then

Vε(x) := N

ˆ

RN

u(x+ h)− u(x)
|h|

h

|h|
ρε(h) dh, x ∈ RN ,

converges inLp to the distributional gradient∇u as ε→ 0.
We highlight the crucial role played by the representation formulaVε = (∇u)∗Fε, whereFε is an

approximation to the identity defined via ρε. This formula allows to unify the proofs of a significant
number of results in the literature, by reducing them to standard properties of the approximations
to the identity.

We also highlight the effectiveness of a symmetric nonlocal integration by parts formula.
Relaxations of the assumptions on u and ρε, allowing, e.g., heavy tails kernels or a distributional

definition of Vε, are also discussed. In particular, we show that heavy tails kernels may be treated as
perturbations of approximations to the identity.

1 A representation formula and applications
Let (ρε)0<ε<ε0 be a family functions on RN such that:

ρε is non-negative, integrable, radial, ∀ ε, (1)ˆ

RN

ρε = 1, ∀ ε, (2)

lim
ε→0

ˆ

|h|>δ

ρε(h) dh = 0, ∀ δ > 0. (3)

Following Mengesha and Spector [7] (with roots in Bourgain, Brezis, and Mironescu [1], Gilboa and
Osher [6], Du, Gunzburger, Lehouck, and Zhou [5]; see also a detailed list of references in [7, p. 254]), we
set, for any measurable function u ∈ L1

loc(RN), and assuming that the integral below exists,

Vε(x) = Vε,u(x) = Vε,u,ρε(x) := N

ˆ

RN

u(x+ h)− u(x)

|h|
h

|h|
ρε(h) dh, x ∈ RN . (4)

Keywords. Distributional gradient; Non-local approximation; Sobolev spaces; Functions of bounded variation
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Vε may be seen as a non-local approximation of the gradient. Indeed (see Remark 2), (i) when u is
C1 and bounded, we have the pointwise convergence Vε(x) → ∇u(x) as ε → 0, ∀x ∈ RN ; (ii) when u
isC1 and compactly supported, we have Vε → ∇u uniformly.

In what follows, we revisit the proofs of a few results establishing the validity of the convergence

Vε → Du as ε→ 0, (5)

in various functional settings. Many of these results were originally obtained, in slightly different forms,
in [7].

Before presenting the main results and methods, we make some easy observations concerning the
existence of Vε. Set

Wε(x) = Wε,u(x) = Wε,u,ρε(x) :=

ˆ

RN

|u(x+ h)− u(x)|
|h|

ρε(h) dh, x ∈ RN .

Clearly, the following holds.

Lemma 1. Letu ∈ L1
loc(RN) be such thatWε ∈ L1

loc(RN). ThenVε is well-defined a.e. and is measurable.
Moreover, we have |Vε| ≤ N Wε a.e., and thus Vε ∈ L1

loc(RN).

Remark 1. In the above statements, the condition Wε,u ∈ L1
loc(RN) seems constraining. However,

under the following assumption:

for every ε, there exist some δε, Rε > 0 such that ρε(h) = 0 if |h| < δε or if |h| > Rε, (6)

we haveWε,u ∈ L1
loc(RN), ∀u ∈ L1

loc(RN).
This is especially relevant for Propositions 5, 6, 7, 8, and 18 below.

We next present a sufficient condition for having Wε ∈ L1
loc(RN) (and thus, by Lemma 1, Vε ∈

L1
loc(RN)). For 1 ≤ p <∞, set

Iε,p = Iε,p,u = Iε,p,u,ρε :=

ˆ

RN

ˆ

RN

|u(x+ h)− u(x)|p

|h|p
ρε(h) dxdh.

Lemma 2. Assume (2). Let 1 ≤ p <∞ and u ∈ L1
loc(RN). Then ||Wε||pLp(RN )

≤ Iε,p.
Consequently, if Iε,p <∞, then Vε is well-defined a.e., measurable, and ||Vε||Lp(RN ) ≤ N [Iε,p]

1/p.

In the above and in what follows, the Lp-norms of vector fields F : RN → RN are computed with
respect to the Euclidean norm | |, i.e.,

||F ||p
Lp(RN )

=

ˆ

RN

|F (x)|p dx.

Similarly, the mass of a measureF ∈M (RN ;RN) is computed with respect to the Euclidean norm,
i.e.,

||F ||M (RN ) = sup


N∑
j=1

ˆ

RN

ζj dFj; ζ ∈ C∞c (RN ;RN), |ζ(x)| ≤ 1, ∀x

 .
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Proof of Lemma 2. The conclusion follows by integrating in x the inequality

[Wε(x)]p ≤
ˆ

RN

|u(x+ h)− u(x)|p

|h|p
ρε(h) dh

 ˆ

RN

ρε(h) dh

p−1

=

ˆ

RN

|u(x+ h)− u(x)|p

|h|p
ρε(h) dh, ∀x ∈ RN .

We now recall a few sufficient conditions for having Iε,p <∞. Set

Ẇ 1,p := {u ∈ D ′(RN); Du ∈ Lp(RN)} = {u ∈ L1
loc(RN); Du ∈ Lp(RN)}, 1 ≤ p <∞,

˙BV := {u ∈ D ′(RN); Du ∈M (RN)} = {u ∈ L1
loc(RN); Du ∈M (RN)}.

In what follows, for u ∈ Ẇ 1,p, we denote the distributional gradient∇u.

LetKp,N :=

 
SN−1

|hj|p dσ(h) (which does not depend on j ∈ J1, NK).

We have the following

Lemma 3. [1] Assume (1).

1. Let 1 ≤ p <∞ and u ∈ Ẇ 1,p. Then Iε,p ≤ Kp,N ||ρε||L1(RN ) ||∇u||
p
Lp(RN )

.

In particular, Vε ∈ Lp(RN) and ||Vε||Lp(RN ) ≤ N [Kp,N ]1/p ||ρε||1/pL1(RN )
||∇u||Lp(RN ).

2. Let u ∈ ˙BV . Then Iε,1 ≤ K1,N ||ρε||L1(RN ) ||Du||M (RN ).

In particular, Vε ∈ L1(RN) and ||Vε||L1(RN ) ≤ N K1,N ||ρε||L1(RN ) ||Du||M (RN ).

We next present a crucial identity that illuminates the validity of (5): (10), and its avatar (11). Although (10)
was probably known to experts (it is implicit in [7, proof of Lemma 3.3] and related to several identities
in [5])), its intimate connection to (5) seems to have remained relatively unnoticed.

Assume (1). Let fε : (0,∞) → [0,∞) be a measurable function such that ρε(x) = fε(|x|) for a.e.
x ∈ RN . Set

Fε(h) := N

∞̂

|h|

fε(t)

t
dt, ∀h ∈ RN \ {0}. (7)

Let us note that

||Fε||L1(RN ) =

ˆ

RN

Fε = N |SN−1|
∞̂

0

rN−1

∞̂

r

fε(t)

t
dtdr = |SN−1|

∞̂

0

tN−1 fε(t) dt

=

ˆ

RN

ρε(h) dh = ||ρε||L1(RN ),

(8)

so that, in particular,

Fε ∈ L1(RN). (9)

Lemma 4. Assume (1). Let Fε be as in (7).
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1. Let 1 ≤ p <∞ and u ∈ Ẇ 1,p. Then

Vε = (∇u) ∗ Fε a.e. (10)

2. Let u ∈ ˙BV . Then

Vε = (Du) ∗ Fε a.e. (11)

Proof. Step 1. Proof of (10) when u ∈ C∞(RN) and ρε ∈ C∞c (RN). In this case, we actually prove that

Vε(x) = (∇u) ∗ Fε(x), ∀x ∈ RN .

For this purpose, we note that

Fε is compactly supported, (12)

∇Fε(h) = −N h

|h|2
ρε(h), ∀h ∈ RN \ {0}, (13)

Fε(h) = O(| ln |h||) as h→ 0. (14)

Using (12)–(14), we find, via an integration by parts, that

Vε(x) =−
ˆ

RN

[u(x+ h)− u(x)]∇Fε(h) dh = − lim
δ→0

ˆ

RN\B(0,δ)

[u(x+ h)− u(x)]∇Fε(h) dh

=

ˆ

RN

∇u(x+ h)Fε(h) dh =

ˆ

RN

∇u(x− h)Fε(h) dh

= [(∇u) ∗ Fε](x), ∀x ∈ RN .

Step 2. Proof of (10) and (11) when ρε ∈ C∞c (RN \ {0}). Let η be a radial non-increasing normalized bump
function. By Step 1, we have

Vε,u∗ηδ(x) = (∇(u ∗ ηδ)) ∗ Fε(x) = (Du) ∗ (Fε ∗ ηδ)(x), ∀x ∈ RN . (15)

On the one hand, as δ → 0, the right-hand side of (15) converges (possibly along a subsequence) a.e.
to (Du) ∗Fε(x). (This follows by combining the Young inequality with the fact thatFε ∗ ηδ → Fε inL1.)

In order to obtain (10), respectively (11), it suffices to prove that

Vε,u∗ηδ,ρε(x)→ Vε,u,ρε(x) as δ → 0 for a.e. x ∈ RN . (16)

Property (16) is obtained via dominated convergence, using the standard inequality

|u ∗ ηδ(y)| ≤M1u(y), ∀ 0 < δ < 1, ∀ y ∈ RN , (17)

(see, e.g., [11, eq (17), p. 57]), where M1u is the centered truncated maximal function of u,

M1u(x) := sup

{ 
Br(x)

|u|; 0 < r ≤ 1

}
.

(Here, we use the fact that η is radial, non-increasing, and supported in the unit ball.) Using (17) and the
extra assumptions on ρε, we obtain the domination

|u ∗ ηδ(x+ h)− u ∗ ηδ(x)|
|h|

ρε(h) ≤ [M1u(x+ h) + M1u(x)] g(h), ∀ 0 < δ < 1, (18)
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with g(h) := ρε(h)/|h| bounded and compactly supported. The right-hand side of (18) is in L1(RN)
since M1u ∈ L1

loc(RN) (and thus, in particular, M1u is finite a.e.). The latter property follows by com-
bining the Sobolev embeddings Ẇ 1,p, ˙BV ↪→ L

N/(N−1)
loc (RN) with the fact that, by the maximal function

theorem, we have M1u ∈ Lrloc(RN) whenu ∈ Lrloc(RN) for some r > 1. We obtain that the convergence
in (16) holds on the full measure set

{x ∈ RN ; M1u(x) <∞ and x is a Lebesgue point of u}.

Step 3. Proof of (10) and (11) in the general case. For fixed ε, we approximate ρε inL1 with a sequence (ρε,j)j
of kernelsρε,j ∈ C∞c (RN \{0}) satisfying (1). By Step 2, the corresponding associated kernelsFε,j satisfy

Vε,u,ρε,j = (Du) ∗ Fε,j a.e. (19)

Let us note that Fε,j → Fε in L1(RN) as j → ∞. (This follows from a straightforward variant of
(8).)

We obtain (10), respectively (11), by letting j → ∞ in (19). Passing to the limits is justified, on the
left-hand side, by Lemma 3, and, on the right-hand side, by the Young inequality combined with the fact
that Fε,j → Fε in L1(RN).

Using Lemma 4, (8), and the Young inequality, we obtain the following

Lemma 5. Assume (1)–(2).

1. Let 1 ≤ p <∞ and u ∈ Ẇ 1,p. Then ||Vε||Lp(RN ) ≤ ||∇u||Lp(RN ).

2. Let u ∈ ˙BV . Then ||Vε||L1(RN ) ≤ ||Du||M (RN ).

This is an improvement of Lemma 3, since N [Kp,N ]1/p > 1 when N ≥ 2. Indeed, the Jensen in-
equality yields

Kp,N ≥
( 

SN−1

|hj| dσ(h)

)p
=

(
1

N

 
SN−1

N∑
k=1

|hk| dσ(h)

)p

>

(
1

N

 
SN−1

dσ(h)

)p
=

1

Np
.

We next present two direct consequences of Lemma 4, originally obtained, with different arguments,
in [7].

Proposition 1. [7, Theorem 1.1 (b)] Assume (1)–(3). Let u ∈ Ẇ 1,p(RN). Then

Vε → ∇u in Lp(RN) as ε→ 0.

Proposition 2. [7, Theorem 1.2] Assume (1)–(3). Let u ∈ ˙BV . Then

Vε ⇀ Du ∗-weakly in M (RN) as ε→ 0 (20)

and

lim
ε→0
||Vε||L1(RN ) = ||Du||M (RN ).

Proof of Propositions 1 and 2. By Lemma 6 below, (Fε) is an approximation to the identity. We conclude
by combining this fact with Lemma 4.

Lemma 6. Under the assumptions (1)–(3), (Fε) is an approximation to the identity.
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Proof. If δ > 0 is fixed, then (7) and (3) yield

ˆ

|h|>δ

Fε(h) dh = N |SN−1|
∞̂

δ

rN−1

∞̂

r

fε(t)

t
dtdr

= N |SN−1|
∞̂

δ

tˆ

δ

rN−1 dr
fε(t)

t
dt ≤ |SN−1|

∞̂

δ

tN−1 fε(t) dt

=

ˆ

|h|>δ

ρε(h) dh→ 0 as ε→ 0.

(21)

The conclusion of the lemma follows from (8) and (21).

We next present two a.e. versions of the above results.

Proposition 3. Assume (1)–(3). Let u ∈ Ẇ 1,p. Then, for a.e. x ∈ RN , we have Vε(x)→ ∇u(x) as ε→ 0.

Proposition 4. Assume (1)–(3). Let u ∈ ˙BV . Then, for a.e. x ∈ RN , we have Vε(x)→ ∇acu(x) as ε→ 0.

These results clearly follow from Lemmas 4 and 6 and the following measure-theoretical

Lemma 7. Let (Fε) be a an approximation to the identity, with Fε radial and non-increasing. Then

1. For every 1 ≤ p <∞ andG ∈ Lp(RN), we haveG ∗ Fε(x)→ G(x) at each Lebesgue point ofG.

2. For every finite Borel measure ν singular with respect to the Lebesgue measure in RN , we have
ν ∗ Fε → 0 a.e.

Proof of Lemma 7. The assumptions on Fε imply that there exist (unique) non-negative Borel measures
µε on (0,∞) such that

Fε(x) = µε((|x|,∞)), for a.e. x ∈ RN , (22)

|SN−1|
N

∞̂

0

tN dµε(t) = 1, ∀ ε, (23)

lim
ε→0

|SN−1|
N

∞̂

δ

tN dµε(t) = 1, ∀ δ > 0. (24)

Proof of item 1. We have

|G ∗ Fε(x)−G(x)| =

∣∣∣∣∣∣
∞̂

0

rN−1

ˆ

SN−1

[G(x− rω)−G(x)] ds(ω)µε((r,∞)) dr

∣∣∣∣∣∣
≤

∞̂

0

rN−1

ˆ

SN−1

|G(x− rω)−G(x)| ds(ω)µε((r,∞)) dr

=

∞̂

0

rN−1

ˆ

SN−1

|G(x− rω)−G(x)| ds(ω)

∞̂

r

dµε(t) dr

=

∞̂

0

tˆ

0

rN−1

ˆ

SN−1

|G(x− rω)−G(x)| ds(ω) dr dµε(t) (25)
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=

∞̂

0

ˆ
B(x,t)

|G(y)−G(x)| dy dµε(t)

=

∞̂

0

|B(x, t)|
 
B(x,t)

|G(y)−G(x)| dy dµε(t)

=
|SN−1|
N

∞̂

0

tN
 
B(x,t)

|G(y)−G(x)| dy dµε(t).

We complete the proof by combining (23)–(25) with the fact that

lim
t→0

 
B(x,t)

|G(y)−G(x)| dy = 0 at each Lebesgue point x ofG

and the straightforward inequality
 
B(x,t)

|G(y)−G(x)| dy ≤ 1

|B(x, t)|1/p
||G||Lp(RN ) + |G(x)|

≤ 1

|B(x, δ)|1/p
||G||Lp(RN ) + |G(x)|, ∀ t ≥ δ.

Proof of item 2. We have

ν ∗ Fε(x) =

ˆ

RN

µε((|x− y|,∞)) dν(y) =

ˆ

RN

∞̂

|x−y|

dµε(t) dν(y)

=

∞̂

0

ˆ

|x−y|<t

dν(y) dµε(t) =
|SN−1|
N

∞̂

0

tN
ν(B(x, t))

|B(x, t)|
dµε(t).

(26)

We complete the proof combining (23), (24), and (26) with the fact that (by the Lebesgue-Besicovitch
differentiation theorem) we have

lim
t→0

ν(B(x, t))

|B(x, t)|
= 0 for a.e. x ∈ RN ,

and the upper bound

ν(B(x, t))

|B(x, t)|
≤ ν(RN)

|B(x, δ)|
, ∀ t ≥ δ.

For other results in the spirit of Propositions 3 and 4, see Spector [10, Theorem 1.2] and Brezis and
Nguyen [2, Theorems 1 and 2].

Remark 2. Here are two additional quick consequences of the fact that, under the assumptions (1)–
(3), (Fε) is an approximation to the identity. It is straightforward that the pointwise equality Vε(x) =
(∇u) ∗ Fε(x), ∀x ∈ RN , holds if u ∈ C1

c (RN), and therefore for such u we have Vε → ∇u uniformly
in RN as ε → 0. Similarly, this equality holds when u ∈ (C1 ∩ L∞)(RN), and in this case we have
Vε(x)→ ∇u(x), as ε→ 0, ∀x ∈ RN .
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2 An integration by parts formula and applications
The representation formula (10) naturally leads to the following formal calculation, with ζ ∈ C∞c (RN ;RN),
qf(x) := f(−x), ∀x ∈ RN , and {ej}1≤j≤N the canonical basis of RN :ˆ

RN
Vε,u · ζ =

∑
j

ˆ
RN

[Vε,u · ej]ζj =
∑
j

[Vε,u · ej] ∗ qζj(0) =
∑
j

[(∂ju) ∗ Fε] ∗ qζj(0)

=
∑
j

u ∗
[
Fε ∗ ∂j qζj

]
(0) =

∑
j

u ∗ Vε, qζj
· ej(0)

=

ˆ
RN
u(x)

∑
j

[Vε, qζj
· ej](−x).

(27)

Combining (27) with the (formal) identity Vε, qf (−x) = −Vε,f (x), we obtain the formal identity
ˆ
RN
Vε,u · ζ = −

N∑
j=1

ˆ
RN
u(x) [Vε,ζj(x) · ej] dx, (28)

and its more symmetric avatarˆ
RN

[Vε,u · ej]ψ = −
ˆ
RN
u(x) [Vε,ψ(x) · ej] dx,∀ j, ∀ψ ∈ C∞c (RN ;R). (29)

Similar “nonlocal integration by parts” identities were known in the literature (see, e.g., [5], [7, Theo-
rem 1.4], and, in a slightly different setting, Šilhavý [12, Section 6]). As we will see below, (28) holds under
mild assumptions on u (this is to be compared with the more restrictive assumptions in Lemma 4). The
importance of such identities is that they provide a first direction for generalizing the results in Section
1, consisting of weakening the assumption u ∈ Ẇ 1,p (respectively u ∈ ˙BV ), widely used in Section 1, to
a reasonable one allowing Vε to be well-defined a.e. and to obtain the property u ∈ Ẇ 1,p (respectively
u ∈ ˙BV ) as a conclusion.

We first formalize the validity of (28).

Lemma 8. Let ε > 0 be fixed. Assume (1). Let u ∈ L1
loc(RN) be such thatWε ∈ L1

loc(RN).

1. If u ∈ (L1 + L∞)(RN), then
ˆ
RN
Vε,u · ζ = −

N∑
j=1

ˆ
RN
u(x) [Vε,ζj(x) · ej] dx, ∀ ζ ∈ C∞c (RN ;RN). (30)

2. If ρε is compactly supported, then (30) holds.

Proof. We first note the following equalities, valid ( thanks to the Fubini theorem applied to the first line)
for every ζ ∈ C∞c (RN ;RN):

ˆ

RN

Vε · ζ = N

ˆ

RN

 ˆ

RN

u(x+ h)− u(x)

|h|
h · ζ(x)

|h|
ρε(h) dh

 dx

= N

ˆ

RN

 ˆ

RN

u(x+ h)− u(x)

|h|
h · ζ(x)

|h|
ρε(h) dx

 dh

= N

ˆ

RN

 ˆ

RN

u(x)
h · [ζ(x− h)− ζ(x)]

|h|2
ρε(h) dx

 dh

= −N
ˆ

RN

 ˆ

RN

u(x)
h · [ζ(x+ h)− ζ(x)]

|h|2
ρε(h) dx

 dh.

(31)
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We next claim that we may apply the Fubini theorem to the last integral in (31). By linearity, in item
1 we may assume that either u ∈ L1(RN) or u ∈ L∞(RN).
Proof of the claim when u ∈ L1(RN). In this case, we have

ˆ

RN

 ˆ

RN

|u(x)| |h · [ζ(x+ h)− ζ(x)]|
|h|2

ρε(h) dx

 dh ≤ ||∇ζ||L∞(RN )||u||L1(RN )||ρε||L1(RN ) <∞.

Proof of the claim when u ∈ L∞(RN). By Lemma 3 item 1, we have

ˆ

RN

 ˆ

RN

|u(x)| |h · [ζ(x+ h)− ζ(x)]|
|h|2

ρε(h) dx

 dh

≤ K(1, N)||u||L∞(RN )

N∑
j=1

||∇ζj||L1(RN )||ρε||L1(RN ) <∞.

Proof of the claim when ρε is compactly supported. Let r, R > 0 be such that supp ζ ⊂ B(0, r) and supp ρε ⊂
B(0, R). Set v := uχB(0,r+R) ∈ L1(RN). Then

u(x)
h · [ζ(x+ h)− ζ(x)]

|h|2
ρε(h) = v(x)

h · [ζ(x+ h)− ζ(x)]

|h|2
ρε(h), ∀x, h ∈ RN ,

and we then argue as in the case where u ∈ L1(RN).
Applying the Fubini theorem in (31), we find that

ˆ

RN

Vε · ζ = −N
ˆ

RN

u(x)

 ˆ

RN

h · [ζ(x+ h)− ζ(x)]

|h|2
ρε(h) dh

 dx

= −N
ˆ

RN

u(x)

 ˆ

RN

N∑
j=1

ζj(x+ h)− ζj(x)

|h|
hj
|h|
ρε(h) dh

 dx

= −
N∑
j=1

ˆ

RN

u(x) [Vε,ζj(x) · ej] dx,

so that (30) holds.

Here are two quick consequences of (30), in the spirit of [7, Theorems 1.5 and 1.6].

Proposition 5. Assume (1)–(3). Let 1 < p <∞. Let u ∈ L1
loc(RN) be such thatWε ∈ L1

loc(RN), ∀ ε.

1. If u ∈ (L1 + L∞)(RN), then

lim
ε→0
||Vε||Lp(RN ) = ||∇u||Lp(RN ) (with the convention ||∇u||Lp(RN ) =∞ if u 6∈ Ẇ 1,p). (32)

2. If there exists someR <∞ such that

supp ρε ⊂ B(0, R), ∀ 0 < ε < ε0, (33)

then (32) holds.

Proposition 6. Assume (1)–(3). Let u ∈ L1
loc(RN) be such thatWε ∈ L1

loc(RN), ∀ ε.
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1. If u ∈ (L1 + L∞)(RN), then

lim
ε→0
||Vε||L1(RN ) = ||Du||M (RN ) (with the convention ||Du||M (RN ) =∞ if u 6∈ ˙BV ). (34)

2. If (33) holds, then (34) holds.

Open Problem 1. Let u ∈ L1
loc(RN) be such that Wε ∈ L1

loc(RN). Is it true that (32), respectively (34),
hold, without assuming the support assumption (33)?

Proof of Propositions 5 and 6. In view of Lemma 3 item 2 and Propositions 1 and 2, it suffices to prove the
following. If ` := lim inf

ε→0
||Vε||Lp(RN ) < ∞, then u ∈ Ẇ 1,p if 1 < p < ∞, respectively u ∈ ˙BV if p = 1.

Clearly, this holds provided
ˆ

RN

u div ζ ≤ ` ||ζ||Lq(RN ), ∀ ζ ∈ C
∞
c (RN ;RN), (35)

where q is the conjugate exponent of p. In turn, (35) holds provided

−
ˆ

RN

u div ζ = lim
ε→0

ˆ

RN

Vε · ζ, ∀ ζ ∈ C∞c (RN ;RN). (36)

In order to complete the proof, it suffices to establish (36) under the assumptions of Proposition 5,
respectively 6 (with no boundedness assumption on ||Vε||Lp(RN )).

In view of (30), in order to obtain (36) it suffices to prove that

lim
ε→0

ˆ

RN

uVε,ζj · ej =

ˆ

RN

u ∂jζj, 1 ≤ j ≤ N. (37)

When u ∈ L∞(RN), this follows from Proposition 1 applied to ζj with p = 1.
When u ∈ L1(RN), we note the domination

|uVε,ζj · ej| ≤ ||∇ζj||L∞(RN ) |u| ∈ L
1(RN).

We conclude by dominated convergence, using the fact that Vε,ζj · ej converges to ∂jζj pointwise as
ε→ 0 (see Remark 2).

The argument for u ∈ L1
loc(RN) under the support condition (33) is similar.

The proof of Propositions 5 and 6 is complete.

One may consider versions of Propositions 5 and 6 for families of functions instead of a fixed func-
tion. Here are, for example, two versions of [7, Theorem 3.7].

Proposition 7. Assume (1)–(3). Let 1 < p < ∞. Let, for every ε, uε ∈ L1
loc(RN) be such that Wε,uε ∈

L1
loc(RN). Assume that

(Vε,uε) is bounded in Lp(RN). (38)

1. If (uε) is bounded in (L1 + L∞)(RN), then there exists some u ∈ Ẇ 1,p such that, up to a subse-
quence εk → 0,

uε ⇀ u ∗-weakly in Mloc(RN), (39)

||∇u||Lp(Ω) ≤ lim inf
ε→0

||Vε,uε||Lp(Ω), for every open set Ω ⊂ RN . (40)
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2. If (uε) is bounded in L1
loc(RN) and the support condition (33) holds, then (39)–(40) hold.

Proposition 8. Assume (1)–(3). Let, for every ε, uε ∈ L1
loc(RN) be such that Wε,uε ∈ L1

loc(RN). Assume
that

(Vε,uε) is bounded in L1(RN). (41)

1. If (uε) is bounded in (L1 + L∞)(RN), then there exists some u ∈ ˙BV such that, up to a subse-
quence εk → 0,

uε ⇀ u ∗-weakly in Mloc(RN), (42)

||Du||M (Ω) ≤ lim inf
ε→0

||Vε,uε||L1(Ω), for every open set Ω ⊂ RN . (43)

2. If (uε) is bounded in L1
loc(RN) and the support condition (33) holds, then (42)–(43) hold.

Remark 3. Note that, by Lemma 2, (38) (respectively, (41)) holds if Iε,p,uε ≤ C < ∞, ∀ 0 < ε < ε0

(respectively, Iε,1,uε ≤ C <∞, ∀ 0 < ε < ε0).

Proofs of Propositions 7 and 8. We present the argument for Proposition 8; the proof of Proposition 7 is
similar. Consider a (signed) Radon measure µ on RN such that, up to a subsequence, uεk ⇀ µ ∗-weakly
in Mloc(RN). Fix some ζ ∈ C∞c (RN ;RN). We then haveˆ

RN
div ζ dµ = lim

k

ˆ
RN

div ζ uεk

= lim
k

ˆ
RN

∑
j

[Vεk,ζj · ej]uεk + lim
k

ˆ
RN

(
div ζ −

∑
j

[Vεk,ζj · ej]

)
uεk

:= lim
k
Ak + lim

k
Bk.

(44)

Step 1. We haveBk → 0. We have to treat three cases: (i) (uεk) is bounded inL1(RN); (ii) (uεk) is bounded
in L∞(RN); (iii) (uεk) is bounded in L1

loc(RN) and the support condition (33) holds.
Step 1.1. Proof in case (i). We use the fact that, by Remark 2, div ζ −

∑
j[Vεk,ζj · ej]→ 0 uniformly in RN ,

together with the boundedness of (uεk) in L1(RN).
Step 1.2. Proof in case (ii). By Proposition 1, we have div ζ −

∑
j[Vεk,ζj · ej] → 0 in L1(RN). We combine

this fact with the boundedness of (uεk) in L∞(RN).
Step 1.3. Proof in case (iii). By Remark 2, we have div ζ −

∑
j[Vεk,ζj · ej] → 0 uniformly in RN . By the

support condition (33), there exists some r > 0 such that, for each ε, div ζ −
∑

j[Vεk,ζj · ej] = 0 in
RN \B(0, r). We find that

|Bk| ≤

∣∣∣∣∣
∣∣∣∣∣div ζ −

∑
j

[Vεk,ζj · ej]

∣∣∣∣∣
∣∣∣∣∣
L∞(RN )

||uεk ||L1(B(0,r)) → 0 as k →∞.

Step 2. Conclusion. By Lemma 8, we have

Ak = −
ˆ
RN
Vεk,uεk · ζ. (45)

Let Ω ⊂ RN be an open set. Combining (44), Step 1, (45), and the assumption (41), we find that, when
ζ ∈ C∞c (Ω;RN),ˆ

Ω

div ζ dµ ≤ ||ζ||L∞(Ω) lim inf
ε
||Vε,uε||L1(Ω).

It follows that µ ∈ ˙BV and that (43) holds.

11



Remark 4. In view of [1, Theorem 4] and Ponce [8, Theorem 1.2], it is likely, but not known, that, in
Propositions 7 and 8, the boundedness assumptions on uε can be removed, and that the ∗-weak conver-
gence in Mloc can be improved to strong Lploc convergence. In this direction, we formulate below two
open questions.

Open Problem 2. Let 1 ≤ p < ∞. Let, for every ε, uε ∈ L1
loc(RN) be such that Wε,uε ∈ L1

loc(RN).
Assume that

(Vε,uε) is bounded in Lp(RN), (46)ˆ
B(0,1)

uε = 0, ∀ ε. (47)

1. Is it true that (uε) is bounded in Lploc(RN), or at least in L1
loc(RN)?

2. Is it true that (uε) is relatively compact in Lploc(RN), or at least in L1
loc(RN)?

Note the natural condition (47). Such a “normalization” condition is needed since Vε “does not see
constants”; therefore, in order to have a priori estimates, one has to “kill the constants”.

3 A distributional approach
A natural generalization of the approach in the previous section (based on the identity (30)), consistent
with the spirit of the theory of distributions, was initiated in [7]. It consists of taking the identity (30) as
a definition of Vε. More precisely, instead of assuming that Wε ∈ L1

loc(RN), we assume that (30) holds
for every ζ ∈ C∞c (RN ;RN) and some function Vε ∈ L1

loc(RN) that is not, a priori, given by (4). This
is a distributional version of Vε given by (4) and, by the proof of (30), it coincides with Vε provided that
Wε ∈ L1

loc(RN). One could even go one step beyond and define the distribution Vε through the formula
Vε(ζ)=the right-hand side of (30). (See also, for similar approaches in different but related settings,
Shieh and Spector [9], Comi and Stefani [4], Bruè, Calzi, Comi, and Stefani [3].)

Repeating the end of the proof of the Propositions 5 and 6, we obtain, e.g., the following

Proposition 9. Assume (1)–(3). Let 1 < p < ∞. If u ∈ (L1 + L∞)(RN) and there exists some Vε ∈
L1
loc(RN) such that (30) holds, ∀ ε, ∀ ζ ∈ C∞c (RN ;RN), then

lim
ε→0
||Vε||Lp(RN ) = ||∇u||Lp(RN ) (with the convention ||∇u||Lp(RN ) =∞ if u 6∈ Ẇ 1,p). (48)

And the usual variants for p = 1 or u ∈ L1
loc(RN), under the support condition (33).

4 Heavy tails kernels
The results in this section are in the spirit of [4].

Let ρε satisfy (1) and the following variants of (2)–(3):

lim
ε→0

ˆ

|h|<1

ρε(h) dh = 1, (49)

lim
ε→0

ˆ

|h|>δ

ρε(h)

|h|
dh = 0, ∀ δ > 0. (50)
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Note that these assumptions are weaker than (2)–(3) and that they allow heavy tails kernels, which are
not integrable at infinity. Here is a special case, considered, e.g., in [4], of kernels satisfying (49)–(50):

ρε(h) :=
21−ε

N πN/2

Γ

(
N − ε

2
+ 1

)
Γ
(ε

2

) 1

|h|N−ε
, 0 < ε < N + 2. (51)

Indeed, the validity of (50) is straightforward, while (49) follows from the fact that

21−ε

N πN/2

Γ

(
N − ε

2
+ 1

)
Γ
(ε

2

) ∼ε→0
ε

N πN/2
Γ

(
N

2
+ 1

)
=

ε

|SN−1|
,

combined with the identity

ε

|SN−1|

ˆ

|h|<1

1

|h|N−ε
dh = 1.

The results in the previous sections can be easily adapted to kernels satisfying (49)–(50). The price to
pay is that the natural function setting isW 1,p(RN), respectively BV (RN), rather than Ẇ 1,p, respectively
˙BV . Here are some results from the previous sections adapted to the assumptions (1) and (49)–(50).

Proposition 10. Assume (1) and (49)–(50). Let 1 ≤ p <∞. Let u ∈ W 1,p(RN). Then

Vε → ∇u in Lp(RN) as ε→ 0.

Proposition 11. Assume (1) and (49)–(50). Let u ∈ BV (RN). Then

Vε ⇀ Du ∗-weakly in M (RN) as ε→ 0 (52)

and

lim
ε→0
||Vε||L1(RN ) = ||Du||M (RN ). (53)

In the next two results, we assume that, for some 1 < q ≤ ∞, we have

lim
ε→0
||ρε(h)/|h|||Lq(|h|>1) = 0. (54)

Proposition 12. Assume (1) and (49)–(50). Let 1 ≤ p <∞. Assume that (54) holds when q is the conjugate
exponent of p. Let u ∈ W 1,p(RN). Then, for a.e. x ∈ RN , we have Vε(x)→ ∇u(x) as ε→ 0.

Proposition 13. Assume (1) and (49)–(50). Assume that (54) holds when q =∞. Let u ∈ BV (RN). Then,
for a.e. x ∈ RN , we have Vε(x)→ ∇acu(x) as ε→ 0.

Remark 5. Given any q > 1, the kernel in (51) satisfies (54). Therefore, Propositions 12 and 13 apply to
these kernels.

Remark 6. Propositions 12 and 13 have straightforward versions, in which the assumption on u is u ∈
Lr(RN)∩ Ẇ 1,p, respectively u ∈ Lr(RN)∩ ˙BV for some r ∈ [1,∞) (and then, in (54), q is the conjugate
exponent of r).
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Proposition 14. Assume (1) and (49)–(50). Let 1 < p <∞. If u ∈ Lp(RN) and Wε ∈ L1
loc(RN) for every

ε, then

lim
ε→0
||Vε||Lp(RN ) = ||∇u||Lp(RN ) (with the convention ||∇u||Lp(RN ) =∞ if u 6∈ W 1,p(RN)). (55)

Proposition 15. Assume (1) and (49)–(50). If u ∈ L1(RN) andWε ∈ L1
loc(RN) for every ε, then

lim
ε→0
||Vε||L1(RN ) = ||Du||M (RN ) (with the convention ||Du||M (RN ) =∞ if u 6∈ BV (RN)). (56)

Proposition 16. Assume (1) and (49)–(50). Let 1 < p < ∞. If u ∈ Lp(RN) and there exists some
Vε ∈ L1

loc(RN) such that (30) holds, ∀ ε, ∀ ζ ∈ C∞c (RN ;RN), then

lim
ε→0
||Vε||Lp(RN ) = ||∇u||Lp(RN ) (with the convention ||∇u||Lp(RN ) =∞ if u 6∈ W 1,p(RN)). (57)

Proposition 17. Assume (1) and (49)–(50). If u ∈ L1(RN) and there exists some Vε ∈ L1
loc(RN) such that

(30) holds, ∀ ε, ∀ ζ ∈ C∞c (RN ;RN), then

lim
ε→0
||Vε||L1(RN ) = ||Du||M (RN ) (with the convention ||Du||M (RN ) =∞ if u 6∈ BV (RN)). (58)

We prove only Propositions 10 and 12; the other results are obtained from the corresponding ones
in the previous sections using similar arguments.

Proof of Proposition 10. Set

ρ1
ε := ρε χB(0,1), ρ

2
ε := ρε − ρ1

ε, V
1
ε := Vε,u,ρ1ε , V

2
ε := Vε,u,ρ2ε , κε(h) :=

ρ2
ε(h)

|h|
.

By Proposition 1 and the assumptions (1) and (49)–(50), we have V 1
ε → ∇u in Lp(RN) as ε→ 0. On

the other hand, we have the straightforward inequality

|V 2
ε (x)| ≤ |u| ∗ κε(x) + |u(x)| ||κε||L1(RN ), ∀x ∈ RN . (59)

Combining (50), (59) with δ = 1, and the Young inequality, we find that V 2
ε → 0 in Lp(RN) as

ε→ 0.

Proof of Proposition 12. It suffices to note that (by (59) and (54)) we have V 2
ε → 0 pointwise as ε→ 0.

Remark 7. The fact that ρ is radial when |h| > 1 is not relevant for the above results.
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5 Γ-convergence
One can associate Γ-convergence results with the above convergence statements. We present one result
of this type, in the spirit of [7, Theorem 1.7].

Let 1 ≤ p <∞. Set, for 0 < ε < ε0 and u ∈ L1
loc(RN),

Jε,p(u) :=

{
||Vε,u||Lp(RN ), ifWε,u ∈ L1

loc(RN)

∞, otherwise
,

J0,p(u) :=

{
||∇u||Lp(RN ), if u ∈ Ẇ 1,p

∞, otherwise
, ∀ 1 < p <∞,

J0,1(u) :=

{
||Du||M (RN ), if u ∈ ˙BV
∞, otherwise

.

Proposition 18. Assume (1)–(3). Let 1 ≤ p <∞.

1. For 1 ≤ q <∞, Jε,p Γ-converges to J0,p in Lq(RN).

2. Under the support assumption (33), Jε,p Γ-converges to J0,p in L1
loc(RN).

Proof. Proof of item 2. Let (uε)0<ε<ε0 ⊂ L1
loc(RN) be a family such thatuε → u inL1

loc(RN) and lim inf
ε→0

Jε,p(uε) <

∞. By Proposition 7 and the proof of Propositions 5 and 6 (see, more specifically, (35) and (36)), we find
that u ∈ Ẇ 1,p if 1 < p <∞ (respectively u ∈ ˙BV if p = 1) and J0,p(u) ≤ lim inf

ε→0
Jε,p(uε).

In the opposite direction, we do not need the support assumption (33). Let u ∈ Ẇ 1,p if 1 < p < ∞,
respectively u ∈ ˙BV if p = 1. Let η be a normalized bump function. By Proposition 1 applied to u ∗ η1/j ,
where j ≥ 1 is an integer, there exists a sequence (εj)j≥1 such that

Jε,p(u ∗ η1/j) ≤ J0,p(u ∗ η1/j) +
1

j
, ∀ j ≥ 1, ∀ 0 < ε < εj.

With no loss of generality, we may assume that εj → 0 and εj+1 < εj . If we set

uε := u ∗ η1/j, ∀ εj+1 ≤ ε < εj,

then uε → u in L1
loc(RN) when ε→ 0 and

lim sup
ε→0

Jε,p(uε) ≤ lim sup
j→∞

J0,p(u ∗ η1/j) = J0,p(u).

Proof of item 1. The proof is similar to the one of item 2. It suffices to note that Propositions 5, 6, and 7 still
hold if we replace (L1 + L∞)(RN) with Lq(RN).
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