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Abstract
Neural networks have become a prominent approach to solve inverse problems in recent
years. While a plethora of such methods was developed to solve inverse problems empiri-
cally, we are still lacking clear theoretical guarantees for these methods. On the other hand,
many works proved convergence to optimal solutions of neural networks in a more general
setting using overparametrization as a way to control the Neural Tangent Kernel. In this
work we investigate how to bridge these two worlds and we provide deterministic conver-
gence and recovery guarantees for the class of unsupervised feedforward multilayer neural
networks trained to solve inverse problems. We also derive overparametrization bounds
under which a two-layers Deep Inverse Prior network with smooth activation function will
benefit from our guarantees.

Keywords: Inverse problems, Deep Image/Inverse Prior, Overparametrization, Gradient flow,
Unsupervised learning

1 Introduction
1.1 Problem Statement
An inverse problem consists in reliably recovering a signal x ∈ Rn from noisy indirect
observations

y = F(x) + ε, (1)
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where y ∈ Rm is the observation, F : Rn → Rm is a forward operator, and ε stands for some
additive noise. We will denote by y = F(x) the ideal observations i.e., those obtained in the
absence of noise.

In recent years, the use of sophisticated machine learning algorithms, including deep
learning, to solve inverse problems has gained a lot of momentum and provides promising
results; see e.g., the reviews [1, 2]. The general framework of these methods is to optimize
a generator network g : (u, θθθ) ∈ Rd × Rp 7→ x ∈ Rn, with some activation function ϕ,
to transform a given input u ∈ Rd into a vector x ∈ Rn. The parameters θθθ of the net-
work are optimized via (possibly stochastic) gradient descent to minimize a loss function
Ly : Rm → R+,y(t) 7→ Ly(y(t)) which measures the discrepancy between the observation
y and the solution y(t) = F(g(u, θθθ(t))) generated by the network at time t ≥ 0.

Theoretical understanding of recovery and convergence guarantees for deep learning-
based methods is of paramount importance to make their routine use in critical applications
reliable [3]. While there is a considerable amount of work on the understanding of optimiza-
tion dynamics of neural network training, especially through the lens of overparametrization,
recovery guarantees when using neural networks for inverse problem remains elusive. Some
attempts have been made in that direction but they are usually restricted to very specific set-
tings. One kind of results that was obtained [4–6] is convergence towards the optimal points of
a regularized problem, typically with a learned regularizer. However this does not give guar-
antees about the real sought-after vector. Another approach is used in Plug-and-Play [7] to
show that under strong assumptions on the pre-trained denoiser, one can prove convergence
to the true vector. This work is however limited by the constraints on the denoiser which are
not met in many settings.

Our aim in this paper is to help close this gap by explaining when gradient descent consis-
tently and provably finds global minima of L, and how this translates into recovery guarantees
for both y and x i.e., in both the observation and the signal spaces. For this, we focus on a
continuous-time gradient flow applied to L:{

θ̇θθ(t) = −∇θθθLy(F(g(u, θθθ(t))))

θθθ(0) = θθθ0.
(2)

This is an idealistic setting which makes the presentation simpler and it is expected to reflect
the behavior of practical and common first-order descent algorithms, as they are known to
approximate gradient flows.

In this work, our focus in on an unsupervised method known as Deep Image Prior [8], that
we also coin Deep Inverse Prior (DIP) as it is not confined to images. A chief advantage of
this method is that it does not need any training data, while the latter is mandatory in most
supervised deep learning-based methods used in the literature. In the DIP method, u is fixed
throughout the optimization/training process, usually a realization of a random variable. By
taking out the need of training data, this method focuses on the generation capabilities of the
network trained through gradient descent. In turn, this will allow us to get insight into the
effect of network architecture on the reconstruction quality.
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1.2 Contributions
We deliver a theoretical analysis of gradient flow optimization of neural networks, i.e. (2),
in the context of inverse problems and provide various recovery guarantees for general loss
functions verifying the Kurdyka-Łojasewicz (KL) property. We first prove that the trained
network with a properly initialized gradient flow will converge to an optimal solution in the
observation space with a rate characterized by the desingularizing function appearing in the
KL property of the loss function. This result is then converted to a prediction error ony through
an early stopping strategy. More importantly, we present a recovery result in the signal space
with an upper bound on the reconstruction error of x. The latter result involves for instance a
restricted injectivity condition on the forward operator.

We then turn to showing how these results can be applied to the case of a two-layer neural
network in the DIP setting where

g(u, θθθ) =
1√
k
Vϕ(Wu), θθθ

def
= (V,W), (3)

withV ∈ Rn×k,W×Rk×d, and ϕ an element-wise nonlinear activation function. The scaling
by

√
k will become clearer later. We show that for a proper random initialization W(0), V(0)

and sufficient overparametrization, all our conditions are in force to control the eigenspace of
the Jacobian of the network as required to obtain the aforementioned convergence properties.
We provide a characterization of the overparametrization needed in terms of (k, d, n) and the
conditioning of F.

1.3 Relation to Prior Work
Data-Driven Methods to Solve Inverse Problems
Data-driven approaches to solve inverse problems come in various forms; see the compre-
hensive reviews in [1, 2]. The first type trains an end-to-end network to directly map the
observations to the signals for a specific problem. While they can provide impressive results,
these methods can prove very unstable as they do not use the physics of the problem which
can be severely ill-posed. To cope with these problems, several hybrid models that mix model-
and data-driven algorithms were developed in various ways. One can learn the regularizer
of a variational problem [9] or use Plug-and-Play methods [10] for example. Another fam-
ily of approaches, which takes inspiration from classical iterative optimization algorithms, is
based on unrolling (see [11] for a review of these methods). Still, all these methods require an
extensive amount of training data, which may not always be available.

Deep Inverse Prior
The DIP model [8] (and its extensions that mitigate some of its empirical issues [12–15]) is
an unsupervised alternative to the supervised approches briefly reviewed above. The empiri-
cal idea is that the architecture of the network acts as an implicit regularizer and will learn a
more meaningful transformation before overfitting to artefacts or noise. With an early stopping
strategy, one can hope for the network to generate a vector close to the sought-after signal.
However, this remains purely empirical and there is no guarantee that a network trained in such
manner converges in the observation space (and even less in the signal space). The theoretical
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recovery guarantees of these methods are not well understood [3] and our work aims at reduc-
ing this theoretical gap by analyzing the behaviour of such networks in both the observation
and the signal space under some overparametrization condition.

Theory of Overparametrized Networks
To construct our analysis, we build upon previous theoretical work of overparametrized net-
works and their optimization trajectories [16, 17]. The first works that proved convergence to
an optimal solution were based on a strong convexity assumption of the loss which is typically
not the case when it is composed with a neural network. A more recent approach is based on a
gradient dominated inequality from which we can deduce by simple integration an exponen-
tial convergence of the gradient flow to a zero-loss solution. This allows to obtain convergence
guarantees for networks trained to minimize a mean square error by gradient flow [18] or its
discrete counterpart (i.e., gradient descent with fixed step) [19–22]. The work that we present
here is inspired by these works but it goes far beyond them. Amongst other differences, we are
interested in the challenging situation of inverse problems (presence of a forward operator),
and we deal with more general loss functions that obey the Kurdyka-Łojasewicz inequality
(e.g., any semi-algebraic function or even definable on an o-minimal structure) [23–25].

Recently, it has been found that some kernels play a very important role in the analysis of
convergence of the gradient flow when used to train neural networks. In particular the semi-
positive definite kernel given by Jg(t)Jg(t)

⊤, where Jg(t) is the Jacobian of the network at
time t. When all the layers of a network are trained, this kernel is a combination of the Neural
Tangent Kernel (NTK) [26] and the Random Features Kernel (RF) [27]. If one decides to fix
the last layer of the network, then this amounts to just looking at the NTK which is what most
of the previously cited works do. The goal is then to control the eigenvalues of the kernel to
ensure that it stays positive definite during training, which entails convergence to a zero-loss
solution at an exponential rate. The control of the eigenvalues of the kernel is done through
a random initialization and the overparametrization of the network. Indeed, for a sufficiently
wide network, the parameters θθθ(t) will stay near their initialization and they will be well
approximated by their linearization (so-called “lazy” regime [18]). The overparametrization
bounds that were obtained are mostly for two-layers networks as the control of deep networks
is much more complex.

However, even if there are theoretical works on the gradient flow-based optimization of
neural networks as reviewed above, similar analysis that would accommodate for the forward
operator as in inverse problems remain challenging and open. Our aim is to participate in this
endeavour by providing theoretical understanding of recovery guarantees with neural network-
based methods.

This paper is an extension of our previous one in [28]. There are however several distinctive
and new results in the present work. For instance, the work [28] only dealt with linear inverse
problems while our results here apply to non-linear ones. Moreover, we here provide a much
more general analysis under which we obtain convergence guarantees for a wider class of
models than just the DIP one and for a general class of loss functions, not just the MSE. More
importantly we show convergence not only in the observation space but also in the signal space
now. When particularized to the DIP case, we also provide overparametrization bounds for the
case when the linear layer of the network is not fixed which is also an additional novelty.
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Paper organization
The rest of this work is organized as follows. In Section 2 we give the necessary notations and
definitions useful for this work. In Section 3 we present our main result with the associated
assumptions and proof. In Section 4 we present the overparametrization bound on the DIP
model. Finally, in Section 5, we show some numerical experiments that validate our findings,
before drawing our conclusions in Section 6.

2 Preliminaries
2.1 General Notations
For a matrix M ∈ Ra×b we denote by σmin(M) and σmax(M) its smallest and largest non-
zero singular values, and by κ(M) = σmax(M)

σmin(M) its condition number. We also denote by ⟨, ⟩ the
Euclidean scalar product, ∥·∥ the associated norm (the dimension is implicit from the context),
and ∥·∥F the Frobenius norm of a matrix. With a slight abuse of notation ∥·∥ will also denote
the spectral norm of a matrix. We use Mi (resp. Mi) as the i-th row (resp. column) of M. For
two vectors x, z, [x, z] = {(1− ρ)x+ ρz : ρ ∈ [0, 1]} is the closed segment joining them.
We use the notation a ≳ b if there exists a constant C > 0 such that a ≥ Cb.

We also define y(t) = F(g(u, θθθ(t))) and x(t) = g(u, θθθ(t)) and we recall y = F(x).
The Jacobian of the network is denoted Jg. Jg(t) is a shorthand notation of Jg evaluated at
θθθ(t). JF(t) is the Jacobian of the forward operator F evaluated at x(t). The local Lipschitz
constant of a mapping on a ball of radius R > 0 around a point z is denoted LipB(z,R)(·). We
omit R in the notation when the Lipschitz constant is global. For a function f : Rn → R, we
use the notation for the sublevel set [f < c] = {z ∈ Rn : f(z) < c} and [c1 < f < c2] =
{z ∈ Rn : c1 < f(z) < c2}.

Given z ∈ C0(]0,+∞[;Ra), the set of cluster points of z is defined as

W(z(·)) =
{
z̃ ∈ Ra : ∃(tk)k∈N → +∞ s.t. lim

k→∞
z(tk) = z̃

}
.

For some Θ ⊂ Rp, we define ΣΘ = {g(u, θθθ) : θθθ ∈ Θ} the set of signals that the network
g can generate for all θ in the parameter setΘ.ΣΘ can thus be viewed as a parametric manifold.
If Θ is closed (resp. compact), so is ΣΘ. We denote dist(·,ΣΘ) the distance to ΣΘ which is
well defined if Θ is closed and non-empty. For a vector x, xΣΘ is its projection on ΣΘ, i.e.
xΣΘ ∈ Argminz∈ΣΘ

∥x− z∥. Observe that xΣΘ always exists but might not be unique. We
also define TΣΘ(x) = conv (R+(ΣΘ − x)) the tangent cone of ΣΘ at x ∈ ΣΘ.

The minimal (conic) singular value of a matrix A ∈ Rm×n w.r.t. the cone TΣΘ
(x) is then

defined as

λmin(A;TΣΘ
(x)) = inf{∥Az∥ / ∥z∥ : z ∈ TΣΘ

(x)}.

2.2 Multilayer Neural Networks
Neural networks produce structured parametric families of functions that have been studied
and used for almost 70 years, going back to the late 1950’s [29].
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Definition 2.1. Let d, L ∈ N and ϕ : R → R an activation map which acts componentwise
on the entries of a vector. A fully connected multilayer neural network with input dimension
d, L layers and activation ϕ, is a collection of weight matrices

(
W(l)

)
l∈[L]

and bias vectors(
b(l)
)
l∈[L]

, where W(l) ∈ RNl×Nl−1 and b(l) ∈ RNl , with N0 = d, and Nl ∈ N is the
number of neurons for layer l ∈ [L]. Let us gather these parameters as

θθθ =
(
(W(1),b(1)), . . . , (W(L),b(L))

)
∈

L×
l=1

((
RNl×Nl−1

)
× RNl

)
.

Then, a neural network parametrized by θθθ produces a function

g : (u, θθθ) ∈ Rd ×
L×
l=1

((
RNl×Nl−1

)
× RNl

)
7→ g(u, θθθ) ∈ RNL , with NL = n,

which can be defined recursively as
g(0)(u, θθθ) = u,

g(l)(u, θθθ) = ϕ
(
W(l)g(l−1)(u, θθθ) + b(l)

)
, for l = 1, . . . , L− 1,

g(u, θθθ) = W(L)g(L−1)(u, θθθ) + b(L).

The total number of parameters is then p =
∑L

l=1(Nl−1 + 1)Nl. In the rest of this work,
g(u, θθθ) is always defined as just described. We will start by studying the general case before
turning in Section 4 to a two-layer network, i.e. with L = 2.

2.3 KL Functions
We will work with a general class of loss functions L that are not necessarily convex. More
precisely, we will suppose thatL verifies a Kurdyka-Łojasewicz-type (KL for short) inequality.
Definition 2.2 (KL inequality). A continuously differentiable function f : Rn → R satisfies
the KL inequality if there exists r0 > 0 and a strictly increasing function ψ ∈ C0([0, r0[) ∩
C1(]0, r0[) with ψ(0) = 0 such that

ψ′(f(z)−min f) ∥∇f(z)∥ ≥ 1, for all z ∈ [min f < f < min f + r0]. (4)

We use the shorthand notation f ∈ KŁψ(r0) for a function satisfying this inequality.
The KL property basically expresses the fact that the function f is sharp under a repa-

rameterization of its values. Functions satisfying the KL inequality are also sometimes called
gradient dominated functions [30]. The function ψ is known as the desingularizing function
for f . The Łojasiewicz inequality [23, 24] corresponds to the case where the desingularizing
function takes the form ψ(s) = csα with α ∈ [0, 1]. The KL inequality plays a funda-
mental role in several fields of applied mathematics among which convergence behaviour
of (sub-)gradient-like systems and minimization algorithms [31–36], neural networks [37],
partial differential equations [38–40], to cite a few. The KL inequality is closely related to
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error bounds that also play a key role to derive complexity bounds of gradient descent-like
algorithms [41].

Our KL definition is somehow globalized with regards to the original one [25] as we
require the inequality to hold at any point in the sublevel set [min f < f < min f + r0] with-
out intersecting the latter with a neighborhood of the minimizers. Of course, if f is sublevel set
is bounded, then the above inequality is automatically localize. On the other hand, we require
the KL property to hold only at global minimizers and not at any critical point. Nevertheless,
in general, our globalized KL inequality entails that the function cannot have critical points
that are not global minimizers. However, since we impose this assumption only on the loss
function L, this is not a restrictive assumption that match many usual loss functions. Let us
give some examples of functions satisfying (4).
Example 2.3 (Convex functions with sufficient growth). Let f be a differentiable convex
function on Rn such that Argmin(f) ̸= ∅. Assume that f verifies the growth condition

f(z) ≥ min f + φ(dist(z,Argmin(f))), for all z ∈ [min f < f < min f + r], (5)

where φ : R+ → R+ is continuous, increasing, φ(0) = 0 and
∫ r
0
φ−1(s)
s ds < +∞. Then by

[36, Theorem 30], f ∈ KŁψ(r) with ψ(r) =
∫ r
0
φ−1(s)
s ds.

Example 2.4 (Uniformly convex functions). Suppose that f is a differentiable uniformly
convex function, i.e., ∀z,x ∈ Rn,

f(x) ≥ f(z) + ⟨∇f(z),x− z⟩+ φ (∥x− z∥) (6)

for an increasing function φ : R+ → R+ that vanishes only at 0. Thus f has a unique mini-
mizer, say z⋆, see [42, Proposition 17.26]. This example can then be deduced from the previous
one since a uniformly convex function obviously obeys (5). However, we here provide an alter-
native and sharper characterization. We may assume without loss of generality thatmin f = 0.
Applying inequality (6) at x = z⋆ and any z ∈ [0 < f ], we get

f(z) ≤ ⟨∇f(z), z− x⟩ − φ (∥x− z∥)
≤ ∥∇f(z)∥ ∥x− z∥ − φ (∥x− z∥)
≤ φ+(∥∇f(z)∥),

whereφ+ : a ∈ R+ 7→ φ+(a) = supx≥0 ax−φ(x) is known as the monotone conjugate ofφ.
φ+ is a proper closed convex and non-decreasing function on R+ that vanishes at 0. When φ
is strictly convex and supercoercive, so is φ+ which implies that φ+ is also strictly increasing
on R+. Thus f verifies Definition 2.2 at any z ∈ [0 < f ] with ψ a primitive of 1

φ−1
+

, and ψ is
indeed strictly increasing, vanishes at 0 and is even concave. A prominent example is the case
where φ : s ∈ R+ 7→ 1

ps
p, for p ∈]1,+∞[, in which case ψ : s ∈ R+ 7→ q−1/qs1/p, where

1/p+ 1/q = 1.
Example 2.5. For the original KL inequality [25], deep results from algebraic geometry
have shown that in finite-dimensional spaces, the KL inequality is satisfied by a large class
of functions, namely, real semi-algebraic functions and more generally, function definable
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on an o-minimal structure or even functions belonging to analytic-geometric categories [23–
25, 43, 44]. Definable convex functions do satisfy our globalized KL inequality. Note that
even smooth coercive convex functions do not necessarily satisfy the KL inequality; see the
counterexample in [36, Section 4.3]. Fortunately, many popular losses used in machine learn-
ing and signal processing turn out to satisfy our globalized KL inequality since the lack of
local minimizers is a desirable property for such losses (MSE, Kullback-Leibler divergence
and cross-entropy to cite a few).

3 Recovery Guarantees
3.1 Main Assumptions
Throughout this paper, we will work under the following standing assumptions.

Assumptions on the loss

A-1. Ly(·) ∈ C1(Rm)whose gradient is Lipschitz continuous on the bounded sets ofRm.
A-2. Ly(·) ∈ KŁψ(Ly(y(0)) + η) for some η > 0.
A-3. minLy(·) = 0.
A-4. ∃Θ ⊂ Rp with large enough diameter such that ∇vLy(v) ∈ Im (JF(x)) for any
v = F(x) with x ∈ ΣΘ.

Assumption on the activation

A-5. ϕ ∈ C1(R) and ∃B > 0 such that supx∈R |ϕ′(x)| ≤ B and ϕ′ is B-Lipschitz
continuous.

Assumption on the forward operator

A-6. F ∈ C1(Rn;Rm) whose Jacobian JF is Lipschitz continuous on the bounded sets
of Rn.

Let us now discuss the meaning and effects of these assumptions. First, A-1 is made for
simplicity to ensure existence and uniqueness of a strong maximal solution (in fact even global
thanks to our estimates) of (2) thanks to the Cauchy-Lipschitz theorem (see hereafter). We
think this could be relaxed to cover non-smooth losses if we assume path differentiability,
hence existence of an absolutely continuous trajectory. This is left to a future work. A notable
point in A-2 is that convexity is not always needed for the loss (see the statements of the
theorem). Regarding A-3, it is natural yet it would be straightforward to relax it.

Assumption A-4 allows us to leverage the fact that

σF
def
= inf

x∈ΣΘ,z∈Im(JF(x))

∥∥JF(x)
⊤z
∥∥

∥z∥
> 0, (7)

with Θ a sufficiently large subset of parameters. Clearly, we will show later that the parameter
trajectory θθθ(t) is contained in a ball around θθθ0. Thus a natural choice of Θ is that ball (or an
enlargement of it).

8



There are several scenarios of interest where assumption A-4 is verified. This is the case
when F is an immersion, which implies that JF(x) is surjective for all x. Other interesting
cases are when Ly(v) = η

(
∥v − y∥2

)
, F = Φ ◦A, where η : R+ → R+ is differentiable

and vanishes only at 0, and Φ : Rm → Rm is an immersion1. One easily sees in this case that
∇vLy(v) = 2η′

(
∥v − y∥2

)
(v − y) with v = Φ(Ax), and JF(x) = JΦ(Ax)A. It is then

sufficient to require that A is surjective. This can be weakened for the linear case, i.e. Φ is the
identity, in which case it is sufficient that y ∈ Im (A) for A-4 to hold.

Assumption A-5 is key in well-posedness as it ensures, by Definition 2.1 which g(u, θθθ)
follows, that g(u, ·) is C1(Rp;Rp) whose Jacobian is Lipschitz continuous on bounded sets,
which is necessary for the Cauchy-Lipschitz theorem. This constraint on ϕ is met by many
activations such as the softmax, sigmoid or hyperbolic tangent. Including the ReLU requires
more technicalities that will be avoided here.

Finally, Assumption A-6 on local Lipschitz continuity on F is not only important for well-
posedness of (2), but it turns out to be instrumental when deriving recovery rates (as a function
of the noise) in the literature of regularized nonlinear inverse problems; see [45] and references
therein.

3.2 Well-posedness
In order for our analysis to hold, the Cauchy problem (2) needs to be well-posed. We start by
showing that (2) has a unique maximal solution.
Proposition 3.1. Assume that A-1, A-5 and A-6 hold. There there exists T (θθθ0) ∈]0,+∞] and
a unique maximal solution θθθ(·) ∈ C0([0, T (θθθ0)[) of (2), and θθθ(·) is C1 on every compact set
of the interior of [0, T (θθθ0)[.

Proof. Thanks to A-5, one can verify with standard differential calculus applied to g(u, ·),
as given in Definition 2.1, that Jg is Lipschitz continuous on the bounded sets of Rp. This
together with A-1 and A-6 entails that ∇θθθLy(F(g(u, ·)) is also Lipschitz continuous on the
bounded sets of Rp. The claim is then a consequence of the Cauchy-Lipschitz theorem [46,
Theorem 0.4.1].

T (θθθ0) is known as the maximal existence time of the solution and verifies the alternative:
either T (θθθ0) = +∞ and the solution is called global; or T (θθθ0) < +∞ and the solution blows-
up in finite time, i.e., ∥θθθ(t)∥ → +∞ as t → T (θθθ0). We will show later that the maximal
solution of (2) is indeed global; see Section 3.4.4.

3.3 Main Results
We are now in position to state our main recovery result.
Theorem 3.2. Recall σF from (7). Consider a network g(u, ·), a forward operator F and a
lossL, such that A-1 to A-6 hold. Letθθθ(·) be a solution trajectory of (2) where the initialization
θθθ0 is such that

σmin(Jg(0)) > 0 and R′ < R (8)

1Typical cases of practical interest are linear inverse problems (Φ identity) or phase retrieval (Φ = | · |2).
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where R′ and R obey

R′ =
2

σFσmin(Jg(0))
ψ(Ly(y(0))) and R =

σmin(Jg(0))

2LipB(θθθ0,R)(Jg)
. (9)

Then the following holds:
(i) the loss converges to 0 at the rate

Ly(y(t)) ≤ Ψ−1(γ(t)) (10)

with Ψ a primitive of −ψ′2 and γ(t) = σ2
Fσmin(Jg(0))

2

4 t+Ψ(Ly(y(0))). Moreover, θθθ(t)
converges to a global minimizer θθθ∞ of Ly(F(g(u, ·))), at the rate

∥θθθ(t)− θθθ∞∥ ≤ 2

σmin(Jg(0))σF
ψ
(
Ψ−1 (γ(t))

)
. (11)

(ii) If Argmin(Ly(·)) = {y}, then limt→+∞ y(t) = y. In addition, if L is convex then

∥y(t)− y∥ ≤ 2 ∥ε∥ when t ≥ 4Ψ(ψ−1(∥ε∥))
σ2
Fσmin(Jg(0))2

−Ψ(Ly(y(0))). (12)

(iii) Assume that Argmin(Ly(·)) = {y}, L is convex, and that2

A-7. µF,Σ′ > 0 where µF,Σ′
def
= inf

x∈Σ′

∥F(x)− F(xΣ′)∥
∥x− xΣ′∥

with Σ′ def
= ΣBR′+∥θθθ0∥(0)

.

Let LF
def
= maxx∈B(0,2∥x∥) ∥JF(x)∥ < +∞. Then

∥x(t)− x∥ ≤
2ψ
(
Ψ−1 (γ(t))

)
µF,Σ′σmin(Jg(0))σF

+

(
1 +

LF

µF,Σ′

)
dist(x,Σ′) +

∥ε∥
µF,Σ′

. (13)

Proof. See Section 3.5.

3.4 Discussion and Consequences
We first discuss the meaning of the initialization condition R′ < R. This dictates that
ψ(Ly(y(0)))must be smaller than some constant that depends on the operatorF and the Jaco-
bian of the network at initialization. Intuitively, this requires the initialization of the network
to be in an appropriate convergence basin i.e., we start close enough from an optimal solution.

3.4.1 Convergence Rate
The first result ensures that under the conditions of the theorem, the network converges towards
a zero-loss solution. The convergence speed is given by the application of Ψ−1, which is
(strictly) decreasing by definition, on an affine function w.r.t time. The functionΨ only depends

2We suppose here that Argminz∈Σ ∥z − x∥ = {xΣ′} is a singleton. In fact, we only need that there exists at least one xΣ′ ∈
Argminz∈Σ ∥z − x∥ such that µF,Σ′ > 0.
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on the chosen loss function and its associated Kurdyka-Łojasewiecz inequality. This inequality
is verified for a wide class of functions, including all the semi-algebraic ones [25], but it is not
always obvious to know the exact expression of ψ (see Section 2.3 for a discussion).

In the case where the KL inequality is verified with ψ = csα (the Łojasiewicz case), we
obtain by direct computation the following decay rate of the loss and convergence rate for the
parameters:
Corollary 3.3. If L satisfies the Łojasiewicz inequality, that is A-2 holds with ψ(s) = csα and
α ∈ [0, 1/2], then, ∃t0 > 0 such that ∀t ≥ t0, γ(t) > 0, and thus the loss and the parameters
converge with the following rates:

Ly(y(t)) ≤

{ (
1−2α
α2c2 γ(t)

)− 1
1−2α

exp
(
− 4
c2 γ(t)

) if 0 < α < 1
2 ,

if α = 1
2 .

∥θθθ(t)− θθθ∞∥ ≤ 2c
σmin(Jg(0))σF

{ (
1−2α
α2c2 γ(t)

)− α
1−2α

exp
(
− 2
c2 γ(t)

) if 0 < α < 1
2 ,

if α = 1
2 .

Remark 3.4. When ψ(s) = csα with α ∈]1/2, 1], it is not difficult to see that one obtains
a finite termination of gradient flow training, i.e., ∃t̂ > 0, that depends on α, such that
Ly(y(t)) = ∥θθθ(t)− θθθ∞∥ = 0 for all t ≥ t̂.

These results allow to see precise convergence rates of the loss for a wide variety of
functions. First let us observe the particular case when α = 1/2 which gives exponential con-
vergence to the solution. The Mean Squared Error (MSE) loss corresponds precisely to this
case. For α ∈ [0, 1/2[, we obtain a sublinear convergence rate as O(t−

1
1−2α ). Observe also

that the convergence rate of the parameters of the model is slower than that of the loss as the
former is the latter powered by α < 1.

3.4.2 Early stopping strategy
While the first result allows us to obtain convergence rates to a zero-loss solution, it does so
by overfitting the noise inherent to the problem. A classical way to avoid this to happen is to
use an early stopping strategy to ensure that our solution will lie in a ball around the desired
solution. The bound on the time given in (12) will verify that all the solutions found past that
time will be no more than 2 ∥ε∥ away from the noiseless solution. This bound is given by
balancing the convergence rate offered by the KL properties of the loss, the loss of the model
at initialization and the level of noise in the problem.

3.4.3 Signal Recovery Guarantees
Our third result provides a bound on the distance between the solution found at time t and the
true solution x. This bound is a sum of three terms representing three kinds of errors. The first
term is an “optimization error”, which represents how far x(t) is from the solution found at
the end of the optimization process. Of course, this decreases to 0 as t goes to infinity. The
second error is a “modeling error” which captures the expressivity of the optimized network,
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i.e. its ability to generate solutions close to x. Finally, the third term is a “noise error” that
depends on ∥ε∥ which is inherent to the problem at hand.

Obviously, the operatorF also plays a key role in this bound where its influence is reflected
by three quantities of interest: σF, LF and µF,Σ′ . First, LF is the Lipschitz constant of the
Jacobian of F on Σ′. Moreover, we always have σF > 0 and the dependence of the bound on
σF (or the ratioLF/σF) reflects the fact that this bound degrades as the Jacobian of F over ΣΘ

becomes badly-conditioned. Second, µF,Σ′ corresponds to a restricted injectivity condition,
which is a classical and natural assumption if one hopes for recovering x (to a good controlled
error). In particular, in the case where F is a linear operator A ∈ Rm×n, µF,Σ′ becomes
the minimal conic singular value λmin(A;TΣ′(xΣ′)) and LF is replaced by ∥A∥. (A-7) then
amounts to assuming that

ker(A) ∩ TΣ′(xΣ′) = {0} . (14)
Assuming the rows of A are linearly independent, one easily checks that (14) imposes that
m ≥ dim(TΣ′(xΣ′)). We will give a precise sample complexity bound for the case of com-
pressed sensing in Example 3.5. It is worth mentioning that condition (14) (and (A-7) in some
sense) is not uniform as it only requires a control at x and not over the whole set Σ′.

Observe that the restricted injectivity condition (A-7) depends on Σ′ which itself depends
on R′, that is, the radius of the ball around θθθ0 containing the whole trajectory θ(t) during the
network training (see the proof of Lemma 3.11). On the other hand, R′ depends on the loss at
initialization, which means that the higher the initial error of the network, the larger the set of
parameters it might reach during optimization, and thus the larger the set Σ′. This discussion
clearly reveals an expected phenomenon: there is a trade-off between the restricted injectivity
condition on F and the expressivity of the network. If the model is highly expressive then
dist(x,Σ′) will be smaller. But this is likely to come at the cost of making µF,Σ′ decrease, as
restricted injectivity can be required to hold on a larger subset (cone).

This discussion relates with the work on the instability phenomenon observed in learned
reconstruction methods as discussed in [47, 48]. For instance, when F is a linear operator
A, the fundamental problem that creates these instabilities and/or hallucinations in the recon-
struction is due to the fact that the kernel of A is non-trivial. Thus a method that can correctly
learn to reconstruct signals whose difference lies in or close to the kernel of A will necessarily
be unstable or hallucinate. In our setting, this is manifested through the restricted injectiv-
ity condition, that imposes that the smallest conic singular value is bounded away from 0,
i.e. µF,Σ′ = λmin(A;TΣ′(xΣ′)) > 0. This is a natural (and minimal) condition in the con-
text of inverse problems to have stable reconstruction guarantees. Note that our condition is
non-uniform as it is only required to hold at xΣ′ and not at all points of Σ′.

In A-11, we generalize the restricted injectivity condition (14) beyond the linear case pro-
vided that JF is Lipschitz continuous. This covers many practical cases, for instance that of
phase retrieval. Observe that whereas assumption A-7 requires a uniform control of injectiv-
ity of F on the whole signal class Σ′, A-11 is less demanding and only requires injectivity
of the Jacobian of F at xΣ′ on the tangent space of Σ′ at xΣ′ . However the price is that the
recovery bound in Theorem A.1 is only valid for high signal-to-noise regime and dist(x,Σ′)
is small enough. Moreover, the convergence rate in noise becomes O(

√
∥ε∥) which is worse

than O(∥ε∥) of Theorem 3.2.

Example 3.5 (Compressed sensing with sub-Gaussian measurements). Controlling the mini-
mum conic singular value is not easy in general. Amongst the cases where results are available,
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we will look at the compressed sensing framework with linear random measurements. In this
setting, the forward operator A ∈ Rm×n is a random sensing matrix. Exploiting the random-
ness of A, a natural question is then how many measurements are sufficient to ensure that
λmin(A;TΣ′(xΣ′)) > 0 with high probability. In the case of Gaussian and sub-Gaussian mea-
surements, we can exploit the non-uniform results of [49, 50] to derive sample complexity
bounds, i.e. lower bounds on m, for this to hold. Building upon [50, Theorem 6.3], we have
the following result:
Proposition 3.6. Assume that each row Ai is an independent sub-Gaussian vector, that is

(i) E[Ai] = 0,
(ii) α ≤ E[

∣∣⟨Ai,w⟩
∣∣] for each w ∈ Sn−1 with α > 0,

(iii) P
(∣∣⟨Ai,w⟩

∣∣ ≥ τ
)
≤ 2e−τ

2/(2σ2) for each w ∈ Sn−1, with σ > 0.
Let C and C ′ be positive constants and w(K) the Gaussian width of the cone K defined as:

w(K) = Ez∼N (0,I)

[
sup

w∈K∩Sd−1

⟨z,w⟩
]
.

If

m ≥ C ′
(σ
α

)6
w(TΣ′(xΣ′))2 + 2C−2 σ

2

α4
τ2,

then λmin(A, TΣ′(xΣ′)) > 0 with probability at least 1− exp(−Cτ2).

The Gaussian width is an important tool in high-dimensional convex geometry and can be
interpreted as a measure of the “dimension” of a cone. Except in some specific settings (such
as when K is a descent cone of a convex function and other special cases), it is notoriously
difficult to compute this quantity; see the discussion in [49]. Another “generic” tool for com-
puting Gaussian widths is based on Dudley’s inequality which bounds the width of a set in
terms of the covering number of the set at all scales. Estimating the covering number is not
easy either in general. This shows the difficulty of computing w(TΣ′(xΣ′)) which we leave to
a future work.

Analyzing recovery guarantees in the compressed sensing framework using unsupervised
neural networks such as DIP was proposed in [51, 52]. In [51], the authors restricted their
analysis to the case of networks without non-linear activations nor training/optimization.
The authors of [52] studied the case of the DIP method but their optimization algorithms is
prohibitively intensive necessitating at each iteration retraining the DIP network. Another dis-
tinctive difference with our work is that these existing results are uniform relying on RIP-type
arguments and their specialization for Gaussian measurements.

3.4.4 Existence and Uniqueness of a Global Strong Solution
We have already stated in Section 3.2 that (2) admits a unique maximal solution. Assump-
tion (8) allows us to further specify this solution as strong and global. Indeed, (11) ensures
that the trajectory θθθ(t) is uniformly bounded. Let us start by recalling the notion of a strong
solution.
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Definition 3.7. Denote θθθ : t ∈ [0,+∞[ 7→ θθθ(t) ∈ Rp. The function θθθ(·) is a strong global
solution of (2) if it satisfies the following properties:

• θθθ is in C1([0,+∞[;Rp);
• for almost all t ∈ [0,+∞[, (2) holds with θθθ(0) = θθθ0.

Proposition 3.8. Assume that A-1-A-6 and (8) are satisfied. Then, for any initial condition
θθθ0, the evolution system (2) has a unique strong global solution.

Proof. Proposition 3.1 ensures the existence and uniqueness of a maximal solution. Following
the discussion after the proof of Proposition 3.1, if θθθ(t) is bounded, then we are done. This is
precisely what is ensured by Theorem 3.2 under our conditions.

3.5 Proofs
We start with the following lemmas that will be instrumental in the proof of Theorem 3.2.
Lemma 3.9. Assume that A-1, A-3, A-5 and A-6 hold. Let θθθ(·) be a solution trajectory of (2).
Then,

(i) Ly(y(·))) is nonincreasing, and thus converges.
(ii) If θθθ(·) is bounded, Ly(y(·))) is constant on W(θθθ(·)).

Proof. Let V (t) = Ly(y(t)).
(i) Differentiating V (·), we have for t > 0:

V̇ (t) = ⟨ẏ(t),∇y(t)Ly(y(t))⟩

= ⟨JF(t)Jg(t)θ̇θθ(t),∇y(t)Ly(y(t))⟩
= −⟨JF(t)Jg(t)Jg(t)

⊤JF(t)
⊤∇y(t)Ly(y(t)),∇y(t)Ly(y(t))⟩

= −
∥∥Jg(t)

⊤JF(t)
⊤∇y(t)Ly(y(t))

∥∥2 = −
∥∥∥θ̇θθ(t)∥∥∥2 , (15)

and thus V (·) is decreasing. Since it is bounded from below (by 0 by assumption), it
converges to say L∞ (0 in our case).

(ii) Since θθθ(·) is bounded, W(θθθ(·)) is non-empty. Let θθθ∞ ∈ W(θθθ(·)). Then ∃tk → +∞ such
that θθθ(tk) → θθθ∞ as k → +∞. Combining claim (i) with continuity of L, F and g(·,u),
we have

L∞ = lim
k→+∞

Ly(F(g(u, θθθ(tk)))) = Ly(F(g(u, θθθ∞))).

Since this is true for any cluster point, the claim is proved.

Lemma 3.10. Assume that A-1 to A-6 hold. Let θθθ(·) be a solution trajectory of (2). If for all
t ≥ 0, σmin(Jg(t)) ≥ σmin(Jg(0))

2 > 0, then ∥θ̇θθ(·)∥ ∈ L1([0,+∞[). In turn, limt→+∞ θθθ(t)
exists.

Proof. From Lemma 3.9(i), we have for t ≥ 0:

y(t) ∈ [0 ≤ Ly(·) ≤ Ly(y(0))].
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We may assume without loss of generality that y(t) ∈ [0 < Ly(·) ≤ Ly(y(0))] since other-
wise Ly(y(·)) is eventually zero which implies, by Lemma 3.9, that θ̇θθ is eventually zero, in
which case there is nothing to prove.

We are now in position to use the KL property on y(·). We have for t > 0:

dψ(Ly(y(t)))

dt
= ψ′(Ly(y(t)))

dLy(y(t))

dt

= −ψ′(Ly(y(t)))
∥∥Jg(t)

⊤JF(t)
⊤∇y(t)Ly(y(t))

∥∥2
≤ −

∥∥Jg(t)
⊤JF(t)

⊤∇y(t)Ly(y(t))
∥∥2∥∥∇y(t)Ly(y(t))

∥∥
≤ −σmin(Jg(t))σF

∥∥Jg(t)
⊤JF(t)

⊤∇y(t)Ly(y(t))
∥∥

≤ −σmin(Jg(0))σF
2

∥∥∥θ̇θθ(t)∥∥∥ . (16)

where we used A-4, that σmin(Jg(t)) ≥ σmin(Jg(0))
2 > 0 and (2). Integrating, we get∫ t

0

∥∥∥θ̇θθ(s)∥∥∥ds ≤ 2

σmin(Jg(0))σF
(ψ(Ly(y(0)))− ψ(Ly(y(t)))) . (17)

Since Ly(y(t)) converges thanks to Lemma 3.9(i) and ψ is continuous and increasing, the
right hand side in (17) has a limit. Thus passing to the limit as t → +∞, we get that θ̇θθ ∈
L1([0,+∞[). This in turn implies that limt→+∞ θθθ(t) exists, say θθθ∞, by applying Cauchy’s
criterion to

θθθ(t) = θθθ0 +

∫ t

0

θ̇θθ(s)ds.

Lemma 3.11. Assume that A-1 to A-6 hold. Recall R and R′ from (9). Let θθθ(·) be a solution
trajectory of (2).

(i) If θθθ ∈ B(θθθ0, R) then

σmin(Jg(θθθ)) ≥ σmin(Jg(0))/2.

(ii) If for all s ∈ [0, t], σmin(Jg(s)) ≥ σmin(Jg(0))
2 then

θθθ(t) ∈ B(θθθ0, R′).

(iii) If R′ < R, then for all t ≥ 0, σmin(Jg(t)) ≥ σmin(Jg(0))/2.

Proof. (i) Since θθθ ∈ B(θθθ0, R), we have

∥Jg(θθθ)− Jg(θθθ0)∥ ≤ LipB(θθθ0,R)(Jg) ∥θθθ − θθθ0∥ ≤ LipB(θθθ0,R)(Jg)R ≤ σmin(Jg(0))

2
.
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By using that σmin(·) is 1-Lipschitz, we obtain

σmin(Jg(θθθ)) ≥ σmin(Jg(0))− ∥Jg(θθθ)− Jg(θθθ0)∥ ≥ σmin(Jg(0))

2
.

(ii) We have for t > 0

∥θθθ(t)− θθθ0∥ =

∥∥∥∥∫ t

0

θ̇θθ(s)ds

∥∥∥∥ ≤
∫ t

0

∥∥∥θ̇θθ(s)∥∥∥ds.
Combining this with (17) yields

∥θθθ(t)− θθθ0∥ ≤
∫ t

0

∥∥∥θ̇θθ(s)∥∥∥ds ≤ 2

σmin(Jg(0))σF
ψ(Ly(y(0))),

where we argue that Ly(y(t)) is positive and bounded and ψ is positive and increasing.
(iii) Actually, we prove the stronger statement that θθθ(t) ∈ B(θθθ0, R′) for all t ≥ 0, whence

our claim will follow thanks to (i). Let us assume for contradiction that R′ < R and
∃ t < +∞ such that θθθ(t) /∈ B(θθθ0, R′). By (ii), this means that ∃ s ≤ t such that
σmin(Jg(s)) < σmin(Jg(0))/2. In turn, (i) implies that θθθ(s) /∈ B(θθθ0, R). Let us define

t0 = inf{τ ≥ 0 : θθθ(τ) /∈ B(θθθ0, R)},

which is well-defined as it is at most s. Thus, for any small ϵ > 0 and for all t′ ≤ t0 − ϵ,
θθθ(t′) ∈ B(θθθ0, R) which, in view of (i) entails that σmin(Jg(θθθ)(t

′)) ≥ σmin(Jg(0))/2. In
turn, we get from (ii) that θθθ(t0− ϵ) ∈ B(θθθ0, R′). Since ϵ is arbitrary and θθθ is continuous,
we pass to the limit as ϵ → 0 to deduce that θθθ(t0) ∈ B(θθθ0, R′) ⊊ B(θθθ0, R) hence
contradicting the definition of t0.

Proof of Theorem 3.2. (i) We here use a standard Lyapunov analysis with several energy
functions. Let us reuse V (t). Embarking from (15), we have for t > 0

V̇ (t) = −
∥∥Jg(t)

⊤JF(t)
⊤∇y(t)Ly(y(t))

∥∥2
≤ −σmin(Jg(t))

2σ2
F

∥∥∇y(t)Ly(y(t))
∥∥2 ,

where we used A-4. In view of Lemma 3.11(iii), we have σmin(Jg(t)) ≥
σmin(Jg(0))/2 > 0 for all t ≥ 0 if the initialization error verifies (8). Using once again
A-2, we get

V̇ (t) ≤ −σmin(Jg(0))
2σ2

F

4

∥∥∇y(t)Ly(y(t))
∥∥2

≤ −σmin(Jg(0))
2σ2

F

4ψ′(Ly(y(t)))2
.
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Let Ψ be a primitive of −ψ′2. Then, the last inequality gives

Ψ̇(V (t)) = Ψ′(V (t))V̇ (t)

≥ σ2
Fσmin(Jg(0))

2

4
.

By integration on s ∈ [0, t] alongside the fact that Ψ and Ψ−1 are (strictly) decreasing
functions, we get

Ψ(V (t))−Ψ(V (0)) ≥ σ2
Fσmin(Jg(0))

2

4
t

V (t) ≤ Ψ−1

(
σ2
Fσmin(Jg(0))

2

4
t+Ψ(V (0))

)
,

which gives (10).
By Lemma 3.10, θθθ(t) converges to some θθθ∞. Continuity of Ly(·), F and g(u, ·)

implies that

0 = lim
t→+∞

Ly(y(t)) = lim
t→+∞

Ly(F(g(u, θθθ(t)))) = Ly(F(g(u, θθθ∞))),

and thus θθθ∞ ∈ Argmin(Ly(F(g(u, ·)))). To get the rate, we argue as in the proof of
Lemma 3.11 (ii), replacing θθθ0 by θθθ∞, to obtain

∥θθθ(t)− θθθ∞∥ ≤
∫ +∞

t

∥∥∥θ̇θθ(s)∥∥∥ds.
We then get by integrating (16) that

∥θθθ(t)− θθθ∞∥ ≤ − 2

σmin(Jg(0))σF

∫ +∞

t

dψ(Ly(y(s)))

ds
ds

≤ 2

σmin(Jg(0))σF
ψ(Ly(y(t))).

Thanks to (10), and using that ψ is increasing, we arrive at (11).
(ii) By Lemma 3.10 and continuity of F and g(u, ·), we can infer that y(·) also converges to

y∞ = F(g(u, θθθ∞)), where θθθ∞ = limt→+∞ θθθ(t). Thus using also continuity of Ly(·),
we have

0 = lim
t→+∞

Ly(y(t)) = Ly(y∞),

and thus y∞ ∈ Argmin(Ly). Since the latter is the singleton {y} by assumption, we
conclude.

In order to obtain the early stopping bound, we use [41, Corollary 6(i)] that links the
(global) KL property of Ly(·) with an error bound. In our case, this entails that for all
t ≥ 0,

dist(y(t),Argmin(Ly)) = ∥y(t)− y∥ ≤ ψ(Ly(y(t))). (18)
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It then follows that

∥y(t)− y∥ ≤ ∥y(t)− y∥+ ∥y − y∥
≤ ψ(Ly(y(t))) + ∥ε∥

≤ ψ

(
Ψ−1

(
σ2
Fσmin(Jg(t))

2

4
t+Ψ(V (0))

))
+ ∥ε∥ .

Using that ψ is increasing and Ψ is decreasing, the first is bounded by ∥ε∥ for all t ≥
4Ψ(ψ−1(∥ε∥))
σ2
Fσmin(Jg(0))2

−Ψ(V (0)).
(iii) We recall that θθθ(t) ∈ BR′(θθθ0) by Lemma 3.11, which in turn entails that x(t) ∈ Σ′ for

all t ≥ 0. We then have the following chain of inequalities

∥x(t)− x∥ ≤ ∥x(t)− xΣ′∥+ dist(x,Σ′)

A-7 ≤ µ−1
F,Σ′ ∥y(t)− F(xΣ′)∥+ dist(x,Σ′)

≤ µ−1
F,Σ′ (∥y(t)− y∥+ ∥y − F(x)∥+ ∥F(x)− F(xΣ′)∥) + dist(x,Σ′)

(1), (10), (18) ≤
2ψ
(
Ψ−1 (γ(t))

)
µF,Σ′σmin(Jg(0))σF

+ µ−1
F,Σ′ ∥ε∥+ ∥F(x)− F(xΣ′)∥+ dist(x,Σ′).

By assumption A-6 and the mean value theorem, we have

∥F(x)− F(xΣ′)∥ ≤ max
z∈[x,xΣ′ ]

∥JF(z)∥ dist(x,Σ′).

Since 0 ∈ Σ′, by Jensen’s inequality, we have for all z ∈ [x,xΣ′ ] and ρ ∈ [0, 1]:

∥z∥ ≤ ∥x∥+ ρdist(x,Σ′) ≤ 2 ∥x∥+ ∥x(0)∥ ,

meaning that [x,xΣ′ ] ⊂ B(0, 2 ∥x∥). Thus

∥F(x)− F(xΣ′)∥ ≤ max
z∈B(0,2∥x∥)

∥JF(z)∥ dist(x,Σ′). (19)

4 Case of The Two-Layer DIP Network
This section is devoted to studying under which conditions on the neural network architecture
the key condition in (8) is fulfilled. Towards this goal, we consider the case of a two-layer
DIP network. Therein, u is randomly set and kept fixed during the training, and the network
is trained to transform this input into a signal that matches the observation y. In particular, we
will provide bounds on the level of overparametrization ensuring that (8) holds, which in turn
will provide the subsequent recovery guarantees in Theorem 3.2.
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4.1 The Two-Layer Neural Network
We take L = 2 in Definition 2.1 and thus consider the network defined in (3):

g(u, θθθ) =
1√
k
Vϕ(Wu)

with V ∈ Rn×k and W ∈ Rk×d, and ϕ an element-wise nonlinear activation function.
Observe that it is immediate to account for the bias vector in the hidden layer by considering
the bias as a column of the weight matrices W, augmenting u by 1 and then normalizing to
unit norm. The normalization is required to comply with A-8 hereafter. The role of the scal-
ing by

√
k will become apparent shortly, but it will be instrumental to concentrate the kernel

stemming from the jacobian of the network.
In the sequel, we set Cϕ =

√
EX∼N (0,1) [ϕ(X)2] and Cϕ′ =

√
EX∼N (0,1) [ϕ′(X)2]. We

will assume without loss of generality that F(0) = 0. This is a very mild assumption that is
natural in the context of inverse problems, but can be easily removed if needed. We will also
need the following assumptions:

Assumptions on the network input and intialization

A-8. u is a uniform vector on Sd−1;
A-9. W(0) has iid entries from N (0, 1) and Cϕ, Cϕ′ < +∞;
A-10. V(0) is independent from W(0) and u and has iid columns with identity
covariance and D-bounded centered entries.

4.2 Recovery Guarantees in the Overparametrized Regime
Our main result gives a bound on the level of overparameterization which is sufficient for (8)
to hold.
Theorem 4.1. Suppose that assumptions A-1, A-3, A-5 and A-6 hold. Let C, C ′ two positive
constants that depend only on the activation function and D. Let:

LF,0 = max
x∈B

(
0,C

√
n log(d)

) ∥JF(x)∥

and
LL,0 = max

v∈B
(
0,CLF,0

√
n log(d)+

√
m(∥F(x)∥∞+∥ε∥∞)

) ∥∇vLy(v)∥
∥v − y∥

.

Consider the one-hidden layer network (3) where both layers are trained with the initialization
satisfying A-8 to A-10 and the architecture parameters obeying

k ≥ C ′σ−4
F nψ

(
LL,0

2

(
CLF,0

√
n log(d) +

√
m (∥F(x)∥∞ + ∥ε∥∞)

)2)4

.

Then (8) holds with probability at least 1− 2n−1 − d−1.
Before proving Theorem 4.1, a few remarks are in order.
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Remark 4.2 (Randomness of Σ′). It is worth observing that since the initialization is random,
so is the set of signals Σ′ = ΣBR′+∥θθθ0∥(0)

by definition, where θθθ0 = (V(0),W(0)). This set is
contained in a larger deterministic set with high probability. Indeed, Gaussian concentration
gives us, for any δ > 0,

∥W(0)∥F ≤ (1 + δ)
√
kd

with probability larger than 1 − e−δ
2kd/2. Moreover, since by A-10 V(0) has independent

columns with bounded entries and E
[
∥Vi(0)∥2

]
= n, we can apply Hoeffding’s inequality

to ∥V(0)∥2F =
∑k

i=1 ∥Vi(0)∥2 to infer that

∥V(0)∥F ≤ (1 + δ)
√
kn

with probability at least 1− e−δ
2kd/(2D2). Collecting the above, we have

∥θθθ0∥ ≤ (1 + δ)
√
k
(√

n+
√
d
)
,

with probability at least 1−e−δ2kd/2−e−δ2kd/(2D2). In view of the bound onR′ (see (22)), this
yields that with probability at least 1− e−δ2kd/2− e−δ2kd/(2D2)− 2n−1−d−1, Σ′ ⊂ ΣBρ(0),
where

ρ =
4

σF
√
C2
ϕ + C2

ϕ′

ψ

(
LL,0

2

(
CLF,0

√
n log(d) +

√
m (∥F(x)∥∞ + ∥ε∥∞)

)2)

+ (1 + δ)
√
k
(√

n+
√
d
)
.

This confirms the expected behaviour that expressivity of Σ′ is higher as the overparametriza-
tion increases.
Remark 4.3 (Distribution of u). The generator g(·, θθθ) synthesize data by transforming the
input (latent) random variable u. As such, it generates signals x ∈ Σ′ who are in the support
of the measure g(·, θθθ)#µu, where µu is the distribution of u, and # is the push-forward oper-
ator. Expressivity of these generative models, coined also push-forward models, in particular
GANs, have been recently studied either empirically or theoretically [53–57]. In particular, this
literature highlights the known fact that, since g(·, θθθ) is continuous by construction, the sup-
port of g(·, θθθ)#µu is connected if that of µu is connected (as in our case). On the other hand,
a common assumption in the imaging literature, validated empirically by [58], is that distri-
butions of natural images are supported on low dimensional manifolds. It is also conjectured
that the distribution of natural images may in fact lie on a union of disjoint manifolds rather
than one globally connected manifold; the union of subspaces or manifolds model is indeed a
common assumption in signal/image processing. In the latter case, a generator g(·, θθθ) that will
attempt to cover the different modes (manifolds) of the target distribution from one unimodal
latent variable u will generate samples out of the real data manifold. There are two main ways
to avoid this: either making the support of µu disconnected (e.g. using a mixture of distribu-
tions [54, 59]), or making g(·, θθθ) discontinuous [53]. The former strategy appears natural in
our context and it will be interesting to investigate this generalization in a future work.
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Remark 4.4 (Restricted injectivity). As argued above, if Σ′ belongs to a target manifold M,
then the restricted injectivity condition (14) tells us that A has to be invertible on the tangent
cone of the target manifold M at the closest point of x in M.
Remark 4.5 (Dependence onLL,0 andLF,0). The overparametrization bound on k depends on
LL,0 and LF,0 which in turn may depend on (n,m, d). Their estimate is therefore important.
For instance, if F is globally Lipschitz, as is the case when it is linear, then LF,0 is indepen-
dent of (n,m, d). As far as LL,0 is concerned, it is of course independent of (n,m, d) if the
loss gradient is globally Lipschitz continuous. Another situation of interest is when ∇vLy(v)
verifies

∥∇vLy(v)−∇zLy(z)∥ ≤ φ (∥v − z∥) , ∀v, z ∈ Rm,
where φ : R+ → R+ is increasing and vanishes at 0. This is clearly weaker than global
Lipschitz continuity and covers it as a special case. It also encompasses many important
situations such as e.g. losses with Hölderian gradients. It then easily follows, see e.g. [42,
Theorem 18.13], that for all v ∈ Rm:

Ly(v) ≤ Φ (∥v − y∥) where Φ(s) =

∫ 1

0

φ(st)

t
dt.

In this situation, and if F is also globally LF-Lipschitz, following our line of proof, the
overparametrization bound of Theorem 4.1 reads

k ≥ C ′σ−4
F nψ

(
Φ
(
CLF

√
n log(d) +

√
m (∥F(x)∥∞ + ∥ε∥∞)

))4
.

Remark 4.6 (Dependence on the loss function). If we now take interest in the scaling of the
overparametrization bound on k with respect to (n,m, d) in the general case we obtain that
k ≳ σ−4

F nψ(LL,0(L
2
F,0n +m))4. Aside from the possible dependence of LL,0 and LF,0 on

the parameters (n,m, d) discussed before, we observe that this bound is highly dependent
on the desingularizing function ψ given by the loss function. In the Łojasiewicz case where
ψ = csα with α ∈ [0, 1], one can choose to use a sufficiently small α to reduce the scaling
on the parameters but then one would slow the convergence rate as described in Corollary 3.3
which implies a tradeoff between the convergence rate and the number of parameters to ensure
this convergence.

In the special case where α = 1
2 which corresponds to the MSE loss, and where LF,0 is of

constant order and independent of (n,m, d), then the overperametrization of k necessary for
ensuring convergence to a zero-loss is k ≳ n3m2. Another interesting case is when F is linear.
In that setting, the overparametrization bound becomes k ≳ σ−4

F nψ(LL,0(∥F∥2 n+m))4. By
choosing the MSE loss, and thus controlling ψ to be a square root operator, then we obtain that
we need k ≳ κ(F)4n3m2. The bound is thus more demanding as F becomes more and more
ill-conditioned. The latter dependency can be interpreted as follows: the more ill-conditioned
the original problem is, the larger the network needs to be.
Remark 4.7 (Scaling whenV is fixed). When the linear layerV is fixed and onlyW is trained,
the overparametrization bound to guarantee convergence can be improved (see Appendix B
and the results in [28]). In this case, one needs k ≳ σ−2

F nψ(LL,0(L
2
F,0n+m))2. In particular,

for the MSE loss and an operator such that LF,0 is of constant order (as is the case when F
is linear), we only need k ≳ n2m. The main reason underlying this improvement is that there
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is no need in this case to control the deviation of V from its initial point to compute the local
Lipschitz constant of the jacobian of the network. This allows to have a far better Lipschitz
constant estimate which turns out to be even global in this case.
Remark 4.8 (Effect of input dimension d). Finally, the dependence on d is far smaller (by a
log factor) than the one on n and m. In the way we presented the theorem, it does also affect
the probability obtained but it is possible to write the same probability without d and with a
stronger impact of n. This indicates that d plays a very minor role on the overparametrization
level whereas k is the key to reaching the overparametrized regime we are looking for. In fact,
this is demonstrated by our numerical experiments where we obtained the same results by
using very small d ∈ [1, 10] or larger values up to 500, for all our experiments with potentially
large n.

4.3 Proofs
We start with the following lemmas that will be instrumental in the proof of Theorem 4.1.
Lemma 4.9 (Bound on σmin(Jg(0)) with both layers trained). Consider the one-hidden layer
network (3) with both layers trained under assumptions A-5 and A-8-A-10. We have

σmin(Jg(0)) ≥
√
C2
ϕ + C2

ϕ′/2

with probability at least 1 − 2n−1 provided that k/ log(k) ≥ Cn log(n) for C > 0 large
enough that depends only on B, Cϕ, Cϕ′ and D.

Proof. Define the matrix H = Jg(θθθ0)Jg(θθθ0)
⊤. Since u is on the unit sphere, H reads

H =
1

k

k∑
i=1

Hi, where Hi
def
= ϕ′(Wi(0)u)2Vi(0)Vi(0)

⊤ + ϕ(Wi(0)u)2In.

It then follows that

E [H] =
1

k
EX∼N (0,1)

[
ϕ′(X)2

] k∑
i=1

E
[
Vi(0)Vi(0)

⊤]+ EX∼N (0,1)

[
ϕ(X)2

]
In

= (C2
ϕ′ + C2

ϕ)In,

where we used A-8, A-9 and orthogonal invariance of the Gaussian distribution, hence
Wi(0)u are iid inN (0, 1), as well as A-10 and independence betweenV(0) andW(0). More-
over, E [ϕ(X)] ≤ Cϕ, and since X ∼ N (0, 1) and in view of A-5, we can upper-bound ϕ(X)
using the Gaussian concentration inequality to get

P
(
ϕ(X) ≥ Cϕ

√
log(nk) + τ

)
≤ P (ϕ(X) ≥ E [ϕ(X)] + τ) ≤ exp

(
− τ2

2B2

)
. (20)

By choosing τ =
√
2B
√

log(nk), and taking c1 = Cϕ +
√
2B, we get

P
(
ϕ(X) ≥ c1

√
log(nk)

)
≤ (nk)−1. (21)
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Using a union bound, we obtain

P
(
max
i∈[k]

ϕ(Wi(0)u)2 > c1 log(nk)

)
≤ n(nk)−1 ≤ n−1.

Thus, with probability at least 1− n−1 we get

max
i∈[k]

λmax (Hi) ≤ B2D2n+ c1 log(nk) ≤ c2n log(k),

where c2 = B2D2 + 2c1. We can then apply the matrix Chernoff inequality [60,
Theorem 5.1.1] to get

P
(
σmin(Jg(0)) ≤ δ

√
C2
ϕ′ + C2

ϕ

)
≤ P

(
σmin(Jg(0)) ≤ δ

√
C2
ϕ′ + C2

ϕ

∣∣∣∣max
i∈[k]

λmax (Hi) ≤ c2n log(k)

)
+ P

(
max
i∈[k]

λmax (Hi) ≥ c2n log(k)

)
≤ ne

−
(1−δ)2k(C2

ϕ′+C2
ϕ)

c2n log(k) + n−1.

Taking δ = 1/2 and k as prescribed with a sufficiently large constant C, we conclude.

Lemma 4.10 (Local Lipschitz constant of Jg with both layers trained). Suppose that assump-
tions A-5, A-8 and A-10 are satisfied. For the one-hidden layer network (3) with both layers
trained, we have for n ≥ 2 and any ρ > 0:

LipB(θθθ0,ρ)(Jg) ≤ B(1 + 2(D + ρ))

√
n

k
.

Proof. Let θθθ ∈ Rk(d+n) (resp. θ̃̃θ̃θ) be the vectorized form of the parameters of the net-
work (W,V) (resp. (W̃, Ṽ)). Using the expression of the Jacobian Jg, we have, for θθθ, θ̃̃θ̃θ ∈
B(R,θθθ0),

∥∥∥Jg(θθθ)− Jg(θ̃̃θ̃θ)
∥∥∥2

≤ 1

k

(
k∑
i=1

∥∥∥ϕ′(Wiu)Viu
⊤ − ϕ′(W̃iu)Ṽiu

⊤
∥∥∥2
F
+ n

∥∥∥ϕ(Wu)− ϕ(W̃u)
∥∥∥2)

≤ 1

k

(
2

k∑
i=1

(∥∥∥ϕ′(Wiu)
(
Vi − Ṽi

)
u⊤
∥∥∥2
F
+
∥∥∥(ϕ′(Wiu)− ϕ′(W̃iu)

)
Ṽiu

⊤
∥∥∥2
F

)
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+ n
∥∥∥ϕ(Wu)− ϕ(W̃u)

∥∥∥2)

≤ 1

k

(
2B2

k∑
i=1

(∥∥∥Vi − Ṽi

∥∥∥2 + ∥∥∥Wi − W̃i
∥∥∥2 ∥∥∥Ṽi

∥∥∥2)+ n
∥∥∥ϕ(Wu)− ϕ(W̃u)

∥∥∥2)

≤ 1

k

(
2B2

∥∥∥V − Ṽ
∥∥∥2
F
+ 2B2

k∑
i=1

∥∥∥Wi − W̃i
∥∥∥2 ∥∥∥Ṽi

∥∥∥2 +B2n
∥∥∥(W − W̃)u

∥∥∥2)

≤ 1

k

(
2B2

∥∥∥V − Ṽ
∥∥∥2
F
+ 2B2 max

i

∥∥∥Ṽi

∥∥∥2 ∥∥∥W − W̃
∥∥∥2
F
+B2n

∥∥∥W − W̃
∥∥∥2
F

)
≤ n

k
B2

(∥∥∥V − Ṽ
∥∥∥2
F
+
∥∥∥W − W̃

∥∥∥2
F

)
+

2

k
B2 max

i

∥∥∥Ṽi

∥∥∥2 ∥∥∥W − W̃
∥∥∥2
F

=
n

k
B2
∥∥∥θθθ − θ̃̃θ̃θ

∥∥∥2 + 2

k
B2 max

i

∥∥∥Ṽi

∥∥∥2 ∥∥∥W − W̃
∥∥∥2
F
.

Moreover, for any i ∈ [k]:∥∥∥Ṽi

∥∥∥2 ≤ 2 ∥Vi(0)∥2 + 2
∥∥∥Ṽi −Vi(0)

∥∥∥2 ≤ 2 ∥Vi(0)∥2 + 2 ∥θθθ − θθθ0∥2 ≤ 2nD2 + 2ρ2,

where we used A-10. Thus∥∥∥Jg(θθθ)− Jg(θ̃̃θ̃θ)
∥∥∥2 ≤ n

k
B2
(
1 + 4D2 + 2ρ2

) ∥∥∥θθθ − θ̃̃θ̃θ
∥∥∥2 .

Taking the square-root and using that (a+ b)1/2 ≤ a1/2+ b1/2 for any a, b ≥ 0, we conclude.

Lemma 4.11 (Bound on the initial error). Under assumptions A-5, A-6 and A-8 to A-10, the
initial error of the network satisfies

∥y(0)− y∥ ≤ CLF,0

√
n log(d) +

√
m (∥F(x)∥∞ + ∥ε∥∞) ,

with probability at least 1− d−1, where C is a constant that depends only on B, Cϕ, and D.

Proof. By A-6 and the mean value theorem, we have

∥y(0)− y∥ ≤ max
x∈B(0,∥x(0)∥)

∥JF(x)∥ ∥x(0)∥+
√
m (∥F(x)∥∞ + ∥ε∥∞) ,

where x(0) = g(u, θθθ(0)) = 1√
k

∑k
i=1 ϕ(W

i(0)u)Vi(0). Moreover, by A-10:

∥g(u, θθθ(0))∥ ≤ max
i

∥Vi(0)∥
1√
k

k∑
i=1

∣∣ϕ(Wi(0)u)
∣∣ ≤ D

√
n

1√
k

k∑
i=1

∣∣ϕ(Wi(0)u)
∣∣ .
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We now prove that the last term concentrates around its expectation. First, owing to A-8 and
A-9, we can argue using orthogonal invariance of the Gaussian distribution and independence
to infer that

E

[
1√
k

k∑
i=1

∣∣ϕ(Wi(0)u)
∣∣]2 ≤ 1

k
E

( k∑
i=1

∣∣ϕ(Wi(0)u)
∣∣)2
 = E

[
ϕ(W1(0)u)2

]
= C2

ϕ.

In addition, the triangle inequality and Lipschitz continuity of ϕ (see A-5) yields

1√
k

∣∣∣∣∣
k∑
i=1

∣∣ϕ(Wiu)
∣∣− ∣∣∣ϕ(W̃iu)

∣∣∣∣∣∣∣∣ ≤ 1√
k

k∑
i=1

∣∣∣ϕ(Wiu)− ϕ(W̃iu)
∣∣∣

≤ B

(
1√
k

k∑
i=1

∥∥∥Wi − W̃i
∥∥∥) ≤ B

∥∥∥W − W̃
∥∥∥
F
.

We then get using the Gaussian concentration inequality that

P

(
1√
k

k∑
i=1

∣∣ϕ(Wi(0)u)
∣∣ ≥ Cϕ

√
log(d) + τ

)

≤ P

(
1√
k

k∑
i=1

∣∣ϕ(Wi(0)u)
∣∣ ≥ E

[
1√
k

k∑
i=1

∣∣ϕ(Wi(0)u)
∣∣]+ τ

)
≤ e−

τ2

2B2 .

Taking τ =
√
2B
√

log(d), we get

∥x(0)∥ ≤ C
√
n log(d)

with probability at least 1 − d−1. Since the event above implies B(0, ∥x(0)∥) ⊂
B
(
0, C

√
n log(d)

)
, we conclude.

Proof of Theorem 4.1. Proving Theorem 4.1 amounts to showing that (8) holds with high
probability under our scaling. This will be achieved by combining Lemma 4.9, Lemma 4.10
and Lemma 4.11 as well as the union bound.

From Lemma 4.9, we have

σmin(Jg(0)) ≥
√
C2
ϕ + C2

ϕ′/2

with probability at least 1− 2n−1 provided k ≥ C0n log(n) log(k) for C0 > 0. On the other
hand, from Lemma 4.10, and recalling R from (9), we have that R must obey

R ≥ σmin(Jg(0))

2B((1 + 2D) + 2R)

√
k

n
≥

√
C2
ϕ + C2

ϕ′

8B((1/2 +D) +R)

√
k

n
.
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Solving for R, we arrive at

R ≥

√
(1/2 +D)2 +

√
(C2

ϕ+C
2
ϕ′ )

k
n

2B − (1/2 +D)

2
.

Simple algebraic computations and standard bounds on
√
1 + a for a ∈ [0, 1] show that

R ≥ C1

(
k

n

)1/4

whenever k ≳ n, C1 being a positive constant that depends only on B, Cϕ, Cϕ′ and D.
Thanks to A-1 and A-3, we have by the descent lemma, see e.g. [42, Lemma 2.64], that

Ly(y(0)) ≤ max
v∈[y,y(0)]

∥∇Ly(v)∥
∥v − y∥

∥y(0)− y∥2

2
.

Combining Lemma 4.11 and the fact that

[y,y(0)] ⊂ B(0, ∥y∥+ ∥y(0)∥)

then allows to deduce that with probability at least 1− d−1, we have

Ly(y(0)) ≤
LL,0

2

(
CLF,0

√
n log(d) +

√
m (∥F(x)∥∞ + ∥ε∥∞)

)2
.

Therefore, using the union bound and the fact that ψ is increasing, it is sufficient for (8) to be
fulfilled with probability at least 1− 2n−1 − d−1, that

4

σF
√
C2
ϕ + C2

ϕ′

ψ

(
LL,0

2

(
CLF,0

√
n log(d) +

√
m (∥F(x)∥∞ + ∥ε∥∞)

)2)
< C1

(
k

n

)1/4

,

(22)
whence we deduce the claimed scaling.

5 Numerical Experiments
To validate our theoretical findings, we carried out a series of experiments on two-layer neural
networks in the DIP setting. Therein, 25000 gradient descent iterations with a fixed step-size
were performed. If the loss reached a value smaller than 10−7, we stopped the training and
considered it has converged. For these networks, we only trained the first layer, W, and fixed
the second layer, V, as it allows to have better theoretical scalings as discussed in Remark 4.7.
Every network was initialized with respect to the assumption of this work where we used
sigmoid activation function. The entries of x are drawn from N (0, 1) while the entries of the
linear forward operator F are drawn from N (0, 1/

√
n) to ensure thatLF,0 is of constant order.
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Our first experiment in Figure 1 studies the convergence to a zero-loss solution of networks
with different architecture parameters in a noise-free context. The absence of noise allows the
networks to converge faster which is helpful to check convergence in 25000 iterations. We
used Ly(y(t)) = 1

2 ∥y(t)− y∥2 as it should gives good exponential decay. For each set of
architecture parameters, we did 50 runs and calculated the frequency at which the network
arrived at the error threshold of 10−7. We present two experiments, in the first one we fix
m = 10 and d = 500 and let k and n vary while in the second we fix n = 60, d = 500 and
we let k and m vary.

(a) k vs n (b) k vs m

Fig. 1: Probability of converging to a zero-loss solution for networks with different architecture
parameters confirming our theoretical predictions: linear dependency between k andm and at
least quadratic dependency between k and n. The blue line is a quadratic function representing
the phase transition fitted on the data.

Based on Remark 4.7 concerning Theorem B.1 which is a specialisation of Theorem 4.1,
for our experimental setting (MSE loss with LF,0 of constant order), one should expect to
observe convergence to zero-loss solutions when k ≳ n2m. We observe in Figure 1a the
relationship between k and n for a fixedm. In this setup where n≫ m and A is Gaussian, we
expect a quadratic relationship which seems to be the case in the plot. It is however surprising
that with values of k restricted to the range [20, 1000], the network converges to zero-loss
solution with high probability for situations where n > k which goes against our intuition for
these underparametrized cases.

Additionally, the observation of Figure 1b provides a very different picture when the ratio
m/n goes away from 0. We first see clearly the expected linear relationship between k andm.
However, we used in this experiment n = 60 and we can see that for the same range of values
of k, the method has much more difficulty to converge with already small m. This indicates
that the ratiom/n plays an important role in the level of overparametrization necessary for the
network to converge. It is clear from these results that our bounds are not tight as we observe
convergence for lower values of k than expected.

In our second experiment presented in Figure 2a, we look at the signal evolution under dif-
ferent noise levels when the restricted injectivity constraint A-7 is met to verify our theoretical
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bound on the signal loss. Due to the fact that our networks can span the entirety of the space
Rn, this injectivity constraint becomes a global one, which forces us to use a square matrix
as our forward operator, we thus chose to use n = m = 10. Following the discussion about
assumption A-4, we choose to use Ly(y(t)) = η(∥y(t)− y∥2) with η(s) = sp+1/(2(p+1))
where p ∈ [0, 1] with p = 0.2 for this specific experiment. We generated once a forward oper-
ator with singular values in { 1

z2+1 | z ∈ [0, 9]} and kept the same one for all the runs. To
better see the convergence of the signal, we ran these experiments for 200000 iterations. Fur-
thermore ϵ is a noise vector with entries drawn from a uniform distribution U(−β, β) with β
representing the level of noise.

(a) Signal distance to x for different noise levels.
The mean and standard deviation of 50 runs are
plotted. The dashed line represents the expecta-
tion of the theoretical upper bound of this distance
when t → +∞.

(b) Loss found at time tend, which correspond to
the end of the optimization process for networks
with varying number of neurons k with three noise
levels. Each point is averaged from 50 runs.

Fig. 2: Effect of the noise on both the signal and the loss convergence in different contexts.

In this figure, we plot the mean and the standard deviation of 50 runs for each noise level.
For comparison we also show with the dashed line the expectation of the theoretical upper
bound, corresponding to E [∥ε∥ /µF,Σ′ ] ≥

√
mβ√

6µF,Σ′
. We observe that the gap between this

theoretical bound and the mean of the signal loss is growing as the noise level grows. This
indicates that the more noise, the less tighter our bound becomes. We also see different con-
vergence profiles of the signal depending on the noise level which is to be expected as the
network will fit this noise to optimize its loss. Of course, when there is no noise, the signal
tends to the ground truth thanks to the injectivity of the forward operator.

We continue the study of the effect of the noise on the convergence of the networks in
Figure 2b. We show the convergence profile of the loss depending on the noise level and k. For
that we fixed n = 1000, m = 10, d = 10, p = 0.1 and ran the optimization of networks with
different k and β values and we took the loss value obtained at the end of the optimization.
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The results are averaged from 50 runs and help to see that even if a network with insufficient
overparametrization does not converge to a zero-loss solution, the more neurons it has, the
better in average the solution in term of loss value. Moreover, this effect seems to stay true
even with noise. It is interesting to see the behavior of the loss in such cases that are not treated
by our theoretical framework.

For our fourth experiment, we are interested by the effect on the convergence speed of the
parameter p of the loss previously described. We fixed n = 1000, m = 10 and k = 800
and varied p between 0 and 1. For each choice of p, we trained 50 networks and show the
mean value of the loss at each iteration in Figure 3. We chose to use 106 iteration steps and let
the optimization reach a limit of 10−14. As expected by corollary 3.3, smaller p values lead
to faster convergence rate in general. Indeed, smaller p values are closer to the case where
α = 1/2 in the corollary and higher p values means that α will grow away from 1/2 which
worsens the theoretical rate of convergence.

Fig. 3: Convergence profile of different losses parametrized by p. The mean loss values at each
iteration of 50 networks are plotted.

6 Conclusion and Future Work
This paper studied the optimization trajectories of neural networks in the inverse problem
setting and provided both convergence guarantees for the network and recovery guarantees
of the solution. Our results hold for a broad class of loss functions thanks to the Kurdyka-
Łojasewiecz inequality. We also demonstrate that for a two-layers DIP network with smooth
activation and sufficient overparametrization, we obtain with high probability our theoretical
guarantees. Our proof relies on bounding the minimum singular values of the Jacobian of the
network through an overparametrization that ensures a good initialization of the network. Then
the recovery guarantees are obtained by decomposing the distance to the signal in different
error terms explained by the noise, the optimization and the architecture. Although our bounds
are not tight as demonstrated by the numerical experiments, they provide a step towards the
theoretical understanding of neural networks for inverse problem resolution. In the future we
would like to study more thorougly the multilayer case and adapt our result to take into account
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the ReLU function. Another future direction is to adapt our analysis to the supervised setting
and to provide a similar analysis with accelerated optimization methods.
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A Reconstruction Bound in High Signal/Noise Ratio
The reconstruction bound given in (13) relies on assumption A-7 which requires injectivity
of F on Σ. An alternative way of deriving a similar bound only requires to impose restricted
injectivity of the jacobian of F at one point. The trade-off is that it is only valid for low noise
level.
Theorem A.1. Under the setting of Theorem 3.2, let L be convex and Argmin(Ly(·)) = {y}.
Assume that
A-11. ker(JF(xΣ′)) ∩ TΣ′(xΣ′) = 0.

Denote

LF
def
= max

x∈B(0,2∥x∥)
∥JF(x)∥ < +∞. and δ(t)

def
=

2ψ
(
Ψ−1 (γ(t))

)
σmin(Jg(0))σF

.

Then for dist(x,Σ′) and ∥ε∥ small enough and all t > 0 sufficiently large, we have

∥x(t)− x∥ ≤ 2

(
µ−1
F,Σ′(δ(t) + ∥ε∥) + LJF

µF,Σ′
dist(x,Σ′)2 +

(
1 +

LF

µF,Σ′

)
dist(x,Σ′)

)
,

(23)

where LJF
> 0 is a local Lispchitz constant of JF on B (0, ρ+ 2 ∥x∥).
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Proof. Observe that Assumption A-11 implies that µF,Σ′ = λmin(JF(xΣ′);TΣ(xΣ′)) > 0.
Thus we have

∥x(t)− x∥ ≤ ∥x(t)− xΣ′∥+ dist(x,Σ′)

≤ µ−1
F,Σ′ ∥JF(xΣ′)(x(t)− xΣ′)∥+ dist(x,Σ′).

Recall from Theorem 3.2(i) that θ(·) is bounded, and therefore so is x(·) by continuity of
g(u, ·); i.e. x(t) ∈ B (0, ρ) for some ρ > 0. It then follows from the local Lipschitz continuity
assumption on JF in A-6 that there exists LJF

> 0 such that for all z, z′ ∈ B (0, ρ+ 2 ∥x∥)

∥JF(z)− JF(z
′)∥ ≤ LJF

∥z− z′∥ .

In turn, we have

∥F(x(t))− F(xΣ′)− JF(xΣ′)(x(t)− xΣ′)∥

=

∥∥∥∥∫ 1

0

(JF (xΣ′ + t(x(t)− xΣ′))− JF(xΣ′)) (x(t)− xΣ′)dt

∥∥∥∥
≤ LJF

2
∥x(t)− x∥2 .

Thus

∥x(t)− x∥ ≤ µ−1
F,Σ′

(
∥F(x(t))− F(xΣ′)∥+ LJF

2
∥x(t)− xΣ′∥2

)
+ dist(x,Σ)

≤ µ−1
F,Σ′(∥y(t)− y∥+ ∥F(xΣ′)− y∥+ LJF

2
∥x(t)− xΣ′∥2) + dist(x,Σ).

From (18), we get

∥x(t)− x∥

≤ µ−1
F,Σ′

(
δ(t) + ∥ε∥+ ∥F(xΣ′)− F(x)∥+ LJF

(
∥x(t)− x∥2 + dist(x,Σ)2

))
+ dist(x,Σ).

Using (19), we obtain the following inequality of a quadratic form

− LJF

µF,Σ′
∥x(t)− x∥2 + ∥x(t)− x∥

− µ−1
F,Σ′(δ(t) + ∥ε∥)− LJF

µF,Σ′
dist(x,Σ)2 −

(
1 +

LF

µF,Σ′

)
dist(x,Σ) ≤ 0.

Since δ(t) → 0, there exists t̃ > 0 such that δ(t) is small enough for all t ≥ t̃. Thus for all
such t and for sufficiently small dist(x,Σ′) and ∥ε∥, we know that the above polynomial has
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two real positive roots. Solving for ∥x(t)− x∥, we get for dist(x,Σ′) and ∥ε∥ small enough
and t ≥ t̃, that

∥x(t)− x∥ ≤ µF,Σ′

2LJF(
1−

√
1− 4

LJF

µF,Σ′

(
(µ−1

F,Σ′(δ(t) + ∥ε∥) + LJF

µF,Σ′
dist(x,Σ′)2 +

(
1 +

LF

µF,Σ′

)
dist(x,Σ′)

))

≤ 2

(
µ−1
F,Σ′(δ(t) + ∥ε∥) + LJF

µF,Σ′
dist(x,Σ′)2 +

(
1 +

LF

µF,Σ′

)
dist(x,Σ′)

)
.

B Overparametrization Bound When the Linear Layer is
Fixed

In the setting described in Section 4, if one fixes the linear layer, as is usually done in the
literature, a better overparametrization bound can be derived.
Theorem B.1. Under the setting of Theorem 4.1 where

LF,0 = max
x∈B

(
0,C

√
n log(d)

) ∥JF(x)∥

and
LL,0 = max

v∈B
(
0,CLF,0

√
n log(d)+

√
m(∥F(x)∥∞+∥ε∥∞)

) ∥∇vLy(v)∥
∥v − y∥

,

consider the one-hidden layer network (3) where only the first layer is trained with the
initialization satisfying A-8-A-10 and the architecture parameters obeying

k ≥ C ′σ−2
F nψ

(
LL,0

2

(
CLF,0

√
n log(d) +

√
m (∥F(x)∥∞ + ∥ε∥∞)

)2)2

.

Then (8) holds with probability at least 1−n−1−d−1, whereC andC ′ are positive constants
that depend only on the activation function and D.

Proof. The proof follows a very similar pattern as in the case where both layers are trained.
The two main changes happen in the bounds on σmin(Jg(θθθ0)) and Lip(Jg). First, the constant
on σmin(Jg(θθθ0)) changes slightly but is still in O(1) as described in lemma B.2. The main
change from the previous setting is that Lip(Jg) is now a global constant given in lemma B.3.
We now follow the same structure as in the proof of theorem 4.1 and see that by Lemma B.2
and Lemma B.3 we have that

R ≥ Cϕ′

2BD

√
k

n
thus, R ≥ C1

(
k

n

)1/2

.
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Moreover, let us recall that by combining lemma 4.11 and the fact that

[y,y(0)] ⊂ B(0, ∥y∥+ ∥y(0)∥)

we can deduce that with probability at least 1− n−1,

Ly(y(0)) ≤
LL,0

2

(
CLF,0

√
n log(d) +

√
m (∥F(x)∥∞ + ∥ε∥∞)

)2
.

Therefore, by using a union bound and that ψ is increasing, for (8) to hold with probability
1− n−1 − d−1, we need

σ−1
F ψ

(
LL,0

2

(
CLF,0

√
n log(d) +

√
m (∥F(x)∥∞ + ∥ε∥∞)

)2)
≤ C1

(
k

n

)1/2

which gives the claim.

Lemma B.2 (Bound on σmin(Jg(θθθ0))). For the one-hidden layer network (3), under assump-
tions A-5 and A-8 to A-10, we have

σmin(Jg(θθθ0)) ≥ Cϕ′/2

with probability at least 1 − n−1 provided k ≥ Cn log(n) for C > 0 large enough that
depends only on ϕ and the bound on the entries of V.

Proof. Define the matrix H = Jg(θθθ0)Jg(θθθ0)
⊤. For the two-layer network, and since u is on

the unit sphere, H reads

H =
1

k

k∑
i=1

ϕ′(Wi(0)u)2ViV
⊤
i .

It follows that

E [H] = EX∼N (0,1)

[
ϕ′(X)2

] 1
k

k∑
i=1

E
[
ViV

⊤
i

]
= C2

ϕ′In,

where we used A-8-A-9 and orthogonal invariance of the Gaussian distribution, hence
Wi(0)u are iid N (0, 1), as well as A-10 and independence between V and W(0). Moreover,

λmax(ϕ
′(Wi(0)u)2ViV

⊤
i ) ≤ B2D2n.

We can then apply the matrix Chernoff inequality [60, Theorem 5.1.1] to get

P (σmin(Jg(θθθ0)) ≤ δCϕ′) ≤ ne−
(1−δ)2kC2

ϕ′
2B2D2n .

Taking δ = 1/2 and k as prescribed, we conclude.
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Lemma B.3 (Global Lipschitz constant of Jg with linear layer fixed). Suppose that assump-
tions (A-5), (A-8) and (A-10) are satisfied. For the one-hidden layer network (3) with only the
hidden-layer trained, we have

Lip(Jg) ≤ BD

√
n

k
.

Proof. We have for all W,W̃ ∈ Rk×d,

∥∥∥J (W)− J (W̃)
∥∥∥2 ≤ 1

k

k∑
i=1

|ϕ′(Wiu)− ϕ′(W̃iu)|2
∥∥Viu

⊤∥∥2
F

=
1

k

k∑
i=1

|ϕ′(Wiu)− ϕ′(W̃iu)|2 ∥Vi∥2

≤ B2D2n

k

k∑
i=1

|Wiu− W̃iu|2

≤ B2D2n

k

k∑
i=1

∥∥∥Wi − W̃i
∥∥∥2 = B2D2n

k

∥∥∥W − W̃
∥∥∥2
F
.
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