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We introduce here the AdaptSgenoLasso, a new penalized likelihood method for gene mapping
and for genomic prediction, which is an extended version of the SgenoLasso. The AdaptSgeno-
Lasso relies on the original concept of a selective genotyping that varies along the genome.
The “classical” selective genotyping on which the SgenoLasso is built on, consists in geno-
typing only extreme individuals, in order to increase the signal from genes. However, since
the same amount of selection is applied at all genome locations, the signal is increased of
the same proportional factor everywhere. With the AdaptSgenoLasso, we allow geneticists to
impose more weights on some loci (i.e. locations) of interest, known to be responsible for the
variation of the quantitative trait. The resulting signal is now dedicated to each locus. We
propose here a deep theoretical study of the AdaptSgenoLasso, and we show on simulated
data the superiority of this new approach over the SgenoLasso.

Keywords: Gaussian process, Selective Genotyping, Genomic Selection, High-Dimensional
Linear Model, Variable Selection, Sparsity
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1. Motivation

Nowadays, more and more genomic data are available thanks to advances in molec-
ular biology and to technology. Genomics and mathematics, two fields not expand-
ing at the same speed, are sometimes complementary. Old-fashioned tools, studied
deeply by mathematicians, may be of importance for the genomic community. In
this context, we introduced recently the SgenoLasso [53], a new variable selection
method that relies on an old concept called selective genotyping [31, 32]. Our goal
here is to present an even more powerful method than the SgenoLasso, and still
inspired by selective genotyping.

To begin with, let us briefly recall the selective genotyping concept. In a seminal
paper, [32] showed that the extreme (i.e. the highest or the lowest) observations
of a given trait contain most of the signal on a Quantitative Trait Locus, so-called
QTL. Roughly speaking, a QTL can be viewed as a gene influencing a quantitative
trait. Then, the authors suggested to genotype only the individuals with extreme
phenotypes (extreme observations). This concept was called selective genotyping
and [31] formalized it later. Today, applications fields of selective genotyping lie in
Genome Wide Association Study (GWAS) and in Genomic Selection (GS).
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The aim of GWAS is to find associations between loci (i.e. locations of the
genome) and a trait of interest. In the literature, there are some recent association
studies using selective genotyping in plants (e.g. sugarcane [23]; soybean [44, 63, 66];
chickpea [60]; tomatoes [42]), in animals (e.g. dairy cattle [30]; drosophila [8]; sow
[17]; mouse [29]), and in humans (e.g. on Kashin-Beck disease [69]; on intelligence
[68]). Selective genotyping is particularly rewarding for finding QTLs: by consid-
ering the extremes, the signal is significantly increased. Note that in our present
study, we will concentrate on selective genotyping for continuous traits largely
found in plants and animals. We will not investigate categorical traits often stud-
ied in humans.

The second application field of selective genotyping is Genomic Selection (GS)
[35], which is a very popular topic in genomics (e.g. strawberry, [22]; banana, [41]).
The main goal of GS is to select individuals (i.e. candidates) by means of genomic
predictions (see [47]). Since predictions can be performed as soon as the DNA is
available, GS accelerates significantly the genetic gain. Indeed, we do not have
to wait anymore to observe the phenotype of the candidate at adult age. With
GS, after having performed genomic predictions, the best individuals are selected
and are crossed to produce a new generation of offsprings. This process allows to
consider many generations fastly.

GS is promising but new statistical tools are now required to exploit the potential
of GS. In GS, the learning model has to be recalibrated over time, otherwise it
leads to unreliable predictions (see [7, 40, 45]). Typically, after a large number
of generations, we can not perform genomic predictions on the basis of a model
learned on the first generations. As a consequence, it is crucial to update the model
with the help of candidates selected at the previous step. In other words, in order
to recalibrate the model, the model has to be fitted on extreme individuals, which
is highly linked to selective genotyping.

As mentioned before, we introduced recently the SgenoLasso [53], a new L1 pe-
nalized likelihood method able to handle extreme data, which is not the case of the
famous Lasso [59]. However, the SgenoLasso presents the drawback of imposing the
same weights on all loci, even when a few major genes are already known by geneti-
cists. In this context, the aim of this present paper is to propose a new version of the
SgenoLasso, called AdaptSgenoLasso, that allows to give more importance on some
loci of interest. We will show that AdaptSgenoLasso enjoys better performances
than SgenoLasso in terms of genomic prediction and in terms of GWAS.

2. Model

In this section, we recall the stochastic model studied in the SgenoLasso context,
and we introduce new notation dedicated to the AdaptSgenoLasso.

As in our previous studies, we study a backcross population, A× (A×B), where
A and B are purely homozygous lines. The trait is observed on n individuals (pro-
genies) and we denote by Yj , j = 1, ..., n, these observations. The chromosome
is represented by the segment [0, T ]. The distance on [0, T ] is called the genetic
distance, it is measured in Morgans (see for instance [65] or [56]). The genome
X(t) of one individual takes the value +1 if, for example, the “recombined chro-
mosome” (due to meiosis) is originated from A at location t and takes the value
−1 if it is originated from B. X(0) is an equiprobable random sign and we consider
Haldane modeling, which assumes no crossover interference. In other words, N(.)
is a standard Poisson process on [0, T ] that refers to the number of crossovers due
to meiosis, and we have the relationship X(t) = X(0)(−1)N(t). Moreover, r(t, t′)
will denote the probability of recombination between two loci located at t and t′.
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Calculations on the Poisson distribution show that

r(t, t′) := P(X(t)X(t′) = −1) = P(
∣∣N(t)−N(t′)

∣∣ odd) =
1

2
(1− e−2|t−t′|) .

We set in addition

r̄(t, t′) := 1− r(t, t′), ρ(t, t′) := e−2|t−t′| .

We assume an “analysis of variance model” for the quantitative trait:

Y = µ +

m∑
s=1

X(t?s) qs + σε (1)

where µ is the global mean, ε is a Gaussian white noise independent of X(.), σ2

is the environmental variance, m is the number of QTLs, and qs and t?s denote
respectively the effect and the location of the sth QTL. Indeed, it is well known
that there is a finite number of loci underlying the variation in quantitative traits
([27]). Besides, we will consider 0 < t?1 < ... < t?m < T .

Usually, in the problem of QTL mapping with a classical selective genotyping
([18, 32]), the “genome information” is available only at fixed locations t1 = 0 <
t2 < ... < tK = T , called genetic markers, and only if the trait is extreme. In order
to describe this model more precisely, let us consider two real thresholds S1

− and

S1
+, with S1

− ≤ S1
+ and the random process X(.) such as X(t) := X(t)1Y /∈[S1

− , S1
+].

Then, usually an observation is(
Y, X(t1), X(t2), ..., X(tK)

)
and the challenge is that the number of QTLs m and their locations t?1, ..., t?m are
unknown.

The originality of our present study lies in the fact that we propose to focus
here on a more sophisticated selective genotyping than the classical one ([18, 32]):
our selective genotyping will vary along the genome. Note that in what follows,
“genotyping” will refer to observing the genome information at markers.

In order to introduce our new selective genotyping, let us define two additional
real thresholds S2

− and S2
+ such as S1

− ≤ S2
− ≤ S2

+ ≤ S1
+. As in the classical

selective genotyping, we collect the genome information on the dense map (i.e. at
all markers) if and only if the phenotype Y is extreme, that is to say Y ≤ S1

− or
Y ≥ S1

+. However, we also consider a sparser map containing only a few markers
that belong to the original (dense) map, and we genotype, at these marker locations,
the individuals for which Y ≤ S2

− or Y ≥ S2
+. In other words, we collect the genome

information of extra individuals at these markers. Intuitively, it enables to put more
weights on some markers matching major genes that are well known by geneticists.

In what follows, T1
K := {t1, . . . , tK} denotes the set of marker locations that

belong to the dense map, and T2
K :=

{
tσ(1), tσ(2), . . . , tσ(#T2

K)

}
is a subset of T1

K

(i.e. T2
K ⊆ T1

K), representing the marker locations of the sparse map, where σ(.)
is a one-to-one map σ :

{
1, . . . ,#T2

K

}
→ {1, . . . ,K}. Recall that the notation #

stands for the cardinality of a set. To make the reading easier, we impose that
σ(k) < σ(k′) for k < k′ and we assume σ(1) = 1 and σ(#T2

K) = K, so that the
markers located at 0 and at T are also located on the sparse map.

If we call X̃(t) the random variables such as X̃(t) = X(t)1Y ∈[S1
− , S2

−]∪[S2
+ , S1

+],
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then, in our problem, one observation is now(
Y, X(t1), X(t2), ..., X(tK), X̃(tσ(1)), X̃(tσ(2)), ..., X̃(tσ(#T2

K))
)
.

In other words, with our notations,

• when Y /∈
[
S1
− , S

1
+

]
, we have X(t1) = X(t1), ..., X(tK) = X(tK), which means

that the genome information is known on the dense map T1
K

• when Y ∈
[
S1
− , S

2
−
]
∪
[
S2

+ , S1
+

]
, we have X̃(tσ(1)) = X(tσ(1)), X̃(tσ(2)) =

X(tσ(2)), ..., X̃(tσ(#T2
K)) = X(tσ(#T2

K)), which means that the genome informa-

tion is known only on the sparse map T2
K

• when Y ∈
[
S2
− , S

2
+

]
, we have X(t1) = 0, ..., X(tK) = 0, and X̃(tσ(1)) =

0, X̃(tσ(2)) = 0, ..., X̃(tσ(#T2
K)) = 0, which means that the genome information

is missing at all markers

We observe n observations(
Yj , Xj(t1), Xj(t2), ..., Xj(tK), X̃j(tσ(1)), X̃j(tσ(2)), ..., X̃j(tσ(#T2

K))
)

indepen-

dent and identically distributed (i.i.d.).

3. Outline

3.1. Preliminaries

Before detailing the roadmap of this paper, we have to recall the famous concept of
Interval Mapping [31] on which our new method is built. Assuming that only one
QTL lies on the genome (i.e. m = 1), the Interval Mapping consists in computing
the Likelihood Ratio Test (LRT) at each location t ∈ [0, T ] of the null hypothesis of
absence of QTL H0:“q1 = 0,” against the alternative “q1 6= 0,”. It leads to a LRT
process and to a score process. These processes have been deeply studied in the past
in the complete data situation where all the genotypes are known (e.g. [2, 5, 14–
16]), and later in the selective genotyping framework [51, 52]. The supremum of
these processes corresponds to the LRT on the whole genome, and the asymptotic
distribution of the supremum of these processes is now well known. In this paper,
as in [53], we propose to study mainly the asymptotic distribution of the LRT and
score processes under the general alternative of m QTLs lying on the genome. It
enables to look for multiple genes along the genome thanks to a variable selection
method.

3.2. Roadmap

In Section 4, we present our main result, Theorem 4.1, that gives the asymptotic
distribution of the score process and of the LRT process under the alternative
hypothesis that there exist m QTLs located at t?1, ..., t?m with effects q1, ..., qm.
The score process converges in distribution to a Gaussian process described as an
interpolation of two independent Gaussian processes V1(.) and V2(.). The processes
V1(.) and V2(.) are linked to the dense map and to the sparse map, respectively.
The distribution of the LRT statistic on the whole genome is asymptotically that of
the maximum of the square of a function of these two interpolated processes. This
result is more general than previous studies under selective genotyping [51, 52] and
under the complete data situation (e.g. [2, 5, 16]).

Next, Theorem 4.2 gives the Asymptotic Relative Efficiency (ARE) with respect
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to the complete data situation. The ARE depends on the QTLs effects and their
locations, which is a different result from the one obtained for the classical selective
genotyping in [52]. Furthermore, Lemma 4.3, Lemma 4.4 and Corollary 4.5 give
necessary conditions to overcome classical selective genotyping.

On the other hand, Corollary 5.1 tackles the complementary experiment that
consists in genotyping on the dense map (T1

K) the individuals for which Y ∈[
S1
− , S

2
−
]
∪
[
S2

+ , S1
+

]
, and in genotyping on the sparse map (T2

K) the individu-
als for which Y ≥ S1

+ or Y ≤ S1
−. We show that the experiment based on the

extremes (i.e. our current study) is largely more efficient than the complementary
experiment. It confirms that most of the signal is contained in extreme traits, as
highlighted in many studies on selective genotyping [31, 32, 49].

Section 6 is devoted to the AdaptSgenoLasso, our new penalized likelihood
method relying on results of Theorem 4.1. AdaptSgenoLasso allows to estimate
the QTLs location, their effects and their number. Note that its ElasticNet cousin,
called the AdaptSgenoEN, is also described. The link between the AdaptSgeno-
Lasso (resp. AdaptSgenoEN) and the SgenoLasso (resp. SgenoEN, see [53]) is also
established. Finally, we present the AdaptSgenoAdaptLasso, a new cousin inspired
by the Adaptive Lasso [72]: it takes into account the prior knowledge of major
genes within the weighted L1 penalization. In that sense, AdaptSgenoAdaptLasso
combines the advantages of AdaptSgenoLasso and those of Adaptive Lasso.

For a deeper understanding, Section 7 investigates the asymptotic theory for
the AdaptSgenoLasso under complete Linkage Disequilibrium (i.e. the m QTLs
are located on some markers). In particular, we give the rate of convergence for
prediction and we also study the consistency of the variable selection.

At the end of the manuscript, Section 8 proposes a simulation study. First,
Section 8.1 focuses on the max test in Interval Mapping. In particular, we compare
the power of the classical selective genotyping approach and our new approach
where the selective genotyping varies along the genome. Last, Sections 8.2 and
8.3 are dedicated to association studies and to Genomic Selection, respectively.
We will show the advantage of AdaptSgenoLasso and its cousins over the ancestor
SgenoLasso. We will also highlight, in the supplementary material, the relative
robustness of AdaptSgenoLasso to non Gaussian distributions.

4. Some theoretical results

In what follows, we consider values of t that are distinct of marker locations, i.e.
t ∈ [t1, tK ]\T1

K . For i = 1, 2, we define t`,i and tr,i in the following way:

t`,i = sup
{
tk ∈ Ti

K : tk < t
}
, tr,i = inf

{
tk ∈ Ti

K : t < tk
}
. (2)

In other words, depending on the map, t belongs to the “Marker interval” either
(t`,1, tr,1) or (t`,2, tr,2).

4.1. Score test and Likelihood Ratio Test (LRT) at a location t of the
genome

Let us consider the casem = 1 (i.e. one QTL located at t?1), and let θ1 = (q1, µ, σ) be
the parameter of the model at t fixed. At a location t ∈ [t1, tK ]\T1

K , the likelihood

of
(
Y, X(t`,1), X̃(t`,2), X(tr,1), X̃(tr,2)

)
with respect to the measure λ⊗N ⊗N ⊗
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N ⊗N , λ being the Lebesgue measure, N the counting measure on N, is :

Lt(θ
1) =

[
p1(t) f(µ+q1,σ)(Y )1Y /∈[S1

−,S
1
+] + {1− p1(t)} f(µ−q1,σ)(Y )1Y /∈[S1

−,S
1
+]

+ p2(t) f(µ+q1,σ)(Y )1Y ∈[S1
−,S

2
−]∪[S2

+,S
1
+] + {1− p2(t)} f(µ−q1,σ)(Y )1Y ∈[S1

−,S
2
−]∪[S2

+,S
1
+]

+
1

2
f(µ+q1,σ)(Y )1Y ∈[S2

−,S
2
+] +

1

2
f(µ−q1,σ)(Y )1Y ∈[S2

−,S
2
+]

]
g(t)

where f(µ,σ) is the Gaussian density with parameters (µ, σ), p1(t) and p2(t) are the

probabilities P
{
X(t) = 1 | X(t`,1), X(tr,1)

}
and P

{
X(t) = 1 | X(t`,2), X(tr,2)

}
,

p1(t)1Y /∈[S1
−,S

1
+] = P

{
X(t) = 1 | X(t`,1), X(tr,1)

}
1Y /∈[S1

−,S
1
+]

= Q1,1
t,1 1X(t`,1)=11X(tr,1)=1 + Q1,−1

t,1 1X(t`,1)=11X(tr,1)=−1

+Q−1,1
t,1 1X(t`,1)=−11X(tr,1)=1 + Q−1,−1

t,1 1X(t`,1)=−11X(tr,1)=−1

and

p2(t)1Y ∈[S1
−,S

2
−]∪[S2

+,S
1
+] = P

{
X(t) = 1 | X(t`,2), X(tr,2)

}
1Y ∈[S1

−,S
2
−]∪[S2

+,S
1
+]

= Q1,1
t,2 1X̃(t`,2)=11X̃(tr,2)=1 + Q1,−1

t,2 1X̃(t`,2)=11X̃(tr,2)=−1

+Q−1,1
t,2 1X̃(t`,2)=−11X̃(tr,2)=1 + Q−1,−1

t,2 1X̃(t`,2)=−11X̃(tr,2)=−1 .

Note that for i = 1, 2, and for (j, j′) ∈ {−1, 1} × {−1, 1},

Qj,j
′

t,i := P
{
X(t) = 1 | X(t`,i) = j,X(tr,i) = j′

}
.

In other words, Qj,j
′

t,i is the probability, for map i, that the genome information at

location t is equal to +1 given that it takes values j and j′ at flanking markers.
For instance, Q1,1

t,i denotes the probability that there is: (i) no recombination

between the locus at t and its flanking marker t`,i on the left-side of t, and (ii)
no recombination between the locus at t and its flanking marker tr,i on the right-
side of t. In the same way, Q1,−1

t,i refers to the probability that there is: (i) no

recombination between the locus at t and its flanking marker t`,i on the left-side
of t, and (ii) recombination between the locus at t and its flanking marker tr,i on
the right-side of t.

According to the Haldane modeling, we have the following expressions

Q1,1
t,i =

r̄(t`,i, t) r̄(t, tr,i)

r̄(t`,i, tr,i)
, Q1,−1

t,i =
r̄(t`,i, t) r(t, tr,i)

r(t`,i, tr,i)

Q−1,1
t,i =

r(t`,i, t) r̄(t, tr,i)

r(t`,i, tr,i)
, Q−1,−1

t,i =
r(t`,i, t) r(t, tr,i)

r̄(t`,i, tr,i)
.

Furthermore, we have the relationships

Q−1,−1
t,i = 1−Q1,1

t,i and Q−1,1
t,i = 1−Q1,−1

t,i .
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Besides, we have

g(t) = P
{
X(t`,1), X(tr,1)

}
1Y /∈[S1

−,S
1
+] + P

{
X(t`,2), X(tr,2)

}
1Y ∈[S1

−,S
2
−]∪[S2

+,S
1
+]

+ 1Y ∈[S2
−,S

2
+]

with

P
{
X(t`,1), X(tr,1)

}
1Y /∈[S1

−,S
1
+] =

1

2

{
r(t`,1, tr,1)1X(t`,1)X(tr,1)=1

+r(t`,1, tr,1)1X(t`,1)X(tr,1)=−1

}
and

P
{
X(t`,2), X(tr,2)

}
1Y ∈[S1

−,S
2
−]∪[S2

+,S
1
+] =

1

2

{
r(t`,2, tr,2)1X̃(t`,2)X̃(tr,2)=1

+r(t`,2, tr,2)1X̃(t`,2)X̃(tr,2)=−1

}
.

Note that the true probability distribution is Lt?1(θ1). The score statistic of the
hypothesis “q1 = 0” at t, for n independent observations, is defined as

Sn(t) =

∂lnt
∂q1
|θ10√

Var
(
∂lnt
∂q1
|θ10
) , (3)

where lnt denotes the log likelihood at t, associated to n observations, and θ1
0 =

(0, µ, σ) refers to the parameter θ1 under H0. The likelihood ratio statistic at t will
be defined as

Λn(t) = 2
[
lnt (θ̂1)− lnt (θ̂1|H0

]
,

on n independent observations.

4.2. Main result on the score and LRT processes

Let us define ∀i = 1, 2, ξi(t) :=
√

Var {E {X(t) | X(t`,i), X(tr,i)}}. In other words,
ξ2
i (t) quantifies how the predictor E

{
X(t) | X(t`,i), X(tr,i)

}
of the genome infor-

mation X(t) varies, depending of the values X(t`,i) and X(tr,i) (i.e. the genome
information at flanking markers on map i).

We can easily deduce from [2], that we have the relationship ∀i = 1, 2, ξi(t) =√
α2
i (t) + β2

i (t) + 2αi(t)βi(t)ρ(t`,i, tr,i) where αi(t) := Q1,1
t,i −Q

−1,1
t,i and βi(t) :=

Q1,1
t,i −Q

1,−1
t,i . Besides, by continuity,

∀tk ∈ T1
K ξ1(tk) = 1, α1(tk) = 1, β1(tk) = 0

∀tk ∈ T2
K ξ2(tk) = 1, α2(tk) = 1, β2(tk) = 0.
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Before giving our first main result, let us define the following quantities:

γ1 := PH0

(
Y /∈

[
S1
−, S

1
+

])
, γ+

1 := PH0

(
Y > S1

+

)
, γ−1 := PH0

(
Y < S1

−
)
, (4)

γ := PH0

(
Y /∈

[
S2
−, S

2
+

])
, γ+ := PH0

(
Y > S2

+

)
, γ− := PH0

(
Y < S2

−
)
, (5)

A1 := EH0

[
(Y − µ)21Y /∈[S1

−,S
1
+]

]
= σ2

{
γ1 + zγ+

1
ϕ(zγ+

1
)− z1−γ−1 ϕ(z1−γ−1 )

}
, (6)

B := EH0

[
(Y − µ)21Y /∈[S2

−,S
2
+]

]
= σ2

{
γ + zγ+ϕ(zγ+)− z1−γ−ϕ(z1−γ−)

}
, (7)

A2 := EH0

[
(Y − µ)21Y ∈[S1

−,S
2
−]∪[S2

+,S
1
+]

]
= B −A1, (8)

where ϕ(x) and zα denote respectively the density of a standard normal distribu-
tion taken at the point x, and the quantile of order 1 − α of a standard normal
distribution.

We refer to Figure 1 for an illustration of these key quantities.

Figure 1. Illustration of key quantities in the context of a selective genotyping that varies with the
genome. The standardized gaussian distribution ϕ(.) is represented by the blue curve. The percentages of

selection, γ−1 , γ+1 (resp. γ− and γ+) and their associated quantiles z
1−γ−1

and z
γ+1

(resp. z1−γ− and

zγ+ ) are represented in black (resp. in red) on the graph. Recall that γ1 = γ−1 + γ+1 and γ = γ− + γ+.

The quantities A1 = γ1 + z
γ+1
ϕ(z

γ+1
)− z

1−γ−1
ϕ(z

1−γ−1
) and B = γ + zγ+ϕ(zγ+ )− z1−γ−ϕ(z1−γ− ) are

the areas in red dashed lines and in black solid lines, respectively (assuming that σ = 1). Recall also that
we have the relationship A2 = B −A1.

Remark 1 : According to the law of large numbers, under the null hypothesis H0

and under contiguous alternatives, 1
n

∑
1Yj /∈[S1

−, S
1
+] → γ1 and 1

n

∑
1Yj /∈[S2

−, S
2
+] →

γ. So, γ1 (resp. γ) corresponds asymptotically to the percentage of individuals for
which the genome information is collected on the dense map (resp. sparse). In other
words, for a location tk belonging exclusively to the dense map (i.e. tk ∈ T1

K\T2
K),

γ1 is asymptotically the percentage of genotyped individuals and γ+
1 (resp. γ−1 ) is

asymptotically the percentage of individuals genotyped with the largest (resp. the
smallest) phenotypes.

Our main result is the following:

Theorem 4.1 : Suppose that the parameters (q1, ..., qm, µ, σ
2) vary in a com-
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pact and that σ2 is bounded away from zero, and also that m is finite. Let H0

be the null hypothesis of no QTL on [0, T ], and let define the following local al-
ternatives Ha~t?: “there are m QTLs located respectively at t?1, · · · , t?m with effect
q1 = a1/

√
n, · · · , qm = am/

√
n where a1 6= 0, · · · , am 6= 0”. Then, as n tends to

infinity,

Sn(.)⇒ Z(.) , Λn(.)
F.d.→ Z2(.) , sup Λn(.)

L−→ supZ2(.) (9)

under H0 and Ha~t?, where⇒ and F.d. denote the weak convergence and the conver-
gence of finite-dimensional distributions respectively and where Z(.) is the Gaussian
process with unit variance such as ∀t ∈ [t1, tK ]\T1

K :

Z(t) =

√
A1 ξ1(t)V1(t) +

√
A2 ξ2(t)V2(t)√

A1 ξ2
1(t) +A2 ξ2

2(t)
.

V1(.) et V2(.) are independent Gaussian processes with unit variance such as

∀i = 1, 2 Vi(t) =
{
αi(t) Vi(t

`,i) + βi(t) Vi(t
r,i)
}
/ξi(t)

∀(tk, tk′) ∈ Ti
K × Ti

K Cov (Vi(tk), Vi(tk′)) = ρ(tk, tk′) .

The mean function of Z(.) is such that:

• under H0, mZ,~t?(t) = 0

• under Ha~t?,

mZ,~t?(t) =

√
A1 ξ1(t)mV1,~t?

(t) +
√
A2 ξ2(t)mV2,~t?

(t)√
A1 ξ2

1(t) +A2 ξ2
2(t)

.

where

∀i = 1, 2 mVi,~t?
(t) =

{
αi(t) mVi,~t?

(t`,i) + βi(t) mVi,~t?
(tr,i)

}
/ξi(t)

∀tk ∈ Ti
K mVi,~t?

(tk) =

√
Ai
σ2

m∑
s=1

as ρ(t?s, tk) .

The proof is given in Section 10.
According to Theorem 4.1, the score process Sn(.) converges weakly to an inter-

polated process Z(.) that contains two components: the process V1(.) that relies on
the dense map (i.e. T1

K), and the process V2(.) that relies on the sparse map (i.e.
T2
K). This result is more general than previous studies under the complete data sit-

uation (e.g. [2, 5, 16]), and under selective genotyping [51, 52]. Indeed, in all these
previous studies, the limiting process was an interpolated process based only on
one component. In our present study, the limiting process Z(.) is an interpolation
between two interpolated processes V1(.) and V2(.).

From Theorem 4.1, we can easily recover results present in the literature. For
instance, when S1

− = S2
− and S1

+ = S2
+, we have A2 = 0 and the process Z(.)

contains only one component, the process V1(.) that matches the process V (.) of
[52]. In other words, results from Theorem 4.1 are consistent with the ones obtained
under the classical selective genotyping situation with parameter A1 only (i.e. with
only the thresholds S1

− and S1
+) and using the dense map as genetic map.

In the same way, when S1
− = −∞ and S1

+ = +∞, we have A1 = 0 and the
process Z(.) matches the process V2(.). In that case, the process V2(.) matches the
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V (.) of [52], as soon as we consider a classical selective genotyping with parameter
A2 only (i.e. with only the thresholds S2

− and S2
+) and using the sparse map as

genetic map.
In what follows, when not specified, the classical selective genotyping will denote

the framework with parameter A1 and relying on the dense map.

4.3. About the skeleton of the limiting process Z(.)

Since our variable selection method (cf. Section 6) will be based on the skeleton
of the limiting process Z(.), let us describe here this skeleton. By continuity, it is
easy to see that when tk belongs to T2

K :

Z(tk) =

√
A1 V1(tk) +

√
A2 V2(tk)√

B
, (10)

mZ,~t?(tk) =

√
B
σ2

m∑
s=1

ρ(t?s, tk)as .

However, at a location tk that belongs to T1
K\T2

K :

Z(tk) =

√
A1 V1(tk) +

√
A2

{
α2(tk)V2(t`,2k ) + β2(tk)V2(tr,2k )

}
√
A1 +A2 ξ2

2(tk)
, (11)

mZ,~t?(tk) =
A1

σ2

∑m
s=1 ρ(t?s, tk)as√

A1 +A2 ξ2
2(tk)

+

A2

σ2

{
α2(tk)

∑m
s=1 ρ(t?s, t

`,2
k )as + β2(tk)

∑m
s=1 ρ(t?s, t

r,2
k )as

}
√
A1 +A2 ξ2

2(tk)

where t`,2k and tr,2k are defined according to formula (2), using a small abuse of
notation.

Using formulae (11) and (10), we can easily compute the skeleton of the covari-
ance function of Z(.):

∀(tk, tk′) ∈ T2
K × T2

K Cov (Z(tk), Z(tk′)) = ρ(tk, tk′) , (12)

∀(tk, tk′) ∈ T1
K\T2

K × T1
K\T2

K

Cov (Z(tk), Z(tk′)) =
A1ρ(tk, tk′) +A2

{
α2(tk)ρ(t`,2k , tk′) + β2(tk)ρ(tr,2k , tk′)

}
√{
A1 +A2ξ2

2(tk)
}{
A1 +A2ξ2

2(tk′)
} ,

(13)

∀(tk, tk′) ∈ T2
K × T1

K\T2
K Cov (Z(tk), Z(tk′)) =

√
Bρ(tk, tk′)√
A1 +A2ξ2

2(tk′)
. (14)

The proof is given in Section 11.
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4.4. Asymptotic Relative Efficiency

Let us consider one location of the genome and let us focus on the Asymptotic
Relative Efficiency (ARE). Recall that the ARE determines the relative sample
size required to obtain the same local asymptotic power as the one of the test
under the complete data situation where the genome information is known at all
markers without taking into account whether the trait Y is extreme or not.

In other words, under the complete data situation, we have S1
− = S2

− = S2
+ = S1

+,
so that γ = γ1 = 1, A1 = B = σ2 and A2 = 0. Note also that the complete data
situation is the one studied in [2].

Theorem 4.2 : Let κ denote the ARE, then we have

i) at a location t /∈ T1
K , κ =

σ2 Ω2 ξ2
1(t)

{α1(t)
∑m

s=1 ρ(t?s, t
`,1)as + β1(t)

∑m
s=1 ρ(t?s, t

r,1)as}2

where

Ω =

∑2
i=1Ai

{
αi(t)

∑m
s=1 ρ(t?s, t

`,i)as + βi(t)
∑m

s=1 ρ(t?s, t
r,i)as

}
σ2
√
A1 ξ2

1(t) +A2 ξ2
2(t)

ii) at a location tk ∈ T1
K\T2

K , κ =
σ2 Ω′ 2

{
∑m

s=1 ρ(t?s, tk)as}
2

where Ω′ =
A1 {

∑m
s=1 ρ(t?s, tk)as}

σ2
√
A1 +A2 ξ2

2(tk)

+
A2

{
α2(tk)

∑m
s=1 ρ(t?s, t

`,2
k )as + β2(tk)

∑m
s=1 ρ(t?s, t

r,2
k )as

}
σ2
√
A1 +A2 ξ2

2(tk)

iii) at a location tk ∈ T2
K , κ = B/σ2.

The proof is given in Section 12. Note that ii) and iii) can be obtained from i)
by continuity.

According to Theorem 4.2, when the selective genotyping varies along the
genome, the ARE depends on the QTLs effects and their locations. This result
is different from the one obtained regarding the classical selective genotyping (i.e.
S1
− = S2

− and S1
+ = S2

+), for which the ARE depends only on the factor A1 linked
to the selection intensity (see Theorem 4.2 of [52]).

The situation iii), i.e. tk ∈ T2
K , can be viewed as a classical selective genotyping

situation at one marker of the sparse map, since all the individuals with phenotypes
smaller than S2

− or greater than S2
+ are genotyped at tk. As a consequence, in this

case, the ARE does not depend on the QTL parameters, and matches exactly the
ARE presented in Theorem 1 of [49] with parameter B.

Last, when all the QTLs do not belong to the interval [t`,2, tr,2] (i.e. ∀s t?s /∈
[t`,2, tr,2]), we have the relationships ∀i = 1, 2, αi(t)ρ(t?s, t

`,i)as + βi(t)ρ(t?s, t
r,i)as =

ρ(t?s, t)as. As a result, the efficiencies i) and ii) have the following expressions: i)

κ = B2ξ21(t)
σ2{A1ξ21(t)+A2ξ22(t)} and ii) κ = B2

σ2{A1+A2ξ22(tk)} . In this case, the ARE does not

depend on the QTLs effects and their locations. The ARE depends only on the
factors A1 and B, and on the tested location.

Figures 2 and 3 illustrate the efficiency κ, given in expression i) of Theorem 4.2,
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as a function of γ1, and as a function of the ratios γ+
1 /γ1 and γ+/γ. Note that in

order to concentrate on the same kind of selective genotyping on both maps, we
considered the relationship γ+/γ = γ+

1 /γ1 in all cases. Different values for γ are
studied: γ takes either the value 0.3, 0.5 or 1. Only one QTL is considered (m = 1)
located at t?1 = 0.85, and the test is performed exactly at the QTL location (t = t?1).
As a consequence, we will focus only on the markers flanking the QTL location.
The constant a linked to the QTL effect is set to the value 2. The dense map is
such as t`,1 = 0.80 and tr,1 = 0.90, and two scenarios are investigated for the sparse
map that targets a few loci: either map a) t`,2 = 0.20 and tr,2 = 1.50, or map b)
t`,2 = 0.70 and tr,2 = 1.

According to Figures 2 and 3, for a given value of γ, the efficiency increases much
more for sparse map a) as compared to sparse map b), when γ1 increases. It was
expected since on sparse map a), markers and the QTL are far apart. When γ1

increases, more and more individuals are genotyped at markers of the dense map,
and since these markers are closer to the QTL location, it helps for the statistical
test. In contrast, on sparse map b), markers are already close to the QTL location
and the dense map is not as useful as previously.

Figure 4 focuses on the opposite scenario: the value of γ1 is set to 0.3, and we
let the parameter γ vary. We can observe that when γ increases, the gain in terms
of power is now more substancial on sparse map b) than on sparse map a). This
result was expected in view of the previous experiment.

Remark 2 : According to the figures, the efficiencies reached their maximum for
γ+

1 /γ1 = 1/2 and γ+/γ = 1/2. In Section 12, we prove that these points are
indeed zeros of the efficiency’s derivative. However, other “zeros” do exist (e.g.
unidirectional selective genotyping, γ+

1 /γ1 = 1 and γ+/γ = 1) and the optimal
setting seems to highly rely on the different parameter values. Nevertheless, on
simulated data, the symetrical selective genotyping was found to be the optimal
setting (see Table 2).

4.5. Conditions required to overcome classical selective genotyping

Let us assume that phenotyping is free and let us incorporate the number of markers
into account in our mathematical treatment. Indeed, the new version of the selective
genotyping will be of particular interest as soon as we observe a decrease in terms of
genotyped individuals. In this context, let us present two lemmas. In what follows,
κ is the efficiency described in Theorem 4.2.

Lemma 4.3: The selective genotyping that varies along the genome is more
rewarding than the complete data situation ([2]), as soon as we have the relationship

κ > γ1 + (γ − γ1)
#T2

K

K
.

Lemma 4.4: The selective genotyping that varies along the genome is more
rewarding than the classical selective genotyping as soon as we have the relationship

κ >

{
1 +

zγ+
1
ϕ(zγ+

1
)− z1−γ−1 ϕ(z1−γ−1 )

γ1

}{
γ1 +

(γ − γ1)#T2
K

K

}
.

The proofs of these lemmas are given in Section 13. As soon as we replace κ
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Figure 2. Efficiency κ as a function of γ1, and as a function of the ratios γ+1 /γ1 and γ+/γ. γ takes
either the value 0.5 or 0.3. Only one QTL is considered (m = 1, a = 2, σ = 1) and the test is performed
exactly at the QTL location (t = t?1 = 0.85). Two different sparse maps are considered, and as a dense

map, we considered t`,1 = 0.80 and tr,1 = 0.90 in all cases.
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in Lemma 4.4 by its expression given in Theorem 4.2, we obtain after some easy
calculations, the following corollary:

Corollary 4.5: The selective genotyping that varies along the genome is more
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Figure 3. Efficiency κ as a function of γ1, and as a function of the ratios γ+1 /γ1 and γ+/γ. In all cases,
γ takes the value 1, only one QTL is considered (m = 1, a = 2, σ = 1), and the test is performed exactly
at the QTL location (t = t?1 = 0.85). Two different sparse maps are considered, and as a dense map, we

considered t`,1 = 0.80, tr,1 = 0.90, in all cases.
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Figure 4. Efficiency κ as a function of γ, and as a function of the ratios γ+1 /γ1 and γ+/γ. In all cases,
γ1 takes the value 0.3, only one QTL is considered (m = 1, a = 2, σ = 1) and the test is performed

exactly at the QTL location (t = t?1 = 0.85). Two different sparse maps are considered, and as a dense

map, we considered t`,1 = 0.80, tr,1 = 0.90, in all cases.
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rewarding than the classical selective genotyping as soon as we have the relationship{
α1(t)

∑m
s=1 ρ(t?s, t

`,1)as + β1(t)
∑m

s=1 ρ(t?s, t
r,1)as

}2

ξ2
1(t) + A2

A1
ξ2

2(t)

+
(A2

A1
)2
{
α2(t)

∑m
s=1 ρ(t?s, t

`,2)as + β2(t)
∑m

s=1 ρ(t?s, t
r,2)as

}2

ξ2
1(t) + A2

A1
ξ2

2(t)

+ 2

(
A2

A1

) {
α1(t)

∑m
s=1 ρ(t?s, t

`,1)as + β1(t)
∑m

s=1 ρ(t?s, t
r,1)as

}
ξ2

1(t) + A2

A1
ξ2

2(t)

×

{
α2(t)

m∑
s=1

ρ(t?s, t
`,2)as + β2(t)

m∑
s=1

ρ(t?s, t
r,2)as

}

>

(
1−

#T2
K

K
+
γ#T2

K

γ1K

){
α1(t)

m∑
s=1

ρ(t?s, t
`,1)as + β1(t)

m∑
s=1

ρ(t?s, t
r,1)as

}2

/ξ2
1(t)
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Figure 5. Comparison in terms of efficiency, between the classical selective genotyping and the approach
where the selective genotyping varies along the genome. Efficiencies κ, with respect to the complete data
situation ([2]), are illustrated as a function of γ, and as a function of the ratios γ+1 /γ1 and γ+/γ. In all

cases, γ1 takes the value 0.3, only one QTL is considered (m = 1, a = 2, σ = 1) and the test is performed
exactly at the QTL location (t = t?1 = 0.85). The dense map consists in t`,1 = 0.80, tr,1 = 0.90 and the

sparse map consists in t`,2 = 0.70, tr,2 = 1. The notation Bound 10% (resp. Bound 5%) refers to the
computed bound (taken from Lemma 4.4) when the ratio #T2

K/K is equal to 10% (resp. 5%).
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This condition highly depends on the ratio A2/A1, the percentage of markers
#T2

K

K on the sparse map, and on the architecture of the two maps (i.e. the terms{
α2(t)

∑m
s=1 ρ(t?s, t

`,2)as + β2(t)
∑m

s=1 ρ(t?s, t
r,2)as

}
and{

α1(t)
∑m

s=1 ρ(t?s, t
`,1)as + β1(t)

∑m
s=1 ρ(t?s, t

r,1)as
}

).
In what follows, we propose to illustrate Lemma 4.4 and Corollary 4.5, using

Figure 5 and Table 1.
Figure 5 compares in terms of efficiency, the classical selective genotyping and the

selective genotyping that varies along the genome. Note that the focus is on sparse
map b) (cf. previous section): it is the most realistic scenario since in practice, QTL
locations won’t be far away from markers belonging to the sparse map. Efficiencies
with respect to the complete data situation ([2]), are illustrated as a function of γ,
and as a function of the ratios γ+

1 /γ1 and γ+/γ. On Figure 5, is also represented
the lower bound introduced in Lemma 4.4, considering as sparse map, either 5%
or 10% of all markers (i.e. #T2

K/K = 5% or 10%).
In all cases, γ1 was set to the value 0.3, largely used in the genetic community.

Indeed, this frequency has been proved to be optimal for selective genotyping ex-
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Table 1. Study of the ratio A2/A1 and of the inequality of Corollary 4.5 as a function of γ+/γ, γ and
#T2

K
K .

In all settings, γ+
1 /γ1 = γ+/γ and γ1 = 0.3. LR(0.05) (resp. LR(0.10)) refers to the left and right terms of the

inequality of Corollary 4.5 when
#T2

K
K = 0.05 (resp.

#T2
K

K = 0.10). In bold, it refers to the situation where the

left term is strictly lower than the right term, i.e. when the classical selective genotyping is more rewarding than

the new selective genotyping.

γ+/γ
γ Quantity 1/2 3/4 7/8 1

0.3
A2/A1 0.0000 0.0000 0.0000 0.0000

LR(0.05) (3.6013 ≥ 3.6013) (3.6013 ≥ 3.6013) (3.6013 ≥ 3.6013) (3.6013 ≥ 3.6013)
LR(0.10) (3.6013 ≥ 3.6013) (3.6013 ≥ 3.6013) (3.6013 ≥ 3.6013) (3.6013 ≥ 3.6013)

0.4
A2/A1 0.1123 0.1053 0.0913 0.0322

LR(0.05) (3.9196 > 3.6614) (3.8998 > 3.6614) (3.8601 > 3.6614) (3.6927 > 3.6614)
LR(0.10) (3.9196 > 3.7214) (3.8998 > 3.7214) (3.8601 > 3.7214) (3.6927<3.7214)

0.5
A2/A1 0.1856 0.1743 0.15 0.0366

LR(0.05) (4.1274 > 3.7214) (4.0954 > 3.7214) (4.0264 > 3.7214) (3.7052<3.7214)
LR(0.10) (4.1274 > 3.8414) (4.0954 > 3.8414) (4.0264 > 3.8414) (3.7052<3.8414)

0.6
A2/A1 0.2315 0.2205 0.1931 0.0410

LR(0.05) (4.25776 > 3.7814) (4.2265 > 3.7814) (4.1486 > 3.7814) (3.7176<3.7814)
LR(0.10) (4.25776 > 3.9615) (4.2265 > 3.9615) (4.1486 > 3.9615) (3.7176<3.9615)

0.7
A2/A1 0.2581 0.2542 0.2351 0.0733

LR(0.05) (4.3329 > 3.8414) (4.3218 > 3.8414) (4.2677 > 3.8414) (3.8090<3.8414)
LR(0.10) (4.3329 > 4.0815) (4.3218 > 4.0815) (4.2677 > 4.0815) (3.8090<4.0815)

0.8
A2/A1 0.2712 0.2840 0.2908 0.1701

LR(0.05) (4.3702 > 3.9014) (4.4064 > 3.9014) (4.4256 > 3.9014) (4.0835 > 3.9014)
LR(0.10) (4.3702 > 4.2015) (4.4064 > 4.2015) (4.4256 > 4.2015) (4.0835<4.2015)

0.9
A2/A1 0.2760 0.3189 0.3792 0.3996

LR(0.05) (4.3836 > 3.9615) (4.5054 > 3.9615) (4.6764 > 3.9615) (4.7342 > 3.9615)
LR(0.10) (4.3836 > 4.3216) (4.5054 > 4.3216) (4.6764 > 4.3216) (4.7342 > 4.3216)

1
A2/A1 0.2766 0.3632 0.5319 0.9240

LR(0.05) (4.3855 > 4.0215) (4.6308 > 4.0215) (5.1092 > 4.0215) (6.2206 > 4.0215)
LR(0.10) (4.3855<4.4416) (4.6308 > 4.4416) (5.1092 > 4.4416) (6.2206 > 4.4416)

periments (cf. [18, 49]). Furthermore, we consider the same framework as in Figure
2: only one QTL is considered (m = 1, a = 2, σ = 1) and the test is performed
exactly at the QTL location (t = t?1 = 0.85). The dense map is such as t`,1 = 0.80,
tr,1 = 0.90 whereas t`,2 = 0.70, tr,2 = 1 for the sparse map.

According to Figure 5, when we genotype symmetrically (γ+/γ = γ+
1 /γ1 = 1/2),

our new approach is largely more rewarding than the classical genotyping, in most
of cases. Indeed, the two bounds (5% or 10%) are almost always located below the
efficiency curve of the selective genotyping that varies. Our new method becomes

less relevant only when #T2
K

K = 10% and γ > 0.95.

Note that for γ+/γ = γ+
1 /γ1 = 3/4 and 7/8, the selective genotyping that varies

was always found to be the best approach. Last, surprisingly, when the selective
genotyping is performed unilaterally (γ+/γ = γ+

1 /γ1 = 1), we should choose the

classical selective genotyping in some cases (e.g. 0.3 < γ < 0.85 if #T2
K

K = 10%).
In order to investigate this in more detail, let us focus on results presented in

Corollary 4.5. In Table 1 are computed the ratio A2/A1, and the term on the left-
side and the term on the right-side of the inequality, as a function of γ+/γ, γ and
#T2

K

K . We can see that, when γ+/γ = γ+
1 /γ1 = 1, 0.3 < γ < 0.85 and #T2

K

K = 0.10,
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the inequality is not fulfilled: as highlighted by Figure 5, the classical selective
genotyping is the best approach for these values. In contrast, when γ+/γ is set to
1/2, 3/4, or 7/8, the inequality is fulfilled and our new approach is consequently
the most rewarding. Furthermore, we can notice that the ratio A2/A1 is very small
for γ+/γ = 1 (see the values 0.0322, 0.0366, 0.0410, 0.0733, 0.1701), whereas it is
significantly larger for other values of the ratio γ+/γ. When the ratio A2/A1 is
small, the contribution to the sparse map is negligible as compared to the one of
the dense map. In that sense, considering a second map is unuseful.

5. The complementary experiment

Let us now consider the complementary experiment that consists in:

• genotyping at markers belonging to the dense map (i.e. T1
K), individuals for

which Y ∈
[
S1
− , S

2
−
]
∪
[
S2

+ , S1
+

]
• genotyping at markers belonging to the sparse map (i.e. T2

K), individuals for
which Y ≥ S1

+ or Y ≤ S1
−

So, in this new experiment, we observe n observations(
Yj , Xj(tσ(1)), Xj(tσ(2)), ..., Xj(tσ(K)), X̃j(t1), X̃j(t2), ..., X̃j(tK)

)
i.i.d.

In this context, we have the following result:

Corollary 5.1: Under the complementary experiment, we have the same results
as in Theorem 4.1 and in Theorem 4.2 provided that we swap the quantities A1

and A2.

A sketch of the proof is given in the supplementary material. Figure 6 com-
pares the efficiency obtained for the experiment based on extreme individuals on
the dense map (cf. Theorem 4.2), and the efficiency of the complementary experi-
ment (cf. Corollary 5.1). Recall that efficiencies were obtained with respect to the
complete data situation ([2]). In order to fairly compare these two experiments, the
percentage of individuals genotyped on the dense map has to be the same for boths
experiments. Since it is equal to γ1 in the experiment based on extreme individuals,
we have to consider for the complementary experiment, two new thresholds S̃1

− and

S̃1
+ such as S̃1

− ≤ S2
− ≤ S2

+ ≤ S̃1
+ and PH0

(
Y ∈

[
S̃1
− , S

2
−

]
∪
[
S2

+ , S̃1
+

])
= γ1. Fi-

nally, we considered the relationship γ+/γ = γ+
1 /γ1 = 1/2 and the same framework

as in Section 4.4 for the marker and QTL locations.
According to Figure 6, the experiment based on the extremes is largely more

efficient that the complementary experiment. It was expected since it has been
shown in many studies on selective genotyping (e.g. [31, 32, 49]) that most of the
signal is contained in extreme traits. Note also that when γ1 was set to the value
0 or to the same value as γ, we observe as expected a perfect match between the
efficiencies of the two experiments.

6. Introducing the AdaptSgenoLasso

In this section, let us introduce a new method to estimate the number of QTLs,
their effects and their positions combining results of Theorem 4.1 and a penalized
likelihood method. Since our method is an extended version of the SgenoLasso
([53]) that allows to put some weights on some loci along the genome, we will call
it the AdaptSgenoLasso. We will also present AdaptSgenoEN which is the Elastic
Net version of our new method (see formula 19 below).
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Figure 6. Comparison of the efficiencies κ between the experiment based on extreme individuals on the
dense map, and the complementary experiment based on non extreme individuals on the dense map. κ is
given as a function of γ1, γ. In all the settings, γ+1 /γ1 and γ+/γ have been set to 1/2. Only one QTL is
considered (m = 1, a = 2, σ = 1) and the test is performed exactly at the QTL location (t = t?1 = 0.85).

The dense map consists in t`,1 = 0.80 and tr,1 = 0.90 whereas the sparse map consists in t`,2 = 0.70,
tr,2 = 1.
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According to Theorem 4.1, as soon as we discretize the score process at markers
positions, we have the following relationship when n is large:

~Sn = ~m~t? + ~ε + oP (1)

where ~Sn = (Sn(t1) , Sn(t2) , ... , Sn(tK))′,

~m~t? =
(
m~t?(t1) , m~t?(t2) , ...,m~t?(tK)

)′
and ~ε ∼ N(0,Σ) with Σkk′ =

Cov (Z(tk), Z(tk′)) given in formulae (12), (13) and (14). Since most of the penal-
ized likelihood methods rely on i.i.d. observations, we will decorrelate the compo-
nents of ~Sn keeping only points of the process taken at marker positions.

In what follows, we assume that we are under complete Linkage Disequilibrium,
i.e. the m QTLs are located on some markers. Furthermore, we look for QTLs only
at marker locations. Indeed, it will make the reading easier and is particularly ap-
propriate with the high density of markers, thanks to new sequencing technologies.
Under this context, ∆k will denote the putative effect at location tk.

Notation 6.1: Gk denotes either
√
A1 +A2ξ2

2(tk)/σ or
√
B/σ depending if tk

belongs to T1
K\T2

K or T2
K , respectively.

Using the expression of the mean function and also the Cholesky decomposition
Σ = AA′, we have

A−1~Sn = A′ (∆1 , ... , ∆K)′ + A−1~ε + oP (1) (15)

where

∆k =

{
0 if tk /∈ {t?1, . . . , t?m}
asGk
σ otherwise, with s the index such as t?s = tk.

(16)

We can notice that the markers are amplified of a factor
√
B/σ on the sparse map

and amplified of a factor
√
A1 +A2ξ2

2(tk)/σ on the dense map.
In the sequel, we set ∆ := (∆1, ...,∆K)′. In order to find the non zero ∆k, a

natural approach is to use a penalized regression and estimate ∆ by:

∆̂AdaptSgeno(λ, α) = arg min
∆

(∥∥∥A−1~Sn −A′∆
∥∥∥2

2
+ λ pen(α)

)
(17)
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where:

pen(α) =
1− α

2
‖∆‖22 + α ‖∆‖1 (18)

and ‖ ‖2 is the L2 norm, ‖ ‖1 is the L1 norm, and λ and α denote tuning parameters.
As in our previous study, we define the AdaptSgenoLasso and the AdaptSgenoEN

in the following way:

∆̂AdaptSgenoLasso(λ) = ∆̂AdaptSgeno(λ, 1)

∆̂AdaptSgenoEN(λ, α) = ∆̂AdaptSgeno(λ, α). (19)

Note that for S1
− = S2

− and S1
+ = S2

+ (classical selective genotyping), since
A2 = 0 and B = A1, each entry of the matrix Σ is equal to ρ(tk, tk′) (cf. formulae
12, 13 and 14). As expected, in this case, formula (17) is identical to formula (14)
of [53], and the AdaptSgenoLasso (resp. AdaptSgenoEN) matches the SgenoLasso
(resp. SgenoEN) under complete Linkage Disequilibrium.

Note that by combining our results from Theorem 4.1 with the Adaptive
Lasso [72], we can introduce another penalized likelihood method: we will call
it AdaptSgenoAdaptLasso in what follows. In this case, it consists in considering
α = 1 in formula (18) and in imposing a penalty ‖W ′∆‖1 with weights equal to

1/
√
B on the sparse map T2

K (i.e. major genes) and 1/
√
A1 +A2ξ2

2(tk) on the
map T1

K\T2
K (i.e. the dense map without loci belonging to the sparse map). The

weighted L1 penalization takes now into account our prior knowledge of major
genes, which is not the case of the AdaptSgenoLasso. Indeed, the AdaptSgeno-
Lasso relies on the Lasso penalty that imposes the same Laplace prior distribution
on each marker.

For the applications in Section 8, we will set α to the value 1
2 and λ will be

chosen by cross validation.

7. Asymptotic theory for AdaptSgenoLasso

As in the previous section, we assume that we are under complete Linkage Dise-
quilibrium, i.e. the m QTLs are located on some markers. We have:

∆̂AdaptSgenoLasso(λ) = arg min
∆

(∥∥∥A−1~Sn −A′∆
∥∥∥2

2
+ λ ‖∆‖1

)
. (20)

Let us normalize all covariables on the same scale. It will replace our problem in
the classical setting where the theory for Lasso is well known (cf. [13] page 108).
Since σ̂2

k := 1
K (AA′)kk = 1

K , let us set A′scal :=
√
KA′. Then , let us define

∆̂AdaptSgenoLasso
scal

(λ) := arg min
∆


∥∥∥A−1~Sn −A′scal∆/

√
K
∥∥∥2

2

K
+ λ

∥∥∥∥ ∆√
K

∥∥∥∥
1

 .

As soon as we set ∆̃ := ∆/
√
K, this problem can be rewritten in the following
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way:

ˆ̂
∆AdaptSgenoLasso

scal

(λ) := arg min
∆̃


∥∥∥A−1~Sn −A′scal∆̃

∥∥∥2

2

K
+ λ

∥∥∥∆̃
∥∥∥

1

 . (21)

We can apply Corollary 6.1 of [13] with σ̂ = 1 (cf. our linear model in formula
(15)), that establishes the slow rate of convergence

∥∥∥A′scal(
ˆ̂
∆AdaptSgenoLasso

scal

− ∆̃)
∥∥∥2

2

K
(22)

= OP

√log(K)

K

 ∑
s|t?s∈T2

K

|as|
√
B

σ2
+

∑
s|t?s∈T1

K\T2
K

|as|
√
A1 +A2ξ2

2(t?s)

σ2




where OP (1) denotes a sequence that is bounded in probability when K → +∞.
Note also that assuming that the “compatibility condition” holds, Corollary 6.2

of [13] applies and we obtain the fast rate of convergence:

∥∥∥A′scal(
ˆ̂
∆AdaptSgenoLasso

scal

− ∆̃)
∥∥∥2

2

K
= OP

(
log(K)m

KΦ2
0

)
(23)

where m is the number of QTLs (factor linked to the sparsity), and Φ2
0 refers to a

compatibility constant.
Let us state the classical Lasso conditions in the “AdaptSgenoLasso” context:

The β-min condition:

min

(
min

s|t?s∈T2
K

|as|
√
B

σ2
√
K
, min
s|t?s∈T1

K\T2
K

|as|
√
A1 +A2ξ2

2(t?s)

σ2
√
K

)
>> Φ−2

√
m log(K)

K

where Φ2 is a restricted eigen value of the design matrix A′scal.

The irrepresentable condition:

∥∥∥Σ(.,?)(Σ(?,?))−1Sign(a1, . . . , am)
∥∥∥
∞
≤ C < 1

where ‖x‖∞ = maxj |xj |, Sign(a1, . . . , am) = (Sign(a1), . . . ,Sign(am))′. Σ(.,?) is a
matrix of size (K −m)×m: it is the submatrix of Σ where rows refers to markers
not matching QTL locations, and where columns refers to QTL loci.

Recall that according to [13], the irrepresentable condition implies the compat-
ibility condition, that ensures the fast rate of convergence. On the other hand,
the β-min condition and the irrepresentable condition, ensure consistent variable
selection for AdaptiveSgenoLasso.

Note that we can easily recover the different conditions obtained for the Sgeno-
Lasso ([53]) as soon as we set T2

K = ∅, A2 = 0 in the different expressions of this
section.
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Table 2. Comparison in terms of power between the classical selective genotyping approach and the new approach

where the selective genotyping varies along the genome (T = 1, markers are located every 1cM on the dense map,

and every 25cM on the sparse map respectively). The analysis relies on the supremum of the LRT process and

on 10,000 paths for the theoretical power (+∞). For the empirical power, 1,000 samples of size n (resp. ñ) for

the new selective genotyping approach (resp. the classical selective genotyping). S.Size denotes either n or ñ.

The power is computed as a function of the ratio γ+/γ (γ = 0.5, γ1 = 0.3, γ+/γ = γ+
1 /γ1) and the number m

of QTLs. The different QTL frameworks are the following: (m = 1, t?1 = 0.03), (m = 2, t?1 = 0.03, t?2 = 0.55),

(m = 3, t?1 = 0.03, t?2 = 0.55, t?3 = 0.80). We consider |as| = 2.828 for the new approach and ãs = as ×
√
ñ/n

for the classical approach, and + refers to positive effect, − refers to negative effect.

QTL number
γ+/γ Method A1 A2 A2/A1 S.Size 1(+) 2(++) 2(+-) 3(+-+)

1/2
selective genotyping
that varies along
the genome

0.7833 0.1454 18.56%

+∞ 58.55% 98.93% 38.17% 46.69%
1,000 57.26% 96.53% 36.49% 45.71%
200 54.20% 95.82% 33.40% 43.03%
100 51.32% 94.90% 29.22% 38.08%

1/2
classical

selective genotyping
0.7833 0 0%

+∞ 52.08% 94.63% 34.66% 42.44%
1,033 51.35% 94.33% 33.78% 41.27%
207 47.97% 92.86% 30.48% 37.96%
103 43.00% 90.19% 26.74% 32.45%

1/4
selective genotyping
that varies along
the genome

0.7303 0.1273 17.43%

+∞ 53.28% 95.19% 35.62% 42.52%
1,000 52.59% 95.20% 34.04% 41.44%
200 49.51% 93.84% 30.23% 36.67%
100 45.04% 91.68% 28.35% 33.58%

1/4
classical

selective genotyping
0.7303 0 0%

+∞ 48.63% 93.16% 32.64% 39.46%
1,033 46.92% 92.57% 31.88% 39.09%
207 44.69% 90.95% 28.12% 34.02%
103 39.17% 88.06% 24.77% 29.74%

1
selective genotyping
that varies along
the genome

0.4823 0.0177 3.67%

+∞ 30.64% 78.69% 20.14% 24.99%
1,000 30.46% 77.65% 20.02% 24.30%
200 27.04% 72.19% 16.45% 22.07%
100 22.09% 66.16% 13.01% 18.31%

1
classical

selective genotyping
0.4823 0 0

+∞ 32.19% 78.89% 21.53% 26.81%
1,033 31.55% 78.46% 20.80% 26.22%
207 28.24% 74.53% 18.26% 22.63%
103 23.98% 66.94% 13.74% 18.10%

Table 3. Performances of the AdaptSgenoLasso as a function of γ1, γ, n (Mean over 100 samples, γ+
1 /γ1 = 1/2,

γ+/γ = 1/2, σ = 1). The following framework is considered : T = 10, K =10,001, tk = 0.001(k − 1), m = 12,

t?1 = 0.65, t?2 = 1.50, t?3 = 2.35, t?4 = 2.75, t?5 = 3.10, t?6 = 3.75, t?7 = 4.15, t?8 = 4.85, t?9 = 6.30, t?10 = 7.90, t?11 =

8.10, t?12 = 8.60. The sparse map consists in markers located every 0.25 Morgans. In all cases, |qs| = 0.1897. The

notation L1 ratio(δ) corresponds to the quantity
∑
k|t?1−δ≤tk≤t

?
1+δ ∪...∪ t?m−δ≤tk≤t

?
m+δ |∆̂k|/

∑
k|tk∈T

1
K
|∆̂k|.

(T = 10, n = 500, K =10,001) (T = 10, n =1,000, K =10,001) (T = 10, n =2,000, K =10,001)
γ1 γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

0.1

0.1∗ 15.24% 24.48% 22.45% 34.31% 32.61% 46.91%
0.2 16.36% 25.85% 24.49% 37.06% 35.02% 49.98%
0.3 16.97% 26.44% 24.57% 37.61% 36.49% 51.83%
0.4 17.75% 27.17% 24.91% 38.11% 36.97% 52.34%
0.5 17.48% 26.85% 25.50% 38.99% 37.30% 52.77%
1 17.92% 27.59% 25.78% 39.53% 37.38% 52.82%

0.2

0.2∗ 17.50% 26.89% 25.36% 37.49% 36.06% 50.44%
0.3 17.67% 27.19% 26.19% 38.78% 37.90% 52.70%
0.4 18.73% 28.30% 26.18% 38.91% 39.01% 53.92%
0.5 18.85% 28.23% 26.67% 39.49% 39.28% 54.16%
1 18.92% 28.80% 26.86% 39.89% 40.23% 55.40%

0.3

0.3∗ 18.36% 27.82% 26.71% 39.30% 38.19% 51.98%
0.4 18.88% 28.56% 27.30% 40.00% 39.49% 53.47%
0.5 19.08% 28.94% 27.35% 40.13% 40.15% 54.26%
1 19.38% 29.49% 28.13% 41.12% 40.97% 55.07%

∗ SgenoLasso and AdaptSgenoLasso are a perfect match.
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Table 4. Same as Table 3 except that the AdaptSgenoEN is considered.

(T = 10, n = 500, K =10,001) (T = 10, n =1,000, K =10,001) (T = 10, n =2,000, K =10,001)
γ1 γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

0.1

0.1∗ 15.33% 24.28% 22.31% 33.93% 32.47% 46.47%
0.2 16.23% 25.43% 24.38% 36.83% 34.98% 49.50%
0.3 17.03% 26.57% 24.47% 37.49% 36.03% 50.85%
0.4 17.63% 27.05% 24.96% 38.28% 37.18% 52.20%
0.5 17.67% 26.99% 25.38% 38.69% 37.28% 52.25%
1 17.55% 27.16% 25.66% 39.32% 37.50% 52.44%

0.2

0.2∗ 17.16% 26.59% 25.07% 37.29% 35.70% 49.88%
0.3 17.73% 27.43% 25.80% 38.15% 37.30% 51.73%
0.4 18.35% 28.08% 26.07% 38.80% 38.56% 53.18%
0.5 18.66% 28.41% 26.64% 39.41% 39.08% 53.74%
1 18.50% 28.38% 26.75% 39.59% 39.42% 54.21%

0.3

0.3∗ 18.25% 27.68% 26.46% 38.89% 37.65% 51.65%
0.4 18.84% 28.50% 26.71% 39.27% 38.62% 52.80%
0.5 18.95% 28.84% 27.32% 40.09% 39.17% 53.38%
1 19.13% 28.99% 27.76% 40.79% 39.89% 54.08%

∗ SgenoEN and AdaptSgenoEN are a perfect match.

Table 5. Performances of the AdaptSgenoLasso as a function of γ1, γ, n (Mean over 100 samples, γ+
1 /γ1 =

1/2, γ+/γ = 1/2, σ = 1). The following framework is considered : T = 4, K =4,001, tk = 0.001(k − 1),

m = 6, t?1 = 0.65, t?2 = 1.50, t?3 = 2.35, t?4 = 2.75, t?5 = 3.10, t?6 = 3.75. The sparse map consists in markers

located every 0.25 Morgans. In all cases, |qs| = 0.1897. The notation L1 ratio(δ) corresponds to the quantity∑
k|t?1−δ≤tk≤t

?
1+δ ∪...∪ t?m−δ≤tk≤t

?
m+δ |∆̂k|/

∑
k|tk∈T

1
K
|∆̂k|.

(T = 4, n = 500, K =4,001) (T = 4, n =1,000, K =4,001) (T = 4, n =2,000, K =4,001)
γ1 γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

0.1

0.1∗ 13.88% 23.31% 22.37% 34.51% 32.97% 47.29%
0.2 16.51% 26.49% 24.39% 37.86% 36.08% 51.33%
0.3 16.48% 27.21% 25.41% 38.47% 36.82% 52.32%
0.4 17.03% 27.51% 26.13% 39.65% 37.62% 53.39%
0.5 16.81% 27.28% 26.87% 40.16% 37.73% 53.51%
1 16.72% 27.97% 27.38% 40.93% 39.39% 55.11%

0.2

0.2∗ 19.28% 29.69% 27.93% 40.29% 37.59% 50.96%
0.3 19.89% 30.94% 28.69% 41.40% 40.18% 54.19%
0.4 19.87% 30.96% 29.81% 42.69% 40.48% 54.39%
0.5 20.04% 31.35% 30.26% 43.37% 41.52% 55.59%
1 19.78% 31.33% 30.94% 43.95% 42.35% 56.12%

0.3

0.3∗ 20.19% 31.70% 30.28% 42.58% 40.78% 55.40%
0.4 20.52% 31.92% 31.21% 44.03% 41.52% 56.34%
0.5 20.28% 32.02% 31.94% 44.90% 42.06% 56.74%
1 20.64% 32.72% 31.93% 45.39% 42.50% 56.56%

∗ SgenoLasso and AdaptSgenoLasso are a perfect match.

Table 6. Same as Table 5 except that the AdaptSgenoEN is considered.

(T = 4, n = 500, K =4,001) (T = 4, n =1,000, K =4,001) (T = 4, n =2,000, K =4,001)
γ1 γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

0.1

0.1∗ 14.45% 24.24% 22.67% 34.60% 32.44% 46.47%
0.2 16.79% 27.02% 25.34% 37.97% 35.97% 50.81%
0.3 16.92% 27.92% 25.72% 38.60% 37.14% 52.23%
0.4 17.40% 28.28% 26.73% 39.62% 38.10% 53.23%
0.5 17.09% 28.48% 27.29% 40.19% 38.55% 53.61%
1 16.98% 28.48% 27.87% 40.81% 39.39% 54.54%

0.2

0.2∗ 19.37% 29.60% 27.85% 40.01% 37.64% 51.51%
0.3 20.19% 30.74% 29.15% 41.57% 38.89% 52.96%
0.4 20.53% 31.44% 29.97% 42.58% 40.13% 54.37%
0.5 19.86% 30.88% 30.36% 43.00% 40.72% 55.05%
1 20.36% 31.59% 30.56% 43.29% 41.73% 55.90%

0.3

0.3∗ 20.74% 32.03% 30.28% 42.40% 39.92% 54.41%
0.4 20.86% 32.31% 31.12% 43.41% 40.10% 54.39%
0.5 20.78% 32.35% 31.77% 44.20% 41.46% 56.10%
1 21.35% 33.26% 31.70% 44.23% 41.76% 56.03%

∗ SgenoEN and AdaptSgenoEN are a perfect match.

8. Simulation study

8.1. About the Max Test

In this section, the focus is on the max test. Recall that the max test relies on the
supremum of the LRT process. In this context, Table 2 compares the power of the
classical selective genotyping approach and our new approach where the selective
genotyping varies along the genome. In order to compute the theoretical power,
10,000 paths of the asymptotic process were sampled. Moreover, the same number
of genotyped markers was considered for both experiments. As a result, simulated
data rely on a sample of size ñ for the classical selective genotyping, and of size n

for the new approach. Note that we have the relationship ñ = n
{

1 + (γ−γ1)#T2
K

γ1K

}
.

In our experiments, n (resp. ñ) took either the value 1,000 (resp. 1,033), 200 (resp.
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Table 7. Performances of the AdaptSgenoLasso in presence of large and small effects QTLs (Mean over 100

samples, γ1 = 0.1, γ+
1 /γ1 = 1/2, γ+/γ = 1/2, σ = 1). Same genetic maps as in Table 3. For the large effects,

|qs| = 0.3794 at locations 1.50, 2.75, and 3.75, whereas for the small effects, |qs| = 0.1897 at locations 0.65, 2.35,

3.10, 4.15, 4.85, 6.30, 7.90, 8.10, 8.60 . The L1 ratio(δ) is given for the large effects QTLs, small effects QTLs,

and all the QTLs.

(T = 10, K =10,001)
Large QTLs Small QTLs All QTLs

n γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

500

0.1∗ 12.89% 17.60% 7.32% 12.76% 20.22% 30.36%
0.2 16.88% 22.55% 7.03% 12.34% 23.91% 34.90%
0.3 18.16% 24.25% 6.88% 12.09% 25.05% 36.34%
0.4 18.89% 25.21% 6.78% 11.71% 25.68% 36.92%
0.5 19.50% 25.87% 6.91% 11.76% 26.41% 37.63%
1 20.05% 26.67% 7.02% 11.81% 27.09% 38.48%

1,000

0.1∗ 16.55% 22.36% 12.98% 20.50% 29.53% 42.86%
0.2 21.52% 28.44% 12.46% 19.59% 33.98% 48.04%
0.3 23.25% 30.61% 12.16% 19.28% 35.41% 49.90%
0.4 24.39% 32.02% 12.00% 19.09% 36.39% 51.12%
0.5 24.70% 32.27% 11.81% 18.91% 36.53% 51.19%
1 25.44% 33.45% 11.90% 18.81% 37.34% 52.26%

2,000

0.1∗ 22.08% 27.27% 18.68% 26.98% 40.76% 54.27%
0.2 28.04% 32.95% 18.21% 26.38% 46.25% 59.33%
0.3 30.27% 35.17% 18.09% 26.01% 48.35% 61.17%
0.4 31.68% 36.51% 17.83% 25.59% 49.51% 62.10%
0.5 32.49% 37.48% 17.89% 25.59% 50.38% 63.07%
1 32.89% 37.84% 17.63% 25.20% 50.52% 63.04%

∗ SgenoLasso and AdaptSgenoLasso are a perfect match.

Table 8. Same as Table 7 except that the AdaptSgenoEN is considered.

(T = 10, K =10,001)
Large QTLs Small QTLs All QTLs

n γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

500

0.1∗ 13.03% 17.61% 7.21% 12.66% 20.25% 30.27%
0.2 16.56% 22.06% 6.89% 12.27% 23.46% 34.33%
0.3 17.89% 24.12% 6.81% 12.02% 24.70% 36.14%
0.4 18.93% 25.33% 6.75% 11.66% 25.69% 36.99%
0.5 19.28% 25.56% 6.84% 11.76% 26.12% 37.32%
1 20.25% 26.67% 6.80% 11.64% 27.04% 38.31%

1,000

0.1∗ 16.23% 21.88% 12.94% 20.31% 29.17% 42.20%
0.2 21.53% 28.10% 12.57% 19.64% 34.11% 47.75%
0.3 23.29% 30.18% 12.22% 19.19% 35.52% 49.37%
0.4 24.60% 31.70% 12.07% 18.97% 36.67% 50.68%
0.5 24.97% 32.06% 11.95% 18.80% 36.92% 50.87%
1 25.88% 33.15% 11.89% 18.60% 37.77% 51.76%

2,000

0.1∗ 22.03% 26.99% 18.47% 26.72% 40.50% 53.70%
0.2 27.93% 32.70% 18.06% 26.05% 45.99% 58.75%
0.3 30.42% 35.09% 17.93% 25.75% 48.35% 60.84%
0.4 31.72% 36.39% 17.67% 25.36% 49.39% 61.75%
0.5 32.20% 36.67% 17.42% 24.88% 49.62% 61.55%
1 33.05% 37.56% 17.45% 24.91% 50.50% 62.46%

∗ SgenoEN and AdaptSgenoEN are a perfect match.

Table 9. Same as Table 7 except that the AdaptSgenoAdaptLasso is considered.

(T = 10, K =10,001)
Large QTLs Small QTLs All QTLs

n γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

500

0.1 13.18% 17.92% 7.30% 12.86% 20.48% 30.77%
0.2 21.04% 25.96% 6.19% 11.06% 27.23% 37.02%
0.3 25.82% 30.42% 5.75% 10.32% 31.57% 40.74%
0.4 28.01% 32.53% 5.61% 9.77% 33.62% 42.30%
0.5 28.80% 33.18% 5.34% 9.44% 34.15% 42.62%
1 31.50% 35.86% 5.27% 9.13% 36.77% 44.99%

1,000

0.1 16.55% 22.37% 12.85% 20.39% 29.40% 42.76%
0.2 24.46% 30.60% 11.67% 18.43% 36.12% 49.03%
0.3 27.83% 33.90% 10.62% 17.02% 38.46% 50.92%
0.4 29.86% 35.68% 10.15% 16.25% 40.00% 51.93%
0.5 31.23% 36.91% 9.64% 15.81% 40.88% 52.72%
1 31.97% 37.73% 9.53% 15.27% 41.50% 53.00%

2,000

0.1 21.92% 27.07% 18.61% 26.94% 40.52% 54.01%
0.2 29.75% 34.10% 17.41% 25.15% 47.16% 59.24%
0.3 33.58% 37.48% 16.78% 24.11% 50.36% 61.59%
0.4 35.20% 38.67% 16.14% 23.03% 51.35% 61.71%
0.5 35.98% 39.33% 15.90% 22.63% 51.88% 61.95%
1 36.93% 40.13% 15.34% 21.84% 52.27% 61.97%

207) or 100 (resp. 103).
The threshold (i.e. critical value) at the 5% level was obtained thanks to 10,000

paths of the asymptotic process Z2(.). The parameters γ and γ1 were set to the
values 0.5 and 0.3, respectively. Note that when the classical selective genotyping
approach (i.e. γ1 = γ) was considered, γ1 was set to 0.3.

The chromosome is of length 1M (T = 1), with 101 markers (K = 101) equally
spaced every 1cM on map 1, and 5 markers equally spaced every 25cM on map 2.
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Table 10. Comparison between the AdaptSgenoLasso, the AdaptSgenoEN and the AdaptSgenoAdaptLasso in

presence of large and small effects QTLs. Summary of Tables 7-9. The L1 ratio(δ) is given for all the QTLs.

(T = 10, K =10,001)
AdaptSgenoLasso AdaptSgenoEN AdaptSgenoAdaptLasso

n γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

500

0.1 20.22% 30.36% 20.25% 30.27% 20.48% 30.77%
0.2 23.91% 34.90% 23.46% 34.33% 27.23% 37.02%
0.3 25.05% 36.34% 24.70% 36.14% 31.57% 40.74%
0.4 25.68% 36.92% 25.69% 36.99% 33.62% 42.30%
0.5 26.41% 37.63% 26.12% 37.32% 34.15% 42.62%
1 27.09% 38.48% 27.04% 38.31% 36.77% 44.99%

1,000

0.1 29.53% 42.86% 29.17% 42.20% 29.40% 42.76%
0.2 33.98% 48.04% 34.11% 47.75% 36.12% 49.03%
0.3 35.41% 49.90% 35.52% 49.37% 38.46% 50.92%
0.4 36.39% 51.12% 36.67% 50.68% 40.00% 51.93%
0.5 36.53% 51.19% 36.92% 50.87% 40.88% 52.72%
1 37.34% 52.26% 37.77% 51.76% 41.50% 53.00%

2,000

0.1 40.76% 54.27% 40.50% 53.70% 40.52% 54.01%
0.2 46.25% 59.33% 45.99% 58.75% 47.16% 59.24%
0.3 48.35% 61.17% 48.35% 60.84% 50.36% 61.59%
0.4 49.51% 62.10% 49.39% 61.75% 51.35% 61.71%
0.5 50.38% 63.07% 49.62% 61.55% 51.88% 61.95%
1 50.52% 63.04% 50.50% 62.46% 52.27% 61.97%

Table 11. Performances of the AdaptSgenoLasso in presence of large and small effects QTLs (Mean over 100

samples, γ1 = 0.1, γ+
1 /γ1 = 1/2, γ+/γ = 1/2, σ = 1). Same genetic maps as in Table 5. For the large effects,

|qs| = 0.3794 at locations 1.50, 2.75, and 3.75, whereas for the small effects, |qs| = 0.1897 at locations 0.65, 2.35,

3.10. The L1 ratio(δ) is given for the large effects QTLs, small effects QTLs, and all the QTLs.

(T = 4, K =4,001)
Large QTLs Small QTLs All QTLs

n γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

500

0.1∗ 19.94% 30.57% 4.70% 7.69% 24.64% 38.26%
0.2 24.79% 36.18% 4.28% 7.09% 29.07% 43.28%
0.3 25.49% 37.83% 4.07% 6.65% 29.56% 44.48%
0.4 26.79% 38.72% 4.00% 6.56% 30.79% 45.28%
0.5 27.12% 39.56% 3.88% 6.37% 31.00% 45.93%
1 27.54% 41.07% 3.87% 6.31% 31.41% 47.38%

1,000

0.1∗ 32.09% 41.82% 6.55% 10.35% 38.64% 52.17%
0.2 37.78% 47.87% 5.92% 9.56% 43.70% 57.43%
0.3 39.87% 50.47% 5.71% 9.03% 45.58% 59.50%
0.4 41.76% 52.25% 5.59% 8.87% 47.34% 61.12%
0.5 41.99% 52.21% 5.46% 8.66% 47.45% 60.87%
1 42.54% 53.13% 5.17% 8.28% 47.71% 61.41%

2,000

0.1∗ 38.58% 46.04% 10.58% 14.93% 49.16% 60.96%
0.2 47.13% 53.99% 9.90% 14.00% 57.03% 67.99%
0.3 49.19% 55.55% 9.41% 13.17% 58.60% 68.72%
0.4 50.36% 56.35% 9.11% 12.65% 59.47% 69.00%
0.5 51.05% 57.19% 8.82% 12.39% 59.86% 69.58%
1 52.25% 57.84% 8.66% 12.01% 60.90% 69.85%

∗ SgenoLasso and AdaptSgenoLasso are a perfect match.

Table 12. Same as Table 11 except that AdaptSgenoEN is considered.

(T = 4, K =4,001)
Large QTLs Small QTLs All QTLs

n γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

500

0.1∗ 20.26% 30.69% 4.86% 7.84% 25.11% 38.53%
0.2 24.78% 36.20% 4.42% 7.14% 29.21% 43.35%
0.3 26.67% 38.57% 4.36% 6.88% 31.03% 45.45%
0.4 27.30% 39.36% 4.03% 6.55% 31.32% 45.91%
0.5 28.06% 40.65% 3.97% 6.50% 32.03% 47.14%
1 27.84% 40.86% 3.70% 6.17% 31.54% 47.03%

1,000

0.1∗ 32.13% 41.36% 6.75% 10.10% 38.88% 51.45%
0.2 37.27% 46.82% 6.11% 9.30% 43.38% 56.12%
0.3 40.42% 50.06% 5.92% 8.89% 46.33% 58.95%
0.4 41.95% 51.64% 5.73% 8.69% 47.68% 60.32%
0.5 42.12% 51.63% 5.55% 8.41% 47.66% 60.04%
1 43.59% 53.29% 5.36% 8.23% 48.95% 61.52%

2,000

0.1∗ 38.04% 45.76% 10.46% 14.87% 48.50% 60.63%
0.2 45.54% 52.96% 9.81% 13.86% 55.35% 66.82%
0.3 47.82% 54.76% 9.20% 13.01% 57.02% 67.77%
0.4 49.54% 56.29% 9.06% 12.67% 58.60% 68.97%
0.5 50.25% 56.81% 8.87% 12.38% 59.12% 69.19%
1 50.87% 56.97% 8.51% 11.74% 59.37% 68.72%

∗ SgenoEN and AdaptSgenoEN are a perfect match.

Different architectures are studied: either 1 QTL (m = 1) at 3cM, either 2 QTLs
(m = 2) at 3cM and 55cM, or 3 QTLs (m = 3) at 3cM, 55cM and 80cM.

For the new selective genotyping, the absolute value of the constant linked to
the QTL effect was set to 2.8284 (i.e. |as| = 2.8284), allowing to deal with a small
QTL effect (e.g. effect of 0.2 when n = 200). For the classical selective genotyping,

we considered ãs = as ×
√
ñ/n, in order to deal with same QTL effects as for the

selective genotyping that varies with the genome (e.g. effect of 0.2 when ñ = 207).
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Table 13. Same as Table 11 except that AdaptSgenoAdaptLasso is considered.

(T = 4, K =4,001)
Large QTLs Small QTLs All QTLs

n γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

500

0.1 20.01% 30.45% 4.77% 7.66% 24.78% 38.11%
0.2 30.15% 40.75% 3.94% 6.54% 34.09% 47.29%
0.3 34.08% 44.70% 3.68% 5.90% 37.75% 50.60%
0.4 36.81% 47.12% 3.28% 5.46% 40.10% 52.58%
0.5 38.16% 48.80% 3.19% 5.21% 41.35% 54.01%
1 39.03% 49.67% 3.03% 5.07% 42.06% 54.74%

1,000

0.1 32.28% 42.07% 6.48% 10.30% 38.75% 52.37%
0.2 41.95% 50.93% 5.36% 8.84% 47.31% 59.77%
0.3 45.60% 54.01% 4.89% 7.89% 50.49% 61.90%
0.4 48.54% 56.48% 4.52% 7.48% 53.06% 63.96%
0.5 49.41% 57.15% 4.35% 7.10% 53.75% 64.26%
1 50.97% 58.20% 4.09% 6.79% 55.07% 65.01%

2,000

0.1 39.04% 46.56% 10.61% 15.06% 49.65% 61.62%
0.2 50.26% 56.16% 9.59% 13.39% 59.85% 69.55%
0.3 52.16% 57.18% 8.53% 12.02% 60.69% 69.20%
0.4 54.94% 59.55% 8.07% 11.30% 63.02% 70.86%
0.5 56.45% 60.68% 7.93% 10.98% 64.39% 71.66%
1 57.82% 61.70% 7.41% 10.31% 65.23% 72.01%

Table 14. Comparison between the AdaptSgenoLasso, the AdaptSgenoEN and the AdaptSgenoAdaptLasso in

presence of large and small effects QTLs. Summary of Tables 11-13. The L1 ratio(δ) is given for all the QTLs.

(T = 4, K =4,001)
AdaptSgenoLasso AdaptSgenoEN AdaptSgenoAdaptLasso

n γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

500

0.1 24.64% 38.26% 25.11% 38.53% 24.78% 38.11%
0.2 29.07% 43.28% 29.21% 43.35% 34.09% 47.29%
0.3 29.56% 44.48% 31.03% 45.45% 37.75% 50.60%
0.4 30.79% 45.28% 31.32% 45.91% 40.10% 52.58%
0.5 31.00% 45.93% 32.03% 47.14% 41.35% 54.01%
1 31.41% 47.38% 31.54% 47.03% 42.06% 54.74%

1,000

0.1 38.64% 52.17% 38.88% 51.45% 38.75% 52.37%
0.2 43.70% 57.43% 43.38% 56.12% 47.31% 59.77%
0.3 45.58% 59.50% 46.33% 58.95% 50.49% 61.90%
0.4 47.34% 61.12% 47.68% 60.32% 53.06% 63.96%
0.5 47.45% 60.87% 47.66% 60.04% 53.75% 64.26%
1 47.71% 61.41% 48.95% 61.52% 55.07% 65.01%

2,000

0.1 49.16% 60.93% 48.50% 60.63% 49.65% 61.62%
0.2 57.03% 67.99% 55.35% 66.82% 59.85% 69.55%
0.3 58.60% 68.72% 57.02% 67.77% 60.69% 69.20%
0.4 59.47% 69.00% 58.60% 68.97% 63.02% 70.86%
0.5 59.86% 69.58% 59.12% 69.19% 64.39% 71.66%
1 60.90% 69.85% 59.37% 68.72% 65.23% 72.01%

Table 15. Comparison between the SgenoAdaptLasso, the AdaptSgenoLasso and the AdaptSgenoAdaptLasso in

presence of large and small effects QTLs. The L1 ratio(δ) is given for all the QTLs. n (resp. ñ) refers to the

sample size for an experiment with a selective genotyping that varies along the genome (resp. with a classical

selective genotyping). Same framework as Table 7.

(T = 10, K =10,001)
AdaptSgenoLasso AdaptSgenoAdaptLasso SgenoAdaptLasso︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

γ n L1 ratio(0.01) L1 ratio(0.02) n L1 ratio(0.01) L1 ratio(0.02) ñ L1 ratio(0.01) L1 ratio(0.02)
0.2

500

23.58% 34.42%

500

27.30% 37.07% 503 23.21% 33.84%
0.3 25.04% 36.24% 30.60% 39.59% 504 24.49% 34.78%
0.4 25.65% 37.11% 33.24% 41.94% 507 22.02% 34.16%
0.5 26.26% 37.38% 34.56% 43.10% 509 24.05% 34.99%
1 25.31% 37.59% 34.17% 43.00% 520 22.91% 33.67%

0.2

1,000

33.88% 47.90%

1,000

36.12% 49.02% 1,006 30.68% 43.64%
0.3 35.47% 49.95% 38.57% 51.09% 1,008 29.23% 41.52%
0.4 36.42% 51.05% 40.29% 52.39% 1,014 32.15% 43.79%
0.5 37.19% 52.04% 40.88% 52.78% 1,018 32.54% 42.29%
1 37.56% 52.52% 41.42% 52.95% 1,040 30.86% 42.98%

The power is computed as a function of the ratio γ+/γ. In order to concentrate
on the same kind of selective genotyping on maps 1 and 2, we considered the
relationship γ+/γ = γ+

1 /γ1 in all cases.
According to Table 2, we can notice a fair agreement between the empirical power

and the theoretical power for n=1,000 and ñ=1,033. On the other hand, our new
approach performed better than the classical approach, when the ratios γ+/γ took
the values 1/2 or 1/4. For instance, when the selective genotyping was performed
symmetrically, the asymptotic power associated to our approach was found equal
to 58.55% for m = 1 and to 46.69% for m = 3. In contrast, the power associated
to the classical approach was estimated to 52.08% for m = 1 and to 42.44% for
m = 3.



January 13, 2025 SgenoVaryWithGenomev24RevisionHAL

The AdaptSgenoLasso, an extended version of the SgenoLasso 27

Table 16. Comparison between the AdaptSgenoLasso, the AdaptSgenoAdaptLasso and the SgenoAdaptLasso,

in presence of large and small effects QTLs. The L1 ratio(δ) is given for all the QTLs. n (resp. ñ) refers to the

sample size for an experiment with a selective genotyping that varies along the genome (resp. with a classical

selective genotyping). Same framework as Table 11.

(T = 4, K =4,001)
AdaptSgenoLasso AdaptSgenoAdaptLasso SgenoAdaptLasso︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

γ n L1 ratio(0.01) L1 ratio(0.02) n L1 ratio(0.01) L1 ratio(0.02) ñ L1 ratio(0.01) L1 ratio(0.02)
0.2

500

29.24% 43.41%

500

34.11% 47.33% 503 28.84% 41.21%
0.3 30.13% 45.10% 37.32% 50.29% 504 29.53% 41.94%
0.4 30.63% 45.15% 39.94% 52.24% 507 29.13% 41.91%
0.5 30.88% 45.79% 41.37% 54.05% 509 32.59% 44.63%
1 31.65% 47.95% 42.10% 54.60% 520 32.13% 44.24%
0.2

1,000

43.60% 57.35%

1,000

46.98% 59.41% 1,006 35.44% 50.07%
0.3 45.62% 59.25% 50.82% 61.99% 1,008 41.15% 53.59%
0.4 47.07% 60.89% 52.54% 63.33% 1,014 41.76% 55.91%
0.5 47.96% 61.34% 54.22% 64.79% 1,018 39.38% 52.88%
1 48.42% 62.16% 55.03% 65.29% 1,040 40.17% 53.68%

Surprisingly, the classical approach was the best method when the selective geno-
typing was unidirectional (γ+/γ = 1). It can be explained by the fact that in this
setting, the ratio A2/A1 takes the value 3.67% , which means that the contribu-
tion to the sparse map is negligible as compared to the one of the dense map. In
contrast, when γ+/γ is set to 1/2 and 1/4, A2/A1 is equal to 18.56% and 17.43%,
respectively. In this case, genotyping extra individuals on the sparse map is more
rewarding.

To sum up, overall, it is clear in view of our simulation study that we should use
a symmetrical selective genotyping that varies along the genome.

8.2. Association study

In this section, we propose to investigate the performances of the AdaptSgenoLasso
and its cousins in association studies. In the different tables, performances will be
reported in terms of L1 ratio which is an indicator of whether or not the detected
QTLs belong to the “signal area” assuming a tolerance level of either 0.01M or
0.02M (cf. captions in tables for more details).

Tables 3-6 focus on small effects QTLs, whereas Tables 7-14 consider both small
effects QTLs and large effects QTLs. n took either the value 500 , 1,000 or 2,000.
The genome length was set either to 4M or to 10M. When T = 10 (resp. T = 4),
12 QTLs (resp. 6 QTLs) were placed on the genome, and the dense map relied
on 10,000 equally spaced markers (resp. 4,000 markers). Besides, in both cases,
the sparse map consisted in markers located every 0.25M. A symmetrical selective
genotyping (γ+/γ = γ+

1 /γ1 = 1/2) was performed. We let the parameter γ vary
from 0.1 to 1, and considered a few values for γ1. Recall that under the setting
γ = γ1, since we have the same percentage of genotyped individuals on the two
maps, the AdaptSgenoLasso and the AdaptSgenoEN match the SgenoLasso and
the SgenoEN, respectively.

According to Tables 3-6, as expected, when the value of γ1 was fixed, the L1 ratio
globally increased with γ, specially for a large number of observations (see n =1,000
or 2,000). In the same way, for a given value of γ, the L1 ratio globally increased
with γ1 in most cases. Overall, the AdaptSgenoLasso and the AdaptSgenoEN pre-
sented very similar performances. Indeed, for T = 10 (resp. T = 4), the average L1
ratio assuming a tolerance level of 0.01M, was found equal to 27.21% (resp. 28.73%)
for the AdaptSgenoLasso and to 26.97% (resp. 28.80%) for the AdaptSgenoEN.

Let us now focus on Tables 7-14 dealing with a mixture of small and large effects
QTLs. The genetic maps were the same as before, except that 3 QTLs of large
effects were considered when T = 4 and T = 10. The large effects were chosen as
twice the small effects. Note that in the tables, for a given tolerance level, three
kinds of L1 ratios are given: the one focusing only on large effects QTLs, the one
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based exclusively on small effects QTLs, and the classical one for all the QTLs.
The percentage γ1 was set to the value 0.1 in all experiments.

According to Table 7-8, the L1 ratio relying on large effects globally increased
with γ whereas the one based on small effects QTLs decreased with γ. This behavior
is not surprising since at loci belonging to the sparse map, QTL effects are more
and more amplified (cf. formula 16) when γ increases. Then, since the denominator
of the L1 ratio tends to increase whereas the numerator linked to small effect QTLs
(located on the dense map) remains the same, the L1 ratio based on small effects
QTLs decreases. Last, as expected, the classical L1 ratio that considers all the
QTLs, increased with n and with γ.

Table 9 describes performances of the AdaptSgenoAdaptLasso. Recall that it
incorporates a weighted L1 penalty (cf. end of Section 6), in contrast to the
AdaptSgenoLasso and to the AdaptSgenoEN. We can observe a more significant
increase in terms of L1 ratio for large effects: more weights are imposed to the large
effects thanks to the L1 penalty. In view of Table 10 that proposes a summary of the
previous experiments, the AdaptSgenoAdaptLasso is clearly the most performant
method. The superiority of the AdaptSgenoAdaptLasso over its cousins was found
as the most significant for small number of observations (n=500): the lack of signal
in the data must be compensated by the prior on large loci incorporated within
the weighted L1 penalty. Tables 11-14 focus on the case T = 4. Same conclusions
were obtained as for T = 10.

Last, to conclude this association study, we propose to compare performances
of AdaptSgenoLasso and AdaptSgenoAdaptLasso, with those of the SgenoAdapt-
Lasso, a cousin of SgenoLasso. The three methods impose more importance on
some loci of interest, in different ways. First, SgenoAdaptLasso can be viewed as
a version of SgenoLasso that incorporates a weighted L1 penalty. In contrast, the
AdaptSgenoLasso handles the prior information on putative QTLs only by geno-
typing extra markers. Last, the AdaptSgenoAdaptLasso combines both advantages
since it considers extra genotyping and the L1 weighted penalty.

In this context, Tables 15 and 16, evaluate the different methods in presence
of large and small effects QTLs. Table 15 focuses on T = 10 (same framework as
Table 7) whereas Table 16 concentrates on T = 4 (same framework as Table 11). In
the same way as what has been done in Section 8.1, the same number of genotyped
markers was considered for the SgenoAdaptLasso and for the AdaptSgenoAdapt-
Lasso and the AdaptSgenoLasso. We refer to the sample sizes reported in the
tables. Moreover, the SgenoAdaptLasso and the AdaptSgenoAdaptLasso enjoyed
the same L1 penalty (cf. end of Section 6).

We can notice that for T = 10, AdaptSgenoLasso performed always better than
SgenoAdaptLasso, whatever the sample size. For T = 4, the same behavior was
observed with n =1,000. Moreover, AdaptSgenoLasso was superior in most of cases
when n was set to 500. Last but not least, the AdaptSgenoAdaptLasso was by far
the best method in all cases studied and it outperformed the SgenoAdaptLasso. As
a consequence, combining extra genotyping and a weighted L1 penalty was found
as the best strategy: the AdaptSgenoAdaptLasso must be very profitable for ge-
neticists interested in association studies.

Remark (robustness): In Section 2 of the supplementary material, we present
a deep simulation study on the robustness of AdaptSgenoLasso and AdaptSge-
noEN. For the error distributions, we considered symmetric heavy-tailed, asym-
metric light-tailed, and asymmetric heavy-tailed. Overall, this simulation study
shows a relative robustness of AdaptSgenoLasso and AdaptSgenoEN. However, we
believe that a deep theoretical study is required in the future to perfectly under-
stand the behavior of our methods for different shapes of error distributions.
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8.3. Genomic selection

Let us illustrate now the performances of our new method, in terms of genomic
prediction. As mentioned in Section 1, Genomic Selection (GS) focuses on predic-
tions using a large number of markers, whereas GWAS looks for loci of interest.
Recall that GS relies on the fact that in presence of a high density of markers, each
QTL will tend to be tagged by markers located nearby. In that sense, it is likely
that each QTL is in strong Linkage Disequilibrium (i.e. highly correlated) with a
few markers.

In our present study, we concentrate on a backcross population which can be
viewed as a population resulting from 3 generations (see for instance [65]). Since
most of studies on GS rely on populations based on a large number of generations,
a way to mimic a large number of generations is to increase the intensity ν of
the Poisson process N(.) referring to the number or recombination events along
the genome. Indeed, it enables to break long stretch of Linkage Disequilibrium,
that is to say it reduces correlation between markers. By default, Haldane model
[24] assumes ν = 1, so we will consider as ν values either 1 or 5 in what follows.
Note that our theoretical results are still valid forall ν values as soon as we set
ρ(t, t′) := e−2ν|t−t′| and r(t, t′) := 1

2 (1− e−2ν|t−t′|) in all our formulas.
As in the previous section, our model was learned on extreme individuals, i.e.

individuals for which Y /∈
[
S1
− , S

1
+

]
on the dense map, and individuals for which

Y ∈
[
S1
− , S

2
−
]
∪
[
S2

+ , S1
+

]
on the sparse map. We considered a symmetrical selec-

tive genotyping (γ+
1 /γ1 = 1/2, γ+/γ = 1/2). γ1 was always set to the value 0.1 in

our experiments, whereas γ took either the value 0.1 or 0.3, in order to study the
SgenoLasso and the AdaptSgenoLasso (and cousins), respectively.

The model was learned on all extreme individuals and genomic predictions were
evaluated on two kinds of validation sets of size 100. The first one consists in a
bootstrap sample from the individuals for which Y ≤ S1

− or Y ≥ S1
+. Thus, the

bootstrap sample contains genetic clones of a few individuals from the learning
set. The second kind of validation set is largely inspired by the one studied for
the SgenoLasso (see Section 6.1 of [53]): it consists in generating progenies of the
extreme individuals for which Y ≤ S1

− or Y ≥ S1
+. Moreover, in both cases, to

evaluate the accuracy of the prediction, we simulated phenotypic values Ynew for
each of the genomes present in the validation samples, using the “analysis of vari-
ance model” of formula (1) except that X(.) is now replaced by the new genomes.
Recall that in genomic selection, the predictive ability is evaluated according to
the accuracy criterion, that is, the correlation between predicted and true val-
ues (see [33, 62]). In our study, we considered the following genomic predictor∑K

k=1
σ
Gk
√
n
Wnew(tk)∆̂k(ν, α) for an individual in the validation set with genome

denoted Wnew(.). Recall that α refers to the parameter linked to the penalty used
(cf. formula 19).

In this context, Tables 17 and 18 focus on the first and on the second kind of
validation set, respectively. A genome of length 4M was considered and the same
genetic map as in our association study (cf. Section 8.2) with a mixture of small
and large effects QTLs. According to Table 17, for n = 500 and ν = 1, the accuracy
increased from 73.73% for SgenoLasso to 76.00% for AdaptSgenoAdaptLasso. In
the same way, for ν = 5, we observed an increase from 60.03% for SgenoLasso to
62.06% for AdaptSgenoAdaptLasso. Note that when the learning set was larger
(n=1,000), we observed only a slight improvement: the predictive ability rose from
75.34% to 75.88% for ν = 1, and from 66.52% to 67.72% for ν = 5. With such a
large training set, SgenoLasso enjoyed already fair performances. So, in that case,
the size of the training set was probably too large for highlighting the superiority
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Table 17. Comparison between the AdaptSgenoLasso, the AdaptSgenoEN and the AdaptSgenoAdaptLasso in

terms of genomic prediction, on the basis of the first validation set (i.e. bootstrap sample). The predictive ability

(i.e. accuracy) is given as a function of n, γ and the intensity ν of the Poisson process (Mean over 100 samples,

γ1 = 0.1, γ+
1 /γ1 = 1/2, γ+/γ = 1/2, σ = 1). Same genetic map and same QTL effects as in Table 11.

(T = 4, K =4,001)
n ν γ AdaptSgenoLasso AdaptSgenoEN AdaptSgenoAdaptLasso

500
1

0.1∗ 73.73% 73.75% 73.75%
0.3 74.06% 74.05% 76.00%

5
0.1∗ 60.03% 60.09% 60.08%
0.3 60.78% 60.65% 62.06%

1,000
1

0.1∗ 75.34% 75.33% 75.34%
0.3 75.77% 75.77% 75.88%

5
0.1∗ 66.52% 66.57% 66.53%
0.3 67.47% 67.48% 67.72%

∗ SgenoLasso and AdaptSgenoLasso are a perfect match.

Table 18. Same as Table 17 except that the focus is on the second validation set (i.e. new progenies).

(T = 4, K =4,001)
n ν γ AdaptSgenoLasso AdaptSgenoEN AdaptSgenoAdaptLasso

500
1

0.1∗ 53.63% 53.74% 53.65%
0.3 54.54% 54.56% 54.84%

5
0.1∗ 43.34% 43.47% 43.37%
0.3 43.75% 43.63% 45.43%

1,000
1

0.1∗ 55.18% 55.15% 55.04%
0.3 55.72% 55.72% 55.80%

5
0.1∗ 51.30% 51.33% 51.27%
0.3 52.29% 52.65% 53.01%

∗ SgenoLasso and AdaptSgenoLasso are a perfect match.

of our new method (cf. remark at the end of Section 8.2). In the same way, on the
second validation set (see Table 18), we observed good performances for n = 500.
Indeed, the accuracy increased either from 53.63% to 54.84% for ν = 1, or from
43.34% to 45.43% for ν = 5. When a larger training set was under study (n =1,000),
the advantage of AdaptSgenoAdaptLasso (53.01%) over SgenoLasso (51.30%) was
found significant only when we reduced the correlation between markers (ν = 5).
Table 19 is dedicated to T = 10. We considered the same map as in Section 8.2,
with a mixture of small and large effects QTLs. Note that we did not exclusively
concentrate on 3 large effects QTLs. Indeed, we focused also on a framework with
6 large effects QTLs, in order to obtain exactly the same proportion of large effects
QTLs among all QTLs as for T = 4. As expected, the accuracy increased with the
number of large effects QTLs, and also with the size of the training set. Besides, we
observed the same behavior as before: AdaptSgenoAdaptLasso is more interesting
than SgenoLasso specially when the learning set is of moderate size (n =500).

9. Conclusion

In this manuscript, we introduced a new variable selection method, called
AdaptSgenoLasso, that allows geneticists to give more importance to loci of in-
terest, when the model is learned on extreme individuals. Although AdaptSgeno-
Lasso presents better performances than the SgenoLasso, we advise potential users
to choose another cousin, named AdaptSgenoAdaptLasso, that combines advan-
tages of Adaptive Lasso and those of AdaptSgenoLasso. Indeed, according to our
simulation study, when the training set was of moderate size, the AdaptSgenoAd-
aptLasso outperformed the AdaptSgenoLasso. We believe that our methods should
be considered as a first step, in the elaboration of more sophisticated models for
genomic prediction in years to come. Note that our methods were devised exclu-
sively for continuous traits and we did not investigate categorical traits in this
manuscript.
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Table 19. Comparison between the AdaptSgenoLasso, the AdaptSgenoEN and the AdaptSgenoAdaptLasso in

terms of genomic prediction, on the basis of the second validation set (i.e. new progenies). The predictive ability

(i.e. accuracy) is given as a function of n, γ and the number of large effects QTLs (ν = 5, Mean over 100 samples,

γ1 = 0.1, γ+
1 /γ1 = 1/2, γ+/γ = 1/2, σ = 1). Same genetic map as in Table 7 except that either 3 or 6 large

effects QTLs are considered.

(T = 10, K =10,001)
n nb large QTLs γ AdaptSgenoLasso AdaptSgenoEN AdaptSgenoAdaptLasso

500
3

0.1∗ 52.56% 52.33% 52.33%
0.3 53.85% 53.81% 54.64%

6
0.1∗ 67.59% 67.64% 67.60%
0.3 69.15% 69.20% 69.87%

1,000
3

0.1∗ 59.09% 59.06% 59.05%
0.3 59.81% 59.83% 59.49%

6
0.1∗ 70.80% 70.84% 70.77%
0.3 71.35% 71.41% 71.67%

∗ SgenoLasso and AdaptSgenoLasso are a perfect match.

10. Proof of Theorem 4.1

The proof is divided into four parts:

(1) Preliminaries (i.e. computation of the Fisher Information Matrix)
(2) Study of the score process under H0

(3) Study of the score process under the local alternative Hat?

(4) Study of the LRT process.

Preliminaries

Let us compute the score function at a point θ1
0 = (0, µ, σ) that belongs to H0.

We have the relationship

∂lt
∂q1
|θ10 =

Y − µ
σ2

{2p1(t)− 1} 1Y /∈[S1
−,S

1
+] +

Y − µ
σ2

{2p2(t)− 1} 1Y ∈[S1
−,S

2
−]∪[S2

+,S
1
+]

=
α1(t)

σ
ε X(t`,1) +

β1(t)

σ
ε X(tr,1) +

α2(t)

σ
ε X̃(t`,2) +

β2(t)

σ
ε X̃(tr,2)

because of the key Lemma (Lemma 2.6 of [52]), which states that

{2p1(t)− 1} 1Y /∈[S1
−,S

1
+] = α1(t)X(t`,1) + β1(t)X(tr,1)

{2p2(t)− 1} 1Y ∈[S1
−,S

2
−]∪[S2

+,S
1
+] = α2(t)X̃(t`,2) + β2(t)X̃(tr,2) .

Then, we have

(
∂lt
∂q1
|θ10

)2

=
α2

1(t)

σ2
ε2 1Y /∈[S1

−,S
1
+] +

β2
1(t)

σ2
ε2 1Y /∈[S1

−,S
1
+]

+ 2
α1(t)β1(t)

σ2
ε2X(t`,1)X(tr,1)1Y /∈[S1

−,S
1
+] +

α2
2(t)

σ2
ε2 1Y ∈[S1

−,S
2
−]∪[S2

+,S
1
+]

+
β2

2(t)

σ2
ε2 1Y ∈[S1

−,S
2
−]∪[S2

+,S
1
+] + 2

α2(t)β2(t)

σ2
ε2X(t`,2)X(tr,2)1Y ∈[S1

−,S
2
−]∪[S2

+,S
1
+]

and

E

[(
∂lt
∂q1
|θ10

)2
]

=
A1

σ4
ξ2

1(t) +
A2

σ4
ξ2

2(t) .
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Indeed, by definition, according to [49], we have A1 = EH0

[
(Y − µ)21Y /∈[S1

−,S
1
+]

]
.

In the same way, A2 = EH0

[
(Y − µ)21Y ∈[S1

−,S
2
−]∪[S2

+,S
1
+]

]
.

To conclude, after some easy calculations, the Fisher information is the following
diagonal matrix:

Iθ0 = Diag

[
A1

σ4
ξ2

1(t) +
A2

σ4
ξ2

2(t),
1

σ2
,

2

σ2

]
. (24)

10.1. Study under H0

In what follows, we define the processes V1,n(.) and V2,n(.) in the following way:

∀tk ∈ T1
K V1,n(tk) :=

1√
nA1

n∑
j=1

(Yj − µ) Xj(tk) ,

∀tk ∈ T2
K V2,n(tk) :=

1√
nA2

n∑
j=1

(Yj − µ) X̃j(tk) ,

V1,n(t) :=
{
α1(t)V1,n(t`,1) + β1(t)V1,n(tr,1)

}
/ξ1(t) ,

V2,n(t) :=
{
α2(t)V2,n(t`,2) + β2(t)V2,n(tr,2)

}
/ξ2(t) .

Let lnt denote the log likelihood at t, associated to n observations. We have

1√
n

∂lnt
∂q1
|θ10 =

α1(t)

σ
√
n

n∑
j=1

εj Xj(t
`,1) +

β1(t)

σ
√
n

n∑
j=1

εj Xj(t
r,1)

+
α2(t)

σ
√
n

n∑
j=1

εj X̃j(t
`,2) +

β2(t)

σ
√
n

n∑
j=1

εj X̃(tr,2)

=
α1(t)

√
A1

σ2
V1,n(t`,1) +

β1(t)
√
A1

σ2
V1,n(tr,1)

+
α2(t)

√
A2

σ2
V2,n(t`,2) +

β2(t)
√
A2

σ2
V2,n(tr,2) . (25)

According to formulae (3), (24) and (25), we obtain easily that

Sn(t) =

√
A1 ξ1(t)V1,n(t) +

√
A2 ξ2(t)V2,n(t)√

A1 ξ2
1(t) +A2 ξ2

2(t)
,

According to the proof of Theorem 2.5 of [52], we have:

∀tk ∈ T1
K V1,n(tk) −→ N (0, 1) .

In the same way, we obtain easily that:

∀tk ∈ T2
K V2,n(tk) −→ N (0, 1) .
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Furthermore, according to the proof of Theorem 2.5 of [52], we have:

∀(tk, tk′) ∈ T1
K × T1

K Cov (V1,n(tk), V1,n(tk′)) = ρ(tk, tk′) .

In the same way, we obtain easily that:

∀(tk, tk′) ∈ T2
K × T2

K Cov (V2,n(tk), V2,n(tk′)) = ρ(tk, tk′) .

Since V1,n(.) and V2,n(.) are interpolated processes, the convergence of
(V1,n(t`,1), V1,n(tr,1)) and (V2,n(t`,2), V2,n(tr,2)), and the continuous mapping the-
orem, imply that

V1,n(t) −→ N (0, 1) and V2,n(t) −→ N (0, 1) .

As a consequence, according to the continuous mapping theorem

∀t Sn(t) −→ N (0, 1)

which proves the convergence of finite-dimensional.
Let us now prove the weak convergence of the score process Sn(.). Recall that the

tightness and the convergence of finite-dimensional imply the weak convergence of
the score process (see for instance Theorem 4.9 of [5]). Since we have already proved
the convergence of finite-dimensional, let us focus on the tightness of the score
process. Since ξ1(t), ξ2(t), α1(t), α2(t), β1(t) and β2(t) are continuous functions,
each path of the process Sn(.) is a continuous function on [t1, tK ].

Without loss of generalty, let us study the process Sn(.) on the marker interval
[t2, t3], assuming t2 /∈ T2

K and t3 /∈ T2
K . Besides, let us impose that {t1, t4} ⊂ T2

K .
In other words, for locations t and t′ that belong to ]t2, t3[, we have t′r,2 = tr,2 = t4,
t′`,2 = t`,2 = t1. and t′`,1 = t`,1 = t2, t′r,1 = tr,1 = t3.

Recall the modulus of continuity of a continous function x(t) on [t2, t3]:

wx(δ) = sup
|t′−t|<δ

∣∣x(t′)− x(t)
∣∣ where 0 < δ ≤ t3 − t2.

According to Theorem 8.2 of Billingsley (1999), the score process is tight if and
only if the two following conditions hold:

(1) the sequence Sn(t2) is tight.
(2) For each positive ε and η, there exists a δ, with 0 < δ ≤ t3 − t2, and an

integer n0 such that P (wSn (δ) ≥ η) ≤ ε ∀n ≥ n0.

According to Prohorov, the sequence Sn(t2) is tight. Then, 1) is verified. Besides,
let us set

∀i = 1, 2 α̃i(t) = αi(t)/
√
A1ξ2

1(t) +A2ξ2
2(t),

β̃i(t) = βi(t)/
√
A1ξ2

1(t) +A2ξ2
2(t).
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First, we can notice that ∀δ such as 0 < δ ≤ t3 − t2,

wSn(δ) = sup
|t′−t|<δ

∣∣Sn(t′)− Sn(t)
∣∣

= sup
|t′−t|<δ

∣∣∣√A1

{
α̃1(t′)V1,n(t′`,1) + β̃1(t′)V1,n(t′r,1)

}
+
√
A2

{
α̃2(t′)V2,n(t′`,2) + β̃2(t′)V2,n(t′r,2)

}
−
√
A1

{
α̃1(t)V1,n(t`,1) + β̃1(t)V1,n(tr,1)

}
(26)

−
√
A2

{
α̃2(t)V2,n(t`,2) + β̃2(t)V2,n(tr,2)

}
.

Since t′r,2 = tr,2 = t4, t′`,2 = t`,2 = t1, t′`,1 = t`,1 = t2 and t′r,1 = tr,1 = t3, we have

wSn(δ) = sup
|t′−t|<δ

∣∣Sn(t′)− Sn(t)
∣∣

= sup
|t′−t|<δ

∣∣∣√A1

{
α̃1(t′)− α̃1(t)

}
V1,n(t′`,1) +

√
A2

{
α̃2(t′)− α̃2(t)

}
V2,n(t′`,2)

+
√
A1

{
β̃1(t′)− β̃1(t)

}
V1,n(t′r,1) +

√
A2

{
β̃2(t′)− β̃2(t)

}
V2,n(t′r,2)

∣∣∣
≤
√
A1

{
wα̃1

(δ) + wβ̃1
(δ)
}

max
(∣∣∣V1,n(t′`,1)

∣∣∣ , ∣∣V1,n(t′r,1)
∣∣)

+
√
A2

{
wα̃2

(δ) + wβ̃2
(δ)
}

max
(∣∣∣V2,n(t′`,2)

∣∣∣ , ∣∣V2,n(t′r,2)
∣∣)

≤ max
{

2
√
A1

{
wα̃1

(δ) + wβ̃1
(δ)
}

max
(∣∣∣V1,n(t′`,1)

∣∣∣ , ∣∣V1,n(t′r,1)
∣∣) ,

2
√
A2

{
wα̃2

(δ) + wβ̃2
(δ)
}

max
(∣∣∣V2,n(t′`,2)

∣∣∣ , ∣∣V2,n(t′r,2)
∣∣)} .

Since the events are independent,

P
(

max
{

2
√
A1

{
wα̃1

(δ) + wβ̃1
(δ)
}

max
(∣∣∣V1,n(t′`,1)

∣∣∣ , ∣∣V1,n(t′r,1)
∣∣) ,

2
√
A2

{
wα̃2

(δ) + wβ̃2
(δ)
}

max
(∣∣∣V2,n(t′`,2)

∣∣∣ , ∣∣V2,n(t′r,2)
∣∣)} ≥ η)

= 1− P
(

2
√
A1

{
wα̃1

(δ) + wβ̃1
(δ)
}

max
(∣∣∣V1,n(t′`,1)

∣∣∣ , ∣∣V1,n(t′r,1)
∣∣) ≤ η)

× P
(

2
√
A2

{
wα̃2

(δ) + wβ̃2
(δ)
}

max
(∣∣∣V2,n(t′`,2)

∣∣∣ , ∣∣V2,n(t′r,2)
∣∣) ≤ η)

Let us consider 0 < ε1 < 1 and η > 0. Since the sequence
max

(∣∣V1,n(t′`,1)
∣∣ , ∣∣V1,n(t′r,1)

∣∣) is uniformly tight,

∃M1 > 0 ∀n ≥ 1 P
(

max
(∣∣∣V1,n(t′`,1)

∣∣∣ , ∣∣V1,n(t′r,1)
∣∣) ≥M1

)
≤ ε1 . (27)

In other words,

∃M1 > 0 ∀n ≥ 1 P
(

max
(∣∣∣V1,n(t′`,1)

∣∣∣ , ∣∣V1,n(t′r,1)
∣∣) ≤M1

)
≥ 1− ε1 . (28)
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In the same way, the sequence max
(∣∣V2,n(t′`,2)

∣∣ , ∣∣V2,n(t′r,2)
∣∣) is uniformly tight and

∃M2 > 0 ∀n ≥ 1 P
(

max
(∣∣∣V2,n(t′`,2)

∣∣∣ , ∣∣V2,n(t′r,2)
∣∣) ≥M2

)
≤ ε1 . (29)

In other words,

∃M2 > 0 ∀n ≥ 1 P
(

max
(∣∣∣V2,n(t′`,2)

∣∣∣ , ∣∣V2,n(t′r,2)
∣∣) ≤M2

)
≥ 1− ε1 . (30)

According to Heine’s theorem, since α̃1(t), β̃1(t), α̃2(t) and β̃2(t) are continuous on
the compact [t2, t3], these functions are uniformly continuous. So,

∃δ such as 0 < δ < t3 − t2, wα̃1
(δ) + wβ̃1

(δ) <
η

2M1

√
A1

(31)

wα̃2
(δ) + wβ̃2

(δ) <
η

2M2

√
A2

. (32)

As a consequence, we have:

P
(

2
√
A1

{
wα̃1

(δ) + wβ̃1
(δ)
}

max
(∣∣∣V1,n(t′`,1)

∣∣∣ , ∣∣V1,n(t′r,1)
∣∣) ≤ η) ≥ 1− ε1 .

P
(

2
√
A2

{
wα̃2

(δ) + wβ̃2
(δ)
}

max
(∣∣∣V2,n(t′`,2)

∣∣∣ , ∣∣V2,n(t′r,2)
∣∣) ≤ η) ≥ 1− ε1 ,

Then,

P
(

2
√
A1

{
wα̃1

(δ) + wβ̃1
(δ)
}

max
(∣∣∣V1,n(t′`,1)

∣∣∣ , ∣∣V1,n(t′r,1)
∣∣) ≤ η)

× P
(

2
√
A2

{
wα̃2

(δ) + wβ̃2
(δ)
}

max
(∣∣∣V2,n(t′`,2)

∣∣∣ , ∣∣V2,n(t′r,2)
∣∣) ≤ η) ≥ (1− ε1)2 .

As a result,

1− P
(

2
√
A1

{
wα̃1

(δ) + wβ̃1
(δ)
}

max
(∣∣∣V1,n(t′`,1)

∣∣∣ , ∣∣V1,n(t′r,1)
∣∣) ≤ η)

× P
(

2
√
A2

{
wα̃2

(δ) + wβ̃2
(δ)
}

max
(∣∣∣V2,n(t′`,2)

∣∣∣ , ∣∣V2,n(t′r,2)
∣∣) ≤ η) ≤ 1− (1− ε1)2 .

Last, P (wSn(δ) ≥ η) ≤ 1− (1− ε1)2.
To conclude, we just have to set ε := 1 − (1 − ε1)2 to obtain the desired result.

It concludes the proof of 2). As result, the score process is tight.

10.2. Study under Ha~t?

Let us consider the local alternative Ha~t? :



January 13, 2025 SgenoVaryWithGenomev24RevisionHAL

36 C.E. Rabier, C. Delmas

1√
n

∂lnt
∂q1
|θ10 =

α1(t)

σ2
√
n

n∑
j=1

(Yj − µ) Xj(t
`,1) +

β1(t)

σ2
√
n

n∑
j=1

(Yj − µ) Xj(t
r,1)

+
α2(t)

σ2
√
n

n∑
j=1

(Yj − µ) X̃j(t
`,2) +

β2(t)

σ2
√
n

n∑
j=1

(Yj − µ) X̃(tr,2)

=
α1(t)

√
A1

σ2
V1,n(t`,1) +

β1(t)
√
A1

σ2
V1,n(tr,1)

+
α2(t)

√
A2

σ2
V2,n(t`,2) +

β2(t)
√
A2

σ2
V2,n(tr,2)

where

∀tk ∈ T1
K V1,n(tk) :=

1√
nA1


n∑
j=1

m∑
s=1

qsXj(t
?
s)Xj(tk) +

n∑
j=1

σεj Xj(tk)

 ,

∀tk ∈ T2
K V2,n(tk) :=

1√
nA2


n∑
j=1

m∑
s=1

qsXj(t
?
s)X̃j(tk) +

n∑
j=1

σεj X̃j(tk)

 .

By definition, we have the relationship B = EH0

[
(Y − µ)21Y /∈[S2

−,S
2
+]

]
.

According to formula (2.9) of Supplement A of [53],

1√
nA1

n∑
j=1

m∑
s=1

qsXj(t
?
s) Xj(tk) −→

m∑
s=1

asρ(tk, t
?
s)γ1√

A1
. (33)

In the same way, we have

1√
nB

n∑
j=1

m∑
s=1

qsXj(t
?
s) Xj(tk)1Yj /∈[S2

−,S
2
+] −→

m∑
s=1

asρ(tk, t
?
s)γ√
B

.

As consequence, using the fact that γ2 := γ − γ1 and X̃(tk) = X(tk)1Yj /∈[S2
−,S

2
+] −

X(tk), we have

1√
nA2

n∑
j=1

m∑
s=1

qsXj(t
?
s) X̃j(tk) −→

m∑
s=1

asρ(tk, t
?
s)γ2√

A2
. (34)

Besides, according to formula (2.10) of Supplement A of [53],

n∑
j=1

σεjXj(tk)√
nA1

−→ N
(∑m

s=1 ρ(t?s, tk)as√
A1

{
zγ+

1
ϕ(zγ+

1
)− z1−γ−1 ϕ(z1−γ−1 )

}
, 1

)
,

(35)

n∑
j=1

σεjXj(tk)1Yj /∈[S2
−,S

2
+]√

nB
−→ N

(∑m
s=1 ρ(t?s, tk)as√

B
{
zγ+ϕ(zγ+)− z1−γ−ϕ(z1−γ−)

}
, 1

)
.
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We have, using a technical proof present below formula (4.3) in Section 4 of Sup-
plement A of [53],

Cov
(
σεjXj(tk)1Yj /∈[S2

−,S
2
+], σεjXj(tk)

)
= E

(
σ2ε2

j1Yj /∈[S1
−,S

1
+]

)
− E

(
σεjXj(tk)1Yj /∈[S2

−,S
2
+]

)
E
(
σεjXj(tk)

)
= E

(
σ2ε2

j1Yj /∈[S1
−,S

1
+]

)
−

[{
zγ+ϕ(zγ+)− z1−γ−ϕ(z1−γ−)

} m∑
s=1

ρ(t?s, tk)qs

×
{
zγ+

1
ϕ(zγ+

1
)− z1−γ−1 ϕ(z1−γ−1 )

} m∑
s=1

ρ(t?s, tk)qs

]
+ o( max

1≤s≤m
|qs|2)

−→ A1 .

As a consequence, we have

n∑
j=1

σεjXj(tk)1Yj /∈[S2
−,S

2
+]√

n
−

n∑
j=1

σεjXj(tk)√
n

−→ N

(
m∑
s=1

ρ(t?s, tk)as
{
zγ+ϕ(zγ+)

−z1−γ−ϕ(z1−γ−)− zγ+
1
ϕ(zγ+

1
) + z1−γ−1 ϕ(z1−γ−1 )

}
,B −A1

)
Then, since by definition A2 = B −A1, we have :

n∑
j=1

σεjX̃j(tk)√
nA2

−→ N
(∑m

s=1 ρ(t?s, tk)as√
A2

{
zγ+ϕ(zγ+)− z1−γ−ϕ(z1−γ−)

−zγ+
1
ϕ(zγ+

1
) + z1−γ−1 ϕ(z1−γ−1 )

}
, 1
)
. (36)

Finally, we obtain using formulae (33), (34), (35) and (36)

∀tk ∈ T1
K V1,n(tk) −→ N

(√
A1

σ2

m∑
s=1

ρ(t?s, tk)as, 1

)
and

∀tk ∈ T2
K V2,n(tk) −→ N

(√
A2

σ2

m∑
s=1

ρ(t?s, tk)as, 1

)
.

As a consequence, using the interpolations :

Sn(t) −→ N (Ω, 1) (37)

where

Ω =
A1

{
α1(t)

∑m
s=1 ρ(t?s, t

`,1)as + β1(t)
∑m

s=1 ρ(t?s, t
r,1)as

}
σ2
√
A1 ξ2

1(t) +A2 ξ2
2(t)

+
A2

{
α2(t)

∑m
s=1 ρ(t?s, t

`,2)as + β2(t)
∑m

s=1 ρ(t?s, t
r,2)as

}
σ2
√
A1 ξ2

1(t) +A2 ξ2
2(t)

.
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Study of the LRT process

Since the model with t fixed is regular, it is easy to prove that for fixed t

Λn(t) = S2
n(t) + oP (1) (38)

under the null hypothesis.
Our goal is now to prove that the remainder is uniform in t.
Let us consider now t as an extra parameter. Let t?1, θ?1 be the true parameter

that will be assumed to belong to H0. Note that t?1 makes no sense for θ1 belonging
to H0. It is easy to check that at H0 the Fisher information relative to t is zero so
that the model is not regular.

It can be proved that assumptions 1, 2 and 3 of [3] hold. So, we can apply
Theorem 1 of [3] and we have

sup
(t,θ)

lnt (θ)− lnt?1 (θ?1) = sup
d∈D

 1√
n

n∑
j=1

d(Xj)

2

1∑n
j=1 d(Xj)≥0

+ oP (1) (39)

where the observation Xj stands for
(
Yj , Xj(t

`,1), X̃j(t
`,2), Xj(t

r,1), X̃j(t
r,2)
)

and where D is the set of scores defined in [3], see also [21] and [4]. A similar
result is true under H0 with a set D0. Let us precise the sets of scores D and D0.
These sets are defined at the sets of scores of one parameter families that converge
to the true model pt?1 ,θ?1 and that are differentiable in quadratic mean.

It is easy to see that

D =
{ 〈W, l′t (θ?1)〉√

VarH0
(〈W, l′t(θ?1)〉)

,W ∈ R3, t ∈ [t`,2, tr,2]
}

where l′ is the gradient with respect to θ1. In the same manner

D0 =
{ 〈W, l′t(θ?1)〉√

VarH0
(〈W, l′t(θ?1)〉)

,W ∈ R2
}
,

where now the gradient is taken with respect to µ and σ only. Of course this
gradient does not depend on t.

Using the transform W → −W in the expressions of the sets of score, we see
that the indicator function can be removed in formula (39). Then, since the Fisher
information matrix is diagonal (see formula 24) , it is easy to see that

sup
d∈D

 1√
n

n∑
j=1

d(Xj)

2− sup
d∈D0

 1√
n

n∑
j=1

d(Xj)

2

= sup
t∈[t`,2,tr,2]


 1√

n

n∑
j=1

∂lt
∂q1

(Xj) |θ10√
VarH0

(
∂lt
∂q1

(Xj) |θ10
)


2 .

This is exactly the desired result.
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In other words, we have proved that under H0:

sup Λn(.) = supS2
n(.) + oP (1) . (40)

Our goal is now to prove that it is also true under the alternative Ha~t? .
Recall that K genetic markers are located at 0 = t1 < t2 < . . . < tK = T (i.e.

on the map T1
K). Besides, m QTLs lie on [0, T ] at locations t?1, t?2, ..., t?m, that are

distinct of marker locations. By definition t?1 < t?2 < ... < t?m.
All the information is contained in the flanking markers

of the QTLs locations, because of the Poisson process. As
a consequence, let us compute the probability distribution of(
Y,X(t?`,11 ), X(t?r,11 ), . . . , X(t?`,1m ), X(t?r,1m ), X̃(t?`,21 ), X̃(t?`,21 ), . . . , X̃(t?`,2m ), X̃(t?r,2m )

)
.

We have

P(Y ∈ [y , y + dy] , Y /∈ [S1
−, S

1
+] , X(t?`,11 ), X(t?r,11 ), . . . , X(t?`,1m ), X(t?r,1m ))

=
∑

(u1,...,um)∈{−1,1}m
P(Y ∈ [y , y + dy] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

× P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`,11 ), X(t?r,11 ), . . . , X(t?`,1m ), X(t?r,1m )) .

In the same way,

P(Y ∈ [y , y + dy] , Y ∈ [S1
−, S

2
−] ∪ [S2

+, S
1
+] , X̃(t?`,21 ), X̃(t?r,21 ), . . . , X̃(t?`,2m ), X̃(t?r,2m ))

=
∑

(u1,...,um)∈{−1,1}m
P(Y ∈ [y , y + dy] | X̃(t?1) = u1, X̃(t?2) = u2, . . . , X̃(t?m) = um)

× P(X̃(t?1) = u1, X̃(t?2) = u2, . . . , X̃(t?m) = um, X̃(t?`,21 ), X̃(t?r,21 ), . . . , X̃(t?`,2m ), X̃(t?r,2m )) .

Besides,

P(Y ∈ [y , y + dy] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

=
P(Y ∈ [y , y + dy] , Y /∈ [S1

−, S
1
+] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

P(Y /∈ [S1
−, S

1
+] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

=
f(µ+u1q1+u2q2+...+umqm,σ)(y) 1y/∈[S1

−,S
1
+]

P(Y /∈ [S1
−, S

1
+] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

.

On the other hand,

P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`,11 ), X(t?r,11 ), . . . , X(t?`,1m ), X(t?r,1m ))

= P(Y /∈ [S1
−, S

1
+] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`,11 ), X(t?r,11 ), . . . , X(t?`,1m ), X(t?r,1m )) .
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As a result,

P(Y ∈ [y , y + dy] , Y /∈ [S1
−, S

1
+] , X(t?`,11 ), X(t?r,11 ), . . . , X(t?`,1m ), X(t?r,1m ))

=
∑

(u1,...,um)∈{−1,1}m
f(µ+u1q1+u2q2+umqm,σ)(y) 1y/∈[S1

−,S
1
+]

× P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`,11 ), X(t?r,11 ), . . . , X(t?`,1m ), X(t?r,1m )) .

In the same way, we have:

P(Y ∈ [y , y + dy] , Y ∈ [S1
−, S

2
−] ∪ [S2

+, S
1
+] , X̃(t?`,21 ), X̃(t?r,21 ), . . . , X̃(t?`,2m ), X̃(t?r,2m ))

=
∑

(u1,...,um)∈{−1,1}m
f(µ+u1q1+u2q2+umqm,σ)(y) 1y∈[S1

−,S
2
−]∪[S2

+,S
1
+]

× P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`,21 ), X(t?r,21 ), . . . , X(t?`,2m ), X(t?r,2m )) .

Moreover, when the genome information is missing at marker locations (i.e. the
phenotype is not extreme), we find

P
(
Y ∈ [y , y + dy] , X(t?`,11 ) = 0, X(t?r,11 ) = 0, . . . , X(t?`,1m ) = 0, X(t?r,1m ) = 0,

X̃(t?`,21 ) = 0, X̃(t?r,21 ) = 0, . . . , X̃(t?`,2m ) = 0, X̃(t?r,2m ) = 0
)

(41)

=
∑

(u1,...,um)∈{−1,1}m

P(Y ∈ [y , y + dy] , Y ∈ [S2
−, S

2
+], X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

=
∑

(u1,...,um)∈{−1,1}m

f(µ+u1q1+...+umqm,σ)(y) 1y∈[S2
−,S

2
+] P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um) .

Let θm = (q1, ..., qm, µ, σ) denote the new pa-
rameter. Then, the probability distribution of(
Y,X(t?`,11 ), X(t?r,11 ), X̃(t?`,21 ), X̃(t?r,21 ), . . . , X(t?`,1m ), X(t?r,1m ), X̃(t?`,2m ), X̃(t?r,2m )

)
,

with respect to the measure λ⊗N ⊗ . . .⊗N , is

Lm~t?(θ
m) =

∑
(u1,...,um)∈{−1,1}m

[
w1
~t?

(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y /∈[S1
−,S

1
+]

+ w2
~t?

(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y ∈[S1
−,S

2
−]∪[S2

+,S
1
+]

+ v~t?(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y ∈[S2
−,S

2
+]

]
gm(t?1, . . . , t

?
m)

(42)
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with

w1
~t?

(u1, ..., um)

= P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um | X(t?`,11 ), X(t?r,11 ), . . . , X(t?`,1m ), X(t?r,1m )) ,

w2
~t?

(u1, ..., um)

= P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um | X(t?`,21 ), X(t?r,21 ), . . . , X(t?`,2m ), X(t?r,2m )) ,

v~t?(u1, ..., um) = P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

and

gm(t?1, . . . , t
?
m) = P(X(t?`,11 ), X(t?r,11 ), . . . , X(t?`,1m ), X(t?r,1m )) 1Y /∈[S1

−,S
1
+] + 1Y ∈[S2

−,S
2
+]

+ P(X(t?`,22 ), X(t?r,21 ), . . . , X(t?`,2m ), X(t?r,2m )) 1Y ∈[S1
−,S

2
−]∪[S2

+,S
1
+] .

Let us define the parameter θm0 in the following way : θm0 = (0, ..., 0, µ, σ).
The likelihood Lm,n~t?

(θm) for n observations is obtained by the product of n terms

as in formula (42) above. Let Qn and Pn be two sequences of probability measures
defined on the same space (Ωn, An). Qn (respectively Pn) is the probability distri-
bution with density Lm,n~t?

(θm) (respectively Lm,n~t?
(θm0 )).

In what follows, log dQn
dPn

will denote the log likelihood ratio. By definition, we
have the relationship,

log
dQn
dPn

= log

{
Lm,n~t?

(θm)

Lm,n~t?
(θm0 )

}
. (43)

Since the model is differentiable in quadratic mean at θm and according to the
central limit theorem :

log

(
dQn
dPn

)
H0→ N (−1

2
ϑ2, ϑ2) with ϑ2 ∈ R+? .

As a result, according to iii) of Le Cam’s first lemma, we have Qn /Pn, that is to
say the sequence Qn is contiguous with respect to the sequence Pn. Then, formula
(40) is also true under the alternative Ha~t? .

It concludes the proof of Theorem 4.1. �

11. Proof of the skeleton of the covariance function of Z(.)

Using formulae (11) and (10), we obtain easily the following relationships:

∀(tk, tk′) ∈ T2
K × T2

K Cov (Z(tk), Z(tk′)) = ρ(tk, tk′) ,
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∀(tk, tk′) ∈ T1
K\T2

K × T1
K\T2

K

Cov (Z(tk), Z(tk′)) =
[
A1ρ(tk, tk′) +A2

{
α2(tk)α2(tk′)ρ(t`,2k , t`,2k′ )

+ α2(tk)β2(tk′)ρ(t`,2k , tr,2k′ ) + β2(tk)α2(tk′)ρ(tr,2k , t`,2k′ )

+β2(tk)β2(tk′)ρ(tr,2k , tr,2k′ )
}]

/
√{
A1 +A2ξ2

2(tk)
}{
A1 +A2ξ2

2(tk′)
}
.

Besides, since

α2(tk′)ρ(t`,2k , t`,2k′ ) + β2(tk′)ρ(t`,2k , tr,2k′ ) = ρ(t`,2k , tk′)

α2(tk′)ρ(tr,2k , t`,2k′ ) + β2(tk′)ρ(tr,2k , tr,2k′ ) = ρ(tr,2k , tk′),

then,

Cov (Z(tk), Z(tk′)) =
A1ρ(tk, tk′) +A2

{
α2(tk)ρ(t`,2k , tk′) + β2(tk)ρ(tr,2k , tk′)

}
√{
A1 +A2ξ2

2(tk)
}{
A1 +A2ξ2

2(tk′)
} .

Last, we have ∀(tk, tk′) ∈ T2
K × T1

K\T2
K

Cov (Z(tk), Z(tk′)) =
A1ρ(tk, tk′) +A2

{
α2(tk′)ρ(tk, t

`,2
k′ ) + β2(tk′)ρ(tk, t

r,2
k′ )
}

√
B(A1 +A2ξ2

2(tk′))

=

√
Bρ(tk, tk′)√
A1 +A2ξ2

2(tk′)
.

12. Proof of Theorem 4.2

Let us consider n? individuals for an experiment under the complete data situation
([2]), and let q1 = a/

√
n?, . . ., qm = am/

√
n? denote the QTL effects. Recall that n

denotes the number of individuals for an experiment under a selective genotyping
that varies along the genome. In this context, let ζ be the quantity such as ζ = n

n? .
Then, using formula (37), we obtain easily that when t /∈ T1

K ,

Sn(t) −→ N
(√

ζ Ω, 1
)
.

where Ω is given in formula (37).
Under the complete data situation ([2]), we have S1

− = S2
− = S2

+ = S1
+, so that

A2 = 0 and A1 = B = σ2. As a result,

Sn?(t) −→ N

(
α1(t)

∑m
s=1 ρ(t?s, t

`,1)as + β1(t)
∑m

s=1 ρ(t?s, t
r,1)as

σ
√
ξ2

1(t)
, 1

)
.

As a consequence, if we suppose ∀s as > 0 and consider a one sided test, the
statistical test for the selective genotyping that varies along the genome is more
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powerful than the one regarding the complete data situation, as soon as

zα −
√
ζ Ω < zα −

{
α1(t)

∑m
s=1 ρ(t?s, t

`,1)as + β1(t)
∑m

s=1 ρ(t?s, t
r,1)as

}
σ
√
ξ2

1(t)

⇔ ζ >

{
α1(t)

∑m
s=1 ρ(t?s, t

`,1)as + β1(t)
∑m

s=1 ρ(t?s, t
r,1)as

}2

σ2 Ω2 ξ2
1(t)

.

As a result, the efficiency κ is equal to σ2 Ω2 ξ21(t)

{α1(t)
∑m
s=1 ρ(t?s ,t

`,1)as+β1(t)
∑m
s=1 ρ(t?s ,t

r,1)as}2
. It

proves i). The cases ii) (i.e. tk ∈ T1
K\T2

K) and iii) (tk ∈ T2
K) can easily be obtained

by continuity.

Proof of Remark 2 of Section 4.4: In order to make the results general, let us
consider the case t /∈ T1

K . To begin with, let us replace the term A2 by B − A1 in
the expression of the efficiency κ (see above). We have

Ω2 =

[
A2

1

{
α1(t)

∑m
s=1 ρ(t?s, t

`,1)as + β1(t)
∑m

s=1 ρ(t?s, t
r,1)as

}2

σ4
{
A1 ξ2

1(t) + (B −A1) ξ2
2(t)

}
+

(B −A1)2
{
α2(t)

∑m
s=1 ρ(t?s, t

`,2)as + β2(t)
∑m

s=1 ρ(t?s, t
r,2)as

}2

σ4
{
A1 ξ2

1(t) + (B −A1) ξ2
2(t)

}
+2
A1(B −A1)

{
α1(t)

∑m
s=1 ρ(t?s, t

`,1)as + β1(t)
∑m

s=1 ρ(t?s, t
r,1)as

}
σ4
{
A1 ξ2

1(t) + (B −A1) ξ2
2(t)

}
×

{
α2(t)

m∑
s=1

ρ(t?s, t
`,2)as + β2(t)

m∑
s=1

ρ(t?s, t
r,2)as

}]
.

We have to answer the following question : how must we choose γ+
1 , γ−1 , γ+

and γ− to maximize the efficiency ? Recall that by definition, γ+
1 + γ−1 = γ1,

γ+ + γ− = γ and γ1 ≤ γ, γ+
1 ≤ γ+, γ−1 ≤ γ−. Recall also that ϕ(.) denote

the density of the standard normal distribution. Moreover, let Φ(.) denote the
cumulative distribution of the standard normal distribution, and let u1(.) be the

function such as: u1(zγ+
1

) = Φ−1
{
γ1 − 1 + Φ(zγ+

1
)
}

. Then, z1−γ−1 = u1(zγ+
1

). In the

same way, let u(.) be the function such as : u(zγ+) = Φ−1
{
γ − 1 + Φ(zγ+)

}
. Then,

z1−γ− = u(zγ+).

Let k1(.) be the following function : k1(zγ+
1

) = zγ+
1
ϕ(zγ+

1
)− u(zγ+

1
) ϕ
{
u(zγ+

1
)
}

.

We have A1 = σ2
{
γ1 + k1(zγ+

1
)
}

and we have

k′1(zγ+
1

) = ϕ(γ+
1 ) + zγ+

1
ϕ′(zγ+

1
) − u′1(zγ+

1
) ϕ
{
u1(zγ+

1
)
}
− u1(zγ+

1
) u′1(zγ+

1
) ϕ′

{
u1(zγ+

1
)
}
,

u′1(zγ+
1

) =
ϕ(zγ+

1
)

ϕ(z1−γ−1 )
.

Then, we have

k′1

(
zγ+

1

)
= ϕ

(
zγ+

1

)(
z2

1−γ−1
− z2

γ+
1

)
.
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As a result, when γ+
1 = γ1/2, we have k′1(zγ1/2) = 0. Besides, when γ+

1 = 0, we
have zγ+

1
= +∞ and k′1(zγ+

1
) = 0.

In the same way, let k(.) be the following function : k(zγ+) = zγ+ϕ(zγ+) −
u(zγ+) ϕ

{
u(zγ+)

}
. We have B = σ2

{
γ + k(zγ+)

}
and as before, k′(zγ/2) = 0, and

k′(zγ+) = 0 when γ+ = 0.
Let us rewrite Ω2 as the function Ω2(zγ+ , zγ+

1
). Next, after straightforward calcu-

lations, we obtain:

∂Ω2

∂zγ+
1

|(z,zγ1/2)= 0 ,
∂Ω2

∂zγ+

|(zγ/2,z)= 0 ,
∂Ω2

∂zγ+
1

|(z,+∞)= 0 ,
∂Ω2

∂zγ+

|(+∞,z)= 0 .

As a result, the setting γ+/γ = 1
2 and γ+

1 /γ1 = 1
2 , and the setting γ+/γ = 1 and

γ+
1 /γ1 = 1 are optimums of the function.

13. Comparison between selective genotyping that varies along the genome,
the classical selective genotyping, and the complete data situation

Recall that n? and n denote respectively the number of individuals under the com-
plete data situation ([2]) and under the selective genotyping that varies along the
genome. Recall also that κ refers to the efficiency for the selective genotyping that
varies along the genome (see in Theorem 4.2). Then, assuming that phenotyping
is free, the selective genotyping that varies along the genome is more interesting
than the complete data situation, as soon as we have:

nγ1K + n(γ − γ1)#T2
K < n?K

⇔ κ > γ1 + (γ − γ1)
#T2

K

K
.

In the same way, let ñ be the number of individuals required under the classi-
cal selective genotyping situation, in order to reach the same power as under the
complete data situation. κclSgeno will denote the associated efficiency. Then, the
selective genotyping that varies along the genome is more interesting than the
classical selective genotyping as soon as we have

nγ1K + n(γ − γ1)#T2
K < ñγ1K

⇔ κ > κclSgeno

{
1 +

(γ − γ1)#T2
K

γ1K

}
⇔ κ >

κclSgeno

γ1

{
γ1 +

(γ − γ1)#T2
K

K

}

⇔ κ >

{
1 +

zγ+
1
ϕ(zγ+

1
)− z1−γ−1 ϕ(z1−γ−1 )

γ1

}{
γ1 +

(γ − γ1)#T2
K

K

}
.

The last inequality is obtained by replacing κclSgeno by its expression, γ1 +
zγ+

1
ϕ(zγ+

1
)− z1−γ−1 ϕ(z1−γ−1 ), given in Rabier [52].
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[2] Azäıs, J.M., Delmas, C., and Rabier, C.E. (2012). Likelihood ratio test process for Quantitative Trait
Locus detection. Statistics, 48(4) 787-801.
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1. The experiment based on the non extreme individuals

1.1. Preliminaries

In this new experiment, we observe n observations(
Yj , Xj(tσ(1)), Xj(tσ(2)), ..., Xj(tσ(K)), X̃j(t1), X̃j(t2), ..., X̃j(tK)

)
indepen-

dent and identically distributed (i.i.d.).

At a location t ∈ [t1, tK ]\T1
K , the likelihood of the couple

(
Y, X(t`,2), X̃(t`,1), X(tr,2), X̃(tr,1)

)
with respect to the measure λ⊗N⊗N⊗N⊗N , λ being the Lebesgue measure,
N the counting measure on N, is :

Linv
t (θ1) =

[
p2(t) f(µ+q1,σ)(Y )1Y /∈[S1

−,S
1
+] + {1− p2(t)} f(µ−q1,σ)(Y )1Y /∈[S1

−,S
1
+]

+ p1(t) f(µ+q1,σ)(Y )1Y ∈[S1
−,S

2
−]∪[S2

+,S
1
+] + {1− p1(t)} f(µ−q1,σ)(Y )1Y ∈[S1

−,S
2
−]∪[S2

+,S
1
+]

+
1

2
f(µ+q1,σ)(Y )1Y ∈[S2

−,S
2
+] +

1

2
f(µ−q1,σ)(Y )1Y ∈[S2

−,S
2
+]

]
ginv(t)

where f(µ,σ) is the Gaussian density with parameters (µ, σ), p1(t) and p2(t) are

the probabilities P(X(t) =| X(t`,1), X(tr,1)) and P(X(t) =| X(t`,2), X(tr,2)),

p2(t)1Y /∈[S1
−,S

1
+] = P

{
X(t) = 1 | X(t`,2), X(tr,2)

}
1Y /∈[S1

−,S
1
+]

= Q1,1
t,2 1X(t`,2)=11X(tr,2)=1 + Q1,−1

t,2 1X(t`,2)=11X(tr,2)=−1

+Q−1,1t,2 1X(t`,2)=−11X(tr,2)=1 + Q−1,−1t,2 1X(t`,2)=−11X(tr,2)=−1

and

p1(t)1Y ∈[S1
−,S

2
−]∪[S2

+,S
1
+] = P

{
X(t) = 1 | X(t`,1), X(tr,1)

}
1Y ∈[S1

−,S
2
−]∪[S2

+,S
1
+]

= Q1,1
t,1 1X̃(t`,1)=11X̃(tr,1)=1 + Q1,−1

t,1 1X̃(t`,1)=11X̃(tr,1)=−1

+Q−1,1t,1 1X̃(t`,1)=−11X̃(tr,1)=1 + Q−1,−1t,1 1X̃(t`,1)=−11X̃(tr,1)=−1



The quantities Q1,1
t,i , Q1,−1

t,i , Q−1,1t,i , Q−1,−1t,i , for i = 1, 2 , are given in the

main text. Besides, the function ginv(.) has the following expression

ginv(t) = P
{
X(t`,2), X(tr,2)

}
1Y /∈[S1

−,S
1
+] + P

{
X(t`,1), X(tr,1)

}
1Y ∈[S1

−,S
2
−]∪[S2

+,S
1
+] + 1Y ∈[S2

−,S
2
+]

1.2. Main result
Using the same kind of proof as the one of Theorem 4.1, we obtain easily

that :

Z inv(t) =

√
A2 ξ1(t)V1(t) +

√
A1 ξ2(t)V2(t)√

A2 ξ21(t) +A1 ξ22(t)

where the quantities ξ1(t), ξ2(t), A2 and A1 are described above Theorem 4.1
in the main text. V1(.) and V2(.) are the processes defined in Theorem 4.1.

Next, from this expression of Z inv(.), we obtain easily that the mean function
of Z(.) is such that:

• under H0, mZinv,~t?(t) = 0

• under Ha~t? ,

mZinv,~t?(t) =

√
A2 ξ1(t)mV1,~t?

(t) +
√
A1 ξ2(t)mV2,~t?

(t)√
A2 ξ21(t) +A1 ξ22(t)

.

In the same way as what has been done in the main text for describing
the process Z(.), let us focus on particular cases for the process Z inv(.). For
instance, when S1

− = S2
− and S1

+ = S2
+, we have A2 = 0 and the process Z(.) is

the process V2(.): V2(.) matches the process V (.) of Rabier (2015), as soon as
we consider the sparse map as the genetic map, and a selective genotyping of
intensity A1. In the same way, when S1

− = −∞ and S1
+ = +∞, we have A1 = 0

and the process Z(.) is the process V1(.), i.e. the process V (.) of Rabier (2015)
on the dense map with selection intensity A2.

1.3. About the skeleton of the limiting process Zinv(.)
Let us describe here the skeleton of Z inv(.). By continuity, it is easy to see

that when tk belongs to T2
K :

Z inv(tk) =

√
A2 V1(tk) +

√
A1 V2(tk)√

B
, (1)

mZinv,~t?(tk) =

√
B
σ2

m∑
s=1

ρ(t?s, tk)as .

However, at a location tk that belongs to T1
K\T2

K :

Z inv(tk) =

√
A2 V1(tk) +

√
A1

{
α2(tk)V2(t`,2k ) + β2(tk)V2(tr,2k )

}
√
A2 +A1 ξ22(tk)

, (2)

mZinv,~t?(tk) =

A2

σ2

∑m
s=1 ρ(t?s, tk)as + A1

σ2

{
α2(tk)

∑m
s=1 ρ(t?s, t

`,2
k )as + β2(tk)

∑m
s=1 ρ(t?s, t

r,2
k )as

}
√
A2 +A1 ξ22(tk)

.

2



Using straightforward calculations, the skeleton of the covariance function
of Z inv(.) is the following:

∀(tk, tk′) ∈ T2
K × T2

K Cov
(
Z inv(tk), Z inv(tk′)

)
= ρ(tk, tk′) , (3)

∀(tk, tk′) ∈ T1
K\T2

K × T1
K\T2

K

Cov
(
Z inv(tk), Z inv(tk′)

)
=
A2ρ(tk, tk′) +A1

{
α2(tk)ρ(t`,2k , tk′) + β2(tk)ρ(tr,2k , tk′)

}
√
{A2 +A1ξ22(tk)} {A2 +A1ξ22(tk′)}

,

(4)

∀(tk, tk′) ∈ T2
K × T1

K\T2
K Cov

(
Z inv(tk), Z inv(tk′)

)
=

√
Bρ(tk, tk′)√
A2 +A1ξ22(tk′)

. (5)

1.4. Asymptotic Relative Efficiency

Let us now focus on the Asymptotic Relative Efficiency (ARE). Recall that
the ARE determines the relative sample size required to obtain the same local
asymptotic power as the one of the test under the complete data situation where
all the genotypes are known. The complete data situation is the one studied in
Azäıs et al. (2012).

In this context, we obtain easily the following theorem:

Theorem 1. Let κinv denote the ARE, then we have

i) at a location t /∈ T1
K , κinv =

σ2 Ω2
inv ξ

2
1(t)

{α1(t)
∑m
s=1 ρ(t?s, t

`,1)as + β1(t)
∑m
s=1 ρ(t?s, t

r,1)as}
2

where

Ωinv =
A1

{
α2(t)

∑m
s=1 ρ(t?s, t

`,2)as + β2(t)
∑m
s=1 ρ(t?s, t

r,2)as
}

σ2
√
A2 ξ21(t) +A1 ξ22(t)

A2

{
α1(t)

∑m
s=1 ρ(t?s, t

`,1)as + β1(t)
∑m
s=1 ρ(t?s, t

r,1)as
}

σ2
√
A2 ξ21(t) +A1 ξ22(t)

ii) at a location tk ∈ T1
K\T2

K , κinv =
σ2 Ω′ 2inv

{
∑m
s=1 ρ(t?s, tk)as}

2

where Ω′inv =
A2 {

∑m
s=1 ρ(t?s, tk)as}

σ2
√
A2 +A1 ξ22(tk)

+
A1

{
α2(tk)

∑m
s=1 ρ(t?s, t

`,2
k )as + β2(tk)

∑m
s=1 ρ(t?s, t

r,2
k )as

}
σ2
√
A2 +A1 ξ22(tk)

iii) at a location tk ∈ T2
K , κinv = B/σ2.

When all the QTLs do not belong to the interval [t`,2, tr,2] (i.e. ∀s t?s /∈
[t`,2, tr,2]), we have the relationships ∀i = 1, 2, αi(t)ρ(t?s, t

`,i)as+βi(t)ρ(t?s, t
r,i)as =

ρ(t?s, t)as. As a result, the efficiencies i) and ii) have the following expressions:

i) κinv =
B2ξ21(t)

σ2{A2ξ21(t)+A1ξ22(t)}
and ii) κinv = B2

σ2{A2+A1ξ22(tk)}
.
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2. Robustness

In this section, we propose to tackle the robustness of the AdaptSgenoLasso
and of the AdaptSgenoEN. We will focus on simulated data.

To begin with, let us recall formula (1) of the main text, referring to the
“analysis of variance model” for the quantitative trait :

Y = µ +

m∑
s=1

X(t?s) qs + σε (6)

where µ is the global mean, ε is a Gaussian white noise independent of X(.), σ2

is the environmental variance, m is the number of QTLs, and qs and t?s denote
respectively the effect and the location of the sth QTL.

We investigated the performances for different shapes of error distributions
ε. In particular, we considered the following three scenarios, inspired by Fan et
al. (2017):

• Symmetric Heavy tail : Student distribution with either 3 or 10 degrees
of freedom

• Asymmetric Light tail : Mixture of Gaussian distributions with density
1
2f(1,2) + 1

2f(8,1)

• Asymmetric Heavy tail : Log-normal distribution, with the relationship

ε̃ = eZ , where Z is a standard Gaussian distribution.

In order to meet the model assumption (formula 6 above), the errors ε were
centered and standardized. Consequently, phenotypes Y were simulated accord-
ing to formula (6) with different probability distributions for ε. Besides, since
our penalized likelihood methods involve an amount of selected individuals, we
compared the behavior of our methods when the thresholds (S2

−, S2
+, S1

−, S1
+)

were computed either from the Gaussian distribution or from the other studied
distributions. In other words, for each studied distribution, we considered two
kinds of thresholds : a) the thresholds obtained from Gaussian distribution,
or b) the thresholds specific to the distribution under study. Table 1 gives a
summary of the different threshold values as a function of the error distribution.

Note that for simulating data, we considered exactly the same framework as
in Table 11 of the manuscript. Recall that the genome is of length T = 4, with
K =4,001 equally spaced markers. The sparse map consists in markers located
every 0.25M. Large and small effects QTLs lie on the genome and a symmetrical
selective genotyping is performed. We refer to the caption of Table 2 below for
more details.

2.1. Thresholds relying on the Gaussian distribution

To begin with, let us focus on thresholds based on the Gaussian distribution.
According to Table 2, when the errors followed a Student distribution with

three degrees of freedom, the AdaptSgenoLasso presented similar performances

4



to the ones obtained under the Gaussian setting (as studied in main manuscript).
For instance, assuming a tolerance level of 0.01M, the new L1 ratio (with respect
to the Student distribution) took values from 24.49% to 31.71%. Recall that
under the Gaussian setting (cf. results in Table 11 of the main manuscript for
n =500), almost the same values were observed (i.e. from 24.64% to 31.41%).
Note that a fair agreement was also obtained for a tolerance level of 0.02M.
Same conclusions hold for AdaptSgenoEN (cf. Table 3). Moving on to a Student
distribution with 10 degrees of freedom (cf. Tables 4 and 5), results remained
fair in all cases studied. To sum up, AdaptSgenoLasso and AdaptSgenoEN
were found very robust to the Student distribution with either 3 or 10 degrees
of freedom.

On the other hand, Tables 6 and 7 focus on errors that follow a mix-
ture of Gaussian distributions. In this context, the AdaptSgenoLasso and
the AdaptSgenoEN presented L1 ratios slightly larger than those obtained for
the Gaussian setting. Indeed, assuming a tolerance level of 0.01, the L1 ra-
tio were spread out from 29.52% to 33.42% for AdaptSgenoLasso, and from
30.01% to 34.27% for AdaptSgenoEN. Last, performances of AdaptSgenoLasso
and AdaptSgenoEN in presence of log-normal errors are presented in Tables 8
and 9. For AdaptSgenoLasso, L1 ratios took values from 19.50% to 34.69%. To
conclude, AdaptSgenoLasso and AdaptSgenoEN seem relatively robust to the
mixture of normal distributions and to log-normal errors.

2.2. Thresholds specific to the error distribution under study

Let us now consider thresholds (S2
−, S2

+, S1
−, S1

+) specific to the distribution
under study. According to Table 1, we can notice that the thresholds associated
to the Gaussian distribution are larger in absolute value than those of the fol-
lowing distributions: (a) the (rescaled) Student distribution with 3 degrees of
freedom, (b) the mixture of normal distributions and (c) the log normal distri-
bution. The L1 ratios were found slightly greater when we considered thresholds
specific to the Student with 3 degrees of freedom (cf. Tables 2, 3) and to the
mixture (cf. Tables 6, 7), as compared to L1 ratios based on Gaussian thresh-
olds. For instance, for the Student with 3 degrees of freedom, the L1 Ratio
associated to AdaptSgenoLasso took values from 29.26% to 37.40%, whereas it
spread out from 24.49% to 31.71% with Gaussian thresholds. For the log normal
(see Tables 8 and 9), this increase was a little bite more significant. In contrast,
for the Student distribution with 10 degrees of freedom, since thresholds are
very close to the ones of the Gaussian distribution, the L1 ratios took almost
the same values (cf. Tables 4 and 5).

2.3. Conclusion

Overall, this simulation study shows a relative robustness of AdaptSgeno-
Lasso and AdaptSgenoEN. However, we believe that a deep theoretical study is
required in the future to perfectly understand the behavior of the methods for
different shapes of error distributions.
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Table 1: Thresholds S2
− and S2

+ as a function of the distribution of the errors (µ = 0, σ = 1

in formula 1 of the main manuscript). Recall that γ := PH0

(
Y /∈

[
S2
−, S

2
+

])
.

(S2−, S
2
+)

γ Gaussian Dist. Student Dist. (3 df) Student Dist. (10 df) Mixture Dist. Log-normal Dist.

0.1 (−1.6449 , 1.6449) (−1.3587 , 1.3587) (−1.6211 , 1.6211) (−1.5811 , 1.2440) (−0.6734 , 1.6328)
0.2 (−1.2816 , 1.2816) (−0.9456 , 0.9456) (−1.2273 , 1.2273) (−1.3528 , 1.1295) (−0.6342 , 0.9099)
0.3 (−1.0364 , 1.0364) (−0.7216 , 0.7216) (−0.9777 , 0.9777) (−1.1906 , 1.0484) (−0.5443 , 0.5443)
0.4 (−0.8416 , 0.8416) (−0.5649 , 0.5649) (−0.7863 , 0.7863) (−1.0481 , 0.9787) (−0.5628 , 0.3130)
0.5 (−0.6745 , 0.6745) (−0.4416 , 0.4416) (−0.6259 , 0.6259) (−0.9174 , 0.9120) (−0.5270 , 0.1480)
1 (0 , 0) (0 , 0) (0 , 0) (0 , 0) (0 , 0)

Table 2: Performances of the AdaptSgenoLasso in presence of large and small effects QTLs
(Mean over 100 samples, n = 500, γ1 = 0.1, γ+1 /γ1 = 1/2, γ+/γ = 1/2, σ = 1). Same
genetic maps as in Table 11 of the main text. For the large effects, |qs| = 0.3794 at locations
1.50, 2.75, and 3.75, whereas for the small effects, |qs| = 0.1897 at locations 0.65, 2.35, 3.10.
The L1 ratio(δ) is given for the large effects QTLs, small effects QTLs, and all the QTLs.
The considered probability distribution is the Student distribution with 3 degrees of
freedom (symmetric heavy tail).

(T = 4, K =4,001, n=500)
Large QTLs Small QTLs All QTLs

Threshold based on γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

Gaussian dist.

0.1 19.79% 30.20% 4.70% 7.63% 24.49% 37.82%
0.2 24.89% 36.24% 4.42% 7.22% 29.31% 43.46%
0.3 25.89% 38.17% 4.15% 6.81% 30.04% 44.98%
0.4 26.69% 38.97% 3.99% 6.56% 30.68% 45.53%
0.5 27.04% 39.70% 3.95% 6.55% 30.99% 46.25%
1 27.86% 41.27% 3.85% 6.30% 31.71% 47.57%

Student dist.

0.1 23.77% 34.27% 5.49% 8.86% 29.26% 43.13%
0.2 28.71% 40.20% 4.67% 7.70% 33.38% 47.90%
0.3 30.62% 42.97% 4.24% 7.12% 34.86% 50.10%
0.4 32.30% 44.58% 4.25% 7.05% 36.56% 51.63%
0.5 32.37% 45.21% 4.03% 6.67% 36.40% 51.88%
1 33.34% 46.59% 4.06% 6.88% 37.40% 53.47%

Table 3: Same as Table 2 except that the AdaptSgenoEN is considered.
(T = 4, K =4,001, n=500)

Large QTLs Small QTLs All QTLs
Threshold based on γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

Gaussian dist.

0.1 20.11% 30.47% 4.72% 7.73% 24.83% 38.20%
0.2 24.61% 36.05% 4.42% 7.14% 29.03% 43.19%
0.3 26.23% 37.92% 4.18% 6.69% 30.42% 44.60%
0.4 27.59% 39.96% 4.07% 6.60% 31.65% 46.56%
0.5 27.84% 40.24% 4.06% 6.59% 31.90% 46.82%
1 27.83% 40.60% 3.79% 6.33% 31.61% 46.93%

Student dist.

0.1 23.48% 33.99% 5.29% 8.63% 28.78% 42.62%
0.2 29.14% 40.81% 4.70% 7.73% 33.84% 48.54%
0.3 30.58% 42.86% 4.44% 7.21% 35.03% 50.07%
0.4 32.54% 45.20% 4.19% 6.90% 36.73% 52.10%
0.5 32.85% 45.60% 4.12% 6.81% 36.97% 52.40%
1 33.06% 46.33% 3.97% 6.46% 37.03% 52.79%

Table 4: Same as Table 2 except that the considered probability distribution is the Student
distribution with 10 degrees of freedom (symmetric heavy tail)

(T = 4, K =4,001, n=500)
Large QTLs Small QTLs All QTLs

Threshold based on γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

Gaussian dist.

0.1 19.85% 30.40% 4.81% 7.77% 24.67% 38.17%
0.2 24.79% 36.36% 4.32% 7.11% 29.11% 43.46%
0.3 25.77% 37.99% 4.21% 6.75% 29.98% 44.74%
0.4 26.51% 38.91% 3.92% 6.49% 30.43% 45.40%
0.5 26.97% 39.42% 3.92% 6.39% 30.89% 45.81%
1 27.60% 41.15% 3.85% 6.33% 31.45% 47.48%

Student dist.

0.1 20.11% 30.97% 4.56% 7.78% 24.68% 38.76%
0.2 24.96% 37.07% 4.29% 7.43% 29.26% 44.49%
0.3 25.76% 38.65% 4.04% 6.99% 29.80% 45.64%
0.4 26.70% 39.40% 4.05% 6.98% 30.75% 46.38%
0.5 27.26% 40.62% 3.88% 6.62% 31.14% 47.24%
1 27.46% 41.45% 3.93% 6.68% 31.39% 48.13%
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Table 5: Same as Table 4, except that the AdaptSgenoEN is considered.
(T = 4, K =4,001, n=500)

Large QTLs Small QTLs All QTLs
Threshold based on γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

Gaussian dist.

0.1 20.11% 30.47% 4.72% 7.73% 24.83% 38.20%
0.2 24.61% 36.05% 4.42% 7.14% 29.03% 43.19%
0.3 26.23% 37.92% 4.18% 6.69% 30.42% 44.60%
0.4 27.58% 39.96% 4.07% 6.60% 31.65% 46.56%
0.5 27.84% 40.24% 4.06% 6.59% 31.90% 46.82%
1 27.82% 40.60% 3.79% 6.33% 31.61% 46.93%

Student dist.

0.1 20.81% 31.91% 4.77% 8.05% 25.58% 39.96%
0.2 24.63% 36.33% 4.44% 7.51% 29.07% 43.84%
0.3 26.78% 39.30% 4.10% 6.94% 30.88% 46.24%
0.4 27.05% 39.64% 3.88% 6.67% 30.93% 46.31%
0.5 27.89% 40.81% 3.98% 6.71% 31.88% 47.53%
1 27.90% 41.37% 3.81% 6.59% 31.72% 47.97%

Table 6: Same as Table 2 except that the considered probability distribution is the mixture
of Gaussian distributions (asymmetric light tail).

(T = 4, K =4,001, n=500)
Large QTLs Small QTLs All QTLs

Threshold based on γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

Gaussian dist.

0.1 24.17% 34.41% 5.35% 8.79% 29.52% 43.20%
0.2 27.12% 37.56% 4.84% 7.92% 31.97% 45.48%
0.3 28.07% 39.50% 4.70% 7.25% 32.77% 46.75%
0.4 29.07% 40.61% 4.44% 6.87% 33.51% 47.48%
0.5 28.21% 38.74% 4.69% 7.16% 32.90% 45.90%
1 28.94% 40.35% 4.47% 6.94% 33.42% 47.28%

Mixture Dist.

0.1 25.17% 35.31% 5.31% 8.92% 30.47% 44.22%
0.2 31.75% 42.36% 4.72% 7.79% 36.46% 50.15%
0.3 33.01% 43.94% 4.54% 7.37% 37.55% 51.31%
0.4 33.74% 44.74% 4.50% 7.22% 38.24% 51.96%
0.5 33.42% 44.66% 4.31% 6.86% 37.73% 51.52%
1 32.12% 43.85% 4.66% 7.22% 36.78% 51.07%

Table 7: Same as Table 6, except that the AdaptSgenoEN is considered.
(T = 4, K =4,001, n=500)

Large QTLs Small QTLs All QTLs
Threshold based on γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

Gaussian dist.

0.1 24.81% 34.72% 5.20% 8.57% 30.01% 43.29%
0.2 27.80% 38.29% 4.72% 7.87% 32.52% 46.15%
0.3 28.86% 40.25% 4.67% 7.38% 33.54% 47.63%
0.4 29.11% 40.33% 4.44% 6.97% 33.54% 47.30%
0.5 29.30% 40.05% 4.45% 7.02% 33.75% 47.07%
1 29.76% 40.90% 4.51% 6.91% 34.27% 47.81%

Mixture Dist.

0.1 25.58% 35.20% 5.51% 9.00% 31.09% 44.20%
0.2 32.06% 42.52% 4.74% 7.63% 36.80% 50.15%
0.3 33.01% 43.67% 4.48% 7.13% 37.48% 50.80%
0.4 34.47% 45.20% 4.43% 6.96% 38.90% 52.16%
0.5 34.59% 45.47% 4.47% 6.87% 39.06% 52.34%
1 32.87% 43.83% 4.70% 7.04% 37.57% 50.87%

Table 8: Same as Table 2 except that the considered probability distribution is the log-
normal (asymmetric heavy tail).

(T = 4, K =4,001 , n=500)
Large QTLs Small QTLs All QTLs

Threshold based on γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

Gaussian dist.

0.1 15.75% 24.81% 3.77% 5.97% 19.50% 30.77%
0.2 22.98% 32.70% 2.95% 4.90% 25.92% 37.60%
0.3 25.86% 35.82% 2.79% 4.71% 28.65% 50.53%
0.4 29.34% 39.32% 2.44% 4.32% 31.78% 43.64%
0.5 31.82% 42.27% 2.56% 4.20% 34.38% 46.47%
1 32.10% 42.28% 2.59% 4.14% 34.69% 46.42%

Log-normal dist.

0.1 24.35% 33.39% 5.73% 9.00% 30.07% 42.39%
0.2 31.61% 41.40% 4.00% 7.33% 35.61% 48.73%
0.3 35.89% 46.52% 3.60% 6.77% 39.49% 53.29%
0.4 37.76% 47.70% 3.55% 6.28% 41.32% 53.98%
0.5 39.15% 49.54% 4.70% 7.48% 43.85% 57.02%
1 38.38% 48.59% 4.79% 7.59% 43.18% 56.17%
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Table 9: Same as Table 8, except that the AdaptSgenoEN is considered.
(T = 4, K =4,001 , n=500)

Large QTLs Small QTLs All QTLs
Threshold based on γ L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02) L1 ratio(0.01) L1 ratio(0.02)

Gaussian dist.

0.1 15.99% 24.83% 3.67% 5.94% 19.65% 30.77%
0.2 23.09% 32.78% 2.94% 5.04% 26.03% 37.82%
0.3 26.10% 36.02% 2.82% 4.76% 28.92% 40.78%
0.4 29.65% 39.93% 2.56% 4.44% 32.21% 44.37%
0.5 31.95% 42.52% 2.42% 4.12% 34.38% 46.64%
1 32.19% 42.65% 2.44% 4.04% 34.63% 46.69%

Log-normal dist.

0.1 24.06% 32.94% 5.70% 9.26% 29.76% 42.20%
0.2 31.38% 41.43% 4.11% 7.45% 35.49% 48.88%
0.3 35.39% 46.02% 3.71% 6.80% 39.10% 52.82%
0.4 35.82% 45.75% 3.30% 6.10% 39.12% 51.85%
0.5 38.90% 49.01% 4.59% 7.42% 43.48% 56.44%
1 37.29% 47.13% 4.73% 7.56% 42.02% 54.70%
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