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ABSTRACT

Aims. The treatment of astronomical image time series has won increasing attention in recent years. Indeed, numerous surveys
following up on transient objects are in progress or under construction, such as the Vera C. Rubin Observatory Legacy Survey for
Space and Time (LSST), which is poised to produce huge amounts of these time series. The associated scientific topics are extensive,
ranging from the study of objects in our galaxy to the observation of the most distant supernovae for measuring the expansion of the
universe. With such a large amount of data available, the need for robust automatic tools to detect and classify celestial objects is
growing steadily.
Methods. This study is based on the assumption that astronomical images contain more information than light curves. In this paper,
we propose a novel approach based on deep learning for classifying different types of space objects directly using images. We named
our approach ConvEntion, which stands for CONVolutional attENTION. It is based on convolutions and transformers, which are new
approaches for the treatment of astronomical image time series. Our solution integrates spatio-temporal features and can be applied to
various types of image datasets with any number of bands.
Results. In this work, we solved various problems the datasets tend to suffer from and we present new results for classifications using
astronomical image time series with an increase in accuracy of 13%, compared to state-of-the-art approaches that use image time
series, and a 12% increase, compared to approaches that use light curves.

Key words. techniques: image processing – supernovae: general – surveys

1. Introduction

The astronomical community has been facing a considerable
challenge in the last few years as tools for observing the universe
continue to improve. Telescopes are becoming more powerful,
with the capacity to observe a huge part of the universe and gen-
erate a massive amount of data. Processing and analyzing these
data are very demanding steps in terms of their computational
and human resource requirements. With the promises of The
Vera C. Rubin Observatory Legacy Survey for Space and Time
(LSST; Ivezić et al. 2019), the field will see the discovery of 10 to
100 times more astronomical sources that fluctuate in the night
sky. Some of these sources will be entirely new. LSST is pre-
pared to alert the community to 10 million new objects per night,
and these objects all need to be classified. There are many types
of objects, including active galactic nuclei (AGNs), variables,
cepheids, RR Lyrae, and supernovae. The latter stands the most
important transient object for cosmology because increasingly
large samples of Type Ia supernovae (SNe Ia) are being used to
measure luminosity distances as a function of redshift in order to
understand the origin of the acceleration of the expansion of the
universe.

Traditionally, the classification of these objects goes through
many processes in a complex pipeline. First, the preprocessing

phase known as photometry is conducted on a series of images to
extract the flux per band, each band corresponding to a passband-
like color filter. The number of bands can vary, depending on
the survey, for example SDSS survey (Holtzman et al. 2008;
Sako et al. 2014; Frieman et al. 2007) has five bands and the
Catalina survey (Drake et al. 2011) has only one band. Then, a
time series of brightness changes is generated over time, called
the light curves. Afterwards, the light curve is fed to a machine-
learning classifier to determine the class of the object. Among
all the methods developed to perform such a classification,
Möller & de Boissière (2020) introduced a model called SuperN-
Nova: a supernova photometric classification framework that
uses a recurrent neural network (RNN; Rumelhart et al. 1985;
Hochreiter & Schmidhuber 1997; Cho et al. 2014) to classify
different types of supernovas such as SNIa, SNIb, SNIIP, and
others using only light curves. The proposition yields good
results because while Bayesian neural networks (BNN) are
known to be robust to overfitting and can easily learn from
small datasets, they are still significantly more complex than
standard neural networks and computationally expensive. Boone
(2019) (winner of the photometric classification challenge PLAs-
TiCC (PLAsTiCC-team et al. 2018; Hložek et al. 2020)) pre-
sented a model based on Gaussian process augmentation of the
light curve and then train it on boosted decision tree classifier.
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Pasquet et al. (2019) created a deep architecture called PEL-
ICAN that accepts only light curves and redshifts as input.
PELICAN can handle light curves with sparsity and irregular
sampling. Some can choose to add more preprocessing before
training a model. For instance, Qu et al. (2021) proposed a novel
approach where they generated a 2D image heatmap from light
curves using 2D Gaussian process regression, which they fed
to convolutional neural networks to classify different types of
supernovae. The approach yields great results on PLAsTiCC
data, with an accuracy of 99.73% on the binary classification
of SNIa and non-SNIa. The methods that use light curves for
classification still have some limitations. In order to generate a
light curve, we should correctly align the two consecutive images
and we must lower the quality of one of the two images to
subtract them to get the flux, which could lead to a loss of infor-
mation. Some dedicated algorithms called scene modeling can
mitigate such issues on blended objects but are very demand-
ing in terms of computer resources. Most importantly, the scene
information, namely, the background of the transient object, is in
general not taken into account in the classification. Several recent
works have proposed to eliminate the feature extraction and light
curve phase and focus on classifying the objects using only
images. Carrasco-Davis et al. (2019) and Gómez et al. (2020)
used a RNN to classify the sequences after passing the images
through a CNN to extract the spatial features. They forwarded
the output to the RNN (GRU/LSTM) to extract the temporal
characteristics and classify the object, while (Gómez et al. 2020)
applied their model to only transient objects and Carrasco-Davis
et al. (2019) classified variables and transient. These two papers
showed promising results for the astronomical image time series
(AITS). Therefore, we followed the same path to improve the
classification and also solve some challenges posed by AITS,
which have not been tackled before.

In particular, image time series (ITS) classification has
always been one of the challenging areas of deep learning. In
addition to spatial characteristics, you also need to give impor-
tance to the temporal aspects, which makes traditional feed-
forward networks ineffective. Due to the lack of research carried
out on ITS in astronomy, we need to import new technics from
other fields of research. Most of the research in ITS classification
is done in two major domains: action recognition, where the goal
is to classify the type of human action (Shi et al. 2015; Ji et al.
2013), and landscape classification using satellite images (Ozgur
Turkoglu et al. 2021). These two fields have covered many of the
essential methods to handle ITS. Then, RNN-based approaches
use recurrent neural networks to manage the aspect of time in
the classification. These approaches are split into two main cate-
gories. The first one handles the spatial features separately from
the temporal features. Carrasco-Davis et al. (2019) and Gómez
et al. (2020) used precisely this method at the point when the
CNN handles the spatial characteristics to pass it later to the
RNN, which might be LSTM (Hochreiter & Schmidhuber 1997)
or GRU (Cho et al. 2014). The second category combines convo-
lution inside the RNN cell, thus maintaining the spatial structure
of the input, which leads to extracting spatial-temporal features
in the sequence. This method was first introduced by Shi et al.
(2015). These authors demonstrated how to create an end-to-end
trainable model using the convolutional LSTM (ConvLSTM).
Experiments indicate that their ConvLSTM network regularly
exceeds fully connected LSTM (FC-LSTM) in capturing Spatio-
temporal correlations. Using satellite images, Ozgur Turkoglu
et al. (2021) proposed a new type of RNN called ConvSTAR,
which has fewer parameters than the LSTM and GRU. Another
way of achieving the classification of ITS is by using convolution

neural networks. Ji et al. (2013) created a new 3D CNN model
for action recognition. This model pulls features from spatial
and temporal dimensions, collecting motion information con-
tained in several consecutive frames. Meanwhile, some of the
latest developments have abandoned convolutions and RNNs to
replace them with only transformers. Liu et al. (2022) and Yan
et al. (2022) proposed an improved supervised transformer for
image classification. On the other hand, Zhou et al. (2022) and
Bao et al. (2021) proposed more complex transformers that are
self-supervised.

In this work, we develop a new deep learning transformer-
based architecture to classify AITS. Unlike other works that sep-
arate spatial and temporal feature extraction, we combine these
two steps by performing a spatio-temporal feature extraction in
one step. It improves the capacity of the network to recognize
the objects. We also propose a solution for the missing obser-
vations problem, which demonstrates a significant improvement
in the accuracy of the model. To illustrate the performances of
our model, we tested it with actual data from the SDSS survey
(Holtzman et al. 2008; Sako et al. 2014; Frieman et al. 2007).
In Sect. 2, we describe the dataset that we used in our work.
Section 3 introduces our architecture ConvEntion and describes
the role of each component of the model. In Sect. 4, we present
the results of our work with some statistics about the perfor-
mance and some comparisons with other architectures used for
image time series classification. Finally, in Sect. 5, we present
our conclusions and perspectives on this work.

2. Dataset

2.1. Database description

The Sloan Digital Sky Survey (SDSS; Holtzman et al. 2008;
Frieman et al. 2007) is a very ambitious and successful large-
scale survey program using a dedicated 2.5-m telescope at
Apache Point Observatory, New Mexico, equipped with photo-
metric and spectroscopic instruments that have released images,
spectra, and catalog information for several hundred million
celestial objects. The dataset used in this paper was collected
during the SDSS Supernova Survey (Sako et al. 2014), one of
three components (along with the Legacy and SEGUE surveys)
of SDSS-II, a three-year extension of the original SDSS that
operated from July 2005 to July 2008. The Supernova Survey
is a time-domain survey, involving repeat imaging of the same
region of the sky every other night, weather permitting.

The images are obtained through five wide-band filters
(Fukugita et al. 1996) named u′, g′, r′, i′, and z′, simplified as
u, g, r, i, and z in the following, which corresponds to an effec-
tive mid-point wavelength of u (365 nm), g (475 nm), r (658 nm),
i (806 nm), and z (900 nm). The survey region observed repeat-
edly over three years is a 2.5-degree-wide stripe centered on
the celestial equator in the Southern Galactic Cap that has been
imaged numerous times in the last twenty years, allowing for the
construction of a big image database for the discovery of new
celestial objects. Most of the sources have included galactic vari-
able stars, active galactic nuclei (AGN), supernovae (SNe), and
other astronomical transients, all of which have been processed
to generate multi-band (ugriz) light curves. The imaging survey
is reinforced by an extensive spectroscopic follow-up program
that uses spectroscopic diagnostics to identify SNe and measure
their redshifts. Light curves were evaluated during the survey to
provide an initial photometric type of the SNe and a selected
sample of sources was targeted for spectroscopic observations.
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Fig. 1. Sample of some objects present in our dataset. Each image in filter g/i corresponds to a different observation with the same filter.

In order to investigate the classification from images rather
than light curves, we acquired the images from the public SDSS
dataset through their platform. Our dataset contains many types
of supernovas (see Table 1 and Sako et al. 2014). The label of
“unknown” mainly represents very sparse or poorly measured
transient candidates, “variables” have signals spanning over two
seasons, and “AGNs” have a spectral signature. The three other
classes are supernovae of types Ia, Ib/c, and II. Among super-
novae, the typing is performed from spectroscopy or from the
light curve using different machine learning techniques (see
Sako et al. 2014). We grouped the non-Ia supernovas because
our focus in this study only on the Ia type for their interest in
cosmology as standard candles and also because of the small
number of non-Ia with spectral signatures. The very small class
of three SLSN bright objects has been added to the non-Ia super-
novae. Figure 1 shows an example of astronomical image time
taken from the SDSS dataset.

2.2. Challenges

Most of the astronomical dataset suffers from a number of
problems that should be dealt with before feeding it to the
classification algorithm. Among difficulties contributing to the
challenging nature of AITS, we can mention class imbalance (as
shown in Table 1 of our dataset). In particular, we can clearly
see that the classes we have are not balanced where the num-
ber of samples for variables is much bigger than SNIa. This
imbalance significantly impacts machine learning models due to
their higher prior probability, which means they tend to over-
classify the larger class(es). As a result, instances belonging to
the smaller class(es) are more likely to be misclassified than
those belonging to the larger class(es). Another problem that
impacts the model is missing bands. Indeed, each time an image
is acquired in an AITS it is captured through one filter among
a set of up to five or more channels. So, an image of a celes-
tial object can be taken in many channels, but not necessarily at
the same time. This results in missing bands for a given time of

Table 1. Number of objects per class in the SDSS dataset.

Object name Count

AGN 906
SNIa 499

SNOther 89
Unknown 2009
Variable 3225

SNOther_PT 2041
SNIa_PT 1448

Notes. PT: Photometrically typed, which means that the SNs are not
spectroscopically verified.

Fig. 2. Each image has five filters (u, g, r, i, z), The black channel repre-
sents the missing observation.

observation (see Fig. 2). It is well known that the missing data
negatively impacts the performance of the model if it is not dealt
with. Gill et al. (2007) stated that an increasingly missing per-
centage of training data resulted in an increased testing error,
which requires a solution to mitigate the impact of missing data.

3. Methods

In this section, we propose a neural network based on a com-
bination of convolution and self-attentions. The goal of the
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Fig. 3. General architecture of the ConvEntion network. The image time series are first rearranged to embed the band information. Then each
3DCNN is fed with a sub-sequence of K inputs of the time series J(∈ RM×H×W×2 for M elements of images of size HxW) to create the new downsized
sequence S (∈ RN×H′×W′×D). S is fed to the positional encoder in order to add the information about the position, which outputs F(∈ RN×H′×W′×D).
Then F is passed to ConvBERT which has L layers. The 3D max-pooling is used to downsize the output of ConvBERT for the classifier.

model is to handle the challenges that we mentioned previously,
such as class imbalance, data sparsity, and missing observations.
Figure 3 represents the general architecture of the ConvEntion
model. The model takes as its input the sequence of images
that have been rearranged to embed the band information (See
Sect. 3.1 and Fig. 4). The sequence first passes through a 3DCNN
to downsize its length. It allows for the reduction of the com-
putation complexity of the model and also captures the local
characteristics of the objects. The newly constructed sequence by
the 3DCNN is fed to a convolutional BERT which then extracts
the spatio-temporal features with high-level representation from
the input. Finally, we pass the output of the convolutional BERT,
which is a projection of our input into a high-level representa-
tion subspace, through a 3D max-pooling to downsample it, then
it goes on to the final classifier to make the prediction. In the
following subsections, we explain each component in depth.

3.1. Data modeling

First, we note that throughout the paper, vectors are given in
bold capital letters, sizes in capital letters, and indices in lower-
case. To start with the missing data problem, a network dedicated
to image time series is usually fed a sequence of images I ∈
RH×W×5, where H and W are, respectively, the height and width
of the image and 5 is the number of channels representing the
bands (u, g, r, i, z). However, we know, as explained earlier,
some bands are missing in the dataset. To fix this issue, instead
of giving the model images with empty channels, thus introduc-
ing a bias to the network, we decided to separate the channels
as individual images (X ∈ RH×W ) simply by skipping the empty
channels. As a consequence, the information about the type

of filter, which holds a crucial value for the network to accu-
rately discriminate between objects, is also eliminated. In an
image with different channels, the order of the channels usually
represents the type of filter (see Fig. 2).

In order to preserve this valuable information, we should
add the band type to the new 2D images X. Knowing that the
information about the type of the filter is a categorical feature,
thus we need to adapt it to the model 2D input representation.
To do so, we propose using an embedding layer to encode the
channel type before passing the input to the model. For each
band (u, g, r, i, z), we assign a unique number id ∈ {1, 2, 3, 4, 5}.
Then, an embedding layer BandEmbed converts the band type
id, which is a categorical feature, into 2D dense representation
Eid with Eid ∈ RH×W (see Fig. 4):

Eid = BandEmbed(id). (1)

The embedding layer is a fully connected layer that is
reshaped to a 2D representation. The weights of BandEmbed
are learnable. After getting the band embedding, we concate-
nate it with the new image to get our new input J ∈ RM×H×W×2

that contains the band information, where M is the length of the
sequence:

Jm = Concat(Xm, Eid), m ∈ {1, ..,M}. (2)

The problem of class imbalance is one of the major chal-
lenges for any machine learning project. Some tried to solve this
problem by adding a new loss function to mitigate the impact of
the class imbalance. For example Lin et al. (2017) proposed a loss
function called “focal loss” which applies a modulating term to

A141, page 4 of 10



Bairouk, A., et al.: A&A proofs, manuscript no. aa44657-22A. Bairouk et al: ConvEntion

Fig. 4. Illustration of the handling of missing information by separating the bands. The empty channels are dropped, then we concatenate each
image with a 2D representation of the band used to capture the image. The band embedding contains five band representations. The black channel
represents the missing observation

learnable. After getting the band embedding, we concatenate it
with the new image to get our new input J ∈ RM×H×W×2 that
contains the band information, where M is the length of the se-
quence:

Jm = Concat(Xm, Eid), m ∈ {1, ..,M}. (2)

The problem of class imbalance is one of the major chal-
lenges for any machine learning project. Some tried to solve this
problem by adding a new loss function to mitigate the impact
of the class imbalance. For example Lin et al. (2017) proposed
a loss function called “focal loss” which applies a modulating
term to the cross-entropy loss in order to focus the learning on
hard misclassified examples. However, this approach tends to
produce a vanishing gradient during backpropagation (Hossain
et al. 2021). Other solutions propose the use of oversampling
such as SMOTE (Chawla et al. 2002). Those authors proposed
an approach where they synthesize new samples of the minor-
ity class. However, this solution was proposed mainly for tabu-
lar data. Knowing that our data are images that contain a much
higher number of features than tabular data, it appears obvious
that using SMOTE may not be optimal in our case. Dablain
et al. (2021) introduced a solution based on SMOTE dedicated
to images called DeepSMOTE. It is aimed at generating new
images for the minority class. Once again, this approach is un-
suitable in our case as our dataset is not composed of images,
but of a sequence of images, and it is too expensive to generate
a whole new sequence. So, instead of generating a new one, we
used data augmentation and weighted random sampling(WRS)
(Efraimidis 2015) on our database. We oversampled the dataset,
which translates to simply altering the dataset to remove such
an imbalance by increasing the number of minority classes and
undersampling the data by decreasing the majority classes until
we have reached a balanced dataset. In our case, the WRS was
applied on a batch level. We generate balanced batches based

on the probability of a sample being selected. We weighted each
sample according to the inverse frequency of its label’s occur-
rence and then sampled mini-batches from a multinomial dis-
tribution based on these weights. This means that samples with
high weights are sampled more often for each mini-batch. The
same sample can be reused in other mini-batches of the same
epoch to increase the minority class, but with a data augmenta-
tion applied to it. Different methods of data augmentation were
used: for example, a random drop of some steps from the whole
sequence to create a new one or a sequence rotation, horizon-
tal and vertical flips, and sequence shifting, where we construct
a smaller sequence from the original one which has a bigger
length than the input length of ConvEntion. In our implemen-
tation, we recall the dataset at every epoch, the transforms oper-
ation (augmentation) is executed and then we get different aug-
mented data. Using this oversampling approach has drastically
improved the performance of the model. We used the function
WeightedRandomS ampler from PyTorch (Paszke et al. 2019)
as an implementation of WRS.

3.2. 3D convolution network:

In several deep learning applications, large transformer mod-
els have demonstrated fantastic success in obtaining state-of-
the-art results. However, because the original transformer’s self-
attention mechanism consumes O(M2) time and space with re-
spect to the sequence length, M, training the model for a long
sequence is so expensive, it causes the problem called "atten-
tion bottleneck" (Wang et al. 2020; Choromanski et al. 2021).
The problem is more severe for us because we use convolutions
and 3D tensors inside the attention mechanism; for instance, the
attention map is of a size H × W, so the complexity of the at-
tention will be O(M2 × H × W). Thus, our model would then
be prohibitively expensive to train. In the last few years, there
have been numerous proposals aimed at solving this issue. Wang

Article number, page 5 of 11

Fig. 4. Illustration of the handling of missing information by separating the bands. The empty channels are dropped, then we concatenate each
image with a 2D representation of the band used to capture the image. The band embedding contains five band representations. The black channel
represents the missing observation.

the cross-entropy loss in order to focus the learning on hard mis-
classified examples. However, this approach tends to produce a
vanishing gradient during backpropagation (Hossain et al. 2021).
Other solutions propose the use of oversampling such as SMOTE
(Chawla et al. 2002). Those authors proposed an approach where
they synthesize new samples of the minority class. However, this
solution was proposed mainly for tabular data. Knowing that our
data are images that contain a much higher number of features
than tabular data, it appears obvious that using SMOTE may not
be optimal in our case. Dablain et al. (2021) introduced a solu-
tion based on SMOTE dedicated to images called DeepSMOTE.
It is aimed at generating new images for the minority class. Once
again, this approach is unsuitable in our case as our dataset is
not composed of images, but of a sequence of images, and it is
too expensive to generate a whole new sequence. So, instead of
generating a new one, we used data augmentation and weighted
random sampling (WRS; Efraimidis 2010) on our database. We
oversampled the dataset, which translates to simply altering the
dataset to remove such an imbalance by increasing the number
of minority classes and undersampling the data by decreasing
the majority classes until we have reached a balanced dataset.
In our case, the WRS was applied on a batch level. We gener-
ate balanced batches based on the probability of a sample being
selected. We weighted each sample according to the inverse fre-
quency of its label’s occurrence and then sampled mini-batches
from a multinomial distribution based on these weights. This
means that samples with high weights are sampled more often for
each mini-batch. The same sample can be reused in other mini-
batches of the same epoch to increase the minority class, but with
a data augmentation applied to it. Different methods of data aug-
mentation were used: for example, a random drop of some steps
from the whole sequence to create a new one or a sequence rota-
tion, horizontal and vertical flips, and sequence shifting, where
we construct a smaller sequence from the original one which
has a bigger length than the input length of ConvEntion. In

our implementation, we recall the dataset at every epoch, the
transforms operation (augmentation) is executed and then we get
different augmented data. Using this oversampling approach has
drastically improved the performance of the model. We used the
function WeightedRandomS ampler from PyTorch (Paszke et al.
2019) as an implementation of WRS.

3.2. 3D convolution network

In several deep learning applications, large transformer models
have demonstrated fantastic success in obtaining state-of-the-
art results. However, because the original transformer’s self-
attention mechanism consumes O(M2) time and space with
respect to the sequence length, M, training the model for a
long sequence is so expensive, it causes the problem called
“attention bottleneck” (Wang et al. 2020; Choromanski et al.
2021). The problem is more severe for us because we use con-
volutions and 3D tensors inside the attention mechanism; for
instance, the attention map is of a size H ×W, so the complex-
ity of the attention will be O(M2 × H × W). Thus, our model
would then be prohibitively expensive to train. In the last few
years, there have been numerous proposals aimed at solving this
issue. Wang et al. (2020) demonstrated that a low-rank matrix
could approximate the self-attention mechanism. They suggested
a new self-attention method that minimizes total self-attention
complexity. Choromanski et al. (2021) presented a novel trans-
former architecture that uses linear space and time complexity to
estimate regular (softmax) full-rank-attention Transformers with
proven accuracy. However, all these propositions remain irrele-
vant in our case because we do not use the standard self-attention
mechanism, as the convolutions make it an arduous task. So, the
solution we preferred to go with is to reduce the length of the
sequence before feeding it to the transformer block. Reducing
the sequence must be done without losing relevant information.
Thus, we propose using a 3D convolution neural network (3D
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Table 2. 3D CNN architecture where Conv3D is a 3D convolutional
element and BN3d is a 3D batch normalization element.

Layer Layer parameters

Conv3d + BN3d 11 × 11 × 3 × 64, 64
Conv3d + BN3d 5 × 5 × 3 × 128, 128
Conv3d + BN3d 3 × 3 × 3 × 64, 64
Conv3d + BN3d 3 × 3 × 3 × 64, 64

CNN). A 3D CNN is an improved type version of CNN first pro-
posed by Tran et al. (2014), where it applies a 3D filter to the
dataset and the filter moves in three directions to calculate the
low-level feature representations. Their output shape is in a 3D
volume space. We applied 3DCNN where we input the sequence
J to get the reduced new sequence S following the equation:

S n = 3DCNN(J(n−1)∗K+1, .., Jn∗K), n ∈ {1, ..,N}. (3)

We let M be the length of the series, J and we fed K inputs
of J to the 3DCNN to generate one entry, S , for our transformer.
So, in the end, the new sequence, S , will be S ∈ RN×H′×W′×D,
where N = M/K, D is the number of channels and H′ and
W ′ are the new height and width. By using the 3DCNN, we
reduced the length of the sequence by a factor of K, which also
reduced the complexity of the model. The 3DCNN does not just
reduce the length of the input sequence, it also captures local
spatio-temporal low-level features. The 3DCNN captures these
particulate features due to its focus on the local characteristics
(space and time) of the sequence, while the transformer focuses
on the global characteristics. On the whole, we have reduced the
computation without losing essential information that is impor-
tant for classification. Table 2 summarizes the architecture used
inside the 3DCNN.

3.3. Convolutional BERT

After getting the new output S of the 3DCNN, it is time
to feed it to what we call convolutional BERT which stands
for Convolutional Bidirectional Encoder Representations from
Transformers. Transformer and self-attention have become one
of the main models that revolutionize deep learning in the last
few years, especially in neural language processing (NLP). Self-
attention (Bahdanau et al. 2014), also known as intra-attention,
is an attention mechanism that connects different positions in
a single sequence to compute a representation of the sequence.
Here, “attention” refers to the fact that in real life, when viewing
a video or listening to a song, we frequently pay more atten-
tion to certain details while paying less attention to others, based
on the importance of the details. Deep learning uses a similar
flow for its attention mechanism, giving particular parts of the
data more focus as it is processed. Our intention in using this
mechanism is for the model to focus more on the changes hap-
pening in the image sequence to better discriminate between
astronomical objects. Self-attention layers are the foundation
of the transformer block design. Transformers were first intro-
duced by Vaswani et al. (2017), using model-based attention
dispensing with recurrence and convolutions entirely. Their work
inspired others who used the concept of transformers to achieve
even better results. For example, in BERT (Devlin et al. 2018)
the authors used only the encoder block by stacking many of
them. Even though transformers were widely used in NLP in
the last two years, people started implementing these blocks

in other domains like image classification. Dosovitskiy et al.
(2020) presented a model free from convolutions by using only
a transformer to classify images. Sainte Fare Garnot et al. (2019)
also suggested that they are able to extract temporal characteris-
tics using a custom neural architecture based on self-attention
instead of recurrent networks. Their use was not limited to
image classification; action recognition was also investigated as
in Sharir et al. (2021), where the authors used a transformer-
based approach inspired by the work of Dosovitskiy et al. (2020).
Liu et al. (2021) did propose a new transformer where they added
convolution to the attention mechanisms, making it able to apply
convolutions while extracting the temporal features.

3.3.1. Positional encoding

Because transformers have no recurrence throughout the thumb-
nail sequence, some information about each thumbnail’s relative
or absolute position must be injected into the feature map
obtained by the 3DCNN to inform the model about the order
in the sequence. Similarly to the original transformer paper
(Vaswani et al. 2017), we use positional encoding at each layer in
the encoder to achieve this. The only difference is that our posi-
tional encoding is a 3D tensor, where P ∈ RN×H′×W′×D. Because
the positional encoding and the new feature maps have the same
dimension, they can be added together. We use sine and cosine
functions to encode the position (Vaswani et al. 2017):

P(n,2i) = sin(n/100002i/D), (4)

P(n,2i+1) = cos(n/100002i/D), (5)

where n denotes the position in the sequence of length, N, and i
is the channel dimension, while D represent the total number of
channel gotten by the 3DCNN. The sinusoidal positional encod-
ing is chosen to make it easy for the model to learn to attend
to relative positions. To get the new input for the convolutional
BERT, we conducted an element-wise addition between the posi-
tional encoding and the feature maps obtained from 3DCNN to
obtain the new tensor F ∈ RN×H′×W′×D:

Fn = S n + Pn, n ∈ {1, ..,N}. (6)

In this study, we only used information about the position
of the image in a sequence. While the observation date could be
used as an alternative to the position, this would require adjusting
the positional encoding function. Our experiments on the SDSS
dataset did not reveal any improvement in the model when using
the observation date, as opposed to just using the position. This
can be understood because we do the training and the test with
the same observation sequence and the network can therefore
learn this sequence. On the other hand, not incorporating any
information regarding the order of the sequence greatly degraded
the performance of the model. As a result, we ultimately chose to
use only the position in our model (see Sect. 4.2 for a discussion).

The newly obtained sequence F is fed to a multi-head con-
volutional attention, which is an improved self-attention that has
convolution. Then the multi-head convolutional attention is fol-
lowed by the second component which is a tiny feed-forward
network (FFN) that has convolutions applied to every attention
map. Its primary purpose is to transform the attention map into a
form acceptable by the next convolutional BERT layer, with the
FFN consisting of two convolutional layers with ReLU activation
in between.
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Fig. 5. Convolutional attention (left). Multi-head convolutional attention (right). To obtain the query, key, and value maps, we applied a convolution
layer on the feature map obtained from 3DCNN.

3.3.2. Multi-head convolutional self-attention

For this process, we used the model proposed by Liu et al. (2021),
with a few modifications where we replaced the last linear layer
with a convolution layer. We believe that convolution in self-
attention is better than the dot product between the query and the
key because the convolution will accurately calculate the simi-
larity, especially when we have 3D feature maps. A query map
and a set made up of a pair of key maps and value maps that
are encoded to an output using convolutional self-attention. The
query map, key maps, value maps, and output are all 3D ten-
sors. Figure 5 represent the general architecture of the multi-head
ConvAttention.

We used a convolution layer to generate the attention model’s
query, value, and key. The input to the attention model is F ∈
RN×H′×W′×D. We pass each map through a convolution layer to
get {Q,K,V} ∈ RN×H′×W′×D′ , where D′ = D/T and T represent
the number of attention heads. Then we appled a subnetwork,
Mθ, on the query and the key maps, which consists of an
element-wise sum of the query and the key maps followed by
another convolution layer to generate our attention map H(n,m) ∈
RH′×W′×1:

H(n,m) = Mθ(Qn,Km), n,m ∈ {1, ..,N}. (7)

After getting all the map attentions, Hn =
{H(n,1),H(n,2), ....,H(n,N)}, where Hn ∈ RH′×W′×N , we applied
a softmax operation along the third dimension of size, N. Then
we conducted an element-wise product between the attention
map and the value map following the equation:

V ′n =
N∑

m=1

SoftMax(Hn)(n,m)Vm. (8)

We concatenated the new value representation, V ′n, obtained
from the different attention heads. The multi-head attention is
used to attend to input from various representation subspaces
jointly:

MultiHead(Q,K,V) = Concat(V ′n1
, ...,V ′nT

). (9)

Finally, we applied a convolution layer for merging the output
of the multi-head and obtaining a high-level representation that
groups all the heads. At the end of the network, we pass the
encoded sequence to 3D max-pooling and finally to the classifier
to make a prediction.

3.4. Evaluation metrics

Accuracy is the probability that an object will be correctly clas-
sified. It is defined as the sum of the true positives plus true
negatives divided by the total number of individuals tested:

Accuracy =
TP + TN

TP + TN + FP + FN
, (10)

where TP, TN, FP, and FN are, respectively, the true positive,
true negative, false positive, and false negative.

The F1 score is a classification accuracy metric that com-
bines precision and recall. It is a suitable measure of models
tested with imbalanced datasets:

Precision =
TP

TP + FP
, (11)

Recall =
TP

TP + FN
, (12)

F1 = 2 × Precision × Recall
Precision + Recall

. (13)

4. Experiments

4.1. Implementation details

The supernovae in our data are not all spectroscopically con-
firmed, which means that the unconfirmed ones might contain
some misclassified objects due to errors from the photometric
typing. The model may not generalize due to this data bias. To
ensure that our model performs a generalization only on spec-
troscopically confirmed data, we split up the training process
into two steps. We divided the data into two datasets. The first
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Table 3. Count of every object in a dataset of each step in training
protocol.

Class Train Fine-tune Test

AGN 362 362 182
SNIa 1448 400 99
Variable 1290 1290 645
SNOther 2041 72 17

Notes. Train contains only photometrically typed data, “fine-tune” and
“test: contain only spectroscopically confirmed data.

one contains only the photometrically typed data and the sec-
ond contains spectroscopically confirmed data. We trained the
model at first with the photometrically typed data, then we used
transfer learning to fine-tune the model on only spectroscopically
confirmed data (Table 3 summarizes the partition of the data).
The models are trained using cross-validation of five folds and
three ensembles in each fold. All the architectures presented in
this paper follow this same process and are implemented using
PyTorch (Paszke et al. 2019).

We performed an extensive hyperparameter tuning of over
20 models to specify the best hyperparameters for our archi-
tecture, which contains 1.3 Million parameters. We conducted a
hyperparameter optimization using only a non-confirmed dataset
with different parameters, such as sequence length, M, learning
rate, lr, 3DCCN sub-sequence length, K, classifier layers’ size,
number of ConvBERT layers, L, number of Multi-head ConvAt-
tention, T , batch size, and dropout. We used an Adam optimizer
(Kingma & Ba 2014), with a value of the learning rate of 10−3,
and we trained the model with cross-entropy loss and a dropout
of 0.3. Hyperparameter tuning involves the number of images K
that feed the 3DCNN and the maximum length of the sequence.
The best values were K = 3 and M = 99, which means the num-
ber of sequences for the convolutional BERT is N = 33. The
batch size was 128 sequences which we ran over 100 epochs. We
chose the number of convolutional BERT layers to be L = 2 and
the number of attention heads T = 4. Also, the images were nor-
malized band-wise, as each band has different characteristics.
We used only four classes (AGN, SNIa, Variable, SNOther) to
train all the models. The class marked as “unknown” has not
been considered in the study. It corresponds to noisy or very
sparse data. It can easily be tagged from sparsity or noise in the
image metrics and we do not expect any improvement in the clas-
sification if such objects are added to the training. We trained all
models with 4 GPUs GeForce RTX 2080 Ti, Each model takes
about three hours to complete training. The implementation will
be released upon publication in our Github page1.

4.2. Results

This section provides studies on SDSS comparing the accu-
racy and F1 score of our proposed solution with other works.
Table 4 summarizes the result of different models from dif-
ferent deep learning areas to diversify our benchmark as it
contains RNN architectures (SuperNNova, LSTM), CNN-based
models such as SCONE, Hybrid models that have CNN and
RNN such as Carrasco-Davis et al. (2019) and Gómez et al.
(2020), and, finally, a transformer-based model. Also, we com-
pared the result using two types of datasets: first, the image
dataset and, second, the same dataset object but with the light

1 https://github.com/DaBihy/ConvEntion

curves; the goal is to highlight the advantage of using images
instead of light curves. Moreover, the different works men-
tioned in Table 4 were initially proposed for different datasets
with different classes and training protocols. Hence, the results
do not reflect the quality of these works on other datasets.
The goal of the comparison is to give visibility into the per-
formance of our model from a deep learning standpoint and
the importance of using image time series from an astronomy
perspective.

Overall, our model ConvEntion obtains the highest accuracy
of 79.83% and F1 score of 70.62%, 13 points higher in accu-
racy than the best results on images by Gómez et al. (2020)
and 12 points higher in accuracy than the best model using light
curves. This confirms the advantage of using images over light
curves. This advantage can be explained by the fact that the
image contains more information than a single value of flux
in a light curve. Hence, a model can learn robustly with the
existence of more high-level feature maps. Also, ConvEntion
performed better compared to the other image-based models,
such as Carrasco-Davis et al. (2019). Additionally, transformers
give a remarkable computational advantage because transform-
ers avoid recursion and allow for parallel computation, thus
reducing the training time. Our model took only three hours
to train, compared to other image-based models which took
five hours of training on our GPUs. Our model achieved bet-
ter results using fewer parameters, compared to the other models
trained on image sequences. The main benefit of using a trans-
former is that it reduces the drop in performance due to long
dependencies. Transformers do not rely on past hidden states to
capture dependencies with previous features such as RNNs. They
instead process a sequence as a whole. Therefore, there is no
risk of losing past information. Also, the integration of a spatio-
temporal feature extraction helped in getting a better high-level
representation of the sequence, in comparison to separating the
spatial features from the temporal ones. The two types of features
have correlations that may help the model to better discriminate
between objects. We can also highlight the importance of sepa-
rating the band to mitigate the impact of missing observations.
Our model performed well, in comparison to that of Gómez et al.
(2020) which uses multiple bands, which shows that separating
the bands and adding band embedding works better than feeding
the network with empty bands.

In the study of Carrasco-Davis et al. (2019), the authors
trained their model on a dataset that only has a “g” band and
they noted that the model can be adapted to classify the image
sequence combining information using multiple bands. For the
sake of comparison, we trained the image models with all the
bands “ugriz” at first and then with only one “g” band. Our
model achieved an accuracy of 76.89% and 63.20% in the F1
score using one band (“g”) which dropped 7% in comparison to
using multiple bands. Meanwhile, Carrasco-Davis et al. (2019)
achieved 63% in accuracy and 60% in their F1 score. This shows
that our model is more efficient when using multiple bands. This
also highlights the impact of band separation to mitigate the
impact of the missing observations.

Figure 6 illustrates the obtained confusion matrix by Con-
vEntion and it shows that the model has well classified the
supernovas. Most of the misclassified SNIa are associated with
SNOther and vice versa, which is not a serious error. This is even
an expected behavior, especially since all types of supernovas
share a lot of similarities which may confuse the model. Addi-
tionally, with a small dataset like ours, it is normal to have such
behavior because the model does not have enough samples to
totally discriminate among objects. Meanwhile, variables were
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Table 4. Performance comparison in terms of average F1 score and the average of the accuracy of five folds of cross-validation.

Model Bands Type of data Accuracy F1 score Num params

ConvEntion (Ours) ugriz Images 79.83 70.62 1.253M
CNN+GRU (Gómez et al. 2020) ugriz Images 66.39 63.22 1.993M
ConvEntion (Ours) g Images 76.89 63.20 1.253M
CNN+GRU (Gómez et al. 2020) g Images 63.67 61.00 1.992M
CNN+LSTM (Carrasco-Davis et al. 2019) ugriz Images 64.08 60.65 2.190M
CNN+LSTM (Carrasco-Davis et al. 2019) g Images 63.00 60.00 2.189M

SuperNNova (Bayes) (Möller & de Boissière 2020) ugriz Light curves 65.54 55.40 -
SITS-BERT (Yuan & Lin 2021) ugriz Light curves 67.43 51.60 0.596M
SCONE (CNN) (Qu et al. 2021) ugriz Light curves 62.57 50.43 22.2K
SuperNNova (RNN) (Möller & de Boissière 2020) ugriz Light curves 56.30 42.60 –
LSTM ugriz Light curves 55.24 40.33 60K

Notes. This table includes only experiments on a dataset with four classes.

Table 5. Performance comparison in terms of average F1 score and the average of the accuracy of five folds of cross-validation.

Model Bands Accuracy F1 score

ConvEntion (Ours) ugriz 83.90 75.77
ConvEntion (Ours) g 79.47 72.38
CNN+GRU (Gómez et al. 2020) g 74.84 68.95
CNN+LSTM (Carrasco-Davis et al. 2019) g 73.94 67.29

Notes. This table includes only experiments on a dataset with three classes.

Fig. 6. Confusion matrix showing the average accuracy and standard
deviation of the predictions generated by ConvEntion over cross-
validation of five folds on test data.

the best-classified class in our dataset, with just a bit of con-
fusion with the AGN; this misclassification between AGN and
variable can be explained by the class imbalance in our dataset

Fig. 7. Confusion matrix of three classes showing the average accuracy
and standard deviation of the predictions generated by ConvEntion over
cross-validation of five folds on test data.

based on the knowledge that the number of variables is higher
than in the other classes.

Table 5 summarizes the results of different models trained
only on three classes (AGN, SN, Variable), where classes SNIa
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and SNOther are combined into a single class. The goal of this
experiment is to see the behavior of our model in discriminat-
ing between transient and non-transient objects. We got the best
results with an accuracy of 83.90% with an F1 Score of 75.77%.
The model was able to classify the SN accurately, with a score
of 86% (as shown in Fig. 7).

The model is able to effectively process a given survey with-
out any loss in performance and without the requirement of
providing it with the time information for each image. However,
when there is a covariate shift, or a mismatch, between the train-
ing set and the test set as when using a different dataset with a
different observation sequence), incorporating the time informa-
tion can improve the results. This experimental finding will be
further studied and reported in future work using other datasets.

5. Conclusion

In this work, we present a method for efficient astronomical
image time series classification that is entirely based on the com-
bination of convolutional networks and transformers. Inspired by
action recognition and satellite image time series classification,
we propose a model ConvEntion that utilizes convolutions and
transformers jointly to capture complex spatio-temporal depen-
dencies between distinct steps, leading to accurate predictions
based on different observations of an object. The accuracy of
our model is better with a high margin of 13%, in comparison
to state-of-the-art methods using image data – and even better
compared to approaches using light curves.

Our model achieves good results on the SDSS dataset, while
also being faster thanks to using fewer parameters and parallel
computational processes, making it a good candidate for latency-
sensitive applications such as the real-time thumbnail classifier
of astronomical events. Meanwhile, our benchmark stands as
clear evidence of the importance of images in the domain of
astronomy. Indeed, the images contain more information than
the normal light curves, even if they present more difficulties. In
the future, we plan to scale up ConvEntion using self-supervised
learning to investigate whether the model can generalize even
better. With a large amount of unlabeled data in astronomy,
we believe that the next step to advance AITS classification is
creating self-supervised models.
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