

Serum persistent organic pollutants and diminished ovarian reserve: a single-exposure and mixture exposure approach from a French case-control study

M. Genard-Walton, C Warembourg, S. Duros, Fabien Mercier, T Lefebvre, A. Guivarc'H-Leveque, M. -T. Le Martelot, B. Le Bot, B. Jacquemin, C

Chevrier, et al.

▶ To cite this version:

M. Genard-Walton, C Warembourg, S. Duros, Fabien Mercier, T Lefebvre, et al.. Serum persistent organic pollutants and diminished ovarian reserve: a single-exposure and mixture exposure approach from a French case-control study. Human Reproduction, 2023, 38 (4), pp.-701-715. 10.1093/hum-rep/dead028 . hal-04058970

HAL Id: hal-04058970 https://hal.science/hal-04058970

Submitted on 9 Jul2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

1	Serum persistent organic pollutants and diminished ovarian reserve: a single-exposure and mixture
2	exposure approach from a French case-control study
3	
4	Running Title: POP exposure and diminished ovarian reserve
5	
6	M. Génard-Walton ^{1,*} , C. Warembourg ¹ , S. Duros ² , F. Mercier ³ , T. Lefebvre ⁴ , A. Guivarc'h-Levêque ⁵ , M-T.
7	Le Martelot ⁶ , B. Le Bot ⁷ , B. Jacquemin ¹ , C. Chevrier ¹ , S. Cordier ¹ , N. Costet ¹ , L. Multigner ¹ , and R.
8	Garlantézec ⁸
9	
10	¹ Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S
11	1085, F-35000 Rennes, France
12	² Reproductive Medicine, CHU Rennes, 35200 Rennes, France
13	³ Univ Rennes, Inserm, EHESP, Leres (Laboratoire d'étude et de recherche en environnement et santé) -
14	UMR_S 1085, F-35000 Rennes, France
15	⁴ Reproductive Medicine, CHU Nantes, 44093 Nantes, France
16	⁵ Reproductive Medicine, Clinique de La Sagesse, 35043 Rennes, France
17	⁶ Reproductive Medicine, CHU Brest, 29609 Brest, France
18	⁷ Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S
19	1085, F-35000 Rennes, France
20	⁸ Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)
21	- UMR_S 1085, F-35000 Rennes, France
22	
23	*Correspondence address. E-mail: maximilien.genard-walton@inserm.fr
24	
25	

26 Abstract

27

28 Study question:

29 Are persistent organic pollutants (POPs) associated with a diminished ovarian reserve (DOR) in women of

- 30 reproductive age?
- 31 Summary answer:

32 Amongst 17 POPs detected in over 20% of serum samples, only p,p'-DDE was significantly associated with

an increased risk of DOR, and β -HCH was significantly associated with a decreased risk of DOR whilst

34 mixture analyses yielded non-significant associations and did not detect any interactions between POPs.

35 What is known already:

36 Animal studies have shown that several POPs can alter folliculogenesis and increase follicle depletion.

37 However, only a few studies have been conducted in humans, with small sample sizes and inconsistent

38 results.

39 Study design, size, duration:

Our study included 138 cases and 151 controls from the AROPE case-control study. Study participants
were women between 18 and 40 years of age recruited amongst couples consulting for infertility in four
fertility centres in western France between 2016 and 2020.

43 **Participants/materials, setting, methods:**

Cases of DOR were defined as women with AMH levels \leq 1.1 ng/mL and/or AFC < 7, and controls were women with AMH levels between 1.1 and 5 ng/mL and AFC \geq 7, without genital malformations and with a menstrual cycle length between 26 and 35 days. A total of 43 POPs (including 15 organochlorine pesticides, 17 polychlorinated biphenyls and 9 polybromodiphenylethers) were measured in the serum at inclusion into the study. We conducted logistic regression adjusted for potential confounders using a directed acyclic graph (DAG) to study the effect of each POP on DOR as single exposures, and used Bayesian kernel machine regression (BKMR) to measure the mixture effect of POPs on DOR.

Page 4 of 65

3

51 Main results and the role of chance:

52 Of the 43 POPs, 17 were detected in over 20% of the serum samples. In the single-exposure multivariate 53 logistic regressions, p,p'-DDE (median 165.0 IQR 161.0 ng/L in controls) as a continuous exposure was 54 significantly associated with an increased risk of DOR (OR 1.39, 95% CI 1.10 - 1.77) and non-significantly 55 associated with an increased risk of DOR for the second and third terciles (OR 1.46, 95% CI 0.74 - 2.87, 56 and OR 1.72, 95% CI 0.88 - 3.37, respectively). β-HCH (median 24.2 IQR 21.5 ng/L in controls) was significantly associated with a decreased risk of DOR when β-HCH was treated as a continuous exposure 57 58 (OR 0.63, 95% CI 0.44 - 0.89) and for the third tercile of exposure (OR 0.43, 95% CI 0.21 - 0.84) and nonsignificantly associated with a decreased risk of DOR for the second tercile (OR 0.77, 95% CI 0.42 - 1.42). 59 60 All sensitivity analyses confirmed our results. BKMR showed similar associations for single exposures but found no significant associations for the total mixture effect. In addition, the BKMR results did not suggest 61 62 any interactions between POPs.

63 Limitations, reasons for caution:

64 Controls were recruited amongst infertile couples and thus may not be representative of all women of 65 reproductive age. However, their POP concentrations were in the same range as in the general French 66 population.

67 Wider implications of the findings:

This study is the first to examine the associations between serum POPs and DOR. The well-recognised anti-androgenic properties of p,p'-DDE and estrogenic properties of β -HCH could explain these associations of opposite direction. If these results are replicated elsewhere, this could have an impact on fertility prevention messages and help in understanding the impact of POPs on the female reproductive system.

Study funding/competing interest(s): This study was funded by the Fondation de France (grant number
 2014-50537 and 00110196) and the French Biomedicine Agency (2016). None of the authors have any
 conflicts of interest to declare.

76	Trial registration number: N/A.
77	
78	Keywords: Ovarian Reserve; Female Infertility; Persistent Organic Pollutants; Environmental Exposure;
79	Pesticides; Polychlorinated Biphenyls.
80	
81	
82	
83	
84	

85 Introduction

86

Ovarian reserve is defined as the number and quality of primordial follicles in both ovaries (Richardson et 87 88 al., 2014). This stock of follicles is constituted in utero, where it can reach up to seven million, but 89 subsequently decreases to one to two million at birth and thereafter to 1,000, on average, as women 90 reach menopause (Hansen et al., 2008). Currently, the two most accurate indirect measurement methods to evaluate the ovarian reserve in clinical practice are based on the antral follicle count (AFC) and anti-91 92 Müllerian hormone (AMH) levels (Ferraretti et al., 2011). The term diminished ovarian reserve (DOR) is used to describe women of reproductive age whose ovarian pool, which reflects a woman's reproductive 93 94 potential (Tal and Seifer, 2017), is smaller than that of other women of the same age. It is one of the most frequent pathologies diagnosed in women consulting for infertility (Pastore et al., 2018) and is of 95 96 particular concern, as the mean age of conception is globally increasing (Datta et al., 2016; Schmidt et al., 2012; Vander Borght and Wyns, 2018). DOR is associated with a poor response to ovarian stimulation (Yun 97 et al., 2017) and is possibly associated with recurrent pregnancy loss (Bunnewell et al., 2020). Several risk 98 99 factors, such as age, smoking, body-mass index (BMI), and a history of chemotherapy and radiotherapy, 100 are known to be associated with ovarian reserve indicators (de Angelis et al., 2020; Moslehi et al., 2018; Spears et al., 2019). However, the role of environmental pollutants on the ovarian reserve is less well 101 102 understood (Jurewicz et al., 2020; Mínguez-Alarcón and Gaskins, 2017; Souter et al., 2013). Amongst them, persistent organic pollutants (POPs) have attracted attention because of their widespread and 103 persistent presence, both in the environment and in humans, and their ability to interfere with hormone-104 105 regulated processes (Bergman et al., 2013). The main categories of POPs include organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and 106 107 perfluoroalkyls substances (PFASs) and the vast majority of them are considered to be endocrine 108 disrupting chemicals (EDCs) (Bergman et al., 2013). They are carbon-based chemical substances that 109 bioaccumulate with half-lives in humans ranging from 10-20 years for OCPs and PCBs and 5-10 years for 110 PBDEs (Bu et al., 2015; Ritter et al., 2011). Most of these chemicals have been banned from production and trade in large parts of the world for up to several decades. Nonetheless, POPs are still detected in 111 humans worldwide. The main source of exposure to OCPs, PCBs and PBDEs, for humans is food (Bergman 112 et al., 2013; Djien Liem et al., 2000; Guo et al., 2019) but these pollutants can also be found in the air 113 114 (Castro-Jiménez et al., 2017; Hung et al., 2005) and in indoor dust (Roosens et al., 2010). Animal studies have reported associations between exposure to OCPs (dichlorodiphenyltrichloroethane [DDT], y-115 hexachlorocyclohexane [y-HCH] and hexachlorobenzene [HCB]) and impaired oocyte maturation 116 (Lindenau et al., 1994) and folliculogenesis (Alvarez et al., 2000) and between in-utero exposure to 117 selected POPs (PBDE 47 and 99, Aroclor 1016 [a commercial PCB mixture] and hexabromocyclododecane 118 119 [HBCD]) and a decreased number of follicles (Baldridge et al., 2003; Ema et al., 2008; Lilienthal et al., 2006; 120 Talsness et al., 2008). Moreover, in-vitro studies have shown impacts of OCPs (γ-HCH, DDT and dichlorodiphenyldichloroethylene [DDE]) and PCB 126 on oocyte maturation (Alm et al., 1998; Krogenæs 121 et al., 1998) and folliculogenesis (Holloway et al., 2007). In humans, several OCPs including p,p'-DDE, β-122 123 HCH and HCB, multiple PCB congeners (e.g. 118, 138, 153, 170, 180, 183, 187) and PBDEs congeners (e.g. 100, 153) have been associated with a delayed time-to-pregnancy (Chevrier et al., 2013; Kahn et al., 2021; 124 125 Kim et al., 2019) and a few studies have investigated the effects of POPs on indicators of the ovarian 126 reserve, such as AMH and AFC, treated as continuous variables. In a population of 50 pregnant women, one study (Björvang et al., 2021) found associations between higher POP levels (HCB, trans-nonachlor, 127 PCB 74 and 99) and decreased non-growing follicle densities measured in ovarian cortical tissue, which 128 disappeared for all POPs when they were adjusted for lipid levels, except for HCB. In the same study, no 129 associations were observed with serum AMH in the first trimester of pregnancy. In a subsequent paper 130 investigating 30 POPs in a cohort of 185 women undergoing assisted reproductive technologies (Björvang 131 132 et al., 2022), the authors also found higher HCB concentrations (wet-weight) to be the only POP measured in serum to be associated with lower AMH levels, whereas none were associated with AFC. Furthermore, 133 in a study of 420 null-parous women aged 20 to 30 years from a rural community in South Africa 134

135 (Whitworth *et al.*, 2015), p,p'-DDT and p,p'-DDE were not associated with AMH levels. Finally, in a pilot 136 study of 32 women, Bloom *et al.* (2017) identified associations between high levels of three PCBs (namely 137 PCB 151, 170 and 180), amongst 45 POPs measured in follicular fluid, and a lower number of antral 138 follicles. In summary, there are inconsistent results concerning the relationship between POPs and 139 continuous indicators of the ovarian reserve. Here, we aimed to investigate the associations between 140 serum concentrations of selected POPs and DOR defined using internationally recognised thresholds 141 among women consulting for couple infertility in North-Western France.

142

144 Materials and methods

145

146 **Population**

147 We used data from the AROPE case-control study (Altération de la réserve ovarienne : étude du rôle de 148 l'exposition aux perturbateurs endocriniens persistants et aux solvants organiques), which included women between the ages of 18 and 40 amongst couples consulting for infertility in four fertility centres 149 in the region of Bretagne, – Pays de Loire in north-western France (Rennes University Hospital, Nantes 150 151 University Hospital, Brest University Hospital, and La Sagesse, a semi-private clinic based in Rennes) between November 2016 and February 2020. All women consulting in these centres underwent a 152 standardized endovaginal antral follicle count by a trained gynaecologist between days 2 and 4 of a 153 154 spontaneous menstrual cycle (Broekmans et al., 2010) as well as an AMH measurement performed at inclusion (36.2% of cases and 31.8% of controls) or within the year prior to the inclusion for women who 155 156 had already started consulting in the clinics (63.8% of cases and 68.2% of controls). AMH levels were 157 measured using an automated Roche Elecsys immunoassay system in all centres, excepted for Rennes University Hospital, where the automated Beckman-Coulter Access Dxi assay was used (van Helden and 158 159 Weiskirchen, 2015). Cases of DOR were defined using the threshold values for the AFC and AMH levels 160 proposed in the European Society of Human Reproduction and Embryology (ESHRE) consensus Bologna criteria (Ferraretti et al., 2011). Hence, cases were women presenting a number of antral follicles lower 161 than 7 and/or a blood level of AMH lower or equal to 1.1 ng/mL. Controls were selected by frequency 162 matching per centre and per five-year age group among women whose fertility assessment was strictly 163 normal (AMH levels between 1.1 and 5 ng/mL and AFC \geq 7, without genital malformation and with a 164 menstrual cycle between 26 and 35 days). The non-inclusion criteria for cases and controls were 165 166 endometriosis, polycystic ovary syndrome, a history of adnexal surgery, a history of cancer with chemotherapy or radiotherapy, a genetic or chromosomal syndrome (Turner or fragile X), morbid obesity 167 $(BMI \ge 35 \text{ kg/m}^2)$, and women subject to legal protection or deprived of their liberty. At inclusion, a 168

gynaecologist collected medical information and the participants completed a self-administered questionnaire that covered their social and demographic characteristics, personal habits and lifestyle. Blood serum was also collected at inclusion to measure the chemicals of interest. In total, 149 cases and 161 controls were included in the AROPE study, with a participation rate of 65% for cases and 75% for controls amongst women who were invited to participate.

174

175 Assessment of exposure

176 After clotting, blood samples were centrifuged and serum samples were separated by centrifugation, transferred immediately to propylene vials with a Teflon stopper, and frozen at -20°C. Samples were 177 178 identified solely by a unique sample code and transferred, on dry ice, to the Leres (Laboratoire d'Etude et 179 de Recherche en Environnement et Santé) laboratory in Rennes, France. All laboratory personnel were 180 blind to the case/control status. POP measurements were carried out on 138 cases and 151 controls, as there was an insufficient quantity of serum for 11 cases and 10 controls. A participant flowchart is 181 available in Supplementary Figure S1 and the study design is outlined in Supplementary Figure S2. A gas 182 chromatograph (GC 7890B, Agilent Technologies, Santa Clara, California, United States) coupled with a 183 triple quadrupole mass spectrometer (7010B Triple Quadrupole GC/MS, Agilent Technologies) was used 184 to determine the serum concentrations of 43 POPs: 15 organochlorines (aldrin, dieldrin, o,p'-DDE, o,p'-185 DDT, p,p'-DDE, p,p'-DDT, α-endosulfan, β-endosulfan, heptachlor, cis-heptachlor epoxide, trans-186 heptachlor epoxide, α-HCH, β-HCH, γ-HCH, HCB, 17 PCB congeners (28, 31, 52, 74, 99, 101, 118, 138, 153, 187 188 163, 170, 180, 183, 187, 194, 196, and 203), 9 PBDEs congeners (28, 47, 66, 85, 99, 100, 153, 154, and 189 183), one polybromobiphenyl congener (153) and HBCD (as a mixture of α , β and γ isomers). A detailed description of the method, including quality assurance and quality control, is provided in Supplementary 190 191 File S1 and Supplementary Tables SI and SII. Concentrations are reported as wet weight (units of 192 micrograms per litre) and the limits of detection (LOD) ranged from 0.0025 µg/L for most POPs to 2.5 µg/L for PBDE 183. Total cholesterol (TC) and triglyceride (TG) levels were enzymatically measured in serum 193

194 samples (in mmol/L). After conversion to g/L, total lipid levels were calculated as 2.27*TC + TG + 0.623
195 (Phillips *et al.*, 1989).

196

197 Statistical analyses

198 All POP concentrations in our study were standardised using total serum lipids, as recommended by 199 O'Brien et al. (2016) (O'Brien et al., 2016). POP concentrations were then log-2 transformed when treated as a continuous variable. POPs detected in fewer than 20% of samples were not included in the analyses. 200 201 For POPs detected in between 20% and 50% of samples, exposure was dichotomised into two groups (detected versus not detected). For others (POPs detected in over 50% of samples), concentrations below 202 203 the limit of detection (LOD) were replaced by combining the results of five imputations using maximum 204 likelihood estimations (Cole et al., 2009) and were categorised in terciles. For these POPs, analyses were also performed on continuous exposure. Associations between cases and control status and exposures 205 variables were studied using unconditional logistic regression as recommended for frequency matching 206 207 (Kuo et al., 2018; Pearce, 2016). The logistic regression results are presented as odds ratios (OR) with their corresponding 95% confidence intervals (CI). We reviewed the relevant literature to develop a directed 208 209 acyclic graph (DAG) (Shrier and Platt, 2008) (Supplementary Figure S3), which was used to determine the 210 minimally sufficient adjustment sets of variables for regression to estimate the total effects of the studied exposure on the outcome. Based on this DAG, our models were systematically adjusted for age 211 (continuous), education level (high school or lower, high school + 2 years of university, high school + 3 212 years of university and above), BMI (continuous) and season of inclusion (autumn, winter, spring, 213 summer). This set of adjustments was supplemented by an a priori adjustment on centre of inclusion. 214 Covariates with missing data were imputed using multiple imputation by chained equations (five sets) 215 216 (Kristman et al., 2005). Additionally, we conducted sensitivity analyses using different definitions for cases: one based on the AFC outcome only (AFC < 7), one based on the AMH outcome only (AMH levels \leq 217 1.1 ng/mL), and one based on the combination of both the AFC and AMH outcomes (AFC < 7 and AMH 218

219 levels ≤ 1.1 ng/mL). In addition, as suggested by Ferraretti & Gianaroli (2014), we performed a sensitivity 220 analysis in which cases were defined as AFC < 5 or AMH levels ≤ 0.7 ng/mL (Ferraretti and Gianaroli, 2014). 221 All sensitivity analyses were performed using the same original group of controls (N=151). Finally, we 222 carried out two sensitivity analyses, one restricted to women who had not undergone any prior ovarian 223 stimulation to remove the potential impact of previous ovarian stimulation on our models, and another 224 restricted to women whose outcomes were measured at inclusion. Furthermore, we used Bayesian kernel machine regression (BKMR) (Bobb et al., 2015) for POPs with a detection rate above 50% to evaluate the 225 226 mixture effect of POPs on DOR. BKMR is a non-parametric Bayesian method that can flexibly model the association between multiple exposures and an outcome using a kernel function. This method allows for 227 228 the integration of non-linear associations, as well as interactions between exposures. POPs were organised into groups of POP families. Hierarchical variable selection was performed to estimate the 229 posterior inclusion probabilities of the groups and individual POPs. The model was fit with 10,000 230 iterations using a Markov chain Monte Carlo (MCMC) algorithm. One individual was considered to exert 231 an overly large leverage on the mixture effect and was therefore removed from the BKMR analysis. All 232 233 analyses were performed using R (version 4.0.4). The threshold for significance for all analyses was 5%.

234

235 Ethics approval

The study was approved by the French ethical board for human participation in research study on health (authorisation n°2016-A00307-44) and the French national security agency for medicine and health products (ANSM). All participants provided informed consent for their participation in the study.

239

241 Results

242

243 **Population description**

The participant characteristics can be found in Table I. The mean age was 33.8 (± 4.0) years for cases and 32.4 (± 4.1) years for controls. Most study participants (66.6% for cases and 64.3% for controls) had an education level equivalent to high school + 2 years university or above. Their ethnic origin was mostly European (87.4% of cases and 90.8% of controls). Half of the women were never smokers (52.1% in cases and 51.1% in controls) and close to two thirds of the participants were women with primary infertility (60.9% in cases and 58.3% in controls).

250

251 Serum concentrations of POPs

Table II shows the detection rates and the serum concentrations of POPs in the control and case groups. 252 253 Out of the 43 persistent organic pollutants, 17 were detected in over 20% of samples and 15 were 254 detected in over 90% of samples. The POP with the highest median serum concentration was p,p'-DDE (28.9 ng/g lipid base), followed by PCB 153 (21.1 ng/g lipid base), PCB 180 (15.2 ng/g lipid base) and HCB 255 256 (7.4 ng/g lipid base). Correlation coefficients (Supplementary Figure S4) between PCBs were between 0.4 257 and 1, except those for PCB 28, which were lower. OCPs were correlated together (between rho = 0.3 and 258 rho = 0.6), except for p,p'-DDT, which only correlated with p,p'-DDE (rho = 0.6). p,p'-DDE, HCB and β -HCH correlated moderately with PCBs (0.3 < rho < 0.6), with the exception of PCB 28. 259

260

261 Associations between POP exposures and DOR

Associations between tercile and continuous POP exposures and DOR are presented in Table III. In multivariate logistic regressions, p,p'-DDE as a continuous exposure was significantly associated with an increased risk of DOR (OR 1.39, 95% CI 1.10 - 1.77) and was non-significantly associated with an increased risk of DOR for the second and third terciles (OR 1.46, 95% CI 0.74 - 2.87 and OR 1.72, 95% CI 0.88 - 3.37,

respectively). By contrast, β -HCH was significantly associated with a decreased risk of DOR when β -HCH was treated as a continuous exposure (OR 0.63, 95% CI 0.44 - 0.89) and for the third tercile of exposure (OR 0.43, 95% CI 0.21 - 0.84) and was non-significantly associated with a decreased risk of DOR for the second tercile (OR 0.77, 95% CI 0.42 - 1.42). There were no significant associations for any other POPs.

270

271 Sensitivity analyses

The associations found in the main analysis for p,p'-DDE and β -HCH were confirmed in all sensitivity analyses (Supplementary Tables SIII, SIV, SV, SVI, SVII and SVIII). In addition, PCB 118 was significantly associated with an increased risk of DOR in multivariate regressions when cases were defined as AFC < 7 for the second tercile of exposure (OR 2.98, 95% CI 1.09 - 8.11).

276

277 Associations between the POP mixture and DOR: BKMR analysis

POPs were organised into two groups: the OCP group and the PCB group. The combined effect of POPs on 278 DOR in BKMR analysis is shown in Figure 1. The group posterior inclusion probabilities (PIP) (Table IV) 279 280 showed that the model favours the inclusion of the OCP group more (96.9%) than the PCB group (31.8%). The OCP PIP was mainly driven by β -HCH (91.4%) and then p,p'-DDE (6.8%). The strongest PIPs in the PCB 281 group were PCB 99 (17.6%) and PCB 183 (11.5%). As we can observe in Figure 2, all plots, except those for 282 p,p'-DDE and β-HCH, showed no impact of the exposure on the probability of having DOR. The plot for 283 p,p'-DDE showed a quasi-linear relationship with DOR, whereas β -HCH showed a non-linear relationship. 284 Nonetheless, the relationship with β -HCH indicates stabilisation of the effect on DOR in the higher 285 286 quantiles of exposure. Furthermore, the overall mixture effect was Beta = -0.14, 95% CI -0.36 - 0.06, when all exposures were fixed at the 75th percentile compared to when they were all fixed at the 50th 287 288 percentile. We did not detect any interaction between different POPs when investigating the individual 289 effect of each POP and comparing the 75th to the 25th percentile of exposure when all other POPs were 290 fixed at the 25th, 50th, and 75th percentiles (Figure 3).

291 Discussion

292

Amongst 17 POPs detected in more than 20% of our serum samples, only two, p,p'-DDE and β -HCH, were associated with DOR. p,p'-DDE was significantly associated with an increased risk of DOR, whereas β -HCH was significantly associated with a decreased risk of DOR, both in a dose-dependent manner. These results were stable in all sensitivity analyses including when DOR was only defined using AFC or AMH only. The BKMR analysis showed no significant mixture effect and an absence of interactions between POPs.

298 To the best of our knowledge, our study is the first to analyse the relationship between POPs and DOR (defined in this study as AFC < 7 and/or AMH \leq 1.1 ng/L using ESHRE thresholds). However, four previous 299 300 studies (Björvang et al., 2021, 2022; Bloom et al., 2017; Whitworth et al., 2015) investigated the 301 relationship between p,p'-DDE and AMH levels and/or AFC as continuous variables and did not report any 302 significant associations. Nevertheless, the populations in two of these studies were quite different 303 compared to ours, namely, young rural South African women (Whitworth et al., 2015) and pregnant 304 women (Björvang et al., 2021). Two studies also had limited sample sizes (50 women for Björvang et al. (2021) and 32 women for Bloom et al. (2017)). Furthermore, studies that previously attempted to look at 305 306 the role of β -HCH on AMH levels or AFC were unable to detect the molecule in enough samples to carry 307 out the analyses (Björvang *et al.*, 2021, 2022; Cole *et al.*, 2006).

Our results regarding p,p'-DDE are in accordance with previous in-vitro and in-vivo experimental data. In 308 primary cultures of human granulosa cells, p,p'-DDE was reported to increase FSH stimulation of 309 310 aromatase activity, resulting in the overproduction of estradiol, leading to an increase in follicular 311 recruitment and the acceleration of follicular depletion (Younglai *et al.*, 2004). In addition, p,p'-DDE was shown to reduce the synthesis of vascular endothelial growth factor (VEGF) and insulin-like growth factor-312 313 1 (IGF-1) of granulosa cells in primary human cultures and rat ovaries (Holloway *et al.*, 2007), which may in turn alter ovarian follicular development. Moreover, Chedrese and Feyles (2001), reported that p,p'-314 315 DDE, but not estradiol, can decrease progesterone synthesis in hamster ovary cells. These results highlight

316 that the effect of p,p'-DDE on ovarian cells can be mediated by non-estrogenic activities, which may include its well-known anti-androgenic properties (You *et al.*, 1998, 1999). On the other hand, β-HCH has 317 been shown to exert estrogen-like effects in MCF-7 human breast cells (Hatakeyama et al., 2002) and 318 319 uterotrophic responses in ovariectomized mice (Bigsby *et al.*, 1997). Furthermore, adult rats exposed to 320 high exposure levels of β -HCH (\geq 50 mg/kg) showed atrophy of the ovaries, impaired oogenesis and focal hyperplasia and metaplastic changes of the endometrial epithelium, which could be due to an estrogenic 321 action of β -HCH (Van Velsen *et al.*, 1986). We believe that the opposite direction of the associations 322 323 between p,p'-DDE and β -HCH and DOR observed in our study may be explained, at least partially, by the different mechanisms and hormonal actions of these chemicals, i.e., the anti-androgenic properties of 324 325 p,p'-DDE and the oestrogenic properties of β -HCH. The opposite direction of the association between 326 POPs with anti-androgenic and estrogenic properties has been previously reported in other epidemiology studies, notably regarding time to pregnancy (Cohn et al., 2003) and prostate cancer (Emeville et al., 327 328 2015). Other studies are needed to replicate these observations on DOR as well as mechanistic studies to 329 better understand these intricate phenomena.

This study has several limitations. POPs were either measured at the time of inclusion or less than one 330 331 year after the ovarian reserve evaluations. There is therefore a possibility for reverse causation of the associations. However, POPs, especially OCPs and PCBs, are persistent chemicals with long half-lives that 332 accumulate in fat tissues over time (Bu et al., 2015) and their concentrations in human serum is hence 333 considered as a marker of long-term exposure. Additionally, human exposure to POPs has gradually 334 decreased over time (Bányiová et al., 2017; Schoeters et al., 2017). Another study (Stubleski et al., 2018) 335 336 also found that after a 5-year follow-up, POP concentrations in an elderly population decreased significantly with most reductions being in the 30-40% range but with lower declines for women 337 338 compared to men. Nevertheless correlations between POPs between time points remain high (Bányiová et al., 2017; Nøst et al., 2019), indicating that the overall effect (change in risk of DOR for one unit increase 339 340 in POP concentrations) should be stable if POP concentrations were lower at the time of sampling.

341 In addition, if the infertility status of the control partners was related to POP levels as shown in studies on POPs and semen parameters (Vested et al., 2014), and exposure to POPs was shared between the 342 members of the couple, it could imply that the controls included in the AROPE study were more exposed 343 344 to POPs than the general population. If this was indeed the case, this phenomenon could have led to 345 reduced associations between POPs and DOR in our study. Nevertheless, Góralczyk et al. (2015) reported low correlations of POP concentrations between partners living together. Moreover, the POP 346 concentration levels of the AROPE controls are comparable to the levels of the general population. PCB 347 348 levels were slightly lower than those reported in a French mother-child cohort (ELFE, 2011) (Dereumeaux 349 et al., 2016) and OCP concentrations were comparable to concentrations found in a French national cross-350 sectional study (ESTEBAN, 2014-16) (Santé Publique France, 2021).

351 We chose, a priori, to study the relation between POPs and DOR rather than indicators of ovarian reserve treated as continuous variables such as in previous published studies in order to use a more clinically 352 353 pertinent outcome. Additionally, doing so allowed us to ensure we could recruit more women with lower 354 ovarian reserves, but with the cost of losing the added statistical power of modeling on continuous variables. Our definition of DOR uses threshold levels for AFC and AMH levels that were proposed by the 355 356 Bologna ESHRE consensus for the purpose of predicting a poor ovarian response (POR). However, many 357 fertility centres also use this definition to diagnose DOR (Pastore et al., 2018). We performed several 358 sensitivity analyses using various definitions of the outcome to limit the risk of DOR misclassification: AFC < 7, AMH levels < 1.1 ng/mL, and AFC < 7 & AMH levels < 1.1 ng/mL. Furthermore, Ferraretti & Gianaroli 359 (2014) suggested modifying the Bologna criteria to adjust the cut-off values. We therefore implemented 360 361 an additional sensitivity analysis in which DOR was defined as AFC < 5 and/or AMH levels \leq 0.7 ng/mL. The results of all sensitivity analyses were consistent with our main findings. Nonetheless, there is still a 362 363 possibility that we missed a critical threshold which could be responsible for a lack of significant results in our findings. Finally, the analytical system for the determination of AMH levels was different in one centre 364 365 (Rennes University Hospital), which used the Beckman-Coulter Access assay, whereas the other centres

366 used AMH Roche Elecsys Assays. Nevertheless, these assay systems have been shown to provide highly correlated results in comparative studies (r = 0.903 (Li et al., 2016) and r = 0.991 (van Helden and 367 Weiskirchen, 2015)). Any residual difference should have been accounted for through our adjustment on 368 369 centres of inclusion. In addition, the AMH concentrations used in this study were measured within the 370 year before inclusion. This could result in a non-differential measurement bias, as AMH levels decrease 371 over time. Despite this imprecision, the results of our sensitivity analysis restricted to women with no 372 prior ovarian stimulation (Supplementary Table SVII) or women whose outcomes were measured at 373 inclusion (Supplementary Table SVIII) did not deviate from the main results of our study.

Given the number of pollutants analysed in this study, it is possible that our findings are impacted by the occurrence of false positives or negatives. However, the objective of this study was to provide signals to be confirmed in further studies rather than to reach definite conclusions. All analyses were also planned a priori and consequently, we decided not to correct our results for false discoveries (Bender and Lange, 2001; Goeman and Solari, 2011). Finally, our results were consistent in all our sensitivity analyses.

Our study also has several strengths. The AROPE study recruited cases and controls from four of the most 379 380 prevalent fertility centres in north-western France. The French national health insurance funds infertility consultations and the first four in-vitro fertilisation attempts until the age of 43 (National Health 381 Insurance, 2021), which may limit a potential selection bias when recruiting patients in fertility centres. 382 383 However, it is still possible that the study participants could have higher levels of education than that of the general population, as shown in a British study on the prevalence of infertility and help seeking, in 384 which the authors reported that women with lower levels of education are less likely to seek help (Datta 385 386 et al., 2016). In addition, although the AROPE study's participation rate was 65% for cases and 75% for controls, there were no differences between the patients included or not in our study in terms of age, 387 388 BMI or parity (data not shown). Another strength of our study, as mentioned above, is that we performed 389 multiple sensitivity analyses varying our case definition using pertinent thresholds to avoid issues of 390 measurement bias.

Furthermore, we used an a priori adjustment strategy using DAGs to limit over-adjustments (Shrier and Platt, 2008). Moreover, all our analyses were based on lipid-normalised POP levels (standardisation). We chose this strategy rather than that of lipid-adjusted models in light of results from a simulation study by O'Brien et al (2016), which investigated various scenarios for the relationship between POP exposure, lipid levels, and outcomes and standardisation and showed that standardisation performed best under the causal scenario of our study, i.e., when considering whether recent fat intake affects serum exposure concentrations and when other covariates affect both exposure concentrations and the outcome.

Lastly, we were able to analyse the effects of individual POPs on DOR as well as the effect of POPs as a mixture using BKMR. This method allowed us to include non-linear associations and check for interactions between pollutants. Evaluating the mixture effect is of particular importance because chemicals could either show no significant associations when studied individually and yet have an effect when treated as a mixture. Alternatively, they could have individual effects and either have an even larger impact as a mixture or mitigate each other's impacts (Le Magueresse-Battistoni *et al.*, 2018).

Although we found some evidence of associations with POP levels in adulthood, other windows of 404 exposure, especially prenatal exposure, may be critical to understanding the impact of POPs on the 405 406 ovarian reserve. Because the development of the ovarian reserve occurs in utero and is not resupplied 407 afterwards (Richardson et al., 2014), the effects of exposure to POPs in utero on the pool of primordial follicles could have long-lasting impacts. Incidentally, animal data have reported evidence for an 408 association between in-utero exposure to several POPs and a decreased number of follicles (Baldridge et 409 410 al., 2003; Ema et al., 2008; Lilienthal et al., 2006; Talsness et al., 2008). Data is scarce for humans, but one study (Kristensen et al., 2016) found an association between prenatal p,p'-DDE levels and a reduced 411 number of follicles at 19 years of age. 412

In conclusion, we found limited but suggestive evidence of associations between serum POPs and DOR in infertile couples, especially for p,p'-DDE and β -HCH, which showed opposite associations. These results may be explained by possible differences in the endocrine properties of these compounds and need to be

- 416 replicated in further studies. In addition, future research should also focus on exploring different windows
- 417 of susceptibility, including preconceptional, prenatal and peripubertal exposure.

- 420 **Data availability:** Due to French ethical legislation regarding the privacy of individuals who participated
- 421 in the study, the data underlying this article cannot be shared.
- Acknowledgements: The authors are grateful to the participants of the study and the staff of the fertility
 centres that included patients. We want to thank the Leres team for the POP analyses (Aude Dimeglio,
- 424 Laurie Corbet and Karine Elandaloussi for their contribution to the development of the analytical method
- 425 and Karine Elandaloussi for carrying out of the analysis campaign) and Violaine Benoit, project manager
- 426 of the Rennes University Hospital. We also wish to thank the public health doctoral network coordinated427 by the EHESP.
- 428 **Authors' roles:** RG designed the initial study. SD, TL, AGL and MTLM were in charge of patient inclusion
- 429 in the centres. BLB and FM were responsible for the POP analyses in serum. MGW, BJ, CC, NC, SC, LM,
- 430 CW and RG planned the analysis. MGW and RG analysed the data and wrote the initial manuscript. All
- 431 authors contributed to the revision of the manuscript and approved the final version.
- 432 **Funding:** The study was funded by the Fondation de France (grant number 2014-50537 and 00110196)
- and the French Biomedicine Agency (2016).
- 434 **Conflict of interest:** None to declare.
- 435

437 Figure legends

438

Figure 1. Difference in risks (and their 95% credible intervals) of diminished ovarian reserve due to
exposure to the persistent organic pollutant mixture when all pollutant concentrations are fixed at
different percentiles compared to when they are fixed at their median levels. The model was adjusted
for age, centre, education level, body-mass index and season of inclusion.
Figure 2. Difference in risks (blue lines) and their 95% credible intervals (shaded areas) of diminished

444 ovarian reserve at a given exposure level of each persistent organic pollutant compared to the median

445 exposure level of that pollutant while holding all other chemical exposure at their median levels. The

- 446 model was adjusted for age, centre, education level, body-mass index and season of inclusion. p,p'-DDE,
- 447 p,p'-dichlorodiphenyldichloroethylene; HCB, hexachlorobenzene; β-HCH, β-hexachlorocyclohexane; PCB,
- 448 polychlorinated biphenyl.
- Figure 3. Effects of individual persistent organic pollutants (and their 95% credible intervals) on the risk

of diminished ovarian reserve with all other pollutant exposures fixed at different quantiles (0.25, 0.50,

- **0.75).** The model was adjusted for age, centre, education level, body-mass index and season of inclusion.
- 452 p,p'-DDE, p,p'-dichlorodiphenyldichloroethylene; HCB, hexachlorobenzene; β -HCH, β -
- 453 hexachlorocyclohexane; PCB, polychlorinated biphenyl.
- 454 Supplementary Figure S1. AROPE study inclusion flowchart.
- 455 **Supplementary Figure S2. AROPE study inclusion inclusion process.**
- Supplementary Figure S3. Directed acyclic graph between persistent organic pollutants and diminished
 ovarian reserve.
- 458 Supplementary Figure S4. Spearman correlation plot for persistent organic pollutant with a detection
- 459 **frequency above 20% in the control population (N = 151).**
- 460 p,p'-DDE, p,p'-dichlorodiphenyldichloroethylene; HCB, hexachlorobenzene; β-HCH, β-461 hexachlorocyclohexane; PCB, polychlorinated biphenyl.

462 **References**

- Alm H, Torner H, Tiemann U, Kanitz W. Influence of organochlorine pesticides on maturation and postfertilization
 development of bovine oocytes in vitro. *Reprod Toxicol* 1998;**12**:559–563.
- Alvarez L, Randi A, Alvarez P, Piroli G, Chamson–Reig A, Lux–Lantos V, Pisarev DKD. Reproductive effects of
 hexachlorobenzene in female rats. *J Appl Toxicol* 2000;**20**:81–87.
- de Angelis C, Nardone A, Garifalos F, Pivonello C, Sansone A, Conforti A, Di Dato C, Sirico F, Alviggi C, Isidori A, *et al.* Smoke, alcohol and drug addiction and female fertility. *Reprod Biol Endocrinol RBE* 2020;**18**:1–26.
- Baldridge MG, Stahl RL, Gerstenberger SL, Tripoli V, Hutz RJ. Modulation of ovarian follicle maturation in Long–
 Evans rats exposed to polychlorinated biphenyls (PCBs) in-utero and lactationally. *Reprod Toxicol* 2003;17:567–573.
- Bányiová K, Černá M, Mikeš O, Komprdová K, Sharma A, Gyalpo T, Čupr P, Scheringer M. Long-term time trends in
 human intake of POPs in the Czech Republic indicate a need for continuous monitoring. *Environ Int* 2017;**108**:1–10.
- 475 Bender R, Lange S. Adjusting for multiple testing—when and how? *J Clin Epidemiol* 2001;**54**:343–349.
- Bergman Å, United Nations Environment Programme, World Health Organization. State of the science of
 endocrine disrupting chemicals 2012 an assessment of the state of the science of endocrine disruptors.
 Geneva: WHO : UNEP, 2013. Available at:
- 479https://apps.who.int/iris/bitstream/handle/10665/78102/WHO_HSE_PHE_IHE_2013.1_eng.pdf;sequence480=1. Accessed May 7, 2022.
- Bigsby RM, Caperell-Grant A, Madhukar BV. Xenobiotics released from fat during fasting produce estrogenic
 effects in ovariectomized mice. *Cancer Res* 1997;**57**:865–869.
- Björvang RD, Hallberg I, Pikki A, Berglund L, Pedrelli M, Kiviranta H, Rantakokko P, Ruokojärvi P, Lindh CH,
 Olovsson M, *et al.* Follicular fluid and blood levels of persistent organic pollutants and reproductive
 outcomes among women undergoing assisted reproductive technologies. *Environ Res* 2022;**208**:112626.
- Björvang RD, Hassan J, Stefopoulou M, Gemzell-Danielsson K, Pedrelli M, Kiviranta H, Rantakokko P, Ruokojärvi P,
 Lindh CH, Acharya G, *et al.* Persistent organic pollutants and the size of ovarian reserve in reproductive aged women. *Environ Int* 2021;**155**:1–13.
- Bloom MS, Fujimoto VY, Storm R, Zhang L, Butts CD, Sollohub D, Jansing RL. Persistent organic pollutants (POPs) in
 human follicular fluid and in vitro fertilization outcomes, a pilot study. *Reprod Toxicol* 2017;67:165–173.
- Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, Godleski JJ, Coull BA. Bayesian kernel
 machine regression for estimating the health effects of multi-pollutant mixtures. *Biostat Oxf Engl* 2015;**16**:493–508.
- Broekmans FJM, de Ziegler D, Howles CM, Gougeon A, Trew G, Olivennes F. The antral follicle count: practical
 recommendations for better standardization. *Fertil Steril* 2010;**94**:1044–1051.
- Bu Q, MacLeod M, Wong F, Toms L-ML, Mueller JF, Yu G. Historical intake and elimination of polychlorinated
 biphenyls and organochlorine pesticides by the Australian population reconstructed from biomonitoring
 data. *Environ Int* 2015;**74**:82–88.
- Bunnewell SJ, Honess ER, Karia AM, Keay SD, Al Wattar BH, Quenby S. Diminished ovarian reserve in recurrent
 pregnancy loss: a systematic review and meta-analysis. *Fertil Steril* 2020;**113**:818–827.

Castro-Jiménez J, Barhoumi B, Paluselli A, Tedetti M, Jiménez B, Muñoz-Arnanz J, Wortham H, Ridha Driss M,

502 503	Sempéré R. Occurrence, Loading, and Exposure of Atmospheric Particle-Bound POPs at the African and European Edges of the Western Mediterranean Sea. <i>Environ Sci Technol</i> 2017; 51 :13180–13189.
504 505 506	Chevrier C, Warembourg C, Gaudreau E, Monfort C, Le Blanc A, Guldner L, Cordier S. Organochlorine Pesticides, Polychlorinated Biphenyls, Seafood Consumption, and Time-to-Pregnancy. <i>Epidemiology</i> 2013; 24 :251– 260.
507 508 509	Cohn BA, Cirillo PM, Wolff MS, Schwingl PJ, Cohen RD, Sholtz RI, Ferrara A, Christianson RE, van den Berg BJ, Siiteri PK. DDT and DDE exposure in mothers and time to pregnancy in daughters. <i>The Lancet</i> 2003; 361 :2205–2206.
510 511	Cole DC, Wainman B, Sanin LH, Weber J-P, Muggah H, Ibrahim S. Environmental contaminant levels and fecundability among non-smoking couples. <i>Reprod Toxicol</i> 2006; 22 :13–19.
512 513	Cole SR, Chu H, Nie L, Schisterman EF. Estimating the odds ratio when exposure has a limit of detection. <i>Int J</i> Epidemiol 2009; 38 :1674–1680.
514 515 516	Datta J, Palmer MJ, Tanton C, Gibson LJ, Jones KG, Macdowall W, Glasier A, Sonnenberg P, Field N, Mercer CH, <i>et al.</i> Prevalence of infertility and help seeking among 15 000 women and men. <i>Hum Reprod Oxf Engl</i> 2016; 31 :2108–2118.
517 518	Djien Liem AK, Furst P, Rappe C. Exposure of populations to dioxins and related compounds. <i>Food Addit Contam</i> 2000; 17 :241–259.
519 520	Ema M, Fujii S, Hirata-Koizumi M, Matsumoto M. Two-generation reproductive toxicity study of the flame retardant hexabromocyclododecane in rats. <i>Reprod Toxicol</i> 2008; 25 :335–351.
521 522 523	Emeville E, Giusti A, Coumoul X, Thomé J-P, Blanchet P, Multigner L. Associations of Plasma Concentrations of Dichlorodiphenyldichloroethylene and Polychlorinated Biphenyls with Prostate Cancer: A Case–Control Study in Guadeloupe (French West Indies). <i>Environ Health Perspect</i> 2015; 123 :317–323.
524 525	Ferraretti AP, Gianaroli L. The Bologna criteria for the definition of poor ovarian responders: is there a need for revision? <i>Hum Reprod</i> 2014; 29 :1842–1845.
526 527 528	Ferraretti AP, La Marca A, Fauser BCJM, Tarlatzis B, Nargund G, Gianaroli L. ESHRE consensus on the definition of 'poor response' to ovarian stimulation for in vitro fertilization: the Bologna criteria. <i>Hum Reprod</i> 2011; 26 :1616–1624.
529	Goeman JJ, Solari A. Multiple Testing for Exploratory Research. Stat Sci 2011;26:584–597.
530 531 532	 Guo W, Pan B, Sakkiah S, Yavas G, Ge W, Zou W, Tong W, Hong H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int J Environ Res Public Health 2019;16:1–29.
533 534	Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. <i>Hum Reprod</i> 2008; 23 :699–708.
535 536	Hatakeyama M, Zou E, Matsumura F. Comparison of the characteristic of estrogenic action patterns of β-HCH and heregulin β1 in MCF-7 human breast cancer cells. <i>J Biochem Mol Toxicol</i> 2002; 16 :209–219.
537 538	van Helden J, Weiskirchen R. Performance of the two new fully automated anti-Müllerian hormone immunoassays compared with the clinical standard assay. <i>Hum Reprod</i> 2015; 30 :1918–1926.
539 540	Holloway AC, Petrik JJ, Younglai EV. Influence of dichlorodiphenylchloroethylene on vascular endothelial growth factor and insulin-like growth factor in human and rat ovarian cells. <i>Reprod Toxicol</i> 2007; 24 :359–364.

542

543

Hung H, Blanchard P, Halsall CJ, Bidleman TF, Stern GA, Fellin P, Muir DCG, Barrie LA, Jantunen LM, Helm PA, et al.

Temporal and spatial variabilities of atmospheric polychlorinated biphenyls (PCBs), organochlorine (OC)

pesticides and polycyclic aromatic hydrocarbons (PAHs) in the Canadian Arctic: Results from a decade of

monitoring. Sci Total Environ 2005;342:119-144. 544 Jurewicz J, Radwan M, Wielgomas B, Karwacka A, Klimowska A, Kałużny P, Radwan P, Hanke W. Parameters of 545 546 ovarian reserve in relation to urinary concentrations of parabens. Environ Health 2020;19:1-8. 547 Kahn LG, Harley KG, Siegel EL, Zhu Y, Factor-Litvak P, Porucznik CA, Klein-Fedyshin M, Hipwell AE, program 548 collaborators for Environmental Influences on Child Health Outcomes Program. Persistent organic 549 pollutants and couple fecundability: a systematic review. Hum Reprod Update 2021;27:339–366. 550 Kim YR, Pacella RE, Harden FA, White N, Toms L-ML. A systematic review: Impact of endocrine disrupting 551 chemicals exposure on fecundity as measured by time to pregnancy. Environ Res 2019;171:119–133. 552 Kristensen SL, Ramlau-Hansen CH, Ernst E, Olsen SF, Bonde JP, Vested A, Halldorsson TI, Rantakokko P, Kiviranta 553 H, Toft G. Prenatal exposure to persistent organochlorine pollutants and female reproductive function in 554 young adulthood. Environ Int 2016;92-93:366-372. Kristman VL, Manno M, Côté P. Methods to Account for Attrition in Longitudinal Data: Do They Work? A 555 556 Simulation Study. *Eur J Epidemiol* 2005;**20**:657–662. 557 Krogenæs AK, Nafstad I, Skåre JU, Farstad W, Hafne A-L. In vitro reproductive toxicity of polychlorinated biphenyl 558 congeners 153 and 126. Reprod Toxicol 1998;12:575-580. 559 Kuo C-L, Duan Y, Grady J. Unconditional or Conditional Logistic Regression Model for Age-Matched Case–Control 560 Data? Front Public Health 2018;6:1–11. 561 Le Magueresse-Battistoni B, Vidal H, Naville D. Environmental Pollutants and Metabolic Disorders: The Multi-562 Exposure Scenario of Life. Front Endocrinol 2018;9:1-7. Li HWR, Wong BPC, Ip WK, Yeung WSB, Ho PC, Ng EHY. Comparative evaluation of three new commercial 563 564 immunoassays for anti-Müllerian hormone measurement. Hum Reprod 2016;31:2796–2802. Lilienthal H, Hack A, Roth-Härer A, Grande SW, Talsness CE. Effects of Developmental Exposure to 2,2',4,4',5-565 Pentabromodiphenyl Ether (PBDE-99) on Sex Steroids, Sexual Development, and Sexually Dimorphic 566 567 Behavior in Rats. *Environ Health Perspect* 2006;**114**:194–201. 568 Lindenau A, Fischer B, Seiler P, Beier HM. Effects of persistent chlorinated hydrocarbons on reproductive tissues 569 in female rabbits. Hum Reprod 1994;9:772-780. 570 Mínguez-Alarcón L, Gaskins AJ. Female exposure to endocrine disrupting chemicals and fecundity: a review. Curr *Opin Obstet Gynecol* 2017;**29**:202–211. 571 572 Moslehi N, Shab-Bidar S, Ramezani Tehrani F, Mirmiran P, Azizi F. Is ovarian reserve associated with body mass 573 index and obesity in reproductive aged women? A meta-analysis. *Menopause* 2018;**25**:1046–1055. National Health Insurance. Assistance médicale à la procréation (AMP ou PMA). 2021. Available at: 574 575 https://www.ameli.fr/assure/sante/themes/sterilite-pma-infertilite/assistance-medicale-la-procreation-576 amp-ou-pma. Accessed May 3, 2022. Nøst TH, Berg V, Hanssen L, Rylander C, Gaudreau E, Dumas P, Breivik K, Sandanger TM. Time trends of persistent 577 578 organic pollutants in 30 year olds sampled in 1986, 1994, 2001 and 2007 in Northern Norway: Measurements, mechanistic modeling and a comparison of study designs. Environ Res 2019;172:684–692. 579

- 580O'Brien KM, Upson K, Cook NR, Weinberg CR. Environmental Chemicals in Urine and Blood: Improving Methods581for Creatinine and Lipid Adjustment. Environ Health Perspect 2016;124:220–227.
- Pastore LM, Christianson MS, Stelling J, Kearns WG, Segars JH. Reproductive ovarian testing and the alphabet
 soup of diagnoses: DOR, POI, POF, POR, and FOR. J Assist Reprod Genet 2018;35:17–23.
- 584 Pearce N. Analysis of matched case-control studies. *BMJ* 2016;**352**:1–4.
- Phillips DL, Pirkle JL, Burse VW, Bernert JT, Henderson LO, Needham LL. Chlorinated hydrocarbon levels in human
 serum: Effects of fasting and feeding. *Arch Environ Contam Toxicol* 1989;**18**:495–500.
- 587 Richardson MC, Guo M, Fauser BCJM, Macklon NS. Environmental and developmental origins of ovarian reserve.
 588 *Hum Reprod Update* 2014;**20**:353–369.
- Ritter R, Scheringer M, MacLeod M, Moeckel C, Jones KC, Hungerbühler K. Intrinsic Human Elimination Half-Lives
 of Polychlorinated Biphenyls Derived from the Temporal Evolution of Cross-Sectional Biomonitoring Data
 from the United Kingdom. *Environ Health Perspect* 2011;**119**:225–231.
- Roosens L, Abdallah MA-E, Harrad S, Neels H, Covaci A. Current Exposure to Persistent Polychlorinated Biphenyls
 (PCBs) and Dichlorodiphenyldichloroethylene (p,p'-DDE) of Belgian Students from Food and Dust. *Environ Sci Technol* 2010;**44**:2870–2875.
- Santé Publique France. Imprégnation de la population française par les organochlorés spécifiques et les
 chlorophénols. Programme national de biosurveillance, Esteban 2014-2016. 2021, 1–104. Available at:
 https://www.santepubliquefrance.fr/determinants-de-sante/exposition-a-des-substances chimiques/pesticides/documents/enquetes-etudes/impregnation-de-la-population-francaise-par-les organochlores-specifiques-et-les-chlorophenols.-programme-national-de-biosurveillance-esteban-2014.
 Accessed May 10, 2022.
- Schmidt L, Sobotka T, Bentzen JG, Nyboe Andersen A, on behalf of the ESHRE Reproduction and Society Task
 Force. Demographic and medical consequences of the postponement of parenthood. *Hum Reprod Update* 2012;**18**:29–43.
- Schoeters G, Govarts E, Bruckers L, Den Hond E, Nelen V, De Henauw S, Sioen I, Nawrot TS, Plusquin M, Vriens A,
 et al. Three cycles of human biomonitoring in Flanders Time trends observed in the Flemish
 Environment and Health Study. *Int J Hyg Environ Health* 2017;**220**:36–45.
- 607 Shrier I, Platt RW. Reducing bias through directed acyclic graphs. *BMC Med Res Methodol* 2008;**8**:1–15.
- Souter I, Smith KW, Dimitriadis I, Ehrlich S, Williams PL, Calafat AM, Hauser R. The association of bisphenol-A
 urinary concentrations with antral follicle counts and other measures of ovarian reserve in women
 undergoing infertility treatments. *Reprod Toxicol* 2013;**42**:224–231.
- Spears N, Lopes F, Stefansdottir A, Rossi V, De Felici M, Anderson RA, Klinger FG. Ovarian damage from
 chemotherapy and current approaches to its protection. *Hum Reprod Update* 2019;**25**:673–693.
- Stubleski J, Lind L, Salihovic S, Lind PM, Kärrman A. Longitudinal changes in persistent organic pollutants (POPs)
 from 2001 to 2009 in a sample of elderly Swedish men and women. *Environ Res* 2018;**165**:193–200.
- Tal R, Seifer DB. Ovarian reserve testing: a user's guide. *Am J Obstet Gynecol* 2017;**217**:129–140.
- Talsness CE, Kuriyama SN, Sterner-Kock A, Schnitker P, Grande SW, Shakibaei M, Andrade A, Grote K, Chahoud I.
 In Utero and Lactational Exposures to Low Doses of Polybrominated Diphenyl Ether-47 Alter the
 Reproductive System and Thyroid Gland of Female Rat Offspring. *Environ Health Perspect* 2008;**116**:308–
 314.

620	Van Velsen FL, Danse LH, Van Leeuwen FX, Dormans JA, Van Logten MJ. The subchronic oral toxicity of the beta-
621	isomer of hexachlorocyclohexane in rats. <i>Fundam Appl Toxicol Off J Soc Toxicol</i> 1986; 6 :697–712.
622	Vander Borght M, Wyns C. Fertility and infertility: Definition and epidemiology. Clin Biochem 2018;62:2–10.
623	Vested A, Giwercman A, Bonde JP, Toft G. Persistent organic pollutants and male reproductive health. <i>Asian J</i>
624	Androl 2014; 16 :71–80.
625	Whitworth KW, Baird DD, Steiner AZ, Bornman RMS, Travlos GS, Wilson RE, Longnecker MP. Antimüllerian
626	Hormone and Lifestyle, Reproductive, and Environmental Factors among Women in Rural South Africa.
627	<i>Epidemiol Camb Mass</i> 2015; 26 :429–435.
628	You L, Brenneman KA, Heck H d'A. In Utero Exposure to Antiandrogens Alters the Responsiveness of the Prostate
629	to p,p'-DDE in Adult Rats and May Induce Prostatic Inflammation. <i>Toxicol Appl Pharmacol</i> 1999; 161 :258–
630	266.
631	You L, Casanova M, Archibeque-Engle S, Sar M, Fan L-Q, Heck H d'A. Impaired Male Sexual Development in
632	Perinatal Sprague-Dawley and Long-Evans Hooded Rats Exposed in Utero and Lactationally to p,p'-DDE.
633	<i>Toxicol Sci</i> 1998; 45 :162–173.
634	Younglai EV, Holloway AC, Lim GE, Foster WG. Synergistic effects between FSH and
635	1,1-dichloro-2,2-bis(P-chlorophenyl)ethylene (P,P'-DDE) on human granulosa cell aromatase activity. <i>Hum</i>
636	<i>Reprod</i> 2004; 19 :1089–1093.
637	Yun BH, Kim G, Park SH, Noe EB, Seo SK, Cho S, Choi YS, Lee BS. <i>In vitro</i> fertilization outcome in women with

638 diminished ovarian reserve. *Obstet Gynecol Sci* 2017;**60**:46–52.

Figure 1. Mixture effect of persistent organic pollutants on diminished ovarian reserve at different percentiles of exposure compared to the 50th percentile. Difference in risk and its 95% credible interval of diminished ovarian reserve due to exposure to persistent organic pollutants when all pollutants are at different percentiles compared to when they are at their median levels. The model was adjusted for age, centre, education level, body-mass index, and season of inclusion.

228x152mm (300 x 300 DPI)

Figure 2. Mixture analysis of the exposure-response relationships between individual persistent organic pollutants and diminished ovarian reserve. Difference in risk (blue lines) and its 95% credible interval (shaded areas) of diminished ovarian reserve at a given exposure level of each persistent organic pollutant compared to the median exposure level of that pollutant while holding all other chemical exposure at their median levels. The model was adjusted for age, centre, education level, body-mass index, and season of inclusion.

228x152mm (300 x 300 DPI)

Figure 3. Effects of persistent organic pollutants on the risk of diminished ovarian reserve when the mixture exposure is fixed at different quantiles. Effect of individual persistent organic pollutants (and 95% credible intervals) on the risk of diminished ovarian reserve with all other pollutant exposures fixed at different quantiles (0.25, 0.5, 0.75). The model was adjusted for age, centre, education level, body-mass index, and season of inclusion.

228x152mm (300 x 300 DPI)

Table I. Study population characteristics (N = 138 cases and 151 controls)

Characteristic - N (%)	Cases (N = 138)	Controls (N = 151)
Centre		
Rennes University Hospital	34 (24.7)	42 (27.8)
Brest University Hospital	8 (5.8)	4 (2.6)
Nantes University Hospital	58 (42.0)	78 (51.7)
La Sagesse Clinic	38 (27.5)	27 (17.9)
Season of inclusion		
Autumn	26 (18.8)	43 (28.5)
Spring	49 (35.5)	41 (27.2)
Summer	29 (21.0)	23 (15.2)
Winter	34 (24.7)	44 (29.1)
Age		
Mean ± SD	33.8 ± 4.0	32.4 ± 4.1
[18,25]	6 (4.3)	10 (6.6)
[25,30]	14 (10.2)	29 (19.3)
[30,35]	52 (37.7)	65 (43.0)
[35,40]	66 (47.8)	47 (31.1)
Ethnic background		
Europe	111 (87.4)	128 (90.8)
Outside Europe	16 (12.6)	13 (9.2)
Missing data	11	10
Education		
High school or lower	42 (33.4)	49 (35.8)
High school +2 years of university	25 (19.8)	22 (16.1)
High school +3 years or higher of university	59 (46.8)	66 (48.2)
Missing data	12	14
Body-Mass Index (kg/m²)		
Mean ± SD	22.9 ± 3.4	23.6 ± 3.8
< 20	24 (17.4)	27 (18.0)
[20,25]	83 (60.2)	75 (50.0)
[25,30]	25 (18.1)	36 (24.0)
[30,35]	6 (4.3)	12 (8.0)
Missing data	0	1
Infertility status		
Primary	84 (60.9)	88 (58.3)
Secondary	54 (39.1)	63 (41.7)
Parity		
No children	84 (60.9)	88 (58.3)
1 child	33 (23.9)	33 (21.9)
\geq 2 children	21 (15.2)	30 (19.9)
Anti-müllerian hormone levels (ng/mL)		
Mean ± SD	0.61 ± 0.34	2.94 ± 1.00
Antral follicle count	0.5	24 + 2
IVIEan ± SD	8 ± 5	21 ± 9
Follicie-stimulating hormone (IU/L)	122422	67.24
IVIEAN ± SU	12.3 ± 12.4	b./±2.1
iviissing data	4	3
Luteinising normone (IU/L)		

Mean ± SD	7.7 ± 8.3	5.8 ± 2.4
Missing data	9	4
Estradiol (pg/mL)		
Mean ± SD	44.3 ± 20.8	37.0 ± 16.1
Missing data	19	8
Age at menarche		
Mean ± SD	12.9 ± 1.6	13.0 ± 1.7
Missing data	17	19
Smoking status		
Never smoker	61 (48.4)	68 (48.6)
Past smoker	46 (36.5)	49 (35.0)
Current smoker	19 (15.1)	23 (16.4)
Missing data	12	11
Cigarette pack-years		
Non smoker	61 (52.1)	67 (51.1)
[0,3]	26 (22.2)	18 (13.7)
[3,6]	14 (12.0)	16 (12.2)
≥ 6	16 (13.7)	30 (22.9)
Missing data	21	20
Alcohol (number of drinks per week)		
Non drinker	36 (29.5)	22 (16.2)
[0,7]	78 (63.9)	101 (74.3)
> 7	8 (6.6)	13 (9.6)
Missing data	16	15

Abbreviations: N, number of subjects; SD, standard deviation.

Table II. Serum persistent organic pollutant (POP) concentrations in ng/L (ng/g lipid base) in the AROPE study (N = 138 cases and 151 controls)

POPs ¹	Groupe	LOD (ng/L)	Detection N (%)	Minimum	25	50	75	Maximum
Organochlorine pesticides								
Dieldrine	Controls	25	26 (17.2)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>121 (21.3)</td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>121 (21.3)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>121 (21.3)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>121 (21.3)</td></lod>	121 (21.3)
	Cases	25	18 (13)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>82 (14.2)</td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>82 (14.2)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>82 (14.2)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>82 (14.2)</td></lod>	82 (14.2)
o.p'-DDE	Controls	2.5	1 (0.7)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>2.7 (0.5)</td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>2.7 (0.5)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>2.7 (0.5)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>2.7 (0.5)</td></lod>	2.7 (0.5)
	Cases	2.5	0	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""></lod></td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""></lod></td></lod>	<lod (<lod)<="" td=""></lod>
p.p'-DDE	Controls	10	151 (100)	25 (4.4)	111.5 (19.9)	165.0 (28.9)	272.5 (48.8)	1839 (324.2)
	Cases	10	138 (100)	41 (7)	132.5 (24.0)	202.0 (35.5)	355.2 (62.1)	7532 (1229.1)
p.p'-DDT	Controls	5	51 (33.8)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>6.2 (1.1)</td><td>186 (33.4)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>6.2 (1.1)</td><td>186 (33.4)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>6.2 (1.1)</td><td>186 (33.4)</td></lod>	6.2 (1.1)	186 (33.4)
	Cases	5	52 (37.7)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>7.4 (1.3)</td><td>170.3 (29)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>7.4 (1.3)</td><td>170.3 (29)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>7.4 (1.3)</td><td>170.3 (29)</td></lod>	7.4 (1.3)	170.3 (29)
Heptachlore	Controls	2.5	1 (0.7)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>3.6 (0.6)</td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>3.6 (0.6)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>3.6 (0.6)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>3.6 (0.6)</td></lod>	3.6 (0.6)
	Cases	2.5	0	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""></lod></td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""></lod></td></lod>	<lod (<lod)<="" td=""></lod>
cis-Heptachlor epoxide	Controls	5	143 (94.7)	<lod (<lod)<="" td=""><td>8.2 (1.5)</td><td>11.1 (2)</td><td>15.1 (2.6)</td><td>34.4 (5.3)</td></lod>	8.2 (1.5)	11.1 (2)	15.1 (2.6)	34.4 (5.3)
	Cases	5	133 (96.4)	<lod (<lod)<="" td=""><td>8.1 (1.6)</td><td>10.3 (1.9)</td><td>14 (2.4)</td><td>26.6 (5.5)</td></lod>	8.1 (1.6)	10.3 (1.9)	14 (2.4)	26.6 (5.5)
НСВ	Controls	2.5	151 (100)	11.3 (2)	34 (6.1)	41.5 (7.4)	50.2 (9)	149 (25.7)
	Cases	2.5	138 (100)	15.6 (2.6)	35.7 (6.4)	41.7 (7.5)	47.7 (9)	108.3 (15.1)
α-HCH	Controls	2.5	6 (4)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>7.9 (1.4)</td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>7.9 (1.4)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>7.9 (1.4)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>7.9 (1.4)</td></lod>	7.9 (1.4)
	Cases	2.5	7 (5.1)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>23.4 (3.7)</td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>23.4 (3.7)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>23.4 (3.7)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>23.4 (3.7)</td></lod>	23.4 (3.7)

Commented [JH1]: Heading row Allow text to run beyond stub column to keep in on a single line

https://academic.oup.com/humrep

Controls	2.5	151 (100)	6.4 (1.3)	16.7 (3.3)	24.2 (4.5)	38.2 (6.3)	262.6 (47.2)	
Cases	2.5	138 (100)	2.8 (0.6)	17.1 (3.1)	22.5 (4.1)	34.5 (5.9)	587.3 (110.7)	
Controls	2.5	12 (7.9)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>13 (2.4)</td><td></td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>13 (2.4)</td><td></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>13 (2.4)</td><td></td></lod></td></lod>	<lod (<lod)<="" td=""><td>13 (2.4)</td><td></td></lod>	13 (2.4)	
Cases	2.5	13 (9.4)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>48.5 (7.7)</td><td></td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>48.5 (7.7)</td><td></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>48.5 (7.7)</td><td></td></lod></td></lod>	<lod (<lod)<="" td=""><td>48.5 (7.7)</td><td></td></lod>	48.5 (7.7)	
								Commented [JH2]: Heading row
Controls	2.5	75 (49.7)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>4.2 (0.8)</td><td>32.8 (6.6)</td><td>Allow text to run beyond stub column to keep in on a single</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>4.2 (0.8)</td><td>32.8 (6.6)</td><td>Allow text to run beyond stub column to keep in on a single</td></lod></td></lod>	<lod (<lod)<="" td=""><td>4.2 (0.8)</td><td>32.8 (6.6)</td><td>Allow text to run beyond stub column to keep in on a single</td></lod>	4.2 (0.8)	32.8 (6.6)	Allow text to run beyond stub column to keep in on a single
Cases	2.5	68 (49.3)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>4.1 (0.7)</td><td>22.1 (3.8)</td><td>line</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>4.1 (0.7)</td><td>22.1 (3.8)</td><td>line</td></lod></td></lod>	<lod (<lod)<="" td=""><td>4.1 (0.7)</td><td>22.1 (3.8)</td><td>line</td></lod>	4.1 (0.7)	22.1 (3.8)	line
Controls	2.5	9 (6)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>20.4 (2.5)</td><td></td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>20.4 (2.5)</td><td></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>20.4 (2.5)</td><td></td></lod></td></lod>	<lod (<lod)<="" td=""><td>20.4 (2.5)</td><td></td></lod>	20.4 (2.5)	
Cases	2.5	8 (5.8)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>11 (1.9)</td><td></td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>11 (1.9)</td><td></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>11 (1.9)</td><td></td></lod></td></lod>	<lod (<lod)<="" td=""><td>11 (1.9)</td><td></td></lod>	11 (1.9)	
Controls	2.5	147 (97,4)	<1 0D (<1 0D)	8.2 (1.6)	11.8 (2.1)	17.2 (2.9)	106.4 (21.2)	
Cases	2.5	137 (99.3)	<lod (<lod)<="" td=""><td>8.6 (1.6)</td><td>12.1 (2.2)</td><td>17.3 (3)</td><td>88.5 (15.1)</td><td></td></lod>	8.6 (1.6)	12.1 (2.2)	17.3 (3)	88.5 (15.1)	
Controls	25	150 (99 3)	<10D (<10D)	89(16)	12 2 (2 2)	16.8 (3.1)	65 6 (13 1)	
Cases	2.5	137 (99.3)	<lod (<lod)<="" td=""><td>10.1 (1.8)</td><td>13.3 (2.5)</td><td>18.1 (3.2)</td><td>43.5 (7.4)</td><td></td></lod>	10.1 (1.8)	13.3 (2.5)	18.1 (3.2)	43.5 (7.4)	
Controls	25	19 (12 6)					98(19)	
Cases	2.5	20 (14.5)	<lod (<lod)<br=""><lod (<lod)<="" td=""><td><lod (<lod)<br=""><lod (<lod)<="" td=""><td><lod (<lod)<br=""><lod (<lod)<="" td=""><td><lod (<lod)<br=""><lod (<lod)<="" td=""><td>16.2 (2.7)</td><td></td></lod></lod></td></lod></lod></td></lod></lod></td></lod></lod>	<lod (<lod)<br=""><lod (<lod)<="" td=""><td><lod (<lod)<br=""><lod (<lod)<="" td=""><td><lod (<lod)<br=""><lod (<lod)<="" td=""><td>16.2 (2.7)</td><td></td></lod></lod></td></lod></lod></td></lod></lod>	<lod (<lod)<br=""><lod (<lod)<="" td=""><td><lod (<lod)<br=""><lod (<lod)<="" td=""><td>16.2 (2.7)</td><td></td></lod></lod></td></lod></lod>	<lod (<lod)<br=""><lod (<lod)<="" td=""><td>16.2 (2.7)</td><td></td></lod></lod>	16.2 (2.7)	
Controls	25	151 (100)	5 3 (0 0)	17 8 (3 1)	212(12)	25 5 (6 2)	107 9 (21 5)	
Cases	2.5	131 (100)	5.2 (1)	19.9 (3.5)	26.8 (4.9)	34.3 (6.3)	90.2 (17.3)	
Controls	2 5	151 (100)	14 E (2 C)		76 (12 5)	105 2 (10 2)	276 1 (FF)	
Controis	2.5	151 (100)	14.5 (2.0)	56.6 (10.4)	70 (13.5)	105.2 (19.2)	276.1 (55)	
Cases	2.5	138 (100)	16.6 (2.8)	64.5 (11.1)	87.1 (16.7)	114.6 (19.4)	285.7 (47.8)	
Controls	2.5	151 (100)	21.3 (3.8)	80 (15.3)	120.6 (21.1)	162.9 (29.1)	401.5 (80)	
Cases	2.5	138 (100)	24.4 (4.1)	97.9 (16.3)	130.1 (24.3)	170.4 (30.5)	452.4 (76.2)	
Controls	2.5	151 (100)	4.5 (0.8)	17.6 (3.3)	27.2 (5.2)	43 (7.6)	137 (24.6)	
Cases	2.5	138 (100)	3.7 (0.6)	20.8 (3.9)	32.8 (6.1)	46.1 (7.8)	164.8 (30.4)	
	Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases	Controls Cases2.5 2.5	Controls Cases 2.5 151 (100) Controls Cases 2.5 138 (100) Controls Cases 2.5 12 (7.9) Cases 2.5 13 (9.4) Controls Cases 2.5 75 (49.7) Cases 2.5 68 (49.3) Controls Cases 2.5 9 (6) Cases 2.5 8 (5.8) Controls Cases 2.5 147 (97.4) Cases 2.5 137 (99.3) Controls Cases 2.5 150 (99.3) Controls Cases 2.5 19 (12.6) Cases 2.5 19 (12.6) Cases 2.5 138 (100) Controls Cases 2.5 151 (100) Cases 2.5 138 (100) Controls Cases 2.5 151 (100) Cases 2.5 138 (100) Controls Cases 2.5 138 (100) Controls Cases 2.5 151 (100) Cases 2.5 138 (100)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

PCB 180	Controls	2.5	151 (100)	12.3 (2.2)	50 (9.3)	78.8 (15.2)	121.9 (21.6)	362.9 (65.2)
	Cases	2.5	138 (100)	10 (1.7)	63.7 (11.6)	98.7 (18.1)	127.5 (23)	456.6 (84.2)
PCB 183	Controls	2.5	144 (95.4)	<lod (<lod)<="" td=""><td>4.7 (0.8)</td><td>6.6 (1.2)</td><td>9.4 (1.7)</td><td>28 (5.6)</td></lod>	4.7 (0.8)	6.6 (1.2)	9.4 (1.7)	28 (5.6)
	Cases	2.5	133 (96.4)	<lod (<lod)<="" td=""><td>5.5 (1)</td><td>7.9 (1.4)</td><td>10.6 (1.9)</td><td>27.1 (5.6)</td></lod>	5.5 (1)	7.9 (1.4)	10.6 (1.9)	27.1 (5.6)
DCB 197	Controls	25	1/19 (98 7)		97(17)	15 3 (2 7)	25 2 (4 5)	117 9 (21 2)
100107	Cases	2.5	138 (100)	3 1 (0 5)	115(21)	18 3 (3 3)	25.2 (4.5)	86 1 (12 7)
	Cases	2.5	138 (100)	5.1 (0.5)	11.5 (2.1)	10.5 (5.5)	25 (4.5)	80.1 (12.7)
PCB 194	Controls	2.5	141 (93.4)	<lod (<lod)<="" td=""><td>5.4 (1.1)</td><td>8.8 (1.6)</td><td>15.1 (2.6)</td><td>52.8 (9.5)</td></lod>	5.4 (1.1)	8.8 (1.6)	15.1 (2.6)	52.8 (9.5)
	Cases	2.5	133 (96.4)	<lod (<lod)<="" td=""><td>7.1 (1.4)</td><td>11.1 (2.1)</td><td>16.7 (2.9)</td><td>68.7 (12.7)</td></lod>	7.1 (1.4)	11.1 (2.1)	16.7 (2.9)	68.7 (12.7)
PCB 196+203 ²	Controls	2.5	141 (93.4)	<lod (<lod)<="" td=""><td>5.1 (0.9)</td><td>8 (1.4)</td><td>12.4 (2.1)</td><td>35.7 (7.1)</td></lod>	5.1 (0.9)	8 (1.4)	12.4 (2.1)	35.7 (7.1)
	Cases	2.5	133 (96.4)	<lod (<lod)<="" td=""><td>6.6 (1.2)</td><td>9.6 (1.8)</td><td>13.1 (2.3)</td><td>45.8 (8.4)</td></lod>	6.6 (1.2)	9.6 (1.8)	13.1 (2.3)	45.8 (8.4)
olybromodiphenylethers								
BDE 28	Controls	2.5	8 (5.3)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>54.4 (8)</td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>54.4 (8)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>54.4 (8)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>54.4 (8)</td></lod>	54.4 (8)
	Cases	2.5	3 (2.2)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>3.6 (0.6)</td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>3.6 (0.6)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>3.6 (0.6)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>3.6 (0.6)</td></lod>	3.6 (0.6)
BDE 47	Controls	5	4 (2.6)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>131.1 (19.2)</td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>131.1 (19.2)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>131.1 (19.2)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>131.1 (19.2)</td></lod>	131.1 (19.2)
	Cases	5	7 (5.1)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>176.2 (29.9)</td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>176.2 (29.9)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>176.2 (29.9)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>176.2 (29.9)</td></lod>	176.2 (29.9)
			. ,	. ,	. ,	. ,		
BDE 66	Controls	5	1 (0.7)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>5.3 (0.9)</td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>5.3 (0.9)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>5.3 (0.9)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>5.3 (0.9)</td></lod>	5.3 (0.9)
	Cases	5	1 (0.7)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>11.7 (1.9)</td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>11.7 (1.9)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>11.7 (1.9)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>11.7 (1.9)</td></lod>	11.7 (1.9)
		_	- (()					
BDE 99	Controls	5	2 (1.3)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>161.6 (23.7)</td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>161.6 (23.7)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>161.6 (23.7)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>161.6 (23.7)</td></lod>	161.6 (23.7)
	Cases	5	5 (3.6)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>32.7 (5.6)</td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>32.7 (5.6)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>32.7 (5.6)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>32.7 (5.6)</td></lod>	32.7 (5.6)
BDE 100	Controls	5	2 (1.3)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>146.3 (21.5)</td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>146.3 (21.5)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>146.3 (21.5)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>146.3 (21.5)</td></lod>	146.3 (21.5)
	Cases	5	4 (2.9)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>29.6 (5)</td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>29.6 (5)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>29.6 (5)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>29.6 (5)</td></lod>	29.6 (5)
	-							
BDE 153	Controls	130	1 (0.7)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>150 (22)</td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>150 (22)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>150 (22)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>150 (22)</td></lod>	150 (22)
	Cases	130	0	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""></lod></td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""></lod></td></lod>	<lod (<lod)<="" td=""></lod>

Commented [JH3]: Heading row Allow text to run beyond stub column to keep in on a single line

BDE 154	Controls	25	3 (2)	<lod (<lod)<="" th=""><th><lod (<lod)<="" th=""><th><lod (<lod)<="" th=""><th><lod (<lod)<="" th=""><th>125 (18.3)</th></lod></th></lod></th></lod></th></lod>	<lod (<lod)<="" th=""><th><lod (<lod)<="" th=""><th><lod (<lod)<="" th=""><th>125 (18.3)</th></lod></th></lod></th></lod>	<lod (<lod)<="" th=""><th><lod (<lod)<="" th=""><th>125 (18.3)</th></lod></th></lod>	<lod (<lod)<="" th=""><th>125 (18.3)</th></lod>	125 (18.3)
	Cases	25	1 (0.7)	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>72 (11.8)</td></lod></td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>72 (11.8)</td></lod></td></lod></td></lod>	<lod (<lod)<="" td=""><td><lod (<lod)<="" td=""><td>72 (11.8)</td></lod></td></lod>	<lod (<lod)<="" td=""><td>72 (11.8)</td></lod>	72 (11.8)

¹Aldrin, o,p¹-DDT, α-endosulfan, β-endosulfan, trans-heptachlor epoxide, PCB 31, BDE congener 85 & 183, polybromobiphenyl 153, and αβγ-hexabromocyclododecane concentrations were below the LOD in all cases and controls.

²These POPS could not be distinguished during the measurement process.

Abbreviations: N, number of subjects; LOD, limit of detection.

Table III. Associations between serum persistent organic pollutants and diminished ovarian reserve (defined as AFC < 7 and/or $AMH \le 1.1$ ng/ml) in the AROPE study (N = 138 cases and 151 controls)

Diminished ovarian reserve							erve	
				Univa re	ariate logistic egression	Multiv r	variate ¹ logistic regression	
Persistent organic pollutant	Concentration (ng/g lipid base) ²	Number of cases (N = 138)	Number of controls (N = 151)	OR	CI	OR	СІ	
Organochlorine pestio	cides							Commented [JH4]: Heading row
p,p'-DDE	≤ 22.39	29	51	Ref.	Ref.	Ref.	Ref.	Allow text to run beyond stub column to keep in on a single
	(22.39-40.74]	51	50	1.76	0.96 - 3.21	1.46	0.74 - 2.87	, ine
	> 40.74	58	50	1.96	1.08 - 3.55	1.72	0.88 - 3.37	,
	Continuous	138	151	1.40	1.13 - 1.74	1.39	1.10 - 1.77	,
p,p'-DDT	< LOD	52	51	Ref.	Ref.	Ref.	Ref.	
	≥LOD	86	100	1.19	0.73 - 1.92	1.13	0.66 - 1.94	l de la construcción de la constru
cis-Heptachlor epoxide	≤ 1.71	53	50	Ref.	Ref.	Ref.	Ref.	
	(1.71-2.42]	50	51	0.94	0.54 - 1.64	0.84	0.47 - 1.52	1
	> 2.42	35	50	0.65	0.36 - 1.15	0.64	0.35 - 1.18	1
	Continuous	138	151	0.89	0.58 - 1.36	0.86	0.55 - 1.35	i
НСВ	≤ 6.43	38	51	Ref.	Ref.	Ref.	Ref.	
	(6.43-8.42]	54	50	1.42	0.80 - 2.51	1.07	0.57 - 2.01	
	> 8.42	46	50	1.19	0.66 - 2.21	0.89	0.45 - 1.77	,
	Continuous	138	151	1.08	0.66 - 1.79	0.85	0.47 - 1.53	l i i i i i i i i i i i i i i i i i i i
β-НСН	≤ 3.62	49	51	Ref.	Ref.	Ref.	Ref.	
	(3.62-5.77]	53	50	1.08	0.62 - 1.88	0.77	0.42 - 1.42	2
	> 5.77	36	50	0.72	0.40 - 1.29	0.43	0.21 - 0.84	L
	Continuous	138	151	0.81	0.62 - 1.07	0.63	0.44 - 0.89	
Polychlorinated biph	enyls							Commented [JH5]: Heading row
PCB 28	≤ 0.41	41	49	Ref.	Ref.	Ref.	Ref.	Allow text to run beyond stub column to keep in on a single
	(0.41-0.60]	45	51	0.97	0.46 - 2.04	0.97	0.44 - 2.12	line
	> 0.60	52	51	1.25	0.68 - 2.30	1.24	0.64 - 2.41	
	Continuous	138	151	1.05	0.77 - 1.43	1.00	0.71- 1.39	
PCB 74	≤ 1.65	39	51	Ref.	Ref.	Ref.	Ref.	
	(1.65-2.52]	48	49	1.21	0.68 - 2.15	1.00	0.53 - 1.89	
	> 2.52	51	51	1.31	0.74 - 2.31	0.91	0.47 - 1.76	
		138	151 E1	1.02 Dof	0.78 - 1.32 Dof	0.84 Dof	0.61 - 1.15	
PCB 99	≤ 1.02 (1.82-2.69]	55 //3	50	1 20	Rel.	1 24	Rel.	
	> 2 69	43 60	50	1.29	0.71 - 2.35	1.24	0.03 - 2.39	
	Continuous	138	151	1.20	0.87 - 1.65	1.04	0.72 - 1.50	
PCB 118	≤ 3.45	33	51	Ref.	Ref.	Ref.	Ref.	
	(3.45-5.50]	55	50	1.67	0.93 - 2.99	1.43	0.76 - 2.70	
	> 5.50	50	50	1.49	0.83 - 2.67	1.17	0.60 - 2.29	
	Continuous	138	151	1.10	0.81 - 1.51	0.94	0.65 - 1.37	
PCB 138+163 ³	≤ 3.71	33	51	Ref.	Ref.	Ref.	Ref.	
	(3.71-6.44]	42	50	1.27	0.70 - 2.32	1.01	0.50 - 2.04	

> 6.44	63	50	1.87	1.05 - 3.32	1.27	0.57 - 2.81
Continuous	138	151	1.26	0.97 - 1.63	0.97	0.65 - 1.43
≤ 16.36	35	51	Ref.	Ref.	Ref.	Ref.
(16.36-26.21]	50	50	1.43	0.80 - 2.56	1.09	0.56 - 2.16
> 26.21	53	50	1.48	0.83 - 2.65	1.01	0.48 - 2.12
Continuous	138	151	1.29	0.94 - 1.77	1.00	0.65 - 1.55
≤ 11.34	35	51	Ref.	Ref.	Ref.	Ref.
(11.34-16.43]	33	50	0.94	0.51 - 1.75	0.75	0.38 - 1.49
> 16.43	70	50	1.96	1.12 - 3.44	1.56	0.78 - 3.12
Continuous	138	151	1.27	0.92 - 1.75	1.00	0.66 - 1.51
≤ 10.85	32	51	Ref.	Ref.	Ref.	Ref.
(10.85-18.91]	45	50	1.41	0.77 - 2.56	1.10	0.54 - 2.21
> 18.91	61	50	1.87	1.05 - 3.33	1.20	0.54 - 2.67
Continuous	138	151	1.30	0.99 - 1.69	1.01	0.68 - 1.51
≤ 0.94	30	51	Ref.	Ref.	Ref.	Ref.
(0.94-1.52]	51	51	1.70	0.94 - 3.09	1.43	0.73 - 2.81
> 1.52	57	49	1.86	1.03 - 3.36	1.43	0.69 - 2.96
Continuous	138	151	1.42	1.04 - 1.94	1.23	0.81 - 1.85
≤ 2.06	40	52	Ref.	Ref.	Ref.	Ref.
(2.06-3.54]	41	52	1.17	0.64 - 2.13	0.99	0.49 - 1.97
> 3.54	57	47	1.74	0.98 - 3.07	1.38	0.68 - 2.77
Continuous	138	151	1.23	0.96 - 1.57	1.07	0.78 - 1.47
≤ 1.23	30	52	Ref.	Ref.	Ref.	Ref.
(1.23-2.38]	59	49	1.90	1.05 - 3.43	1.40	0.69 - 2.85
> 2.38	49	50	1.67	0.92 - 3.03	0.87	0.37 - 2.05
Continuous	138	151	1.34	1.05 - 1.71	1.09	0.74 - 1.60
≤ 1.12	29	51	Ref.	Ref.	Ref.	Ref.
(1.12-1.89]	53	51	1.83	1.00 - 3.33	1.50	0.73 - 3.09
> 1.89	56	49	1.89	1.04 - 3.43	1.42	0.63 - 3.22
Continuous	138	151	1.37	1.05 - 1.80	1.16	0.78 - 1.72
	> 6.44 Continuous ≤ 16.36 (16.36-26.21] > 26.21 Continuous ≤ 11.34 (11.34-16.43] > 16.43 Continuous ≤ 10.85 (10.85-18.91] > 18.91 Continuous ≤ 0.94 (0.94-1.52] > 1.52 Continuous ≤ 2.06 (2.06-3.54] > 3.54 Continuous ≤ 1.23 (1.23-2.38] > 2.38 Continuous ≤ 1.12 (1.12-1.89] > 1.89 Continuous	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	> 6.44 6350Continuous138151 ≤ 16.36 3551(16.36-26.21)5050 > 26.21 5350Continuous138151 ≤ 11.34 3551(11.34-16.43)3350 > 16.43 7050Continuous138151 ≤ 10.85 3251(10.85-18.91)4550 > 18.91 6150Continuous138151 ≤ 0.94 3051(0.94-1.52)5151 > 1.52 5749Continuous138151 ≤ 2.06 4052(2.06-3.54)4152 > 3.54 5747Continuous138151 ≤ 1.23 3052(1.23-2.38)5949 > 2.38 4950Continuous138151 ≤ 1.12 2951(1.12-1.89)5351 > 1.89 5649Continuous138151	> 6.44 63 50 1.87 Continuous1381511.26 ≤ 16.36 3551Ref. $(16.36-26.21]$ 50501.43 > 26.21 53501.48Continuous1381511.29 ≤ 11.34 3551Ref. $(11.34-16.43]$ 33500.94 > 16.43 70501.96Continuous1381511.27 ≤ 10.85 3251Ref. $(10.85-18.91]$ 45501.41 > 18.91 61501.87Continuous1381511.30 ≤ 0.94 3051Ref. $(0.94-1.52]$ 51511.70 > 1.52 57491.86Continuous1381511.42 ≤ 2.06 4052Ref. $(2.06-3.54]$ 41521.17 > 3.54 57471.74Continuous1381511.23 ≤ 1.23 3052Ref. $(1.23-2.38]$ 59491.90 > 2.38 49501.67Continuous1381511.34 ≤ 1.12 2951Ref. $(1.12-1.89]$ 53511.83 > 1.89 56491.89Continuous1381511.37	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	> 6.4463501.871.05 - 3.321.27Continuous1381511.260.97 - 1.630.97≤ 16.363551Ref.Ref.Ref.(16.36-26.21]50501.430.80 - 2.561.09> 26.2153501.480.83 - 2.651.01Continuous1381511.290.94 - 1.771.00≤ 11.343551Ref.Ref.Ref.(11.34-16.43]33500.940.51 - 1.750.75> 16.4370501.961.12 - 3.441.56Continuous1381511.270.92 - 1.751.00≤ 10.853251Ref.Ref.Ref.(10.85-18.91]45501.410.77 - 2.561.10> 18.9161501.871.05 - 3.331.20Continuous1381511.300.99 - 1.691.01≤ 0.943051Ref.Ref.Ref.(0.94-1.52]51511.700.94 - 3.091.43> 1.5257491.861.03 - 3.361.43Continuous1381511.421.04 - 1.941.23≤ 2.064052Ref.Ref.Ref.(1.23-2.38]59491.901.05 - 3.431.40> 2.3849501.670.92 - 3.030.87Continuous1381511.341.05 - 1

mass index, centre, education level, and season of inclusion.

nsformed when treated as continuous variables.

e distinguished during the measurement process.

er of subjects; OR, odds ratio; CI, confidence interval; Ref, reference.

 Table IV. Posterior inclusion probabilities for group inclusion and conditional inclusion in the Bayesian

 Kernel Machine Regression model (N = 137 cases and 151 controls)

		Diminished	ovarian reserve
Persistent organic pollutant	Group	Group PIP (%)	Conditional PIP (%)
p,p'-DDE	1	96.9	6.8
cis-Heptachlor epoxide	1	96.9	1.0
НСВ	1	96.9	1.0
β-НСН	1	96.9	91.4
PCB 28	2	31.8	6.9
PCB 74	2	31.8	3.0
PCB 99	2	31.8	17.6
PCB 118	2	31.8	6.0
PCB 138+163	2	31.8	6.0
PCB 153	2	31.8	9.2
PCB 170	2	31.8	7.1
PCB 180	2	31.8	9.3
PCB 183	2	31.8	11.5
PCB 187	2	31.8	7.2
PCB 194	2	31.8	7.0
PCB 196+203	2	31.8	9.1

Abbreviations: PIP, posterior inclusion probability.

Detailed Persistent Organic Pollutant (POP) measurement methods

Reagents and chemicals

Acetone, dichloromethane (DCM), and n-hexane (PESTIPUR - for pesticide analysis) were purchased from CARLO ERBA Reagents S.A.S (Val de Reuil, France). Absolute methanol (MeOH) (ULC/MS - CC/SFC) was purchased from Biosolve Chimie SARL (Dieuze, France). Formic acid (99%, for analysis) was purchased from CARLO ERBA Reagents S.A.S (Val de Reuil, France). Strata C18-E cartridges (6 mL, 500 mg) were purchased from Phenomenex France (Le Pecq, France). Certified standards of aldrin, o,p'-DDE, o,p'-DDT, p,p'-DDE, p,p'-DDT, dieldrin, α -endosulfan, β -endosulfan, α -HCH, β -HCH, γ -HCH (lindane), heptachlor, cisheptachlor epoxide, trans-heptachlor epoxide, and hexachlorobenzene (HCB) were purchased from LGC Labor GmbH (Augsburg, Germany). The purity of the standards was above 97%. Individual standard stock solutions (1 g/L) were prepared in acetone by accurately weighing 25 mg (\pm 0.1 mg) of each standard using a Sartorius Cubis MSE 225P semi-micro balance (Sartorius AG, Göttingen, Germany) into 25-mL volumetric flasks and stored at -18°C. A cyclohexane mixture (10 mg/L) of eight PCBs (PCB 28, 31, 52, 101, 118, 138, 153, and 180) and isooctane solutions (10 mg/L) of PCB 74, 99, 170, 183, 187, 194, and 203 were purchased from LGC Labor GmbH (Augsburg, Germany). Nonane/toluene (10%) solutions (50 mg/L) of PBB 153 and BDE 28, 47, 66, 85, 99, 100, 153, 154, and 183 and a toluene mixture (10 mg/L) of three HBCD isomers (α -, β - and γ -HBCD) were purchased from Wellington Laboratories Inc. (Guelph, ON, Canada). Intermediate and spiking solutions were prepared in acetone by appropriate dilution of individual standard stock solutions and commercial solutions.

A toluene/nonane (25.2%) mixture (2 mg/L) of seven ${}^{13}C_{12}$ -PBDEs (BDE 28, 47, 99, 100, 153, 154, and 183), a nonane/toluene (7%) mixture (5 mg/L) of seven ${}^{13}C_{12}$ -PCBs (PCB 28, 52, 101, 118, 138, 153, and 180), and a nonane/toluene (10%) solution (50 mg/L) of PCB 194 ${}^{13}C_{12}$ were purchased from Wellington Laboratories Inc. (Guelph, ON, Canada). Acetone solutions (100 mg/L) of p,p'-DDE D₈, p,p'-DDT ${}^{13}C_{12}$, and α -endosulfan D₄ were purchased from LGC Labor GmbH (Augsburg, Germany). Nonane solutions (100 mg/L) of aldrin ${}^{13}C_{12}$, o,p'-DDT ${}^{13}C_{12}$, dieldrin ${}^{13}C_{12}$, β -endosulfan ${}^{13}C_9$, HCB ${}^{13}C_6$, γ -HCH ${}^{13}C_6$, and cisheptachlor epoxide ${}^{13}C_{10}$ and a nonane solution (50 mg/L) of β -HCH ${}^{13}C_6$ were purchased from Cambridge Isotope Laboratories, Inc. (Andover, MA, USA).

The standard reference materials SRM 1957 (Organic Contaminants in Non-Fortified Human Serum (Freeze-Dried)) and SRM 1958 (Organic Contaminants in Fortified Human Serum (Freeze-Dried)) were purchased from the National Institute of Standards and Technology (NIST, Gaithersburg, MD, USA).

<u>Sample pre-treatment (protein denaturation)</u>

Two milliliters of serum were placed in a 10-mL glass tube previously rinsed with methanol. After adding 2 mL formic acid and the labeled internal standards (ISTDs), the serum sample was subsequently sonicated for 30 minutes making sure that the temperature of the bath did not exceed 25°C. After a return to room temperature, 4 mL ultra-pure water were added to the acidified sample to reach a final volume of 8 mL.

Solid-phase extraction (SPE)

Extractions were performed using a Supelco Visiprep DL (disposable liner) vacuum manifold and a GAST vacuum pump. A Strata C18-E cartridge (6 mL, 500 mg) was successively conditioned with 20 mL hexane, 10 mL DCM, 5 mL MeOH, 5 mL of a 50% MeOH/50% ultra-pure water mixture, and 5 mL ultra-pure water. Then, the pre-treated serum sample (8 mL) was slowly loaded. The cartridge was washed with 10 mL ultra-pure water and subsequently completely dried for a minimum of 60 min. Analytes were eluted with 5 mL hexane. The organic extract was then stored in a freezer for a minimum of 2 hours, evaporated at 30°C under a nitrogen stream using a N-EVAP 111 Organomation Nitrogen Evaporator and adjusted to 500 µL of hexane prior to be transferred into a 2 mL amber glass vial and stored at -18°C prior to analysis by GC/MS/MS.

GC/MS/MS analysis

Analyses were performed using a 7890B GC system coupled to a 7010B GC/MS Triple Quad (Agilent Technologies, Santa Clara, California, United States) operated in electron impact ionization (EI) mode (70 eV). The GC system was equipped with a 7693 Autosampler and a multimode inlet (MMI) fitted with an empty (no wool) single taper ultra-inert glass liner. Calibration solutions and sample extracts were injected (2 µL) in the splitless mode (purge flow to split vent: 40 mL/min at 2 min) with the following injector temperature program: 58°C (hold 0.1 min), ramp at 720°C/min to 320 °C (hold 5 min). Helium was used as the column carrier gas at a constant flow rate of 1.0 mL/min. Chromatographic separation was performed on a Rtx[®]-PCB capillary column (30 m length × 0.25 mm I.D., 0.25-µm film thickness) supplied by Restek Corporation (Bellefonte, Pennsylvania, United States) with the following oven temperature program: 58°C (hold 2 min), first ramp at 45°C/min to 200°C (hold 0 min), second ramp at 20°C/min to 320°C (hold 15 min to reach an analysis time of 26.2 min). The MSD transfer line, ion source, and quadrupole temperatures were set to 315, 270, and 150°C, respectively. The mass spectrometer (triple quadrupole) was operated in multiple reaction monitoring (MRM) mode. The two most intense and specific MRM transitions of each compound (quantifier and qualifier transitions) were monitored for identification, confirmation, and quantification. They were selected using the pesticides and environmental pollutants MRM database provided by Agilent Technologies for the compounds present in the database or following the usual procedure for others. Dwell times ranged between 15 and 200 ms in 16 time segments. Dwell times were thus fixed, taking into account the number of MRM transitions in each time segment and the width of the chromatographic peaks, such that each peak was represented by at least 10 data points from its beginning to the end. The analytical characteristics of the measured compounds are reported in Supplemental Material S2. MassHunter software (B.07.06) was used for instrument control, data acquisition, and quantification.

Quality assurance and quality control (QA/QC)

The limits of detection (LODs) were defined as the lowest concentration of a substance that can be distinguished from the absence of that substance. LODs were estimated from the replicate analysis of a blank sample. Limits of quantification (LOQs) were defined as the lowest concentration of a substance for which the relative standard deviation (RSD) of the raw signal (N = 5) was lower than or equal to 20%, the signal-to-noise ratio (S/N) was greater than or equal to 10, and the raw signal was greater than or equal to 5 times the signal of the blank sample.

Several labeled substances were selected to best cover the physical and chemical properties of the targeted analytes. Aldrin ${}^{13}C_{12}$, o,p'-DDT ${}^{13}C_{12}$, p,p'-DDE D₈, p,p'-DDT ${}^{13}C_{12}$, dieldrin ${}^{13}C_{12}$, α -endosulfan D₄, β -endosulfan ${}^{13}C_9$, HCB ${}^{13}C_6$, β -HCH ${}^{13}C_6$, γ -HCH ${}^{13}C_6$, cis-heptachlor epoxide ${}^{13}C_{10}$, ${}^{13}C_{12}$ -PCB 28, 52, 101, 118, 138, 153, 180 and 194, and ${}^{13}C_{12}$ -BDE 28, 47, 99, 100, 153, 154, and 183 were added prior to the protein denaturation step and used as internal standards (ISTDs). All compounds were quantified using the appropriate ISTD (Table S1) to compensate for the variability associated with the SPE-GC/MS/MS analysis from calibration curves generated for each compound by analyzing at least five different calibration samples. A quadratic fit (origin ignored, no weighting) was used to compensate for the nonlinearity of the instrument response over a wide working range.

Matrix interference can affect the detection of POPs in serum samples due to the presence of non-target compounds that may react with the target analytes or that may be similar to and co-elute with the target analytes. Two standard reference materials (SRMs) were used to control method accuracy and precision and identify possible interference due to the matrix: SRM 1957 (Organic Contaminants in Non-Fortified Human Serum (Freeze-Dried)) and SRM 1958 (Organic Contaminants in Fortified Human Serum (Freeze-Dried)). Certified or reference concentrations are provided for certain PBBs, PCBs, chlorinated pesticides, and PBDEs, depending on the standard reference material. Method accuracy and precision were assessed via replicate analysis of both SRMs during the analysis campaign. The arithmetic means of the measured concentrations were compared to reference or certified concentrations, and method precision was defined as the RSD of the replicates. The results are reported in Supplemental Material S3.

Each batch included: i) up to 51 samples (2 mL), ii) one procedural calibration blank sample and six to eight procedural calibration samples, depending on the substance prepared from ultra-pure water and analyzed as regular samples to assess whether contamination may have occurred during analysis and to generate quadratic calibration curves intended for quantification, respectively, iii) several procedural calibration samples prepared from commercial solutions provided by other suppliers and analyzed as regular samples to validate the preparation of the calibration solutions, iv) one procedural blank sample and two procedural QC samples (2-mL ultra-pure water non-spiked and spiked at the LOQ level and at an intermediate level) analyzed as regular samples every 21 samples maximum to assess whether contamination may have occurred during analysis, and to check for method accuracy and the stability of the detector response, respectively, and v) two samples of SRM 1957 and SRM 1958 (undiluted and diluted one tenth in ultra-pure water) analyzed as regular samples to check for method accuracy.

Positive values for each substance were confirmed by comparing retention times and MRM transition ratios (\pm 30%) between calibration and serum samples. The data validation protocol included several conditions: i) the determination coefficient of the calibration curve had to be greater than 0.99, ii) the concentration of a substance measured in the procedural calibration samples had to be within \pm 50% of its theoretical concentration value at the LOQ level and \pm 25% at all other levels, iii) the response of a substance (ISTD response ratio) in the procedural blank samples had to be lower than 50% of that in the procedural calibration sample at the LOQ level, iv) the concentration of a substance measured in the procedural calibration samples prepared from commercial solutions provided by other suppliers had to be within \pm 25% of its theoretical concentration value, (v) the concentration of a substance measured in the procedural QC samples had to be within \pm 50% of its theoretical concentration value at the LOQ level and \pm 25% at all other levels, (vi) the concentration of a substance measured in the samples had to be within \pm 30% of its certified or reference value, and vii) the concentration of a substance measured in the serum samples had to be within the method working range without exceeding 110% of the concentration of the most concentrated calibration samples. If all these conditions were not met, results were not validated, and the samples were reanalyzed if possible.

Multiple precautions were taken throughout the protocol to minimize procedural blank contamination. Glass materials, such as tubes, flasks, and syringes, were dedicated to this protocol and rigorously rinsed with dichloromethane and/or hexane prior to use and extraction cartridges rigorously conditioned. Despite these precautions, HCB and γ -HCH were regularly detected in the procedural blank samples (response (ISTD response ratio) higher than 50% of that in the procedural calibration sample at the LOQ level). If concentrations measured in a procedural blank sample exceeded 25% of those measured in a serum sample from the same batch, the concentrations reported here were adjusted for the procedural blank concentrations or the LOD and LOQ were increased (case of γ -HCH). Otherwise, the results were validated (case of HCB).

It should be noted that the laboratory successfully participated in inter-laboratory comparisons (ILCs) during the analysis campaign (external quality assessment schemes of the centre de toxicologie du Québec (CTQ): AMAP Ring Test for Persistent Organic Pollutants in Human Serum) and obtained Cofrac (French Committee for Accreditation) accreditation for this method, in accordance with the ISO/CEI 17025 standard (accreditation n°8-3557, www.cofrac.fr).

Supplementary Figure S1. AROPE study inclusion flowchart.

Supplementary Figure S2. AROPE study inclusion inclusion process.

825x486mm (72 x 72 DPI)

225x134mm (300 x 300 DPI)

Supplementary tables

Table of contents

Supplementary Table SI. Analytical characteristics of measured compounds2
Supplementary Table SII. POP concentrations (ng/L) in the standard reference materials (SRMs) 1957 and 1958 (N = 7)
Supplementary Table SIII. Sensitivity analysis – Associations between serum persistent organic pollutants and diminished ovarian reserve in the AROPE study – Cases = $AFC < 7 \& AMH \le 1.1 \text{ ng/ml}$ (N = 51 cases & 151 controls)
Supplementary Table SIV. Sensitivity analysis – Associations between serum persistent organic pollutants and diminished ovarian reserve in the AROPE study – Cases = AFC < 7 (N = 55 cases & 151 controls)
Supplementary Table SV. Sensitivity analysis – Associations between serum persistent organic pollutants and diminished ovarian reserve in the AROPE study – Cases = $AMH \le 1.1 \text{ ng/ml}$ (N = 134 cases & 151 controls)
Supplementary Table SVI. Sensitivity analysis – Associations between serum persistent organic pollutants and diminished ovarian reserve in the AROPE study – Cases = AFC < 5 and/or AMH \leq 0.7 ng/ml (N = 90 cases & 151 controls)
Supplementary Table SVII. Sensitivity analysis – Associations between serum persistent organic pollutants and diminished ovarian reserve in the AROPE study – No prior stimulation treatment (N = 97 cases & 97 controls)13
Supplementary Table SVIII. Sensitivity analysis – Associations between serum persistent organic pollutants and diminished ovarian reserve in the AROPE study – Participants with outcomes measured at inclusion (N = 50 cases & 48 controls)

Supplementary Table SI. Analytical characteristics of measured compounds

Compound* Cost number Finally STD segment (min) Precursors Product (CE (V) Precursors Product (CE (V) (min) Precursors Product (CE (V) (min) (min) Precursors Product (CE (V) (min) (min) Precursors Product (CE (V) (min)				Chemical		Time	t₀	Quantifier MRM transition	Qualifier MRM transition	LOD ^b	LOOb
		Compound ^a	CAS number	family	ISTD	segment	(min)	Precursor > Product (CE (V))	Precursor > Product (CE (V))	(μg/L)	(μg/L)
1 e+Ch ⁺ 188.76-1 0.06 β+CH ⁺ C ₆ 2 8.8 21.63 > 18.10.(5) 21.03 > 14.50.(15) 0.0025 0.0055 3 P+HCH 58.89 9 0.01 0.0105 0.015		Target compounds		· · ·		-		· · · · · ·			
2 HCB 118.74.1 OCs HCB ¹ C ₂ 2 8.8 28.8.2 213.9 (30) 28.1.8 - 213.9 (30) DOL02 0.005 4 H-HCH 319.85.7 OCs H-HCH ¹ C ₂ 3 9.4 21.6.5 > 18.1.0 (5) 181.0 > 14.50.0 (15) 0.0025 0.0055 6 PCD2.8 7012.37.5 PCB1.28 ¹⁴ C ₂ 3 9.6 25.50.518.60.0 (25) 25.80.2 18.80.0 (25) 0.0025 0.0055 7 Heptachlore OCS OLHeptachlorepoxide UC ₂ 3 9.8 25.80.518.60.0 (25) 25.82.92.219.925 25.92.229.025 0.0025 0.0055 9 Alvin OCS Alvin ¹¹ C ₂ 3 9.8 28.95.92.19.92 (25) 25.49.22.01.02 0.0025 0.0055 9 Alvin ¹¹ C ₁ OCS Alvin ¹¹ C ₁ 4 10.5 25.89.52.91.95 (25) 25.89.22.91.02 0.02.22.91.02 0.0255 10 VEDS1 32.99.49.01 0.02.99.49.01 0.02.99.49.01 0.02.99.49.01 0.02.99.49.01 0.02.99.49.01 0.02.99.49.01 0.02.99.4	1	α-HCH	319-84-6	OCs	β-HCH ¹³ C ₆	2	8.8	216.9 > 181.0 (5)	180.9 > 145.0 (15)	0.0025	0.005
9 ψ+CH S8-89-9 OCs ψ+CH ⁺¹ C ₄ 2 1 216.9 181.0 18.0 <	2	НСВ	118-74-1	OCs	HCB ¹³ C ₆	2	8.8	283.8 > 213.9 (30)	281.8 > 211.9 (30)	0.0025	0.005
4 θ-HCh 319-857 0C3 θ-HCh 3 9.4 216.9 181.0 18.10 18.00 <td>3</td> <td>ү-НСН</td> <td>58-89-9</td> <td>OCs</td> <td>γ-HCH ¹³C₆</td> <td>2</td> <td>9.1</td> <td>216.9 > 181.0 (5)</td> <td>181.0 > 145.0 (15)</td> <td>0.0025</td> <td>0.005</td>	3	ү-НСН	58-89-9	OCs	γ-HCH ¹³ C ₆	2	9.1	216.9 > 181.0 (5)	181.0 > 145.0 (15)	0.0025	0.005
5PCB316606-Q2.3PCB4PCB4PCB2PCB2PCB2PCBPCB2PCBPCB2PCB	4	β-НСН	319-85-7	OCs	β-HCH ¹³ C ₆	3	9.4	216.9 > 181.1 (5)	181.0 > 145.0 (15)	0.0025	0.005
6PC23 PC23 PC23 PC37-5PC63sPC63sPC623 PC32 PC37-59.62.550-16.6. (25)2.550-16.6. (25)0.560.00000.00220.0000 </td <td>5</td> <td>PCB 31</td> <td>16606-02-3</td> <td>PCBs</td> <td>PCB 28 ¹³C₁₂</td> <td>3</td> <td>9.6</td> <td>256.0 > 186.0 (25)</td> <td>258.0 > 186.0 (25)</td> <td>0.0025</td> <td>0.005</td>	5	PCB 31	16606-02-3	PCBs	PCB 28 ¹³ C ₁₂	3	9.6	256.0 > 186.0 (25)	258.0 > 186.0 (25)	0.0025	0.005
7Heptachlor76-44-8OCsof-Heptachlor epoxide "Cos99.71.7 > 238.9 (15)273.7 > 238.9 (15)0.00250.00250.00559Ndrin309.00-2OCsMdrin "Ca39.0281.9 > 21.9 (25)291.9 > 221.9 (25)291.9 > 221.9 (25)0.055 </td <td>6</td> <td>PCB 28</td> <td>7012-37-5</td> <td>PCBs</td> <td>PCB 28 ¹³C₁₂</td> <td>3</td> <td>9.6</td> <td>256.0 > 186.0 (25)</td> <td>258.0 > 186.0 (25)</td> <td>0.0025</td> <td>0.005</td>	6	PCB 28	7012-37-5	PCBs	PCB 28 ¹³ C ₁₂	3	9.6	256.0 > 186.0 (25)	258.0 > 186.0 (25)	0.0025	0.005
8PC859C85PC86PC8101PC80PC8100PC80	7	Heptachlor	76-44-8	OCs	cis-Heptachlor epoxide ¹³ C ₁₀	3	9.7	271.7 > 236.9 (15)	273.7 > 238.9 (15)	0.0025	0.005
9 $didm$ $30-0^{-}$ C_{0} $Aldm$ C_{0} $Aldm$ C_{0} Z_{0} $Z_$	8	PCB 52	35693-99-3	PCBs	PCB 52 ¹³ C ₁₂	3	9.8	289.9 > 219.9 (25)	291.9 > 221.9 (25)	0.0025	0.005
10 <td>9</td> <td>Aldrin</td> <td>309-00-2</td> <td>OCs</td> <td>Aldrin ¹³C₁₂</td> <td>3</td> <td>10.0</td> <td>262.9 > 192.9 (35)</td> <td>254.9 > 220.0 (20)</td> <td>0.025</td> <td>0.05</td>	9	Aldrin	309-00-2	OCs	Aldrin ¹³ C ₁₂	3	10.0	262.9 > 192.9 (35)	254.9 > 220.0 (20)	0.025	0.05
11PCB 742660 93 0PCB 52 PC_{12} A10.5289 9 2 10.9 (25)291 9 2 21.9 (25)0.0025 <td>10</td> <td>cis-Heptachlor epoxide</td> <td>1024-57-3</td> <td>OCs</td> <td>cis-Heptachlor epoxide ¹³C₁₀</td> <td>4</td> <td>10.5</td> <td>352.8 > 262.9 (15)</td> <td>354.8 > 264.9 (15)</td> <td>0.005</td> <td>0.01</td>	10	cis-Heptachlor epoxide	1024-57-3	OCs	cis-Heptachlor epoxide ¹³ C ₁₀	4	10.5	352.8 > 262.9 (15)	354.8 > 264.9 (15)	0.005	0.01
12 trass-Heptachlor epoxide 244 3.9. OCS pic-PoE P ₄ 4 1.0.5 1.5.0. 9.1.6.0 24.6.0.9.16.2.00 0.0.5.0.0.5 0.0.5.0.0.5 14 PGB 101 3424.8-6 OCS pic-PoE P ₄ 4 1.0.7 25.3.9.18.4.0.(35) 32.5.9.25.5.9.(30) 0.0025 0.0055 15 PGB 101 Cir_Lin 4 1.0.7 25.3.9.18.4.0.(35) 32.5.9.25.5.9.(30) 0.0025 0.0055 16 acfadosulfan 959.98.4 OCS pic-DeE 5 1.0.9 144.9.159.0.(5) 13.5.8.24.6.0 (15) 0.0.1 0.025 0.025 17 pic-DE 7.5.5.9 OCS pic-DE 7.5.1.0 22.5.9.55.2.0 0.025 0.025 0.025 18 Dieldin ¹⁴ Cir Cir 7 1.1.4 25.3.9.16.2.0 23.9.9.25.00 0.025 0.025 0.025 19 Opf DT 315.06.06 Cir PCB PCB 181 ¹⁴ Cir 7 1.1.4 25.3.9.16.2.01 25.9.25.0.00.025 0.025	11	PCB 74	32690-93-0	PCBs	PCB 52 ¹³ C ₁₂	4	10.5	289.9 > 219.9 (25)	291.9 > 221.9 (25)	0.0025	0.005
13 0_{c} DDE342 + 82-6OCS p_{D}^{1} DDE h_{c} 410.6246.0 $17.6 2.30$ 248.0 $17.6 2.30$ 0.00250.00250.002515PCB 993830 0.1-7PCBsPCB 101 $^{11}C_{C1}$ 410.7253.9 $184.0 (35)$ 25.9 $25.9 (25)$ 0.00250.00550.00550.00550.00550.00550.00550.00550.00550.00550.00550.00550.00550.00550.00550.00550.00550.00550.0055 </td <td>12</td> <td>trans-Heptachlor epoxide</td> <td>28044-83-9</td> <td>OCs</td> <td>cis-Heptachlor epoxide ¹³C₁₀</td> <td>4</td> <td>10.5</td> <td>135.0 > 099.0 (15)</td> <td>216.9 > 182.0 (20)</td> <td>0.025</td> <td>0.05</td>	12	trans-Heptachlor epoxide	28044-83-9	OCs	cis-Heptachlor epoxide ¹³ C ₁₀	4	10.5	135.0 > 099.0 (15)	216.9 > 182.0 (20)	0.025	0.05
14PC8 10137560 73-2PC8PC8 101 $^{11}C_{12}$ 410.7253.9 > 184.0 (35)325.9 > 255.9 (30)0.00250.00250.002515PC8 101 $^{11}C_{11}$ PC8PC8 101 $^{11}C_{11}$ 410.7253.9 > 184.0 (30)325.9 > 255.9 (25)0.00250.005515o 2-bot959.98.8OC6o 2-botA510.9194.9 > 159.0 (5)194.9 > 125.0 (20)0.0250.00515Dieldrin $^{11}C_{11}$ OC6Dieldrin $^{11}C_{12}$ 711.3235.0 > 165.2 (20)237.0 > 165.2 (20)0.0250.005160 -bot959.05.00.0050.0050.00511.4233.0 > 165.2 (20)237.0 > 165.2 (20)0.0050.005170 -bot959.05.013.0 \$ 305.7 - 1.0PC8 15PC8 153 $^{11}C_{12}$ 711.5246.0 > 139.0 (30)406.0 > 246.0 (20)0.00250.00512BE 284138.75.6PBE5BE 28 $^{11}C_{12}$ 711.5246.0 > 139.0 (30)247.9 > 217.9 (40)0.00250.00512BE 1053321.56.9OC5PE 105 $^{11}C_{12}$ 811.8259.9 > 289.9 (20)237.9 > 217.9 (40)0.00250.00512PC8 153356.5 -2.4 - 7.4 - 7.4PC8 16PC8 138 $^{11}C_{12}$ 811.8259.9 > 289.9 (20)237.9 > 217.9 (40)0.00250.00513PC8 154PC8 154PC8 154 $^{11}C_{12}$ 811.8359.9 > 289.9 (30)237.8 > 238.8 (30)238.8 > 238.8 (30)238.	13	o,p'-DDE	3424-82-6	OCs	p,p'-DDE D ₈	4	10.6	246.0 > 176.2 (30)	248.0 > 176.2 (30)	0.0025	0.005
15PCB 9938300-01-7PCBsPCB 101 $^{11}C_{12}$ 41.0.725.3 + 21.4 (14)32.5 + 25.5 (25)0.0020.0050.00517p.p ¹ -DDE72-55-9OCsp.p ⁻ DDE 00.010.020.010.020.010.0218Dieldrin0.057-10.020.020.011 $^{11}C_{12}$ 0.024.6.1 > 17.6 2 (30)315.8 > 24.6.0 (15)0.010.02190.p ¹ -DDT78-02-6OCs0.p ¹ -DDT $^{11}C_{12}$ 611.2277.0 > 24.1.0 (5)23.7 > 15.3 > 15.2 (20)23.7 > 15.3 > 15.2 (20)23.7 > 15.3 > 15.2 (20)23.7 > 15.3 > 15.2 (20)23.7 > 15.3 > 15.2 (20)23.7 > 15.3 > 15.2 (20)23.7 > 15.3 > 15.2 (20)23.7 > 15.3 > 15.2 (20)23.7 > 15.3 > 15.2 (20)23.7 > 15.3 > 15.2 (20)23.7 > 15.3 > 15.2 (20)23.7 > 15.3 > 15.3 (20)0.00250.00250.005520PCB 1835.05 + 27.1 (20)35.05 + 27.1 (20)35.0 > 15.2 (20)23.7 > 15.3 > 15.3 (20)23.7 > 17.9 (40)0.00250.005521PCB 18PCB 1875.6 > 91.7 $^{11}C_{12}$ 811.835.9 > 25.9 (20)23.7 > 17.9 (40)0.00250.005523PCB 18PCB 18PCB 18PCB 18PCB 18PCB 18PCB 18PCB 18PCB 1823.8 > 13.8 (30)35.8 (30)23.8 > 23.8 (30)23.8 > 23.8 (30)23.8 > 23.8 (30)23.8 > 23.8 (30)23.8 > 23.8 (30)23.8 > 23.8 (30)23.8 > 23.8 (30)23.8 > 23.8 (30)23.8 > 23.8 (30)23.8 > 23.8 (30)23.8 > 23.8 (30)23.8 > 23.8 (30) <td>14</td> <td>PCB 101</td> <td>37680-73-2</td> <td>PCBs</td> <td>PCB 101 ¹³C₁₂</td> <td>4</td> <td>10.7</td> <td>253.9 > 184.0 (35)</td> <td>325.9 > 255.9 (30)</td> <td>0.0025</td> <td>0.005</td>	14	PCB 101	37680-73-2	PCBs	PCB 101 ¹³ C ₁₂	4	10.7	253.9 > 184.0 (35)	325.9 > 255.9 (30)	0.0025	0.005
16 α -choosulfan D_{α} 510.9194.9 > 159.0 (5)194.9 > 125.0 (20)0.020.0517 p_{1}^{0} DDE72559OCs p_{1}^{0} DDE D_{b} 510.9246.1 > 176.2 (30)315.8 > 246.0 (15)0.010.0218DeldrinG0.57.1OCs 0.10^{11} $^{11}C_{12}$ 711.3235.0 > 156.2 (20)237.0 > 155.2 (20)0.0250.0519 o_{1}^{0} DDT789.02-6NCBNCBNCB711.4235.0 > 156.2 (20)237.0 > 155.2 (20)0.0250.05512NDE 281318.05-06-6NCBNCBNCB711.5246.0 > 139.0 (30)406.0 > 246.0 (20)0.00250.00512PEG 1533505-27.1PEDSPCB 18 $^{11}C_{12}$ 711.5250.9 155.2 (20)237.9 > 217.9 (40)0.00250.00512PCB 138 + CC 1633505-28.2 + 74472.44.9PCB 8PCB 138 $^{11}C_{12}$ 811.8235.0 > 155.2 (20)235.0 > 159.2 (15)0.0050.00512PCB 183 + SC 1633505-28.2 + 74472.44.9PCB 8PCB 188 $^{11}C_{12}$ 811.8235.0 > 155.2 (20)235.0 > 159.2 (15)0.0050.0050.00512PCB 183 + SC 1633505-28.2 + 74472.44.9PCB 8PCB 188 $^{11}C_{12}$ 811.9393.8 > 323.8 (30)358.8 > 358.8 (30)0.00250.00512PCB 183 + SC 1633505-29.5PCB 183 $^{11}C_{12}$ 912.5933.8 > 323.8 (30)358.8 > 358.8 (30)0.00250.0	15	PCB 99	38380-01-7	PCBs	PCB 101 ¹³ C ₁₂	4	10.7	253.9 > 184.0 (40)	325.9 > 255.9 (25)	0.0025	0.005
17pp-DDE22-55-9OCspCDE bq510.9246.1 > 176.2 (30)315.8 > 246.0 (15)0.010.0218Dickirin0.57-1OCSDickirin611.2277.0 > 241.0 (5)22.9 > 133.0 (35)0.0250.025100.9'ODT789.0 -6OCS0.9'ODT789.0 -6711.3235.0 165.2 (20)237.0 165.2 (20)0.0250.0051218.0E 80-06PCBPCBPCB18.18 $^{12}C_{12}$ 711.5235.0 165.2 (20)26.0 - 25.0 (30)0.00250.00522PCB 1533505-27-1PCBPCB 153 $^{11}C_{12}$ 711.5359.9 289.9 (25)287.9 > 217.9 (40)0.00250.00523p-DOT50.29-3OCSp/-DOT HC-12811.8255.0 163.2 (20)235.0 190.0 0.00250.00524p.y-DOT50.29-3OCSp/-DOT HC-12811.8359.9 289.9 (30)287.9 > 217.9 (40)0.00250.00524p.y-DOT50.29-3OCSPCB 188 HC 16335065-28-2 + 74472-44-9PCBPCB 188 HC 12338.8 323.8 (30)358.8 30.8 (15)0.00250.00524PCB 1835663-69-1PCBPCB 180 HC 12811.9393.8 323.8 (30)352.8 57.8 (30)0.00250.00525PCB 1805663-69-1PCBPCB 180 HC 121013.0393.8 323.8 (30)352.8 57.8 (30)0.00250.00525PCB 1805663-69-1PCBPCB 180 HC 1210	16	α-Endosulfan	959-98-8	OCs	α -Endosulfan D ₄	5	10.9	194.9 > 159.0 (5)	194.9 > 125.0 (20)	0.025	0.05
18Dieldrin60-57-1OCsDieldrin C_{12} C_1 C_1 C_1 C_1 C_1 C_2 </td <td>17</td> <td>p,p'-DDE</td> <td>72-55-9</td> <td>OCs</td> <td>p,p'-DDE D₈</td> <td>5</td> <td>10.9</td> <td>246.1 > 176.2 (30)</td> <td>315.8 > 246.0 (15)</td> <td>0.01</td> <td>0.02</td>	17	p,p'-DDE	72-55-9	OCs	p,p'-DDE D ₈	5	10.9	246.1 > 176.2 (30)	315.8 > 246.0 (15)	0.01	0.02
19 0_{p} -DDT789-02-6CCs 0_{p} -DDT $^{16}C_{12}$ 71.1.3235.0 × 165.2 (20)237.0 × 165.2 (20)0.0050.0050.00520PCB 118M3150-6PCB 118 $^{11}C_{12}$ 71.1.4253.9 × 184.0 (35)325.9 × 255.9 (30)0.0020.00250.00521PCB 15335065-27-1PCB 159 $^{11}C_{12}$ 71.1.5246.0 × 139.0 (30)40.6 > 246.0 (20)0.00250.00522PCB 153321.5 - 9OCSPCB 153 $^{11}C_{12}$ 71.1.5235.9 × 159.9 (21)247.9 × 179.40()0.0250.00524 p_{1} -DDT50.2 - 9.3CCSP_1 - DT $^{11}C_{12}$ 81.1.8235.9 × 152.9 (21)235.0 × 199.2 (15)0.0050.01525PCB 138 + PCB 16335065-28 - 7.4447.2 · 44-9PCB 188 $^{11}C_{12}$ 81.1.8235.9 × 152.9 (30)287.9 × 21.7 (40)0.00250.00527PCB 138 + PCB 16335065-28 - 7.4447.2 · 44-9PCB 180 $^{11}C_{12}$ 81.1.9933.8 × 323.8 (30)325.8 × 353.8 (30)0.00250.00528PCB 138PCB 138 $^{11}C_{12}$ 91.2.5933.8 × 323.8 (30)335.8 × 335.8 (30)0.00250.00529PCB 138PCB 138 $^{11}C_{12}$ 101.2.8235.9 × 155.9 (15)330.9 × 159.1 (8)2.5520PCB 147S44.43-1PCB 180 $^{11}C_{12}$ 101.3.0337.8 × 335.8 (30)395.8 × 335.8 (30)0.00250.00521PCB 170S44.64-31 </td <td>18</td> <td>Dieldrin</td> <td>60-57-1</td> <td>OCs</td> <td>Dieldrin ¹³C₁₂</td> <td>6</td> <td>11.2</td> <td>277.0 > 241.0 (5)</td> <td>262.9 > 193.0 (35)</td> <td>0.025</td> <td>0.05</td>	18	Dieldrin	60-57-1	OCs	Dieldrin ¹³ C ₁₂	6	11.2	277.0 > 241.0 (5)	262.9 > 193.0 (35)	0.025	0.05
20PCB 11831508-00-6PCBsPCB 118PC12711.4253.9-184.0 (35)325.9 > 255.9 (30)0.00250.005521BDE 2841318-75-6BDE 28PCB 123711.5246.0 > 139.0 (30)406.0 > 246.0 (20)0.00250.005523β-Endosulfan33213-65-9CCSPCB 153CCS β -Endosulfan $^{13}C_0$ 811.7206.9 > 172.0 (15)194.9 > 158.9 (10)0.0250.00524p,p'-DT50-29-3CCSp,p'-DT $^{14}C_{12}$ 811.8235.0 > 165.2 (20)235.0 > 199.2 (15)0.00250.00525PCB 138 + PCB 163S065-28-2 + 74472-44-9PCBsPCB 138 $^{14}C_{12}$ 811.9393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00526PCB 187S2663-69-1PCBsPCB 108 $^{14}C_{12}$ 811.9393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00527PCB 183S2663-69-1PCBsPCB 100 $^{14}C_{12}$ 811.9393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00528PCB 180S665-30-6PCBsPCB 100 $^{14}C_{12}$ 1012.8325.8 > 216.8 (30)485.7 > 325.7 (20)0.0050.0130 $\alpha + \beta + \gamma - HBCD$ 134237-50-7 + 134237-51-7 + 134237-52-8BDE 47 $^{14}C_{12}$ 1012.9238.9 > 159.1 (5)395.8 > 360.8 (15)0.00250.00531PCB 100S26.3 SCBPCB 100 $^{14}C_{12}$ 1013.0427.8 > 357.8 (30)429.	19	o,p'-DDT	789-02-6	OCs	o,p'-DDT ¹³ C ₁₂	7	11.3	235.0 > 165.2 (20)	237.0 > 165.2 (20)	0.025	0.05
11BDE 2841318-75-6PDE 5PDE 28 $^{16}C_{12}$ 711.5246.0 > 139.0 (30)406.0 > 246.0 (20)0.00250.005522PCB 15335065-27-1PCB 53PCB 153 $^{13}C_{12}$ 711.5359.9 > 289.9 (25)287.9 > 217.9 (40)0.00250.00523β-Endosulfan3213-65-9OCsβ-Endosulfan $^{16}C_{12}$ 811.7206.9 177.0 (15)194.9 > 158.9 (10)0.0250.00524 p_1 PDT50.29-3OCs p_1 PDT $^{16}C_{12}$ 811.8255.0 > 165.2 (20)287.9 > 217.9 (40)0.00250.00525PCB 138 +PCB 16335065-28-2 + 74472-44-9PCBsPCB 138 $^{11}C_{12}$ 811.9333.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00526PCB 18752663-69-1PCBsPCB 180 $^{11}C_{12}$ 811.9333.8 > 323.8 (30)358.8 > 358.8 (40)0.00250.00528PCB 18352663-69-1PCBsPCB 180 $^{11}C_{12}$ 1012.8325.8 > 16.8 (30)485.7 > 325.7 (20)0.0050.00130 $\alpha + \beta + \gamma + BCD$ 134237-50.6 + 134237-51.7 + 134237-52.8BCDsBDE 47 $^{11}C_{12}$ 1013.0393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00531PCB 194SCGBCD 91 $^{11}C_{12}$ 1013.0427.8 > 357.8 (30)428.8 > 359.8 (30)0.00250.00532PCB 194SCGBCD 91 $^{11}C_{12}$ 1013.0427.8 > 357.8 (30)428.8 > 359.8 (30)0.0	20	PCB 118	31508-00-6	PCBs	PCB 118 ¹³ C ₁₂	7	11.4	253.9 > 184.0 (35)	325.9 > 255.9 (30)	0.0025	0.005
22PCB 153S5065-27-1PCBPCB 153 ${}^{13}C_{12}$ 71.5S59.9 289.9 (25)287.9 217.9 (40)0.00250.005523 β -Indosulfan33213-65-9OCs β -Indosulfan ${}^{12}C_{12}$ 811.7206.9 277.0 (15)194.9 158.0 (10)0.0250.00524 p_0 P-DDT502-9-3OCs p_0 -DDT ${}^{12}C_{12}$ 811.8235.0 155.2 (20)235.0 199.2 (15)0.0050.00525PCB 138 + PCB 16355065-28-2 + 74472-44-9PCBsPCB 188 ${}^{12}C_{12}$ 811.9393.8 > 323.8 (30)335.8 > 360.8 (15)0.00250.00526PCB 18752663-68-0PCBsPCB 188 ${}^{12}C_{12}$ 811.9393.8 > 323.8 (30)335.8 > 353.8 (40)0.00250.00528PCB 18035065-29-3PCBsPCB 180 ${}^{13}C_{12}$ 912.5393.8 > 323.8 (30)395.8 > 352.8 (30)0.00250.00529BC4 75436-43-1PCBsBC4 7 ${}^{12}C_{12}$ 1012.9238.9 > 159.1 (5)320.9 > 159.1 (8)2.5531PCB 1703565-30-6 + 134237-51-7 + 134237-52HCBsBC4 7 ${}^{12}C_{12}$ 1013.0393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00532PCB 196 + PCB 20342740-50-1 + 52663-76-0PCBsPCB 149 ${}^{12}C_{12}$ 1013.0427.8 > 357.8 (30)429.8 > 394.8 (15)0.00250.00533BDE 66189084-61-5PBDEsBDE 147 ${}^{12}C_{12}$ 1113.942	21	BDE 28	41318-75-6	PBDEs	BDE 28 ¹³ C ₁₂	7	11.5	246.0 > 139.0 (30)	406.0 > 246.0 (20)	0.0025	0.005
23 β -Endosulfan33213-65-9OCs β -Endosulfan ${}^{13}C_{2}$ 811.7206,9 > 172.0 (15)194.9 > 158.9 (10)0.0250.00524 p_{1} -DT50.29-3OCs p_{1} -DDT ${}^{13}C_{12}$ 811.8235.0 > 165.2 (20)235.0 > 199.2 (15)0.0050.01225PCB 1383065-28.2 + 74472-44-9PCBsPCB 138 ${}^{13}C_{12}$ 811.9393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00526PCB 18752663-69-1PCBsPCB 180 ${}^{13}C_{12}$ 811.9393.8 > 323.8 (30)323.8 > 253.8 (40)0.00250.00527PCB 18352663-69-1PCBsPCB 180 ${}^{13}C_{12}$ 912.5393.8 > 323.8 (30)323.8 > 253.8 (40)0.00250.00528PCB 1835365-29-3PCB 180 ${}^{13}C_{12}$ 912.5393.8 > 323.8 (30)355.8 > 360.8 (15)0.00250.00529PCB 147543-64-1PBESBDE 47 ${}^{14}C_{12}$ 1012.8323.8 (30)355.8 > 360.8 (15)0.00250.00530 $\alpha + \beta + \gamma$ -HBCD34237-50-6 + 134237-51-7 + 134237-52-8HBCDsBDE 47 ${}^{14}C_{12}$ 1013.0393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00531PCB 1703508-30-6PCBsPCB 180 ${}^{14}C_{12}$ 1013.0393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00532PCB 1703508-40-5138084-61-5PDE 5PCB 180 ${}^{14}C_{12}$ 1013.03	22	PCB 153	35065-27-1	PCBs	PCB 153 ¹³ C ₁₂	7	11.5	359.9 > 289.9 (25)	287.9 > 217.9 (40)	0.0025	0.005
24p,p'-DT50-29-3OCsp,p'-DT $^{13}C_{12}$ 811.8235.0 > 165.2 (2)235.0 > 199.2 (15)0.0050.01525PCB 138 + PCB 16335065-28-2 + 74472-44-9PCBsPCBsPCB 138 $^{13}C_{12}$ 811.9393.8 > 232.8 (30)358.8 > 217.9 (40)0.00250.00527PCB 18352663-69-1PCBsPCB 180 $^{13}C_{12}$ 811.9393.8 > 323.8 (30)323.8 > 253.8 (40)0.00250.00528PCB 18052663-69-1PCBsPCB 180 $^{13}C_{12}$ 912.5393.8 > 323.8 (30)323.8 > 253.8 (40)0.00250.00529BDE 4753663-69-1PCBsPCB 180 $^{13}C_{12}$ 912.5393.8 > 323.8 (30)323.8 > 253.8 (40)0.00250.00520a 6 + y - HBCD34643-1PBDEsBDE 47 $^{13}C_{12}$ 1012.9238.9 > 159.1 (5)320.9 > 159.1 (8).5531PCB 17035065-30-6PCBsPCB 194 $^{13}C_{12}$ 1013.0393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.0050.01532PCB 19416.21013.0393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.0050.01533BDE 66189084-61-5PCBsPCB 194 $^{13}C_{12}$ 1013.0427.8 > 357.8 (30)429.8 > 359.8 (30)0.0250.0050.01534PCB 194S59.4 SS59.8 (30)S55.8 < 405.6 (20)	23	β-Endosulfan	33213-65-9	OCs	β-Endosulfan ¹³ C ₉	8	11.7	206,9 > 172.0 (15)	194.9 > 158.9 (10)	0.025	0.05
25PCB 138 + PCB 16335065-28-2 + 74472-44-9PCBsPCB 138 ${}^{13}C_{12}$ 811.8359.9 > 289.9 (30)287.9 > 217.9 (40)0.00250.00526PCB 18752663-68-0PCB 138 ${}^{14}C_{12}$ 811.9393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00527PCB 18052663-69-1PCBsPCB 180 ${}^{13}C_{12}$ 811.9393.8 > 323.8 (30)395.8 > 353.8 (40)0.00250.00528PCB 180 ${}^{13}C_{12}$ 912.5393.8 > 323.8 (30)395.8 > 355.8 (30)0.00250.00529BDE 475436-43-1PBDEsBDE 47 ${}^{13}C_{12}$ 1012.8325.8 > 216.8 (30)485.7 > 325.7 (20)0.0050.0130 $\alpha + \beta + \gamma + HSD$ 134237-50-6 + 134237-51-7 + 134237-52.8HBCDsBDE 47 ${}^{13}C_{12}$ 1012.9238.9 > 159.1 (5)320.9 > 159.1 (8)2.5531PCB 196 + PCB 20342740-50.1 + 52663-76-0PCBsPCB 194 ${}^{14}C_{12}$ 1013.0393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00533BDE 66189084-61-5PBDEsBDE 194 ${}^{14}C_{12}$ 1013.1326.0 > 217.0 (30)486.0 > 326.0 (20)0.0050.0134PCB 194HSMSBDE 100 ${}^{13}C_{12}$ 1113.9427.8 > 357.8 (30)429.8 > 394.8 (15)0.00250.00535BDE 190180984-61-5PBDEsBDE 190 ${}^{13}C_{12}$ 1314.655.6 > 405.6 (20)40.5 > 296.7 (35)0.005	24	p,p'-DDT	50-29-3	OCs	p,p'-DDT ¹³ C ₁₂	8	11.8	235.0 > 165.2 (20)	235.0 > 199.2 (15)	0.005	0.01
26PCB 18752663-68-0PCBPCB 138 ${}^{13}C_{12}$ 811.9393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00527PCB 18352663-69-1PCBsPCB 180 ${}^{13}C_{12}$ 811.9393.8 > 323.8 (30)323.8 > 253.8 (40)0.00250.00528PCB 18035065-29-3PCBsPCB 180 ${}^{13}C_{12}$ 912.5393.8 > 323.8 (30)395.8 > 325.8 (30)0.00250.00529BDE 475436-43-1PBDEsBDE 47 ${}^{13}C_{12}$ 1012.8325.8 > 216.8 (3)395.8 > 360.8 (15)0.00250.00531PCB 17035065-30-6PCBsPCB 180 ${}^{13}C_{12}$ 1013.0393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00532PCB 196 + PCB 20342740-50 + 152663-76-0PCBsPCB 194 ${}^{13}C_{12}$ 1013.0427.8 > 357.8 (30)429.8 > 359.8 (30)0.00250.00533BDE 66189084-61-5PBDEsBDE 47 ${}^{13}C_{12}$ 1013.1326.0 > 217.0 (30)42.9.8 > 359.8 (30)0.00250.00534PCB 194S594-08-7PCBsPCB 194 ${}^{13}C_{12}$ 1113.9427.8 > 357.8 (30)42.9.8 > 349.8 (15)0.00250.00535BDE 100100 ${}^{12}C_{12}$ 1214.1105.8 > 26.6 (20)405.7 > 296.7 (35)0.0050.0136BDE 9960348-60-9PBDEsBDE 194 ${}^{12}C_{12}$ 1314.6565.6 > 405.6 (20)405.7 > 296.7 (35)0.0050.01 </td <td>25</td> <td>PCB 138 + PCB 163</td> <td>35065-28-2 + 74472-44-9</td> <td>PCBs</td> <td>PCB 138 ¹³C₁₂</td> <td>8</td> <td>11.8</td> <td>359.9 > 289.9 (30)</td> <td>287.9 > 217.9 (40)</td> <td>0.0025</td> <td>0.005</td>	25	PCB 138 + PCB 163	35065-28-2 + 74472-44-9	PCBs	PCB 138 ¹³ C ₁₂	8	11.8	359.9 > 289.9 (30)	287.9 > 217.9 (40)	0.0025	0.005
27PCB 18352663-69-1PCBsPCB 180 ${}^{13}C_{12}$ 811.9393.8 > 323.8 (30)323.8 > 253.8 (40)0.00250.00528PCB 1805055-29-3PCBsPCB 180 ${}^{13}C_{12}$ 912.5393.8 > 323.8 (30)395.8 > 325.8 (30)0.00250.00529BDE 475436-43-1PBDEsBDE 47 ${}^{13}C_{12}$ 1012.8325.8 > 216.8 (30)485.7 > 325.7 (20)0.0050.00530 $\alpha + \beta + \gamma$ -HBCD134237-50-6 + 134237-51-7 + 134237-52.8HBCDsBDE 47 ${}^{13}C_{12}$ 1013.0393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00531PCB 17035065-30-6PCBsPCB 180 ${}^{13}C_{12}$ 1013.0393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00532PCB 196 + PCB 20342740-50-1 + 52663-76-0PCBsPCB 194 ${}^{13}C_{12}$ 1013.0427.8 > 357.8 (30)429.8 > 359.8 (30)0.00250.00533BDE 66189084-61-SPBDEsBDE 104 ${}^{13}C_{12}$ 1013.1326.0 > 217.0 (30)486.0 > 326.0 (20)0.0050.01534PCB 19435694-08-7PCBsPED 194 ${}^{13}C_{12}$ 1113.9427.8 > 357.8 (30)429.8 > 394.8 (15)0.00250.00535BDE 100189084-61-8PBDEsBDE 100 ${}^{13}C_{12}$ 1314.6565.6 > 405.6 (20)405.7 > 296.7 (35)0.0050.01536BDE 9960348-60-9PBDEsBDE 193 ${}^{13}C_{12}$ 1416.0 <td>26</td> <td>PCB 187</td> <td>52663-68-0</td> <td>PCBs</td> <td>PCB 138 ¹³C₁₂</td> <td>8</td> <td>11.9</td> <td>393.8 > 323.8 (30)</td> <td>395.8 > 360.8 (15)</td> <td>0.0025</td> <td>0.005</td>	26	PCB 187	52663-68-0	PCBs	PCB 138 ¹³ C ₁₂	8	11.9	393.8 > 323.8 (30)	395.8 > 360.8 (15)	0.0025	0.005
28PCB 18035065-29-3PCBsPCB 180 ${}^{13}C_{12}$ 912.5393.8 > 323.8 (30)395.8 > 325.8 (30)0.00250.00529BDE 475436-43-1PBDEsBDE 47 ${}^{13}C_{12}$ 1012.8325.8 > 216.8 (30)485.7 > 325.7 (20)0.0050.0130 $\alpha + \beta + \gamma$ -HBCD134237-50-6 + 134237-51-7 + 134237-52-8HBCDsBDE 47 ${}^{13}C_{12}$ 1012.9238.9 > 159.1 (5)320.9 > 159.1 (8)2.5531PCB 17035065-30-6PCBsPCB 180 ${}^{13}C_{12}$ 1013.0393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00532PCB 196 + PCB 20342740-50-1 + 52663-76-0PCBsPCB 194 ${}^{13}C_{12}$ 1013.1326.0 > 217.0 (30)429.8 > 359.8 (30)0.00250.00533BDE 66189084-61-5PBDEsBDE 47 ${}^{12}C_{12}$ 1013.1326.0 > 217.0 (30)486.0 > 326.0 (20)0.0050.0134PCB 19435694-08-7PCBsPCB 194 ${}^{13}C_{12}$ 1113.9427.8 > 357.8 (30)429.8 > 394.8 (15)0.00250.00535BDE 100180984-64-8PBDEsBDE 194 ${}^{13}C_{12}$ 1214.1405.8 > 296.7 (35)565.5 > 405.6 (20)0.0050.0136BDE 9960348-60-9PBDEsBDE 99 ${}^{12}C_{12}$ 1314.6565.6 > 405.6 (20)405.7 > 296.7 (35)0.0250.0537BDE 85182346-21-0PBDEsBDE 194 ${}^{12}C_{12}$ 1416.0406.0 >	27	PCB 183	52663-69-1	PCBs	PCB 180 ¹³ C ₁₂	8	11.9	393.8 > 323.8 (30)	323.8 > 253.8 (40)	0.0025	0.005
29BDE 475436-43-1PBDEsBDE 47 ${}^{13}C_{12}$ 1012.8325.8 > 216.8 (30)485.7 > 325.7 (20)0.0050.0130 $\alpha + \beta + \gamma + HBCD$ 134237-50-6 + 134237-51-7 + 134237-52-8HBCDsBDE 47 ${}^{13}C_{12}$ 1012.9238.9 > 159.1 (5)320.9 > 159.1 (8)2.5531PCB 17035065-30-6PCBsPCB 180 ${}^{13}C_{12}$ 1013.0393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00532PCB 196 + PCB 20342740-50-1 + 52663-76-0PCBsPCB 194 ${}^{13}C_{12}$ 1013.1326.0 > 217.0 (30)486.0 > 326.0 (20)0.0050.0134PCB 19435694-08-7PBDEsBDE 47 ${}^{13}C_{12}$ 1013.1326.0 > 217.0 (30)486.0 > 326.0 (20)0.0050.01535BDE 100189084-64-8PBDEsBDE 104 ${}^{13}C_{12}$ 1113.9427.8 > 357.8 (30)429.8 > 394.8 (15)0.00250.00536BDE 9960348-60-9PBDEsBDE 100 ${}^{13}C_{12}$ 1113.9427.8 > 357.8 (30)429.8 > 394.8 (15)0.00250.00537BDE 85BDE 100 ${}^{13}C_{12}$ 1214.1405.8 > 296.7 (35)565.5 > 405.6 (20)0.0050.0136BDE 99BDE 100 ${}^{13}C_{12}$ 1314.6565.6 > 405.6 (20)405.7 > 296.7 (35)0.0050.0137BDE 85BDE 199 ${}^{13}C_{12}$ 1314.6565.6 > 405.6 (20)405.7 > 296.7 (35)0.0250.1250.253	28	PCB 180	35065-29-3	PCBs	PCB 180 ¹³ C ₁₂	9	12.5	393.8 > 323.8 (30)	395.8 > 325.8 (30)	0.0025	0.005
30 $\alpha + \beta + \gamma + \text{HBCD}$ 134237-50-6 + 134237-51-7 + 134237-52-8HBCDsBDE 47 $^{13}C_{12}$ 1012.9238.9 > 159.1 (5)320.9 > 159.1 (8)2.5531PCB 17035065-30-6PCBsPCBsPCB 180 $^{13}C_{12}$ 1013.0393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00532PCB 196 + PCB 20342740-50-1 + 52663-76-0PCBsPCB 194 $^{13}C_{12}$ 1013.0427.8 > 357.8 (30)429.8 > 359.8 (30)0.00250.00533BDE 66189084-61-5PBDEsBDE 47 $^{13}C_{12}$ 1013.1326.0 > 217.0 (30)486.0 > 326.0 (20)0.0050.0134PCB 19435694-08-7PCBsPCB 194 $^{13}C_{12}$ 1013.1326.0 > 217.0 (30)486.0 > 326.0 (20)0.0050.00535BDE 100189084-64-8PBDEsBDE 100 $^{13}C_{12}$ 1113.9427.8 > 357.8 (30)429.8 > 394.8 (15)0.00250.00536BDE 9960348-60-9PBDEsBDE 100 $^{13}C_{12}$ 1214.1405.8 > 296.7 (35)565.5 > 405.6 (20)0.0050.0137BDE 85182346-21-0PBDEsBDE 99 $^{13}C_{12}$ 1314.6565.6 < 405.6 (20)	29	BDE 47	5436-43-1	PBDEs	BDE 47 ¹³ C ₁₂	10	12.8	325.8 > 216.8 (30)	485.7 > 325.7 (20)	0.005	0.01
31PCB 17035065-30-6PCBsPCBsPCB 180 ${}^{13}C_{12}$ 1013.0393.8 > 323.8 (30)395.8 > 360.8 (15)0.00250.00532PCB 196 + PCB 20342740-50-1 + 52663-76-0PCBsPCB 194 ${}^{13}C_{12}$ 1013.0427.8 > 357.8 (30)429.8 > 359.8 (30)0.00250.00533BDE 66189084-61-5PBDEsBDE 47 ${}^{13}C_{12}$ 1013.1326.0 > 217.0 (30)486.0 > 326.0 (20)0.0050.0134PCB 19435694-08-7PCBsPCB 194 ${}^{13}C_{12}$ 1113.9427.8 > 357.8 (30)429.8 > 394.8 (15)0.00250.00535BDE 100189084-64-8PBDEsBDE 100 ${}^{13}C_{12}$ 1214.1405.8 > 296.7 (35)565.5 > 405.6 (20)0.0050.0136BDE 9960348-60-9PBDEsBDE 99 ${}^{13}C_{12}$ 1314.6565.6 > 405.6 (20)405.7 > 296.7 (35)0.0050.0137BDE 85182346-21-0PBDEsBDE 99 ${}^{13}C_{12}$ 1416.0406.0 > 297.0 (35)564.0 > 404.0 (25)0.1250.2538BDE 154207122-15-4PBDEsBDE 154 ${}^{13}C_{12}$ 1416.1643.6 > 483.6 (25)483.6 > 376.8 (35)0.0250.05539PBB 15359080-40-9PBDEsBDE 154 ${}^{13}C_{12}$ 1416.4467.6 > 307.6 (35)307.7 > 147.8 (30)0.0250.05540BDE 15368631-49-2PBDEsBDE 153 ${}^{13}C_{12}$ 1517.3483.7 > 323.6 (40) </td <td>30</td> <td>$\alpha + \beta + \gamma$-HBCD</td> <td>134237-50-6 + 134237-51-7 + 134237-52-8</td> <td>HBCDs</td> <td>BDE 47 ¹³C₁₂</td> <td>10</td> <td>12.9</td> <td>238.9 > 159.1 (5)</td> <td>320.9 > 159.1 (8)</td> <td>2.5</td> <td>5</td>	30	$\alpha + \beta + \gamma$ -HBCD	134237-50-6 + 134237-51-7 + 134237-52-8	HBCDs	BDE 47 ¹³ C ₁₂	10	12.9	238.9 > 159.1 (5)	320.9 > 159.1 (8)	2.5	5
32PCB 196 + PCB 203 $42740-50-1+52663-76-0$ PCBsPCB 194 $^{13}C_{12}$ 1013.0 $427.8 > 357.8 (30)$ $429.8 > 359.8 (30)$ 0.0025 0.005 33BDE 66189084-61-5PBDEsBDE 47 $^{13}C_{12}$ 1013.1 $326.0 > 217.0 (30)$ $486.0 > 326.0 (20)$ 0.005 0.015 34PCB 19435694-08-7PCBsPCB 194 $^{13}C_{12}$ 1113.9 $427.8 > 357.8 (30)$ $429.8 > 394.8 (15)$ 0.0025 0.005 35BDE 100189084-64-8PDEsBDE 100 $^{13}C_{12}$ 1214.1 $405.8 > 296.7 (35)$ $565.5 > 405.6 (20)$ 0.005 0.011 36BDE 9960348-60-9PBDEsBDE 99 $^{13}C_{12}$ 1314.6 $565.6 > 405.6 (20)$ $405.7 > 296.7 (35)$ 0.005 0.015 37BDE 85182346-21-0PBDEsBDE 99 $^{13}C_{12}$ 1416.0 $406.0 > 297.0 (35)$ $564.0 > 404.0 (25)$ 0.125 0.25 38BDE 154207122-15-4PBDEsBDE 154 $^{13}C_{12}$ 1416.1 $643.6 > 483.6 (25)$ $483.6 > 376.8 (35)$ 0.025 0.05 39PBB 15359080-40-9PBBsBDE 154 $^{13}C_{12}$ 1416.4 $467.6 > 307.6 (35)$ $307.7 > 147.8 (30)$ 0.025 0.05 40BDE 15368631-49-2PBDEsBDE 153 $^{13}C_{12}$ 15 17.3 $483.7 > 323.6 (40)$ $643.6 > 483.6 (20)$ 0.125 0.25	31	PCB 170	35065-30-6	PCBs	PCB 180 ¹³ C ₁₂	10	13.0	393.8 > 323.8 (30)	395.8 > 360.8 (15)	0.0025	0.005
33BDE 66189084-61-5PBDEsBDE 47 ${}^{13}C_{12}$ 1013.1 $326.0 > 217.0 (30)$ $486.0 > 326.0 (20)$ 0.005 0.011 34PCB 19435694-08-7PCBsPCB 194 ${}^{13}C_{12}$ 1113.9 $427.8 > 357.8 (30)$ $429.8 > 394.8 (15)$ 0.0025 0.005 35BDE 100189084-64-8PBDEsBDE 100 ${}^{13}C_{12}$ 1214.1 $405.8 > 296.7 (35)$ $565.5 > 405.6 (20)$ 0.005 0.011 36BDE 9960348-60-9PBDEsBDE 99 ${}^{13}C_{12}$ 1314.6 $565.6 > 405.6 (20)$ $405.7 > 296.7 (35)$ 0.005 0.011 37BDE 85182346-21-0PBDEsBDE 99 ${}^{13}C_{12}$ 1416.0 $406.0 > 297.0 (35)$ $564.0 > 404.0 (25)$ 0.125 0.25 38BDE 154207122-15-4PBDEsBDE 154 ${}^{13}C_{12}$ 1416.1 $643.6 > 483.6 (25)$ $483.6 > 376.8 (35)$ 0.025 0.05 39PBB 15359080-40-9PBBsBDE 154 ${}^{13}C_{12}$ 1416.4 $467.6 > 307.6 (35)$ $307.7 > 147.8 (30)$ 0.025 0.05 40BDE 15368631-49-2PBDEsBDE 153 ${}^{13}C_{12}$ 15 17.3 $483.7 > 323.6 (40)$ $643.6 > 483.6 (20)$ 0.125 0.25	32	PCB 196 + PCB 203	42740-50-1 + 52663-76-0	PCBs	PCB 194 ¹³ C ₁₂	10	13.0	427.8 > 357.8 (30)	429.8 > 359.8 (30)	0.0025	0.005
34PCB 19435694-08-7PCBsPCB 194 ${}^{13}C_{12}$ 1113.9427.8 > 357.8 (30)429.8 > 394.8 (15)0.00250.00535BDE 100189084-64-8PBDEsBDE 100 ${}^{13}C_{12}$ 1214.1405.8 > 296.7 (35)565.5 > 405.6 (20)0.0050.0136BDE 9960348-60-9PBDEsBDE 99 ${}^{13}C_{12}$ 1314.6565.6 > 405.6 (20)405.7 > 296.7 (35)0.0050.0137BDE 85182346-21-0PBDEsBDE 99 ${}^{13}C_{12}$ 1416.0406.0 > 297.0 (35)564.0 > 404.0 (25)0.1250.2538BDE 154207122-15-4PBDEsBDE 154 ${}^{13}C_{12}$ 1416.1643.6 > 483.6 (25)483.6 > 376.8 (35)0.0250.0539PBB 15359080-40-9PBBsBDE 154 ${}^{13}C_{12}$ 1416.4467.6 > 307.6 (35)307.7 > 147.8 (30)0.0250.0540BDE 15368631-49-2PBDEsBDE 153 ${}^{13}C_{12}$ 1517.3483.7 > 323.6 (40)643.6 > 483.6 (20)0.1250.25	33	BDE 66	189084-61-5	PBDEs	BDE 47 ¹³ C ₁₂	10	13.1	326.0 > 217.0 (30)	486.0 > 326.0 (20)	0.005	0.01
35BDE 100189084-64-8PBDEsBDE 100 ${}^{13}C_{12}$ 1214.1405.8 > 296.7 (35)565.5 > 405.6 (20)0.0050.0136BDE 9960348-60-9PBDEsBDE 99 ${}^{13}C_{12}$ 1314.6565.6 > 405.6 (20)405.7 > 296.7 (35)0.0050.0137BDE 85182346-21-0PBDEsBDE 99 ${}^{13}C_{12}$ 1416.0406.0 > 297.0 (35)564.0 > 404.0 (25)0.1250.2538BDE 154207122-15-4PBDEsBDE 154 ${}^{13}C_{12}$ 1416.1643.6 > 483.6 (25)483.6 > 376.8 (35)0.0250.0539PBB 15359080-40-9PBBsBDE 154 ${}^{13}C_{12}$ 1416.4467.6 > 307.6 (35)307.7 > 147.8 (30)0.0250.0540BDE 15368631-49-2PBDEsBDE 153 ${}^{13}C_{12}$ 1517.3483.7 > 323.6 (40)643.6 > 483.6 (20)0.1250.25	34	PCB 194	35694-08-7	PCBs	PCB 194 ¹³ C ₁₂	11	13.9	427.8 > 357.8 (30)	429.8 > 394.8 (15)	0.0025	0.005
36BDE 9960348-60-9PBDEsBDE 99 ${}^{13}C_{12}$ 1314.6565.6 > 405.6 (20)405.7 > 296.7 (35)0.0050.0137BDE 85182346-21-0PBDEsBDE 99 ${}^{13}C_{12}$ 1416.0406.0 > 297.0 (35)564.0 > 404.0 (25)0.1250.2538BDE 154207122-15-4PBDEsBDE 154 ${}^{13}C_{12}$ 1416.1643.6 > 483.6 (25)483.6 > 376.8 (35)0.0250.0539PBB 15359080-40-9PBBsBDE 154 ${}^{13}C_{12}$ 1416.4467.6 > 307.6 (35)307.7 > 147.8 (30)0.0250.0540BDE 15368631-49-2PBDEsBDE 153 ${}^{13}C_{12}$ 1517.3483.7 > 323.6 (40)643.6 > 483.6 (20)0.1250.25	35	BDE 100	189084-64-8	PBDEs	BDE 100 ¹³ C ₁₂	12	14.1	405.8 > 296.7 (35)	565.5 > 405.6 (20)	0.005	0.01
37BDE 85182346-21-0PBDEsBDE 99 ${}^{13}C_{12}$ 1416.0406.0 > 297.0 (35)564.0 > 404.0 (25)0.1250.2538BDE 154207122-15-4PBDEsBDE 154 ${}^{13}C_{12}$ 1416.1643.6 > 483.6 (25)483.6 > 376.8 (35)0.0250.0539PBB 15359080-40-9PBBsBDE 154 ${}^{13}C_{12}$ 1416.4467.6 > 307.6 (35)307.7 > 147.8 (30)0.0250.0540BDE 15368631-49-2PBDEsBDE 153 ${}^{13}C_{12}$ 1517.3483.7 > 323.6 (40)643.6 > 483.6 (20)0.1250.25	36	BDE 99	60348-60-9	PBDEs	BDE 99 ¹³ C ₁₂	13	14.6	565.6 > 405.6 (20)	405.7 > 296.7 (35)	0.005	0.01
38BDE 154207122-15-4PBDEsBDE 154 ${}^{13}C_{12}$ 1416.1643.6 > 483.6 (25)483.6 > 376.8 (35)0.0250.0539PBB 15359080-40-9PBBsBDE 154 ${}^{13}C_{12}$ 1416.4467.6 > 307.6 (35)307.7 > 147.8 (30)0.0250.0540BDE 15368631-49-2PBDEsBDE 153 ${}^{13}C_{12}$ 1517.3483.7 > 323.6 (40)643.6 > 483.6 (20)0.1250.25	37	BDE 85	182346-21-0	PBDEs	BDE 99 ¹³ C ₁₂	14	16.0	406.0 > 297.0 (35)	564.0 > 404.0 (25)	0.125	0.25
39PBB 15359080-40-9PBBsBDE $154^{13}C_{12}$ 1416.4467.6 > 307.6 (35)307.7 > 147.8 (30)0.0250.0540BDE 15368631-49-2PBDEsBDE 153 $^{13}C_{12}$ 1517.3483.7 > 323.6 (40)643.6 > 483.6 (20)0.1250.25	38	BDE 154	207122-15-4	PBDEs	BDE 154 ¹³ C ₁₂	14	16.1	643.6 > 483.6 (25)	483.6 > 376.8 (35)	0.025	0.05
40 BDE 153 68631-49-2 PBDEs BDE 153 ¹³ C ₁₂ 15 17.3 483.7 > 323.6 (40) 643.6 > 483.6 (20) 0.125 0.25	39	PBB 153	59080-40-9	PBBs	BDE 154 ¹³ C ₁₂	14	16.4	467.6 > 307.6 (35)	307.7 > 147.8 (30)	0.025	0.05
	40	BDE 153	68631-49-2	PBDEs	BDE 153 13C12	15	17.3	483.7 > 323.6 (40)	643.6 > 483.6 (20)	0.125	0.25

https://academic.oup.com/humrep

	Compounda	CAS number	Chemical		Time	t _R	Quantifier MRM transition	Qualifier MRM transition	LOD ^b	LOQ ^b
	Compound	CAS humber	family	1310	segment	(min)	Precursor > Product (CE (V))	Precursor > Product (CE (V))	(µg/L)	(µg/L)
41	BDE 183	207122-16-5	PBDEs	BDE 183 13C12	16	21.7	721.8 > 561.7 (20)	561.7 > 454.6 (35)	2.5	5
	Labeled ISTDs									
а	HCB ¹³ C ₆	93952-14-8	OCs		2	8.8	289.8 > 219.8 (35)	-		
b	γ-HCH ¹³ C ₆	58-89-9	OCs		2	9.1	186.8 > 151.0 (15)	-		
С	β-HCH ¹³ C ₆	222966-68-9	OCs		3	9.4	224.8 > 189.0 (10)	-		
d	PCB 28 ¹³ C ₁₂	208263-76-7	PCBs		3	9.6	267.9 > 198.1 (30)	-		
е	PCB 52 ¹³ C ₁₂	208263-80-3	PCBs		3	9.8	301.9 > 232.1 (30)	-		
f	Aldrin ¹³ C ₁₂	n/a	OCs		3	10.0	268.0 > 198.0 (35)	-		
g	cis-Heptachlor epoxide ¹³ C ₁₀	1024-57-3	OCs		4	10.5	363.0 > 269.9 (15)	-		
h	PCB 101 ¹³ C ₁₂	104130-39-4	PCBs		4	10.7	265.9 > 196.0 (35)	-		
i	α-Endosulfan D₄	203645-57-2	OCs		5	10.9	163.9 > 129.0 (15)	-		
j	p,p'-DDE D ₈	93952-19-3	OCs		5	10.9	254.1 > 184.1 (35)	-		
k	Dieldrin ¹³ C ₁₂	475274-96-5	OCs		6	11.2	284.8 > 213.9 (30)	-		
I.	o,p'-DDT ¹³ C ₁₂	1396995-26-8	OCs		7	11.3	249.0 > 177.1 (28)	-		
m	PCB 118 ¹³ C ₁₂	104130-40-7	PCBs		7	11.4	335.9 > 266.0 (35)	-		
n	BDE 28 ¹³ C ₁₂	n/a	PBDEs		7	11.5	257.9 > 150.1 (35)	-		
0	PCB 153 ¹³ C ₁₂	185376-58-3	PCBs		7	11.5	371.8 > 302.0 (32)	-		
р	β-Endosulfan ¹³ C ₉	n/a	OCs		8	11.7	202.0 > 166.0 (10)	-		
q	p,p'-DDT ¹³ C ₁₂	104215-84-1	OCs		8	11.8	249.0 > 177.1 (25)	-		
r	PCB 138 ¹³ C ₁₂	208263-66-5	PCBs		8	11.8	301.9 > 232.0 (40)	-		
s	PCB 180 ¹³ C ₁₂	160901-82-6	PCBs		9	12.5	405.8 > 336.0 (35)	-		
t	BDE 47 ¹³ C ₁₂	n/a	PBDEs		10	12.8	337.9 > 230.0 (32)	-		
u	PCB 194 ¹³ C ₁₂	208263-74-5	PCBs		11	13.9	441.8 > 371.9 (35)	-		
v	BDE 100 ¹³ C ₁₂	n/a	PBDEs		12	14.1	575.7 > 415.9 (25)	-		
w	BDE 99 ¹³ C ₁₂	n/a	PBDEs		13	14.6	415.8 > 307.9 (38)	-		
х	BDE 154 ¹³ C ₁₂	n/a	PBDEs		14	16.1	655.7 > 495.8 (25)	-		
v	BDE 153 ¹³ C ₁₂	n/a	PBDEs		15	17.3	655.7 > 495.8 (25)	-		
z	BDE 183 ¹³ C ₁₂	n/a	PBDEs		16	21.7	573.9 > 465.8 (40)	-		
			^a Compounds list	ted in order of retentio	n times; ^b for a 2-mL s	ample of s	serum			

Supplementary Table SII. POP concentrations (ng/L) in the standard reference materials (SRMs) 1957 and 1958 (N = 7)

Compound ^a	LOD (ng/L)	LOQ (ng/L)	POP concentrations (ng/L) in SRM 1957 (n = 7)			POP o	POP concentrations (ng/L) in SRM 1958 (n = 7)		
			Measured (RSD %)	Reported	Measured/ reported (%)	Measured (RSD %)	Reported	Measured/ reported (%)	
α-HCH	2.5	5.0	< 5.0	n.r.	-	224 (10)	260°	86	
НСВ	2.5	5.0	31.4 (15)	29.7 ^b	106	393 (15)	442 ^b	89	
ү-НСН	2.5	5.0	< 5.0	n.r.	-	231 (9)	315 ^c	73	
β-НСН	2.5	5.0	26.6 (8)	31.3 ^c	85	243 (4)	278 ^c	87	
PCB 28	2.5	5.0	7.44 (20)	8.6 ^c	87	403 (3)	402 ^b	100	
PCB 52	2.5	5.0	< 5.0	n.r.	-	416 (4)	401 ^b	104	
Aldrin	25	50	< 50	n.r.	-	373 (5)	n.r.	-	
cis-Heptachlor epoxide	5.0	10	14.8 (6)	n.r.	-	392 (5)	n.r.	-	
PCB 74	2.5	5.0	11.8 (5)	13.8 ^c	86	394 (3)	414 ^b	95	
o,p'-DDE	2.5	5.0	< 5.0	n.r.	-	460 (6)	450 ^b	102	
PCB 101	2.5	5.0	< 5.0	n.r.	-	385 (4)	409 ^b	94	
PCB 99	2.5	5.0	10.1 (11)	11.6 ^c	87	373 (4)	385 ^b	97	
p,p'-DDE	10	20	928 (3)	921 ^b	101	1280 (4)	1250 ^b	102	
Dieldrin	25	50	27.6 (19)	n.r.	-	483 (7)	n.r.	-	
o,p'-DDT	25	50	< 50	n.r.	-	253 (3)	313 ^b	81	
PCB 118	2.5	5.0	15.8 (7)	18.9 ^b	84	407 (5)	412 ^b	99	
BDE 28	2.5	5.0	17.6 (21)	20.0 ^c	88	442 (15)	462 ^b	96	
PCB 153	2.5	5.0	59.5 (4)	58.2 ^b	102	444 (5)	457 ^b	97	
p,p'-DDT	5.0	10	< 10	n.r.	-	145 (4)	293 ^b	49	
PCB 138 + PCB 163	2.5	5.0	43.4 (3)	36.9 ^b	118	451 (8)	473 ^b	95	
PCB 187	2.5	5.0	12.6 (8)	15.5 ^b	82	357 (8)	411 ^b	87	
PCB 183	2.5	5.0	4.49 (8)	5.77 ^c	78	355 (7)	407 ^b	87	
PCB 180	2.5	5.0	49.1 (3)	54.5 ^b	90	431 (4)	459 ^b	94	
BDE 47	5.0	10	237 (8)	268 ^b	88	577 (6)	651 ^b	89	
PCB 170	2.5	5.0	14.3 (11)	16.2 ^b	88	395 (12)	422 ^b	94	
PCB 196 + PCB 203	2.5	5.0	10.1 (6)	10.9 ^c	93	726 (9)	795 ^b	91	
BDE 66	5.0	10	< 10	6.7 ^c	-	388 (7)	440 ^b	88	
PCB 194	2.5	5.0	9.10 (6)	11.9 ^b	76	349 (8)	387 ^b	90	
BDE 100	5.0	10	43.9 (26)	49.7 ^b	88	375 (7)	475 ^b	79	
BDE 99	5.0	10	69.0 (28)	76.0 ^b	91	404 (7)	492 ^b	82	
BDE 85	125	250	< 250	8.2 ^c	-	493 (14)	475 ^b	104	
BDE 154	25	50	< 50	7.0 ^c	-	270 (6)	441 ^b	61	
PBB 153	25	50	< 50	15.5 ^b	-	421 (10)	421 ^b	100	
BDE 153	125	250	< 250	61.0 ^b	-	387 (6)	455 ^b	85	
BDE 183	2500	5000	< 5000	n.r.	-	< 5000	453 ^b	-	

n.r., not reported; ^a Compounds listed in order of retention times; ^b Certified concentration from the certificate of analysis of the Standard Reference Material; ^c Reference concentration from the certificate of analysis of the Standard Reference Material.

Supplementary Table SIII. Sensitivity analysis – Associations between serum persistent organic pollutants and diminished ovarian reserve in the AROPE study – Cases = AFC < 7 & AMH ≤ 1.1 ng/ml (N = 51 cases & 151 controls)

				Diminis R Multiva rej	shed Ovarian Reserve Iriate ¹ logistic gression
Persistent organic pollutant	Concentration (ng/g lipid base) ²	Number of cases (N = 51)	Number of controls (N = 151)	OR	CI
Organochlorine pesticides					
p,p'-DDE	≤ 22.39	10	51	Ref.	Ref.
]22.39-40.74]	21	50	1.45	0.56 - 3.73
	> 40.74	20	50	1.47	0.55 - 3.92
	Continuous	51	151	1.44	1.05 - 1.98
p.p'-DDT	< LOD	21	51	Ref.	Ref.
1- 71-	>LOD	30	100	0.94	0.43 - 2.04
cis-Hentachlore enoxyde	≤ 1.71	17	51	Ref	Ref
]1.71-2.42]	17	50	0.72	0 30 - 1 74
	> 2.42	11	51	0.72	0.30 ± 1.74
	Continuous	51	151	0.02	0.54 - 1.97
	< 6.43	11	51	0.97 Dof	0.30 - 1.88
нсв	16 / 3-8 / 21	16	50	1.04	
	5 8 12	24	50	1.04	0.39 - 2.78
	2 0.42	24 E1	151	1.54	0.58 - 4.15
8 U C U		51 15	151 51	1.60 Rof	0.69 - 3.70 Rof
р-нсн	≤ 3.02 13 62-5 771	22	50	тег. 1 11	
]5.02-5.77] > 5.77	14	50	1.11	0.47 - 2.01
	Continuous	51	151	0.40	0.10 - 1.31
Polychlorinated binhenyls	continuous	51	101	0.50	0.55 1.00
PCB 28	< 0.41	15	49	Ref	Ref
	10.41-0.601	14	51	0.75	0.21 - 2.76
	> 0.60	22	51	1.45	0.57 - 3.70
	Continuous	51	151	0.94	0.58 - 1.52
PCB 74	≤ 1.65	11	51	Ref.	Ref.
]1.65-2.52]	18	49	1.16	0.45 - 3.01
	> 2.52	22	51	1.32	0.50 - 3.44
	Continuous	51	151	1.04	0.67 - 1.61
PCB 99	≤ 1.82	12	51	Ref.	Ref.
]1.82-2.69]	16	50	1.26	0.49 - 3.23
	> 2.69	23	50	1.80	0.72 - 4.47
	Continuous	51	151	1.35	0.80 - 2.26
PCB 118	≤ 3.45	8	51	Ref.	Ref.
]3.45-5.50]	21	50	2.73	0.97 - 7.68
	> 5.50	22	50	2.60	0.91 - 7.39
	Continuous	51	151	1.21	0.72 - 2.03
PCB 138+163 ³	≤ 3.71	12	51	Ref.	Ref.
]3.71-6.44]	14	50	1.07	0.40 - 2.86
	> 6.44	25	50	1.52	0.50 - 4.59

https://academic.oup.com/humrep

	Continuous	51	151	1.19	0.69 - 2.07
PCB 153	≤ 16.36	10	51	Ref.	Ref.
]16.36-26.21]	18	50	1.64	0.60 - 4.49
	> 26.21	23	50	1.87	0.64 - 5.44
	Continuous	51	151	1.33	0.73 - 2.42
PCB 170	≤ 11.34	11	51	Ref.	Ref.
]11.34-16.43]	11	50	0.84	0.30 - 2.34
	> 16.43	29	50	2.29	0.85 - 6.17
	Continuous	51	151	1.22	0.69 - 2.15
PCB 180	≤ 10.85	8	51	Ref.	Ref.
]10.85-18.91]	19	50	2.13	0.73 - 6.19
	> 18.91	24	50	2.33	0.68 - 8.03
	Continuous	51	151	1.36	0.77 - 2.40
PCB 183	≤ 0.94	10	51	Ref.	Ref.
]0.94-1.52]	18	51	1.54	0.58 - 4.09
	> 1.52	23	49	1.78	0.62 - 5.05
	Continuous	51	151	1.41	0.80 - 2.48
PCB 187	≤ 2.06	15	52	Ref.	Ref.
]2.06-3.54]	12	52	0.84	0.29 - 2.41
	> 3.54	24	47	2.09	0.78 - 5.62
	Continuous	51	151	1.40	0.91 - 2.15
PCB 194	≤ 1.23	10	52	Ref.	Ref.
]1.23-2.38]	19	49	1.46	0.52 - 4.08
	> 2.38	22	50	1.53	0.47 - 4.96
	Continuous	51	151	1.41	0.83 - 2.40
PCB 196+203 ³	≤ 1.12	9	51	Ref.	Ref.
]1.12-1.89]	18	51	1.80	0.62 - 5.20
	> 1.89	24	49	2.36	0.73 - 7.67
	Continuous	51	151	1.49	0.86 - 2.58

¹Adjusted for age, body-mass index, centre, education level, and season of inclusion.

²Log2-transformed. Continuous analyses were only performed when linearity was respected.

³These POPS could not be distinguished during the measurement process.

Abbreviations: OR, odds ratio; CI, confidence interval; Ref, reference.

Supplementary Table SIV. Sensitivity analysis – Associations between serum persistent organic pollutants and diminished ovarian reserve in the AROPE study – Cases = AFC < 7 (N = 55 cases & 151 controls)

				Dimin Multiv r	iished Ovarian Reserve /ariate ¹ logistic egression
Persistent organic pollutant	Concentration (ng/g lipid base) ²	Number of cases (N = 55)	Number of controls (N = 151)	OR	CI
Organochlorine pesticides					
p,p'-DDE	≤ 22.39	11	51	Ref.	Ref.
]22.39-40.74]	23	50	1.49	0.60 - 3.68
	> 40.74	21	50	1.42	0.55 - 3.67
	Continuous	55	151	1.43	1.05 - 1.94
n n'-DDT	<100	22	51	Ref	Ref
	>100	33	100	0.93	0 43 - 1 98
cis-Heptachlore epoxyde	≤ 1.71	18	50	Ref	Ref
	11.71-2.42]	18	51	0.77	0.33 - 1.81
	> 2.42	19	50	0.92	0.40 - 2.11
	Continuous	55	151	1.17	0.47 - 2.92
НСВ	≤ 6.43	11	51	Ref.	Ref.
-]6.43-8.42]	19	50	1.28	0.49 - 3.32
	> 8.42	25	50	1.64	0.62 - 4.33
	Continuous	55	151	1.51	0.67 - 3.40
β-НСН	≤ 3.62	15	51	Ref.	Ref.
]3.62-5.77]	26	50	1.35	0.59 - 3.10
	> 5.77	14	50	0.47	0.18 - 1.26
	Continuous	55	151	0.57	0.34 - 0.98
Polychlorinated biphenyls					
PCB 28	≤ 0.41	17	49	Ref.	Ref.
]0.41-0.60]	15	51	0.76	0.22 - 2.62
	> 0.60	23	51	1.36	0.55 - 3.38
	Continuous	55	151	0.94	0.58 - 1.52
PCB 74	≤ 1.65	12	51	Ref.	Ref.
]1.65-2.52]	20	49	1.18	0.47 - 2.94
	> 2.52	23	51	1.26	0.50 - 3.20
	Continuous	55	151	0.98	0.54 - 1.81
PCB 99	≤ 1.82	13	51	Ref.	Ref.
]1.82-2.69]	18	50	1.26	0.52 - 3.06
	> 2.69	24	50	1.71	0.71 - 4.13
	Continuous	55	151	1.46	0.71 - 3.00
PCB 118	≤ 3.45	8	51	Ref.	Ref.
]3.45-5.50]	24	50	2.98	1.09 - 8.11
	> 5.50	23	50	2.54	0.91 - 7.07
	Continuous	55	151	1.18	0.72 - 1.96
PCB 138+163 ³	≤ 3.71	13	51	Ref.	Ref.
]3.71-6.44]	16	50	1.07	0.42 - 2.73
	> 6.44	26	50	1.31	0.45 - 3.82

	Continuous	55	151	1.08	0.63 - 1.86
PCB 153	≤ 16.36	10	51	Ref.	Ref.
]16.36-26.21]	22	50	1.94	0.74 - 5.11
	> 26.21	23	50	1.72	0.60 - 4.93
	Continuous	55	151	1.21	0.67 - 2.16
PCB 170	≤ 11.34	11	51	Ref.	Ref.
]11.34-16.43]	14	50	1.07	0.40 - 2.82
	> 16.43	30	50	2.24	0.85 - 5.90
	Continuous	55	151	1.13	0.65 - 1.95
PCB 180	≤ 10.85	9	51	Ref.	Ref.
]10.85-18.91]	22	50	2.00	0.73 - 5.49
	> 18.91	24	50	1.76	0.54 - 5.72
	Continuous	55	151	1.22	0.70 - 2.13
PCB 183	≤ 0.94	10	51	Ref.	Ref.
]0.94-1.52]	22	51	1.85	0.72 - 4.74
	> 1.52	23	49	1.67	0.60 - 4.65
	Continuous	55	151	1.56	0.70 - 3.47
PCB 187	≤ 2.06	16	52	Ref.	Ref.
]2.06-3.54]	14	52	0.89	0.33 - 2.40
	> 3.54	25	47	1.91	0.74 - 4.94
	Continuous	55	151	1.47	0.80 - 2.70
PCB 194	≤ 1.23	11	52	Ref.	Ref.
]1.23-2.38]	22	49	1.49	0.56 - 3.98
	> 2.38	22	50	1.28	0.41 - 4.00
	Continuous	55	151	1.46	0.69 - 3.09
PCB 196+203 ³	≤ 1.12	9	51	Ref.	Ref.
]1.12-1.89]	21	51	2.03	0.72 - 5.70
	> 1.89	25	49	2.41	0.76 - 7.68
	Continuous	55	151	1.55	0.71 - 3.36

¹Adjusted for age, body mass-index, centre, education level, and season of inclusion.

²Log2-transformed. Continuous analyses were only performed when linearity was respected.

³These POPS could not be distinguished during the measurement process.

Abbreviations: OR, odds ratio; CI, confidence interval; Ref, reference.

Supplementary Table SV. Sensitivity analysis – Associations between serum persistent organic pollutants and diminished ovarian reserve in the AROPE study – Cases = AMH ≤ 1.1 ng/ml (N = 134 cases & 151 controls)

				Diminished Ovarian Reserve Multivariate ¹ logistin regression		
Persistent organic pollutant	Concentration (ng/g lipid base) ²	Number of cases (N = 134)	Number of controls (N = 151)	OR	CI	
Organochlorine pesticides						
p,p'-DDE	≤ 22.39	28	51	Ref.	Ref.	
]22.39-40.74]	49	50	1.53	0.77 - 3.04	
	> 40.74	57	50	1.90	0.96 - 3.76	
	Continuous	134	151	1.39	1.09 - 1.77	
p,p'-DDT	< LOD	51	51	Ref.	Ref.	
	≥LOD	83	100	1.14	0.67 - 1.96	
cis-Heptachlore epoxyde	≤ 1.71	52	50	Ref.	Ref.	
]1.71-2.42]	49	51	0.84	0 46 - 1 53	
	> 2.42	33	50	0.63	0.33 - 1.17	
	Continuous	134	151	0.05	0.53 ± 1.17	
НСВ	< 6.43	38	51	0.02 Rof	0.52 - 1.50 Rof	
neb	16.43-8.421	50	50	0.82	0 52 - 1 29	
	> 8.42	45	50	1.03	0 54 - 1 94	
	Continuous	134	151	0.92	0 46 - 1 84	
в-нсн	≤ 3.62	49	51	Ref.	Ref.	
prien]3.62-5.77]	49	50	0.74	0.40 - 1.36	
	> 5.77	36	50	0.47	0.24 - 0.93	
	Continuous	134	151	0.63	0.44 - 0.89	
Polychlorinated biphenyls						
PCB 28	≤ 0.41	39	49	Ref.	Ref.	
]0.41-0.60]	44	51	0.99	0.44 - 2.25	
	> 0.60	51	51	1.32	0.66 - 2.63	
	Continuous	134	151	1.02	0.72 - 1.43	
PCB 74	≤ 1.65	38	51	Ref.	Ref.	
]1.65-2.52]	46	49	0.99	0.52 - 1.89	
	> 2.52	50	51	0.94	0.48 - 1.83	
	Continuous	134	151	0.85	0.62 - 1.17	
PCB 99	≤ 1.82	34	51	Ref.	Ref.	
]1.82-2.69]	41	50	1.26	0.65 - 2.44	
	> 2.69	59	50	1.62	0.84 - 3.12	
	Continuous	134	151	1.04	0.72 - 1.51	
PCB 118	≤ 3.45	33	51	Ref.	Ref.	
]3.45-5.50]	52	50	1.43	0.75 - 2.71	
	> 5.50	49	50	1.26	0.64 - 2.49	
	Continuous	134	151	0.95	0.65 - 1.38	
PCB 138+163 ³	≤ 3.71	32	51	Ref.	Ref.	
]3.71-6.44]	40	50	1.09	0.54 - 2.20	

https://academic.oup.com/humrep

1	n
	υ.

	> 6.44	62	50	1.51	0.68 - 3.35
	Continuous	134	151	0.99	0.67 - 1.48
PCB 153	≤ 16.36	35	51	Ref.	Ref.
]16.36-26.21]	46	50	1.05	0.53 - 2.09
	> 26.21	53	50	1.11	0.52 - 2.34
	Continuous	134	151	1.04	0.67 - 1.60
PCB 170	≤ 11.34	35	51	Ref.	Ref.
]11.34-16.43]	30	50	0.70	0.35 - 1.40
	> 16.43	69	50	1.68	0.83 - 3.39
	Continuous	134	151	1.03	0.68 - 1.56
PCB 180	≤ 10.85	31	51	Ref.	Ref.
]10.85-18.91]	42	50	1.11	0.55 - 2.26
	> 18.91	61	50	1.43	0.64 - 3.19
	Continuous	134	151	1.04	0.69 - 1.56
PCB 183	≤ 0.94	30	51	Ref.	Ref.
]0.94-1.52]	47	51	1.36	0.69 - 2.69
	> 1.52	57	49	1.57	0.75 - 3.27
	Continuous	134	151	1.23	0.82 - 1.84
PCB 187	≤ 2.06	39	52	Ref.	Ref.
]2.06-3.54]	39	52	1.00	0.49 - 2.03
	> 3.54	56	47	1.49	0.73 - 3.04
	Continuous	134	151	1.09	0.79 - 1.50
PCB 194	≤ 1.23	29	52	Ref.	Ref.
]1.23-2.38]	56	49	1.47	0.72 - 3.00
	> 2.38	49	50	1.02	0.43 - 2.40
	Continuous	134	151	1.11	0.75 - 1.64
PCB 196+203 ³	≤ 1.12	29	51	Ref.	Ref.
]1.12-1.89]	50	51	1.46	0.70 - 3.01
	> 1.89	55	49	1.51	0.66 - 3.45
	Continuous	134	151	1.19	0.80 - 1.78

¹Adjusted for age, body-mass index, centre, education level, and season of inclusion.

²Log2-transformed. Continuous analyses were only performed when linearity was respected.

³These POPS could not be distinguished during the measurement process.

Abbreviations: OR, odds ratio; CI, confidence interval; Ref, reference.

Supplementary Table SVI. Sensitivity analysis – Associations between serum persistent organic pollutants and diminished ovarian reserve in the AROPE study – Cases = AFC < 5 and/or $AMH \le 0.7$ ng/ml (N = 90 cases & 151 controls)

				Diminished Ovarian	
				Response	
				Multi	variate ¹ logistic
				I	regression
	Concentration	Number	Number of		
Persistent organic pollutant	$(ng/g linid hase)^2$	of cases	controls	OR	CI
	((N = 90)	(N = 151)		
Organochlorine pesticides					
p,p'-DDE	≤ 22.39	18	51	Ref.	Ref.
]22.39-40.74]	37	50	1.61	0.75 - 3.48
	> 40.74	35	50	1.78	0.80 - 3.97
	Continuous	90	151	1.45	1.11 - 1.90
p,p'-DDT	< LOD	30	51	Ref.	Ref.
	≥LOD	60	100	0.89	0.47 - 1.68
cis-Heptachlore epoxyde	≤ 1.71	35	50	Ref.	Ref.
]1.71-2.42]	29	51	0.73	0.37 - 1.45
	> 2.42	26	50	0.71	0.35 - 1.41
	Continuous	90	151	0.93	0.56 - 1.54
НСВ	≤ 6.43	25	51	Ref.	Ref.
]6.43-8.42]	29	50	0.90	0.44 - 1.87
	> 8.42	36	50	1.09	0.51 - 2.34
	Continuous	90	151	1.03	0.54 - 1.95
β-НСН	≤ 3.62	33	51	Ref.	Ref.
]3.62-5.77]	35	50	0.76	0.38 - 1.51
	> 5.77	22	50	0.38	0.17 - 0.82
	Continuous	90	151	0.50	0.32 - 0.76
Polychlorinated biphenyls					
PCB 28	≤ 0.41	25	49	Ref.	Ref.
]0.41-0.60]	29	51	1.07	0.39 - 2.92
	> 0.60	36	51	1.41	0.63 - 3.14
	Continuous	90	151	1.03	0.70 - 1.50
PCB 74	≤ 1.65	22	51	Ref.	Ref.
]1.65-2.52]	33	49	1.19	0.57 - 2.48
	> 2.52	35	51	1.12	0.52 - 2.41
	Continuous	90	151	0.90	0.63 - 1.29
PCB 99	≤ 1.82	22	51	Ref.	Ref.
]1.82-2.69]	30	50	1.44	0.68 - 3.01
	> 2.69	38	50	1.65	0.78 - 3.50
	Continuous	90	151	1.05	0.69 - 1.59
PCB 118	≤ 3.45	18	51	Ref.	Ref.
]3.45-5.50]	38	50	1.84	0.88 - 3.86
	> 5.50	34	50	1.51	0.70 - 3.28
	Continuous	90	151	0.96	0.63 - 1.46
PCB 138+163 ³	≤ 3.71	24	51	Ref.	Ref.
]3.71-6.44]	23	50	0.81	0.37 - 1.78
	> 6.44	43	50	1.30	0.54 - 3.13

	Continuous	90	151	1.03	0.67 - 1.58
PCB 153	≤ 16.36	22	51	Ref.	Ref.
]16.36-26.21]	32	50	1.22	0.57 - 2.62
	> 26.21	36	50	1.15	0.49 - 2.67
	Continuous	90	151	1.08	0.67 - 1.74
PCB 170	≤ 11.34	21	51	Ref.	Ref.
]11.34-16.43]	26	50	1.03	0.48 - 2.21
	> 16.43	43	50	1.65	0.74 - 3.68
	Continuous	90	151	1.05	0.67 - 1.66
PCB 180	≤ 10.85	21	51	Ref.	Ref.
]10.85-18.91]	28	50	1.04	0.47 - 2.30
	> 18.91	41	50	1.28	0.51 - 3.19
	Continuous	90	151	1.10	0.71 - 1.70
PCB 183	≤ 0.94	20	51	Ref.	Ref.
]0.94-1.52]	33	51	1.46	0.68 - 3.11
	> 1.52	37	49	1.45	0.63 - 3.33
	Continuous	90	151	1.21	0.77 - 1.89
PCB 187	≤ 2.06	27	52	Ref.	Ref.
]2.06-3.54]	29	52	1.06	0.48 - 2.35
	> 3.54	34	47	1.38	0.61 - 3.09
	Continuous	90	151	1.11	0.78 - 1.58
PCB 194	≤ 1.23	21	52	Ref.	Ref.
]1.23-2.38]	35	49	1.20	0.54 - 2.65
	> 2.38	34	50	0.97	0.38 - 2.48
	Continuous	90	151	1.16	0.76 - 1.77
PCB 196+203 ³	≤ 1.12	20	51	Ref.	Ref.
]1.12-1.89]	33	51	1.30	0.58 - 2.92
	> 1.89	37	49	1.39	0.56 - 3.47
	Continuous	90	151	1.22	0.79 - 1.89

¹Adjusted for age, body-mass index, centre, education level, and season of inclusion.

²Log2-transformed. Continuous analyses were only performed when linearity was respected.

³These POPS could not be distinguished during the measurement process.

Abbreviations: OR, odds ratio; CI, confidence interval; Ref, reference.

Supplementary Table SVII. Sensitivity analysis – Associations between serum persistent organic pollutants and diminished ovarian reserve in the AROPE study – No prior stimulation treatment (N = 97 cases & 97 controls)

				Diminished Ovarian Reserve Multivariate ¹ logistic regression	
Persistent organic pollutant	Concentration (ng/g lipid base) ²	Number of cases (N = 97)	Number of controls (N = 97)	OR	CI
Organochlorine pesticides					
p,p'-DDE	≤ 21.98	22	33	Ref.	Ref.
]21.98-37.32]	33	32	1.25	0.56 - 2.80
	> 37.32	42	32	1.71	0.76 - 3.83
	Continuous	97	97	1.55	1.14 - 2.11
p,p'-DDT	< LOD	37	36	Ref.	Ref.
	≥ LOD	60	61	1.20	0.62 - 2.33
cis-Heptachlore epoxyde	≤ 1.75	39	33	Ref.	Ref.
, , ,]1.75-2.37]	31	31	0.65	0.30 - 1.39
	> 2.37	27	33	0.59	0.28 - 1.26
	Continuous	97	97	0.66	0.37 - 1.16
HCB	< 6.69	31	33	Ref	Ref
1100	16 69-8 701	33	32	0.80	0 37 - 1 74
	> 8 70	33	32	0.75	0.33 - 1.68
	Continuous	97	97	0.75	0.41 - 1.73
В-НСН	< 3 52	31	33	Ref	Ref
pricit	13.52-5.661	38	32	0.76	0.35 - 1.64
	> 5.66	28	32	0.45	0.19 - 1.06
	Continuous	97	97	0.68	0.44 - 1.03
Polychlorinated biphenyls					
PCB 28	≤ 0.42	29	36	Ref.	Ref.
]0.42-0.59]	28	28	0.96	0.39 - 2.33
	> 0.59	40	33	1.40	0.63 - 3.11
	Continuous	97	97	1.27	0.80 - 2.03
PCB 74	≤ 1.61	25	33	Ref.	Ref.
]1.61-2.52]	32	31	0.98	0.43 - 2.24
	> 2.52	40	33	0.96	0.42 - 2.21
	Continuous	97	97	0.88	0.58 - 1.35
PCB 99	≤ 1.81	28	33	Ref.	Ref.
]1.81-2.66]	27	31	0.92	0.40 - 2.08
	> 2.66	42	33	1.30	0.58 - 2.93
	Continuous	97	97	0.99	0.62 - 1.59
PCB 118	≤ 3.31	18	33	Ref.	Ref.
]3.31-5.32]	43	32	1.91	0.87 - 4.22
	> 5.32	36	32	1.37	0.59 - 3.17
	Continuous	97	97	0.91	0.58 - 1.44
PCB 138+163	≤ 3.6/	22	33	Ref.	Ref.
	J3.07-6.3UJ	29 A.C	32	0.94	0.40 - 2.24
	2 0.30	40	52	1.10	0.42 - 3.20

https://academic.oup.com/humrep

1	Λ
	.4

	Continuous	97	97	1.00	0.61 - 1.64
PCB 153	≤ 15.87	23	33	Ref.	Ref.
]15.87-26.21]	35	32	1.00	0.43 - 2.34
	> 26.21	39	32	1.01	0.39 - 2.57
	Continuous	97	97	1.01	0.59 - 1.72
PCB 170	≤ 11.06	24	33	Ref.	Ref.
]11.06-16.43]	22	32	0.70	0.30 - 1.63
	> 16.43	51	32	1.60	0.67 - 3.80
	Continuous	97	97	1.00	0.60 - 1.67
PCB 180	≤ 10.91	20	33	Ref.	Ref.
]10.91-18.13]	28	32	1.04	0.43 - 2.56
	> 18.13	49	32	1.35	0.47 - 3.84
	Continuous	97	97	1.07	0.65 - 1.78
PCB 183	≤ 0.93	23	33	Ref.	Ref.
]0.93-1.39]	20	32	0.69	0.29 - 1.67
	> 1.39	54	32	1.91	0.77 - 4.71
	Continuous	97	97	1.36	0.82 - 2.27
PCB 187	≤ 2.05	27	35	Ref.	Ref.
]2.05-3.50]	29	32	0.99	0.42 - 2.31
	> 3.50	41	30	1.31	0.53 - 3.20
	Continuous	97	97	1.14	0.77 - 1.71
PCB 194	≤ 1.20	21	32	Ref.	Ref.
]1.20-2.22]	30	32	0.93	0.37 - 2.31
	> 2.22	46	33	1.09	0.37 - 3.20
	Continuous	97	97	1.15	0.70 - 1.89
PCB 196+203 ³	≤ 1.10	19	32	Ref.	Ref.
]1.10-1.78]	35	33	1.32	0.52 - 3.31
	> 1.78	43	32	1.34	0.45 - 4.04
	Continuous	97	97	1.33	0.80 - 2.22

¹Adjusted for age, body-mass index, centre, education level, and season of inclusion. ²Log2-transformed. Continuous analyses were only performed when linearity was respected.

³These POPS could not be distinguished during the measurement process.

Abbreviations: OR, odds ratio; CI, confidence interval; Ref, reference.

Supplementary Table SVIII. Sensitivity analysis – Associations between serum persistent organic pollutants and diminished ovarian reserve in the AROPE study – Participants with outcomes measured at inclusion (N = 50 cases & 48 controls)

Diminished Ovarian Response

Multivariate¹ logistic regression

Persistent organic pollutant	Concentration (ng/g lipid base) ²	Number of cases (N=50)	Number of controls (N=48)	OR	CI
Organochlorine pesticides					
p,p'-DDE	≤ 21.33	9	16	Ref.	Ref.
]21.33-35.63]	15	16	1.21	0.31 - 4.73
	> 35.63	26	16	2.60	0.72 - 9.43
	Continuous ²	50	48	1.36	0.83 - 2.24
p.p'-DDT	< LOD	17	13	Ref.	Ref.
	≥LOD	33	35	1 44	0 49 - 4 27
cis-Hentachlore-Enoxyde	< 1.75	19	16	Ref	Ref
	11.75-2.48]	22	16	0.66	0 22 - 1 98
	> 2.48	9	16	0.50	0.22 1.90
	Continuous	50	48	0.98	0 39 - 2 42
НСВ	≤ 6.52	14	16	Ref.	Ref.
	16.52-7.991	12	16	0.61	0.18 - 2.08
	> 7.99	24	16	1.09	0.34 - 3.55
	Continuous	50	48	1.48	0.43 - 5.15
Beta-HCH	≤ 3.64	13	16	Ref.	Ref.
]3.64-6.41]	26	16	1.88	0.59 - 6.01
	> 6.41	11	16	0.60	0.15 - 2.51
Polychlorinated biphenyls					
PCB 28	≤ 0.39	13	16	Ref.	Ref.
]0.39-0.53]	21	16	2.27	0.45 - 11.33
	> 0.53	16	16	1.96	0.39 - 9.94
	Continuous	50	48	1.06	0.55 - 2.04
PCB 74	≤ 1.61	10	16	Ref.	Ref.
]1.61-2.90]	25	17	2.57	0.71 - 9.31
	> 2.90	15	15	1.34	0.34 - 5.28
PCB 99	≤ 1.81	8	16	Ref.	Ref.
]1.81-2.50]	15	16	1.26	0.35 - 4.54
	> 2.50	27	16	2.47	0.73 - 8.33
	Continuous	50	48	1.33	0.65 - 2.72
PCB 118	≤ 3.31	8	16	Ref.	Ref.
]3.31-5.01]	19	16	2.90	0.76 - 11.08
	> 5.01	23	16	3.83	0.99 - 14.87
	Continuous	50	48	1.37	0.69 - 2.72
PCB 138 + 163 ³	≤ 11.68	9	16	Ref.	Ref.
]11.68-15.43]	14	16	1.30	0.35 - 4.83
	> 15.43	27	16	2.33	0.65 - 8.33
	Continuous	50	48	1.53	0.67 - 3.52
PCB 153	≤ 17.15	10	16	Ref.	Ref.

]17.15-24.18]	12	16	0.69	0.18 - 2.64
	> 24.18	28	16	1.80	0.49 - 6.57
PCB 170	≤ 4.23	14	16	Ref.	Ref.
]4.23-6.38]	13	16	0.60	0.16 - 2.28
	> 6.38	23	16	1.20	0.31 - 4.71
	Continuous	50	48	1.26	0.54 - 2.91
PCB 180	≤ 12.81	14	16	Ref.	Ref.
]12.81-18.86]	16	16	0.72	0.20 - 2.67
	> 18.86	20	16	1.00	0.25 - 3.97
	Continuous	50	48	1.13	0.48 - 2.69
PCB 183	≤ 0.94	8	16	Ref.	Ref.
]0.94-1.34]	12	16	0.99	0.25 - 3.96
	> 1.34	30	16	2.55	0.68 - 9.54
	Continuous	50	48	1.82	0.80 - 4.15
PCB 187	≤ 2.07	12	16	Ref.	Ref.
]2.07-3.31]	18	15	1.41	0.37 - 5.40
	> 3.31	20	17	1.75	0.45 - 6.79
	Continuous	50	48	1.55	0.77 - 3.13
PCB 194	≤ 1.40	13	16	Ref.	Ref.
]1.40-2.37]	22	16	1.48	0.43 - 5.14
	> 2.37	15	16	0.81	0.18 - 3.67
PCB 196 + 203 ³	≤ 1.19	13	16	Ref.	Ref.
]1.19-1.88]	20	16	0.74	0.21 - 2.63
	> 1.88	17	16	0.79	0.19 - 3.37

¹Adjusted for age, body-mass index, centre, education level, and season of inclusion.

²All POPs were log2-transformed when treated as continuous variables.

³These POPS could not be distinguished during the measurement process.

Abbreviations: N, number of subjects; OR, odds ratio; CI, confidence interval; Ref, reference.