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Simple Summary: Despite intensive research, effective tools for detection and monitoring of prostate
cancer remain to be found. Prostate-specific antigen (PSA), commonly used in prostate cancer
assessments, can lead to overdiagnosis and overtreatment of indolent disease. This highlights the
need for supporting non-invasive diagnostic, prognostic, and disease stratification biomarkers that
could complement PSA in clinical decision-taking via increased sensitivity and specificity. In order to
address this need, we uncover novel prostate cancer protein signatures by leveraging a cutting-edge
analytical technique to measure proteins in patient samples. This strategy was used as a discovery
tool to identify changes in protein levels in the serum of newly diagnosed patients as compared
with healthy controls; the feature set was then further validated by reference to a second cohort
of patients, achieving a high discriminatory ability. The proteomic maps generated also identified
relevant changes in biological functions, notably the complement cascade.

Abstract: Prostate cancer is the most common malignant tumour in men. Improved testing for
diagnosis, risk prediction, and response to treatment would improve care. Here, we identified a
proteomic signature of prostate cancer in peripheral blood using data-independent acquisition mass
spectrometry combined with machine learning. A highly predictive signature was derived, which
was associated with relevant pathways, including the coagulation, complement, and clotting cascades,
as well as plasma lipoprotein particle remodeling. We further validated the identified biomarkers
against a second cohort, identifying a panel of five key markers (GP5, SERPINA5, ECM1, IGHG1, and
THBS1) which retained most of the diagnostic power of the overall dataset, achieving an AUC of 0.91.
Taken together, this study provides a proteomic signature complementary to PSA for the diagnosis
of patients with localised prostate cancer, with the further potential for assessing risk of future
development of prostate cancer. Data are available via ProteomeXchange with identifier PXD025484.
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1. Introduction

Prostate cancer (PCa) is the second most common cancer in the UK, accounting for 13%
of all cancer cases [1]. In the USA, it is the third most common type of cancer, occurring in
~19 cases per 100,000 [2]. In the UK, the National Institute for Health and Care Excellence
(NICE) guideline (NG131) predicted a 16% rise in the annual cost between 2010 and 2020,
from GBP 276.9 million to GBP 320.6 million for the inpatient treatment of PCa [3]. An
estimate of annual expenditure to Medicare US, associated with the detection of PCa in
elderly men (>70 years old) is USD 1.2 billion/year [4]. Healthcare providers need the
means for early diagnosis of the localised, intermediate- to high-risk disease using reliable
diagnostic tests that reduce disease burden and increase quality of life (QoL) for elderly
men, by lowering associated over-treatment, a significant concern for patients.

Currently, prostate-specific antigen (PSA) is the most common of only a few blood-
based diagnostic molecular markers, used alongside digital rectal examination and multi-
parametric magnetic resonance imaging (mpMRI) in the assessment and diagnosis of PCa.
Diagnostic PSA levels are age-stratified; a PSA cut-off of 3 µg/L is used to indicate presence
of PCa in men aged 50–59 years [5], while higher PSA values (>3 µg/L) are required to
elicit the suspicion of PCa [6] in older men. Nevertheless, elevated levels of PSA are not
always age-related and not necessarily indicative of PCa and, therefore, do not offer an
accurate diagnostic tool. Elevated PSA can be secondary to non-neoplastic aetiology, such
as benign prostate hyperplasia, prostatitis, and/or urinary tract infections [7], thus leading
to increased false-positive indications of PCa [8]. This often leads to unnecessary and
potentially harmful biopsies; a review by SEER-Medicare (Surveillance, Epidemiology
and End Results) reported a 2.65-fold increased risk of hospitalisation within 30 days in
approximately 17,000 men having undergone a prostate biopsy [9]. Additionally, there
are reported PCa cases with PSA level lower than 4 ng/mL, resulting in false negatives
and missed diagnoses [10]. Hence, at an early stage of disease, there is no reliable PSA
range that is an explicit signifier for the presence of PCa. Similarly, biopsies can result in
false negatives at the early stage of PCa when the tumour is small and the cancer cells
are heterogeneously distributed [11,12]. The need to find a highly sensitive and specific
biomarker(s) for early screening and PCa diagnosis, potentially complementary to PSA
measurement, is essential in improving patient stratification and clinical outcomes.

The need to identify new biomarkers is also essential for the constant monitoring
of PCa patients following their diagnosis. While some localised PCa require immediate
treatment, such as radical prostatectomy, external beam radiation therapy, or prostate
brachytherapy, other patients can be closely monitored over time and placed upon active
surveillance; this is reserved for men with low-risk disease, who are eligible for radical
treatment but want to avoid the morbidity associated with such therapies until the disease
becomes clinically significant. Such decisions are made on the basis of multiple clinical
and demographic factors which include PSA, Gleason score (GS), TNM staging, and lower
urinary tract symptoms, along with the age and performance status of the patient [13].
Risk to disease progression is more accurately assessed by the D’Amico [14] methodology,
which is essential for the management of PCa, therefore, guiding treatment options. While
there is an excellent survival rate following treatment of localised PCa, recurrence rates
at 7–10 years post-treatment are 20–40% [15]. Altogether, this highlights the need for
the identification of new biomarkers from non-invasive monitoring methods to support
early screening.

Analysis of the blood proteome using mass spectrometry can offer the optimal bio-
logical readout for the identification of new PCa biomarkers [16]. Such approaches are
emerging as useful research and investigative tools for biomarker discovery [17] with
direct clinical utility [18]. One such method is the Sequential Window Acquisition of All
Theoretical Fragment Ion Mass Spectra (SWATH) combined with reverse-phase liquid
chromatography used to extract relative fragment ions within the detectable range [19–21].
This label-free method allows for a reliable and precise quantification of the proteome
across hundreds of samples in combination with novel data extraction approaches [22].
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In this study, we identify biomarkers that could improve the diagnosis of PCa by
leveraging SWATH-MS as a state-of-the-art analytical platform for discovery proteomics
coupled with optimised data analysis tools to investigate the proteomic signatures in
the serum of newly diagnosed PCa patients and their age-matched controls. We further
assess the relevance of these biomarkers in characterising newly diagnosed PCa patients
by addressing the impact of treatments (prostatectomy and radiation therapy) on their
relative levels.

2. Materials and Methods
2.1. Patients

Serum samples were obtained from the SUN Biobank (NHS Ethics REC reference
18/YH/0314). Serum samples were selected from “newly diagnosed” PCa patients (PCa-ND,
n = 99) and their age-matched healthy controls (HC, n = 132) (Table 1). There were 12 partic-
ipants removed from the study due to incomplete metadata (of which, 11 were PCa-ND and
1 was HC). Control samples (HC) satisfied both normal DRE and PSA levels below 1 ng/mL
(<1 ng/mL). The inclusion criteria for PCa-ND patients were an abnormal prostate on
digital rectal examination (DRE), symptomatic patients with high prostate-specific antigen
(PSA) levels, and abnormal biopsy; or alternatively, a diagnosis made solely on steep rise
in PSA associated with urinary symptoms. Patients categorised as Pca-ND were split into
two groups: active surveillance (Pca-AS) with no steep progression in their disease, age
above 80 years, or life expectancy less than 5 years, while pre-treated patients (PCa-pre)
required upfront treatment. PCa-pre comprised patients who underwent two distinct types
of treatment to treat cancer: radical radiotherapy (pre-radiotherapy; n = 25) and radical
prostatectomy (pre-prostatectomy; n = 22). Patients having undergone treatment (PCa-post)
had been subjected to either prostatectomy or brachytherapy/radiotherapy for (T1- and T2-
staged patients), external beam radiotherapy, or prostatectomy, when diagnosed alongside
urinary complications (T3 stage).

Table 1. Clinical profile of patients enrolled and analysed in the study. Patients were segregated into
newly diagnosed (PCa-ND) and post-treatment (PCa-post) PCa patients. PCa-ND were composed of
individuals put on active surveillance (PCa-AS) or referred for further treatment (PCa-pre) at time of
diagnosis. PSA: prostate-specific antigen, HGPIN: high-grade prostatic intraepithelial neoplasia, NA:
not applicable. Where specified, ± determines standard deviation, and n represents the number of
individuals in each category.

Group Age (Years) PSA (ng/mL) Gleason Score Tumour Stage

Newly Diagnosed Prostate Cancer Patients (PCa-ND)

Active Surveillance
(PCa-AS)
(n = 41)

68
(±8)

9.7
(±9.6)

HGPIN (n = 1)
3 + 3 (n = 33)
3 + 4 (n = 1)
NA (n = 6)

T1–T3 (no nodal
spread and no

metastasis)

Pre-treatment (PCa-pre)
(n = 47)

64
(±6)

8.1
(±5.1)

2 + 2 (n = 1)
3 + 3 (n = 32)
3 + 4 (n = 12)
NA (n = 2)

T1–T3 (no nodal
spread and no

metastasis)

Post Treatment (PCa-post)

Post prostatectomy
(n = 12)

63
(±6)

8.6
(±5.5) N/A N/A

Post radiotherapy
(n = 13)

63
(±6)

11.9
(±24.7) N/A N/A

Healthy Controls (HC)

Healthy Control
(n = 131)

66
(±10)

0.8
(±0.6) N/A NA
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2.2. Blood Collection and Serum Isolation

Peripheral blood was collected into red-capped BD Vacutainer® blood collection tubes
(BD Biosciences, San Jose, CA, USA), inverted five times and incubated at room temperature
for 30 min before centrifugation at 3000 r.p.m. for 10 min. All samples were processed
within 2 h of collection, and the clear fraction (serum) was stored at −80 ◦C until analysis.
All participants provided written consent for the use of data and samples in this study. The
study was approved by Yorkshire and the Humber–Leeds East Research Ethics Committee
under the reference no. 08/H1306/115+5 and IRAS project ID 3582.

2.3. Serum Immunodepletion and Filtration

Samples were prepared according to the Stoller Discovery Centre standard serum
proteomic methodology [18]. Immunodepletion of the highly abundant proteins from
serum was performed using a Pierce™ Top 12 Abundant Protein Depletion Spin Columns
following manufacturer’s instructions (ThermoFisher Scientific, Hemel Hempstead, UK).
These 12 proteins were: α1-Acid Glycoprotein, Fibrinogen, α1-Antitrypsin, Haptoglobin,
α2-Macroglubulin, IgA, Albumin, IgG, Apolipoprotein A-I, IgM, Apolipoprotein A-II, and
Transferrin. Any remaining traces of these depleted proteins by MS were removed from the
analysis during first step of data processing. Depleted serum samples were concentrated
and purified using Amicon® Ultra-0.5 centrifugal filter devices (Cat #: UFC5003BK, Sigma-
Aldrich, Merck KGaA, Darmstadt, Germany). Resulting serum samples were submitted
to a buffer exchange using 25 mM ammonium bicarbonate (Sigma-Aldrich, Merck KgaA,
Darmstadt, Germany) to decrease salt concentration.

2.4. PSA Measurement, Protein Digestion, and Peptide Isolation

PSA levels were assessed using the ADVIA Centaur automated chemiluminescence
system (Siemens, Dublin, Ireland) [23]. Bicinchoninic acid assay (BCA assay, Thermo
Fisher Scientific, Hemel Hempstead, UK) was used to quantify the total protein content of
concentrated serum samples. The total protein content was then normalised to 50 µg per
96 µL of sample using 25 mM ammonium bicarbonate. The amount of 5 mM dithiothreitol
(GE Healthcare Life Sciences, Parramatta, Australia) and 1% (w/v) sodium deoxycholate
(Sigma-Aldrich, Merck KgaA, Darmstadt, Germany) was used to reduce proteins at 60 ◦C
for 30 min. Capping of reduced cysteine residues was achieved using 10 mM iodoacetamide
(Sigma-Aldrich, Merck KgaA, Darmstadt, Germany) at room temperature for 30 min in
the dark. Trypsin (Promega, Southampton, UK) was added for the digestion of alkylated
proteins in an enzyme:protein ratio of 1:50 at 37 ◦C for 16 h. Sodium deoxycholate was
removed from serum samples using a 0.5% (w/v) solution of formic acid (Fisher Scientific,
Thermo Fisher Scientific, Waltham, MA, USA). The peptide-containing supernatants were
dried-down using a MiVac Quattro Concentrator (Genevac™, Thermo Fisher Scientific,
Waltham, MA, USA) for 2–3 h and dried pellet stored at −80 ◦C until further analysis.

2.5. SWATH Analysis

Dried peptide samples were reconstituted in a mixture of loading buffer (2% ace-
tonitrile/0.1% formic acid), pepcalmix (10 fmol/uL, SCIEX, Warrington, UK), and index
retention time (iRT) peptides (2X) (Biognosys, Schlieren, Switzerland) for analysis using
the sequential window acquisition of all theoretical fragment-ion spectra (SWATH) mass
spectrometry platform [23]. Acquisition of samples was performed on a 6600 TripleTOF
mass-spectrometer (hereinafter called MS) (SCIEX, Warrington, UK) coupled with Micro
HPLC system (SCIEX, Warrington, UK) with an analytical column (YMC-Triart C18 12 nm,
3 µm, 0.3 mm I.D. × 150 mm, 1/32′′ column; YMC Europe GmbH TA12S03-15HORU)
and trap Column (YMC-Triart C18 12 nm, S-3 µm, 5 mm × 0.5 mm I.D., 1/32′′; YMC
Europe GmbH TA12S03-E5JORU). The sample pickup volume was set to 8 µL at a flow rate
of 5 µL/min. The 100 variable window method was used along with MS parameters to
acquire the data: accumulation time 0.249988 s, m/z range 400–1250, duration 119.987 min,
cycles 2572, delay time 0 s, and cycle time 2.7991 s [18]. The human leukemia K562 cell line
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was used to obtain a cell lysate protein extract digest used as quality control (QC) along-
side a control serum (Seralab, NC3Rs, London, UK). Control samples were loaded every
4 samples to ensure consistent instrument performance across runs and to highlight issues
with sample processing. Raw data files (wiff) were searched against a purpose-built PCa
serum library [24] (acquired through data-dependent acquisition MS) using openSWATH
(version 2.0.0) [25]. PyProphet (version 0.18.3) [26] was used to score the peptide matches,
and results were aligned using the Msproteomicstools feature alignment [27].

2.6. Processing of MS Proteomic Data

SWATH2Stats package (Bioconductor packages release 3.11) [28] was used to annotate
the feature alignment file and filter the data at an m-score cutoff of 0.01. All SWATH-MS
runs with a transition level FDR (fragment ion FDR cutoff) greater than 0.03 were excluded
from the analysis. Data were converted into a format readable by Msstats package (Biocon-
ductor packages release 3.11) [29]. Data were processed by choosing the ‘top3’ feature subset
and normalization of the resultant information by “equalizeMedians”. SummaryMethod
was set to “TMP”, and cutoffCensored was set to “minFeature”, with no imputation of
missing information. In the acquired protein quants, all the “NA” were replaced by “0”; no
missing value imputation steps were used [30]. Non-parametric tests (Wilcoxon rank-sum
test) were performed using MetaboAnalyst (4.0) [31] to estimate significance among binary
variables. One-way ANOVA and post-hoc testing were performed using MetaboAnalyst
(4.0) [31] to determine the statistical significance among multiple (more than 2) conditions.
SWATH2Stats and SWATH-MS analysis were performed in Rstudio (Version 4.0.2).

2.7. Biomarker Analysis and Development and Evaluation of Classification and Regression Models

Statistical analysis was conducted in R. Fold change (FC) analysis compares the
absolute value of change between two group means. Fold changes were calculated with
the direction of comparison set to PCa—HC using the log-transformed data. The plotnine
library in Python was used to visualise the results. Statistical analysis was carried out
by unpaired non-parametric Mann–Whitney test, and significance was determined by
p-values. Classification analysis was conducted in Python using the scikit-learn library
(Version 1.02) [32]. A random forest (RF) model was used for feature selection from
the initial protein dataset, splitting the data in the ratio of 67:33 (training/testing using
stratification), setting ntree to 1000, maximum leaf nodes to 16, and random seed to 1.
Recursive feature elimination with cross-validation was used to select the individual
features from the training set (maximising accuracy). Classifier model construction was
performed using logistic regression. All performance metrics were calculated using the
test set only to avoid data leakage. The performance of the classification model on the
test set was depicted using a classification matrix and the AUC (area under the receiver
operating characteristic (ROC) curve of the discovery model); both were calculated with the
Yellowbrick library (Version 1.5) [33]. The data were also visualised by principal component
analysis (Python library, Yellowbrick; Version 1.5). Multivariate regression analysis against
PSA scores was also conducted in Python using the scikit-learn library. RF models were
used to assess both the initial protein data set and the reduced feature set with the same
training/testing approach and random seed as described above. Regression analyses
were assessed by measuring R2 on both the training set and the testing set and by visual
inspection of residuals plots.

2.8. Functional Annotation and Pathway Analysis

Pathway analysis using the various protein signatures was performed using ClueGO
(Version 2.5.7), a plug-in application in Cytoscape (Version 3.8.0) [34,35]. The following
databases were searched against: GO: Biological Process (08.05.2020); GO: Molecular
Functions (08.05.2020); GO: Immune System Process (08.05.2020); KEGG (08.05.2020);
Reactome: Pathways (08.05.2020); and WikiPathways (08.05.2020). Only pathways with
p-value < 0.05 and with a minimum of 3 proteins per pathway were considered. Pathway
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enrichment/depletion analysis was performed in a two-sided hypergeometric test and
using Bonferroni step-down correction. The specific proteins (from the biomarker list)
characterising each pathway/cluster were highlighted in the generated graph.

3. Results
3.1. Serum Proteome Reveals a Signature of Newly Diagnosed Prostate Cancer Patients

To identify a specific, novel proteomic signature for clinical onset in PCa patients,
we obtained serum samples from the SUN prostate cancer biobank (Table 1). From this
cohort (consisting of patients at multiple stages of PCa), we analysed 88 PCa patients for
whom serum samples were available at time of diagnosis; who had no prior history of
PCa, other cancers, or debilitating comorbidities; and for whom complete metadata were
available. These newly-diagnosed PCa patients (PCa-ND) were split into two groups on
the basis of the subsequent choice of treatment: patients put on active surveillance (PCa-AS,
n = 41) and those requiring immediate treatment at time of diagnosis (PCa-pre, n = 47).
Particular attention was paid to limiting confounding factors between the two groups
with regard to PSA levels, age, Gleason score, or tumour stages (Table 1). Healthy aged-
matched controls (HC) (n = 131) showed significant lower levels of PSA below 1 ng/mL
(0.81 ± 0.5 ng/mL versus 10.46 ± 17.94 ng/mL, p-value = <0.0001) and were devoid of
any cancer or other known comorbidities. A total of 336 proteins were identified using our
proteomic workflow (Table S1, Supplementary Material). Of these, 12 proteins were found
to discriminate between HC and PCa-ND as selected by random forest using RFECV, among
which 6 were significantly (p-value < 0.05) up-regulated in PCa-ND (THBS1, C1QA, C1QC,
CFHR2, IGHG1, and IGKV1-39); 3 in HC (SERPINA5, APOC2, and APOE); and 3 proteins
showed statistically non-significant differential values between cases and controls (ECM1,
GP5, and GP1BA; pV > 0.05). These features are shown in Figure 1a and also in Table S2,
Supplementary Material.

The ability of the biomarker signatures to differentiate between the PCa and HC groups
was visualised by principal component analysis; the 12 putative biomarkers allowed
for the distinct separation between HC and PCa, with limited overlap (Figure 1b). A
logistic regression model based on the reduced feature set described above generated
a strongly predictive signature differentiating between HC and PCa-ND (AUC = 0.93,
Figure 1c). Sensitivity for the diagnostic model derived from the test set confusion matrix
(Figure 1d) was 0.77 (95% confidence interval 0.58–0.90), specificity was = 0.93 (0.81–0.99),
and overall diagnostic accuracy was 0.86 (0.77–0.93). Analysis of the ranked importance
of each putative biomarker in the model showed thrombospondin-1 (THBS1) as the most
important biomarker.

The addition of PSA level values (as measured by ELISA) further increased the predic-
tive ability of the 12-protein signature (AUC = 1.00). This was an expected outcome in our
cohort, where PSA was highly discriminatory between cases and control (as the controls
were selected based on PSA levels below 1 ng/mL). A multivariate LASSO regression
analysis of the relationship between proteomic signature and PSA score, however, did not
find that the proteome was strongly predictive of the PSA score (test R2 of 0.145, Figure S1,
Supplementary Material).

The separation between HCs and PCa-AS and PCa-Pre was also investigated; no
meaningful separation was achieved. Isolating PCa-AS and PCa-Pre and conducting super-
vised separation by logistic regression using the same methodology as for the separation of
HCs and the overall PCVa-ND cohort showed that the proteome was not overtly different
between the two, thus yielding no separation by PCA and AUC of 0.46 (Figure 1e,f).
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important biomarker. 

The addition of PSA level values (as measured by ELISA) further increased the pre-
dictive ability of the 12-protein signature (AUC = 1.00). This was an expected outcome in 
our cohort, where PSA was highly discriminatory between cases and control (as the con-
trols were selected based on PSA levels below 1 ng/mL). A multivariate LASSO regression 
analysis of the relationship between proteomic signature and PSA score, however, did not 

Figure 1. Panel of twelve serum protein biomarkers discriminating newly diagnosed prostate cancer
patients and healthy controls. Biomarkers segregating healthy controls (HC) from newly diagnosed
prostate cancer patients (PCa-ND) (composed of individuals put on active surveillance or requiring
immediate treatment at time of diagnosis) were characterised by random forest analysis; with classifi-
cation models constructed by logistic regression. (a) Significance (−log10 (pV)) and expression fold
change (log2 (FC)) of biomarkers differentiating between HC and PCa-ND. (b) Principal component
analysis (PCA) showing the degree of separation between HC and PCa-ND. The PCA axes show the
first, second, and third most important directions in the reduced space along which the samples show
the largest variation. (c) AUC for test set only showing individual ROC curves for HC and ND-PCa
participant classification. (d) Confusion matrix for linear regression model applied to PCa versus HC
participants. (e) The degree of separation between PCa-Pre and PCa-AS. (f) AUC for test set only
showing individual ROC curves for PCa-Pre and PCa-AS participant classification.

3.2. Validation of Proteomic Biomarkers Using an External, Independent Cohort

As a validation step in our selection of potential biomarkers, we identified and used an
appropriate previously published independent dataset [21]. In this multi-cancer SWATH-
MS study, serum samples were used to identify proteomic markers in early-stage PCa
patients; these were sufficiently similar to our samples, thus enabling a comparative analy-
sis. We cross-referenced our initial list of discriminatory proteins against those identified
in Sajic et al., selecting only those identified in both studies and where the direction of
expression was the same. Given that methodologies and processing/instrumentation were
not identical, overlap between the two studies would necessarily be limited; thus, this was
a conservative approach to biomarker identification. Of the 12 proteins from the discovery
set, 5 were identified with the same direction of expression within the validation cohort:
these were GP5, SERPINA5, ECM1, IGHG1, and THBS1, with the latter again having
the most discriminatory power. The same modelling and assessment steps conducted
for the initial discovery set were repeated and resulted in similar AUC (0.91) but slightly
reduced sensitivity (0.66 with 95% confidence interval 0.46–0.82), specificity (0.84 with 95%
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confidence interval 0.70–0.93), and overall diagnostic accuracy (0.77 with 95% confidence
interval 0.65–0.86), as compared with the discovery set. These results are illustrated in
Figure 2a–c.
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Figure 2. Panel of 5 serum protein biomarkers discriminating newly diagnosed prostate cancer
patients and healthy controls. Biomarkers segregating healthy controls (HC) from newly diagnosed
prostate cancer patients (PCa-ND) (composed of individuals put on active surveillance or requiring
immediate treatment at time of diagnosis) using GP5, SERPINA5, ECM1, IGHG1, and THBS1; with
classification models constructed by logistic regression. (a) Three-component PCA illustrating sepa-
ration of Healthy Controls and ND-PCa participants. (b) AUC for test set only showing individual
ROC curves for HC and ND-PCa participant classification. (c) Confusion matrix for linear regression
model applied to PCa versus HC participants.

3.3. A Central Role for Complement and Coagulation Cascade in Newly Diagnosed Prostate Cancer

To further investigate the biological significance of the biomarker signature identified,
a functional enrichment analysis was carried out. The panel of proteins was examined
with several functional libraries, and only statistically relevant pathways with a minimum
of three common proteins were further investigated (Figure 3). A total of four functional
clusters were identified, which included the complement and coagulation cascades, reg-
ulation of blood coagulation, complement activation, and regulation of respiratory burst.
The detailed functions associated with our proteomic signature further included synapse
pruning, microglia pathogen phagocytosis pathway, and oxidative damage. The detailed
list of pathways, ontological sources, and FDR-corrected p-values is set out in Table S3,
Supplementary Material.

Of the 12 proteins within our discovery biomarker panel, 4 (THBS1, C1QA, C1QC,
and SERPINA5) were associated with several functional clusters (Figure 3), all linked to
various pathways related to the coagulation, complement, and clotting cascades, as well as
to ligand binding/uptake and to plasma lipoprotein particle remodelling.
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Figure 3. Complement and coagulation cascades characterise newly diagnosed prostate cancer
patients alongside regulation of coagulation, clotting cascade, ligand binding and uptake, and plasma
lipoprotein particle remodelling. Network representation of specific functional clusters created
using the ClueGO application within Cytoscape, derived from those proteins showing statistically
significant differences between the PCa and HC classes. Identified proteins associated to these
pathways are detailed in Table S3.

3.4. Treatment-Related Changes in the Proteomic Signature of Newly Diagnosed Prostate Cancer

We next examined whether the biomarker signature characterising PCa at time of
diagnosis was altered in patients who have undergone active treatment. To this end, we
examined the levels of the protein biomarkers in PCa patients who had undergone specific
Pca treatment, such as radical prostatectomy (n = 12) and radiotherapy (n = 13), following
diagnosis (Table 1). These treated PCa patients presented with significantly lower levels of
PSA (0.33 ± 0.62 ng/mL; 3.50 ± 4.56 ng/mL, respectively) compared with their respective
baseline pre-treatment samples (pre-prostatectomy 8.63 ± 5.54 ng/mL—pV < 0.0001; pre-
radiotherapy 11.91 ± 24.68 ng/mL—pV = 0.0003), while these levels were higher than
basal levels characterising HC (0.91 ± 0.5 ng/mL). Re-evaluation of the expression levels of
the core putative biomarkers in PCa patients following radiotherapy treatment identified
no reversion in panel proteins, and the linear regression model used to distinguish HC
and PCa-ND showed no separation capability when applied to PCa-ND versus PCa-Post
participants. No visual separation was obtained by PCA (see Figure S2, Supplementary
Material), with the model classifying both PCa-ND and PCa-Post samples as PCa-ND, i.e.,
sensitivity of 0.0 with regard to PCa-Post.

4. Discussion

The discovery of PSA and widespread usage in the 1990s enhanced the detection and
treatment of prostate cancer [36]. Additionally, PSA levels are used to stratify individuals
prior to intervention and to monitor their response to local or systemic treatment. Neverthe-
less, PSA is not specific to PCa: elevated levels of PSA can also be measured in cancer-free
individuals with either/both enlarged prostate or prostate infections. Furthermore, within
PCa, the range of PSA levels and its association with cancer severity and stage can vary
greatly between individuals. This can result in unnecessary biopsies, preventable morbidity,
and overtreatment of cancers that are not clinically significant [37].

In recent years, a number of novel biomarkers that appear to outperform PSA have
been suggested, with the potential for these to be used to better detect PCa and distinguish
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between individuals who will benefit from active treatment from those who will not, as
well as aid in the improved outcome of surgery [38,39]. These indicators hold the promise
of significantly reducing unnecessary biopsies and operations. However, it is crucial to keep
in mind that these novel biomarkers have their own limitations and that results from these
studies should be interpreted cautiously and in conjunction with current clinical data [40].
The majority of leading cancer guidelines classify these biomarkers as experimental, with
many still pending FDA approval. Among them are 4Kscore [41], MiPS [42], Stockholm-
3 [43], Intelliscore [44], MdxHealth [45], ProMark [46], Oncotype Dx [47], Decipher [48],
PSCA [49], and Proclarix [50]. Due to the undetermined performance of these biomarkers
in real-world settings, cancer guidelines do not currently encourage widespread use of
these biomarkers. Thus, more research is needed to determine their diagnostic and thera-
peutic utility [51] in heterogenous populations, and there is still a requirement for further
investigation, as undertaken in the current study. It is noteworthy that to date, none of the
above clinical tests has yet been demonstrated to improve patient survival.

In this study, SWATH-MS was used to examine the proteome profiles found in
serum samples of newly diagnosed PCa patients and their age-matched healthy controls.
A 12-protein marker profile showing very good classification performance (AUC of 0.93
and test set diagnostic accuracy of 0.86) was developed (Figure 1). This outperformed
previously published assays, such as PSA (AUC = 0.52), PSA density (AUC = 0.70), %fPSA
(AUC = 0.75), PHI—Prostate Health Index (AUC = 0.76), PHI density (AUC = 0.84), and
the 4K score (AUC = 0.81) [51]. The 12-protein signature performed better than reported
for Proclarix (THBS1, CTSD), a new-generation serum PCa marker which demonstrated
an AUC of 0.83 when used alone and 0.85 when combined with %fPSA [51]. THBS1 and
complement factor, in combination with other protein markers, were initially demonstrated
as blood biomarker for prostate cancer by Cima et al., 2011, to accurately predict 78% of
patients with aberrant or normal PTEN status with an AUC of 0.82 [52].

Reproducibility of any biomarker signature and performance is critical. The repro-
ducibility of our 12-protein signature was assessed with reference to an independent cohort,
retaining only those proteins who showed the same direction of expression in both datasets.
Given that the validation study was undertaken using different protocols and on different
instruments, the low level of overlap in identified proteins is not surprising and, so, repre-
sents a conservative and discriminatory approach to biomarker identification. Nonetheless,
the panel of five proteins still resulted in an AUC of 0.91. It should be noted that whilst
AUC is a standard metric, where classifier curves cross, AUC can be inflated; thus, test-set
diagnostic accuracy, sensitivity, and specificity are more helpful metrics. [53] The five-panel
test set diagnostic accuracy was 0.77, still retaining the large part of the diagnostic power
of the larger dataset of 12 features.

Our results further demonstrate the utility and applicability of the SWATH-MS tech-
nology as an analytical tool for biomarker discovery. Thus, when compared with healthy
controls, the five-protein signature is more tractable than previously developed assays (dis-
cussed above) in terms of discriminating localised and locally progressed illness. While PSA
was not discovered or quantified directly using SWATH-MS, we compared our 12-protein
signature’s performance with PSA levels established by ELISA in these samples. In our
discovery SUN cohort, PSA alone demonstrated an AUC of >0.9. However, in this cohort,
PSA likely has inflated performance since the cancer cases included in our cohort were
confirmed via biopsies and a significant rise in PSA, and the HC samples in this study were
chosen to have a PSA level of less than 1 ng/mL. This approach for selecting patients re-
moves the likelihood of false positives caused by PSA alone (increasing its overall estimated
accuracy). Interestingly, the relationship between PSA and the circulating protein signature
developed here was not strong (test R2 of 0.145), and whilst PSA in the post-treatment
cohort reverted towards HC levels, the protein signature did not. This is suggestive that
the protein markers identified provide an orthogonal, rather than a correlated, test to
that provided by PSA. This represents a potentially promising result given the goal of
developing a complementary test to PSA.
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Whilst reliance on PSA in clinical practice has some shortcomings, elevated PSA level
acts as a potent factor to separate patients who need immediate treatment from patients
who remain on “watchful wait” [54]. Our panel of biomarkers was not able to demon-
strate a significant difference in expression between patients who were put under active
surveillance and those who were to undergo other active treatments (Figure 1), although
interestingly, neither did PSA in this cohort. Nevertheless, we are now in a position to
consider the use of these markers for early detection of PCa using prospective cohorts.

The critical role of the innate and adaptive immune system in the control and surveil-
lance of cancer has long been understood, where the complement system is the key inter-
player between the two [55]. Complement activation is controlled by binding of C1q to
the antigen–antibody complex, which subsequently causes the pathway to progress [56].
This results in the production of C3a and C5a, which are powerful chemo-attractants for
macrophages and lymphocytes to modulate tissue damage through production of growth
factors, cytokines, and radical oxygen species [57–59]. Cancer cells, though recognised by
the complement system, guard themselves from complement-mediated lysis by undergo-
ing some structural modification [60]. This, along with supply of complement regulatory
proteins, facilitates the cancer growth [61]. CFHR family proteins also play a vital role in
inactivation and degradation of complement complexes [62]. There is mounting evidence
indicating the upregulation of complement cascade components in the tumour microen-
vironment and its linkage to tumour growth and metastasis [63,64]. This is in agreement
with our own results, where upregulation of C1QA, C1QC, and CFHR2 in newly diagnosed
PCa patients is suggestive of the involvement of tumour inflammatory microenvironment,
which may act as a mediator of tumour progression and angiogenesis (Figure 3).

The tumour microenvironment itself offers support for tumour survival [65]. As
mentioned, among the immune cells recruited to the site of tumour are tumour-associated
macrophages (TAM), which are reported at all stages of cancer development and assist in
neuroendocrine (NE) differentiation, a hallmark of PCa [66]. Clinical observations have
also advised that NE differentiation of PCa correlates with disease development and poor
prognosis [67]. Our functional enrichment analysis demonstrated the involvement of highly
expressed PCa-ND markers in complement and coagulation cascade, macrophage differenti-
ation, microglia pathogen pathogenesis, and synapse pruning. This was contributed mainly
by member of the C1q family, CFHRs family, and PF4. Secretion of platelet chemokine PF4
from activated platelets in atherosclerosis models promotes further macrophage differen-
tiation [68]. Recently, its distinctiveness as an angiogenic marker in castration-resistant
PCa patients has also been demonstrated [69,70]. While the central role of macrophages in
PCa progression and its likelihood to metastasize to bone is known [71], their association
with the neuroendocrine nature of PCa is important as macrophages (and more specif-
ically microglial cells) are responsible in the promotion and modelling of neurogenesis
and axogenesis. This signature importantly captures an interplay among the tumour mi-
croenvironment, development of nerve fibres, and macrophage functions, which has been
shown to be critical for the activation of angiogenesis and promotion of tumorigenesis of
PCa [72,73]. It helps in monitoring disease advancement and provides a therapeutic target
to diminish the associated complications.

This study has further identified an increase in the expression of THBS1 (Figure 1a).
Though THBS1 is recognised as an anti-angiogenic molecule, its role in angiogenesis media-
tion by stimulating endothelial migration is also well established [74]. Its upregulation has
been reported in various cancer types, including prostate and gastric carcinoma [21,73,74],
and it was also reported to upregulate MMP9 in breast cancer cells [75]. This is in agreement
with our findings, where increased expression of MMP9 in PCa patients with elevated
THBS1 and PSA is evident (Figure 1b). In PCa cell lines, LNCaP transfected with MDM2
showed high expression of THBS1 and MMP9, therefore suggesting MDM2 as an upstream
regulator of THBS1 and MMP9 expression that tilts the balance towards pro-angiogenic
mechanisms [76].
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SERPINA5 is an important component of the SERPIN family known as a putative
tumour suppressor gene [77]. It inhibits the activation of PSA and kallikrein, and it
boosts sperm motility and fertilization in many studies [78]. The decreased expression of
SERPINA5 seen in our discovery cohort and elevated PSA levels in newly diagnosed PCa
patients compared with healthy individuals fits well with current research. This may also
explain reduced fertility in these patients [79]. Further, expression of SERPINA5 was not
reverted to normal levels following surgery and exposure to radiation. Similarly, a decrease
in expression of SERPINA6, another member of the SERPIN family, was found in newly
diagnosed PCa patients compared with baseline healthy individuals, and interestingly, it
remained decreased in post-treatment individuals compared with healthy individuals. Its
relationship in the development of PCa has yet to be established.

We would highlight limitations in this work. Putative or candidate biomarkers were
validated in a second independent cohort. Nonetheless, a larger-scale, targeted, and fully
quantitative analysis would be required for definitive validation, alongside biomarker ana-
lytical validation against standards for definitive identifications. A larger study would also
have the potential to investigate a biomarker panel’s specificity with regard to comorbidities,
such as benign prostatic hyperplasia or indeed other diseases, and whether other pathways
or markers (such as those associated with autophagy [80]) might be more specific to PCa.
Furthermore, the selection of participants with pre-specified PSA levels may have provided
a less challenging cohort than a random selection. Notwithstanding these limitations,
data-independent acquisition proteomics has the potential to become a clinical tool with
decreased run times and increased throughput becoming available [81], with the ultimate
goal of providing early screening via multi-measurement assays. Alternatively, selected
reaction monitoring (SRM) mass spectrometry or affinity-based (immunoassay) approaches
can take this work forward. We will be developing an SRM-based approach compatible
with usage in clinical biochemistry laboratories, thus improving sample throughput, preci-
sion, and intra-lab applications, while reducing run time and cost. In this respect, moving
to other protein assay platforms, such as immunoassays, may not be required. This has the
benefit of moving to a more specific detection platform with a wider dynamic range, as
offered by mass spectrometry.

5. Conclusions

Our study describes the novel use of the SWATH-MS analytical platform, which pro-
vides an in-depth, hypothesis-free analysis of the proteome in prostate cancer patients. This
has enabled the measurement of proteomics, coupled with optimised data analysis tools,
to identify proteomic signatures in the serum of newly diagnosed PCa patients. We have
demonstrated and validated a core panel of five protein biomarkers that differentiates be-
tween newly diagnosed PCa and healthy controls, highlighting the utility of such biomarker
signatures and potentially complementing PSA as a diagnostic tool. Earlier and specific
diagnosis would enable improved surveillance and individually tailored treatment options,
thereby reducing morbidity associated with radical treatment. Whilst further validation
work is required, this work demonstrates the potential for these putative biomarkers for
PCa to deliver positive health impacts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15041051/s1. Table S1: Matrix of 336 proteins identified
across all study samples PCa-AS, PCa-Pre (combined as PCa-ND) and HC across SUN discovery
cohort. All proteins quants are shown as log2(protein Intensity), and “NA” are replaced by “0” to
render the data useable by statistical packages for downstream analysis. Here, the protein IDs are
represented by their gene names. Table S2: List of 336 proteins analysed as HC versus PCa-ND
conditions along with their p-values (pV), adjusted p-values (FDR-corrected) determined by non-
parametric tests (Wilcoxon rank-sum test), and fold change (FC), using MetaboAnalyst software (4.0)
to estimate significance among binary variables. Table S3: Pathway analysis using protein biomarkers
segregating healthy controls (HC) from newly diagnosed prostate cancer patients (PCa-ND), active
surveillance (PCa-AS), and patients requiring immediate treatment at diagnosis (PCa-pre). Only
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functions or pathways with at least two protein biomarkers and statistically significant (p-value < 0.05)
are shown. p-values are shown as −log10 (pV). Figure S1: Residuals plot and R2 values from LASSO
regression model predicting PSA values from biomarker panel for HC versus PCa-ND participants.
Figure S2: Three-component PCA illustrating separation of PCa-Post and PCa-ND participants.
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