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Abstract

In this paper we fill a gap in the literature by providing exact and explicit expressions
for the correlation of general Hawkes processes together with its intensity process. Our
methodology relies on the Poisson imbedding representation and on recent findings on
Malliavin calculus and pseudo-chaotic representation for counting processes.
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1 Introduction

Hawkes processes have been introduced in [11] to describe seismological phenomena with clus-
tering features like earthquakes. Indeed, these point processes have the peculiarity to model
excitation effects: past jumps impact the point process’ intensity through an excitation kernel
and thus trigger (or inhibit if the kernel is negative) future jumps. This implies correlations
between successive jump events. Since their first historical application in seismology, Hawkes
processes have been widely used in many different fields, among which finance and insurance,
neurosciences, or social network modeling. Hawkes process are used for instance in neuro-
sciences to model the interactions between the neurons within their sequences of spikes (see
e.g. [15]), to model retweet cascades in social media (see e.g. [19]), to model the arrival
of defaults in credit risk (see e.g. [8]), or the arrival of sell/buy orders in limit order book
for high-frequency finance (see e.g. [2]); they can also be relevant to model the frequency
component in insurance loss portfolios (see e.g. [14] for cyber-risk).

Mathematically, given a parameter ;1 > 0 and a mapping (often called the excitation kernel)
® : Ry — R, a Hawkes process with parameter (u, ®) denotes a counting process (Hy)i>0
whose stochastic intensity (M):> satisfies a Volterra type integral equation :

A= +/ O(t— s)dH,, t>0. (1.1)
(0.0
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Under the classical assumption ||®]|; < 1 it has been proved in [11, 10| that this Volterra
equation is well-posed. More precisely, H becomes a stationary process by replacing Relation
(1.1) by

)\t:u+/ ®(t — s)dH,, t>0.
(7oovt)

This stationary feature is indeed interesting by itself but also allows one to characterize
uniquely the Hawkes process within the class of stationary processes through its so-called
first and second-order statistics (see [11, 3]) that is the expression of E[A\{] = E[\g] and of
Cov(dHs,dH;) which in the stationary case only depends on the difference ¢ — s. Charac-
terization here has to be understood by the fact that the kernel ® is the unique solution
to the Volterra integral equation describing the measure Cov(dHs, dH;) (see [3| for a precise
statement). However, even in this stationary case, this knowledge is not sufficient to derive
general expressions for mixed correlations like E[AsH;]. In addition, for some applications,
considering the process starting at —oo is not always relevant: this calls for studying Hawkes
processes with intensity functions given by Relation (1.1), for which stationarity is indeed lost.
Another line of research to obtain quantitative information on the distribution of a Hawkes
process consists in benefiting from the immigration-birth representation of a Hawkes process
as obtained in [12]. More specifically Laplace transform of marginals H; can be proved to sat-
isfy once again an integral Volterra equation. This allows one to derive moments of marginals
H,; and to give an analytic expression for the probabilities P[H; = k|. This result has been
extended to related processes such as compound Hawkes processes like for example in |9, 8, 7].
These relations are valid in the non-stationary framework that is with an intensity process
of the form (1.1) but they do not provide similar information on the intensity process A and
on mixed correlations for (Hg, \;) with possible different marginal times s and ¢. We finally
mention that specific information on the law of H and A like moments can be obtained in the
particular cases of exponential and Erlang kernel (and of linear combinations of them). In a
nutshell, these kernels write down as ®(u) := au™e " for parameters a, 3,n to be chosen
appropriately. The specific feature of these kernels lies in the fact that they share a Marko-
vian structure for which the so-called Dynkin formula can be used. In this line of research we
mention [8, 5, 6, 18] to cite a few.

In this paper, we fill this gap by providing in Theorem 2.4 explicit expressions of quanti-
ties E[HsH;|, E[A\sH¢] and E[A;\;] for a general Hawkes process with general kernel ®. Our
approach relies on recent findings on Malliavin calculus and pseudo-chaotic representation
for counting process obtained in [14, 13]. As a by-product our methodology could apply to
more general counting processes in the line of Theorem 5.4. In particular we focus here on
one-dimensional Hawkes processes and leave the extension to the multi-dimensional case for
future research.

We proceed as follows. Our main result Theorem 2.4 is stated in Section 2. We present
in Section 3 the elements of Malliavin calculus for counting process that will be applied to the
specific case of Hawkes processes in Section 4. Finally the proof of Theorem 2.4 is given in
Section 5.



2 Main result

Through this paper ® denotes a map ® : Ry — R,..
Assumption 2.1. The mapping ® : R, — R, belongs to L' (R, ; dt) with

1B]]x ;:/ B(t)dt < 1.
R+

Definition 2.2 (Hawkes process, [11]). Let (Q,F,P,F := (F;)i>0) be a filtered probability
space, 1t > 0 and ® : Ry — Ry satisfying Assumption 2.1. A Hawkes process H := (Hi)t>0
with parameters p and @ is a counting process such that

(i) Hy=0, P-a.s.,

(ii) its (F-predictable) intensity process is given by
At ::u+/ O(t —s)dHs, t>0, (2.1)
(0,t)

that is for any 0 < s <t and A € F,

7t]

E[14(H, — H,)] =E [/( 1A>\Tdr] .

By definition a Hawkes process exhibits a convolution structure related to Volterra integral
equations as we will make precise in Section 4. Similarly to Volterra ODEs, our expressions of
correlations only involve the mapping ¥ below which is the infinite sum of iterated convolutions
of the excitation kernel ®.

Proposition 2.3 (See e.g. [1]). Assume ® enjoys Assumption 2.1. Let the sequence of iterated
convolutions of ® :

t
O =P, D,(t) := / O(t — s)P,—1(s)ds, teRy, neN. (2.2)
0

For everyn > 1, ||®,|1 = ||®||} and the mapping

“+o0o
Vi=) " ®, (2.3)
n=1

is well-defined as a limit in L1(Ry;dt) and ||V, = 1!(‘?('1')1“1.

We now state our main result.

Theorem 2.4. Let (Hy)i>0 be a Hawkes process (with intensity X satisfying (2.1)) with pa-
rameters p > 0 and ® : Ry — Ry satisfying Assumption 2.1.

For any t > 0, it holds that

E[H] =p [y (1+ [ O(r)dr) du

E[\] = u (1 + \Il(r)dr> .

For any s,t with 0 < s <,



(i) The covariance of the Hawkes process H is given by

Cou(H,, H;) = E [H,H,] — E [H,] E [H,]

- M/OS (1+/0U\I/(w)dw> <1+/US\I/(y—v)dy> <1+/:\I/(y—v)dy> dv.

(i) The covariance of the Hawkes’ intensity X\ is given by

Cov(As, At) = E[Ash] —E [N E[N]

_ /OS\II(S—U)\II(t—v) <1+/0v\11(v—w)dw> du.

(i1i) The mized correlation between the Hawkes process and its intensity is given by

Cov(rg, Hy) = E[N\H,;] — E[\JE[H]]

=[5 (s—v) (14 [; ¥(w)dw) (1 + fj U(y — v)dy) dv,

Cov(Hy, \) = E[HN] — E[H,|E[\]

=[Pt —v) (14 [) ¥(w)dw) (1+ [ ¥(y —v)dy) dv.

(2.5)

(2.6)

(2.7)

The proof of Theorem 2.4 is presented in Section 5.2 and follows from Theorem 5.4 in Section

5.1

Remark 2.5. In particular we recover the expression of E[(H;)?] from [9] as

] = ([ wi(oyas)

where using notations of [9], ,ufot U, (s)ds = E[H;] and

2 t
+M/ W (u)du,
0

2

M/Ot ‘l’z(u)duzu/ot <1+/0v\1’(w)dw> <1+/®t\11(y—v)dy) dv.

3 Elements of Malliavin calculus on the Poisson space

We set N* := N\ {0} the set of positive integers. We make use of the convention :

Convention 3.1. For a,b € Z with a > b, and for any map p: Z — R,

b b
[Io6) =1 3 p(@):=0.

We set
X::R-i‘ XR-‘F = {CL‘: (tve)a t€R+a CCER+};

(3.1)

Throughout this paper the notation (t,6) will refer to the first and second coordinate of an

element in X.



Notation 3.2. Let k € N* and (1, ...,7%) = ((t1,61), ..., (ts, 0x)) in X¥. We set (T(1ys -5 Ty
the ordered in the t-component of (z1,...,7;) with 0 < £y < -+ < t(), and write

z(i) = (t0), 0i))-
We simply write dz := dtdf for the Lebesgue measure on X. We also set B(X) the set of
Borelian of X.

Our approach lies on the so-called Poisson imbedding representation allowing one to rep-
resent a counting process with respect to a baseline random Poisson measure on X. Most of
the elements presented in this section are taken from [17, 16].

We define 2 the space of configurations on X as

n
Q= {w:Z(sxi, xi = (t;,0;,) €X,i=1,...,n, 0=ty <t; < -+ <ty 0; € Ry, nGNU{—I—oo}}.
i=1
Each path of a counting process is represented as an element w in 2 which is a N-valued
o-finite measure on X = ]Ri. Let F be the o-field associated to the vague topology on 2. Let
P the Poisson measure on 2 under which the canonical process N on € is a Poisson process
with intensity one that is :

(N(@))([0,2] x [0,5]) (@) := w([0,2] x [0,8]), ¢>0, be Ry,

is an homogeneous Poisson process with intensity one (N([0,¢] x [0,b]) is a Poisson random
variable with intensity bt for any (,b) € X). We set FV := (F}¥);>¢ the natural history of NV,
that is F}¥ := o{N(T x B), T C B([0,t]), B € B(R4)}. The expectation with respect to P
is denoted by E[]. We also set FL := lim;_, 4 o0 F7.

In order to introduce our add-points operators and the pathwise derivative we introduce some
elements of stochastic analysis on the Poisson space. We set :

Lo°(Q) := {F:Q =R, FN measurable} ,
L*(Q) == {F € L°(Q), E[|F*] < +o0}.
Let for j € N*

LA(XI) = {f X7 - R, / \f(x1, - 2))Pdey - doj < +oo}. (3.2)
XJ

Definition 3.3 (Symmetrization). Let j € N*.

e For fin L?(X/), we define f the symmetrization of f that is the map f : X/ — R defined
as

1
flxy, -, zj) = i > @) Tog)): (3.3)

UESj

where S; denotes the set of all bijections from {1,---,j} to itself.
e A mapping f in L2(X7) is said symmetric if f = f and we set
L2X)):={fe L*(X7) and f is symmetric } (3.4)
the set of symmetric square integrable functions f on X7.

The main ingredient in this paper is the add-points operators on the Poisson space ().



Definition 3.4. [Add-points operators]

(i) For k in N*, and any subset of X of cardinal k& denoted {x;, i € {1,...,k}} C X, we set
the measurable mapping :

+.,k

($1,4..,$k) : —> Q

k
w — W"‘Z‘Smi?
i=1

with the convention that given a representation of w as w =Y ;" | d,, (for some n € N*,
yi € X), w+ Zle Sz, is understood as follows' :

k

n k
w + Z 5331, = Z 63/2' + Z (512.1{“7&%}. (3.5)
i=1 =1

i=1

(ii) When k =1 we simply write ¢/}, := et

In this paper we will also make use of a purely deterministic pathwise operator.

Definition 3.5. Let n € N*, and (z1,- -+ ,2,) € X" with t; < --- < t,. Weset for F € L}(Q),

?xl,---,wn)F = Z (_1)n7|J|F(wJ)7

JC{z1, xn}

where if J = {y1,.. ., Uk} Tfyr,p) = Zle 0y, € Q.

In particular, even though F' is a random variable, D?

P )F is a real number as each term
k) s n

F(wy) is the evaluation of F' at the outcome .

The decompositions we are going to deal with take the form of iterated stochastic integrals
whose definition is made precise in this section.

Notation 3.6. For j € N*, we define the two following sets

A] = {(I‘l,...,ZL‘j)EXj, xi#l‘k’a Vl#ke{l,,]}},
A(]) = {(xl,...,xj):((t1,91),...,(tj,9j))GXJ, t1<"'<ti<ti+1<"'<tj}.
'Note that given fixed atoms (z1,...,2,), as P is the Poisson measure on 2, with P-probability one, marks

x; do not belong to the representation of w.



Definition 3.7. Let j € N*.

e For f; an element of L?(X7) (not necessarily symmetric) we set Z;(f;) the jth iterated
integral of f; against the Poisson measure defined as :

Zi(f5) = /A filay, .. )N (dwy) - - - N(d)
i
where each of the integrals above is well-defined pathwise for P-a.e. w € {2 and where
we recall the notation x; = (¢;,0;) and dx; = dt; db;.

e For f; in L%(X/) (that is a symmetric function according to Definition 3.3), the jth
iterated integral above can be written as

= / fi(z1,...,z;)N(dz1)N(dx;)

// o pn )N - N ()

[0,t5— 1)><R+ [0,t2) xR

Zj!// / fi((t1,6h), ..., (t;,0;))N(dtr,dbh) - - - N(dt;,db;). (3.6)
X [07t]'_1)><R+ [0,t2)XR+

e By definition of the symmetrization (see once again Definition 3.3), for any f; element
of L?(X7) (not necessarily symmetric),

Z;(f;) = Z;(f;)-
Remark 3.8. Note that our definition coincides with the notion of factorial measures as
presented in [16].
We recall the pseudo-chaotic expansion as introduced in [13].

Theorem 3.9 (Pseudo-chaotic expansion). Let F in L2(Q). F is said to admit a pseudo-
chaotic expansion if there exists a sequence (c f)J>1 with c € L3(X7) (see Notation (3.4))
such that :

1
F: ;IJ( f)

1M

According to [13, Theorems 3.13 and 3.15] if such decomposition exists it is unique.

We finally recall the following lemma which is a simple consequence of Mecke’s formula with
our notations (we refer to e.g. Relation (11) in [16]).

Proposition 3.10. Let j € N*, ¢; € L2(X/) and F € L*(Q2). Then

E[F Z;(c;)] = / E [F o gaf%)} cj(z1,...,z;)dw - - daj. (3.7)
XJ

In particular taking ' = 1 we have that
E[Ij(Cj)] = /.Cj(l‘l,...,xj)dﬂ’jl"'dl‘j. (38)
Xi

7



4 Pseudo-chaotic expansion for the Hawkes process

Our approach relies on a specific representation of the Hawkes process with respect to the
enlarged Poisson noise N, see e.g. [14, Corollary 2.7| known under the name of Poisson
imbedding [4].

Proposition 4.1. Let ® as in Assumption 2.1 and p > 0. The SDE below admits a unique
solution (A\¢)e>0 -

)\t = H +/ (I)(t — 8)1{9</\S}N(d8, d@), t> 0; (41)
(0 t)XR+ -

and a Hawkes process H with intensity A (characterized by the parameters (u,®)) can be
represented as

H, = / 1{9<)\5}N(d8,d9), t>0. (4.2)
(0,¢] xR+ N

In order to perform our computations for both H and A we collect them in a unique notation.

Notation 4.2. Given ( = ® or ( =1 we set :
x¢ ::/ C(t — $)1igery N(ds, dB), t> 0,
(O t)XR+
At —p, i Q(u) = @(w)

Ht-; lf C(U) =

so that XtC =

Elements on Volterra integral equations

For f,g in L'(R;dt) we define the convolution of f and g by

(f % g)(t /ft—u t>0.

This allows one to solve a linear Volterra integral equation as follows.

Lemma 4.3 (See Lemma 5 in [1]). For g locally bounded, the unique solution fg to the
equation:

o0 =ol0) + [ 0= ), 120,
s given by .
fi0 =0+ [ W= 9g(s)ds. t>0.
We also recall |13, Lemma 5.4|.
Lemma 4.4. Let f in L1(Ry;dt). For any n € N with n > 3, and for any 0 < s <'t,

/S/Suén_ﬂu—?“)f( )drdu—/ / / /v2 - v; — vi1) f(v1)dvy - - - dvy. (4.3)

In particular taking f =1,

n—1

u u Un—1 V2
/ O, 1 (u—r)dr = / / . / D(u—vp—1) H O(v;—vi—1)dvy - - -dvp—1,  for a.a. u € Ry.
S S S S

=2



Proof. As mentioned, Relation (4.3) is given in [13, Lemma 5.4]. Set M and P the Borelian

measures on R,
t u
= / / ®,,_1(u — r)drdu;
S S

:/:/:” /Svnl---/swfl;b(vi—vi1)f(vl)dvl-~-dvn

Relation (4.3) entails that M = P leading to the equality in L'(R,) of their densities with
respect to the Lebesgue measure. O

Pseudo-chaotic expansion of the Hawkes process

We follow [13] to obtain the so-called pseudo-chaotic expansion for the Hawkes process. It
relies on the iterated integrals Z,, and on the pathwise derivative operators D" respectively
introduced in Definitions 3.7 and 3.5.

Proposition 4.5. Let ( = ® or ( = 1 and recall Notation 4.2. Lett > 0. Then th admits
the pseudo-chaotic expansion below

+oo 1
Xp=> —In(c5)
n=1
with for all (z1,--- ,x,) € ([0,¢] x Ry)™

Xy =((t—ta)D} !

Gt —
e (@1 Zn) = ey 1) O e}

n
D(I(l)v 7'I(n))

Proof. This follows from [13] which gives the pseudo-chaotic expansion of any random linear
functional of N restricted to a bounded domain (say [0, 7] x [0, M], T, M > 0) of R?; with a
focus on random variables of the form F = H; where H is a counting process with bounded
intensity (we refer the reader to [13] for a complete exposition). Even though the intensity of
a Hawkes process is unbounded, it is proved in [13] that marginals of Hawkes processes admit
a pseudo-chaotic expansion. Mimicking this proof we get that c4 t D”Xf.

Let (z1,--- ,2n) € ([0,¢] x Ry)™ with t; < -+ < t,. Let J C {1,--- ,n}. We have

Xi()0,) = (/(0 . ((t — s)1gp<n,y N(ds, df ) <Z 5“)

keJ keJ

= > (- )L g, <, (5,0 62,0}

keJ

B ZC 1{9k<>"k(zgeJm{1 -1} Oz )}
keJ

as A is a predictable process. Hence using the notation {1,--- &k — 1} :=( for k =1,

Dy Xt

(z1,eeyTn)

= Z (1)1l (/(Ot] . C(t = s)1ip<r 1 N(ds d@) <Z5m>

JC{1,n} keJ



_ _1\7—|J] —
= Z ( 1) Z<<t tk)1{9k§)\tk(2jeJm{1,m,k—l}61]')}

JcA{1,--- ,n} keJ

n—1

_ _Nn=Wlgg —
_Z Z ( 1) C(t tk)l{ekfktk(6wk+2jeJm{17...,kfl}5wj)}

k=1JC{1, ,n};keJ

n—|J
+ Z (_1) | lC(t B tk)l{QnSAtn (5zn+2jejn{1,...,n—1} 51]-)} o 1{‘]:@} x 0
JcA{1,- ,n}ned

n—1
_ _ _1yn—1=lJ|
B Ot = t) Z (=1) l{gkg)‘tk(ézk+zieJﬁ{l,m,k—l} 6z;)}
k=1 JC{177k717k+17’n}
_ _1\n—1—|J|
+ C(t tn) Z ( 1) 1{0n§>‘tn(6zn+zl’g‘]m{1,m 1) 611)}

Jc{1, n—1}

On the one hand, for k € {1,--- ,n — 1},

_1\yn—1—|J]
Z (—1) 1{9kS>\tk(5zk+Ziem{1,---,k—l}5%)}
JC{177k_1’k+1”n}
B N n—1—|J|
_ Z Z (-1) 1{9k§/\tk(Zi€U5Ii)}
U=O0U{kEUC{L, - k=1} JC{L k—Lk+1, n}UCS
- \n—1—|0]| _ U=
- Z l{gkg)\tk(zieUazi)}( 1 Z -
U=0Ugk}T {1, h—1) JC{L o k=Ll n} 0

=0,

as [k < n — 1] implies that #{J c {1,--- ,k—1L,k+1,---,n};U C J} > 1 and thus by
Newton’s Binomial formula ~
Z (=DIVI=IIT = .

Jc{1, k=1,k+1,- n};UCJ

On the other hand

n—1—|J n—1 .
C(titn) Z (71) | |1{9"§>‘i7L(ZiEJﬁ{1,m,nfl} 5901)} - C(titn)D(mlv”'7$n*1)1{eng>\t”}’

Jc{1,- n—1}
which concludes the proof. O
Proposition 4.6. Let ( = ® or ( = 1 and recall Notation 4.2. Lett > 0, n € N* and
(1, ,xpn) € X" with 0 < t; < ...<t, <t. We have that :
n
/ .. ./C%’t(xl, s ,xn)dal A d9n = NC(t — tn) H (I)(ti — ti—l)'

i i=2

Proof. Note first that as D*; = 0, we proved in the proof of Proposition 4.5 that :
-1
?xl,..l,mn))‘s = (I)(S - tn)D?$1’...’mnil)l{OnS)\tn}; Vs > ty.

We have that :

/ c%’t(asl, ceexp)dl, = C(t—ty) DZ;I 21 10, <2, 1400
R, Ry

10



)}d0

]EJ

= ((t—tn) /R > 0TV s

+ JC{I» »nil}

_ B _1\yn—1—|J]|
ot 2. D AR

C et Y oy, (T,

Jc{1, ,n—1} jeJ
= ((t—ta)Dpt L A
Ct—t)p, ifn=
- {((t — )8t — ta- DR L L, 3 022
Ct—t)p, ifn=1
B {g(t — t)B(tn — tao1)eS (21, Tpt),  ifn > 2.
The result follows by induction. O

Remark 4.7. By Relation (3.8) we immediately get that

E[x¢] = va/n (21, an)day ...z

n>1

which will allow us to recover the well-known expressions of E[H;] and of E[\] (see the proof
of Theorem 5.4).

5 Proof of Theorem 2.4

The proof relies on several results.

5.1 Preliminary results

The lemma below is a key observation on the support of the coefficients cC *

Lemma 5.1. Let { = ® or { =1 and recall Notation 4.2. Fixt > 0, letn € N*, (x1,...,2,) €
Ay N ((0,¢] x Ry )™ It holds that :

7t — 7t
C% (xl,...,a:n) = C% ({L‘l, 1{91<N}H1{9 <N+ZZ l(b(tz—tj)}.

Proof. By definition

GHlana) =Ct—ta) D )T Vg ey

JC{wr, 1}

Hence

,t
cg (x1,.. )1{6n>u+2" 1<I>tn—1tj)}

11



Let ke {1,---,n—1}.
,t
C% (1‘1, ey xn)C(t - tn)1{9k>ﬂ+25:1 @(tk—tj)}

A+ _1\n—1-lJ|
=((t tn)1{0k>u+2§:1¢(tk—tj)} Z (=1) 1{9ngxtn(2j615j)}

JC{z1, - wn-1}

n—1-—|J
:C(t_tn)1{9k>u+2§:1 D(tr—t))} Z (=1) - ll{eng)‘tn(zjeﬂj)}
Jc{ml,m,mn,l};IkEJ
n—1—|J
O tn) g s ist a1} > ()" Vg a0}

JC{Il,--- ,xn_l};xkgéj

_ _ _1\n—2—|J|
= Cl=ta) g oy at) > (=1) L0 G+ 50 )}

JC{CEZV" s3Th—1,Tk41,""" 7xn—1}

n—1—|J
+¢(t - tn)1{9k>ﬂ+2§:1 D(tr—t;)} { Z }(_1) | ‘1{0"9‘% (Xjes 8}
JHz2, w1

=0,
as A, (59% + ZjeJ 5j)1{9k>u+2§:1 @(tk—tj)} = )‘tn(ZjeJ 5j)1{9k>u+2§:1 @(tk—tj)}' O

Based on the previous observation, the expectation of the perturbed intensity only depends
on the time-components of the marks z; provided the #; parameters belong to the support
described above. This constitutes a sort of decoupling of the ¢; and 6; components.

Proposition 5.2. Fizt >0, (71,...,7,) € A(,) such that

n
Lo<m || Hocmrsiy oty =
=2

.....

t n
Then E [)\t o 5?;’? M)} =/ (1 —l—/o U(t— s)d5> + Z; Ut —t) 11, 100) (1), t2=0.
=

Proof. Let t > 0 and (x1,...,2,) € A, such that 15, <, [Tits 1{9¢§M+Z§;ﬁ Dltimt))} = 1.
We have that

tn tAt] +n
E [)\t ° S(m’hn_’xn)} = [M +E [/0 Ot —s)As 0 5(96’17_._7%)ds”

n—1 tAt; 11 n
+ Z 1{t2ti}1{9i§)\ti} I:(I)(t — ti) + K I:/; CI)(t — S))\S o 6(:13’1’...7$n)d8:|:|
=1 i

t
/ Ot —s)As0 E(Zﬁ...,mn)d‘S” .

tn—1

T e, o<, ) [‘1’(15 —tn1) +E
Fix i. By assumption H;:1 1{‘%_9&2{;; Btp—ty)} = 1, hence by definition of \;, we have that

- : 4 .
My = o+ >7_1 Pty — t;) leading to 1{9i§)\ti} IT=: 1{9j§#+2i;11 Dlta—ty)} = 1. Coming back
to our computation,

tAty

12



tAt; 11 o
+Zl{t>t} [ (t—t;)+ / O(t — s)E [/\ SOEL, ,wn)dSH
t;

t
+ 1> [(I)(t —tp—1) + / O(t—s)E [)\8 o E?;’:“.@n)ds]]

tn—1
t1yeee ot ' +,
— et _ n
=p (t) +/O Ot — s)E [)\ oe 733n)i| ds,

where

n
Mtlv"' itn (t) = ,LL —|— Z l{tztz}(b(t - tl)
=1

We recognize the ODE in Lemma 4.3 whose unique solution is, for ¢ > 0

t t n
ptt ot (1) 4 /0 U(t — s)p't "t (s)ds = p <1 + /0 U(t— s)ds) + Z Ut — )Lt ,400)} ()

j=1
O
The previous formula propagates to the process X¢ as follows.
Proposition 5.3. Let ( = ® or ( =1 and recall Notation 4.2.
Let (z1,...,75) € Ay such that 15, <,y 1—[2 1{9i§M+Z§;11 (-t} = 1.
1=

Let t > 0 such that t1 < --- < t, <t. It holds that

t n
E|Xfoell o) = /O <<t—u)so“’“*t%u)dwZ;c(t—ti)

with @'t ) :=u<”/ W(u—v)d@)+Z\If<u—tj>1{[tjy+oo>}<u>, u>0. (5.1)
0

j=1
Proof. We have

C +7n
Xpoe

(214eeesn)

¢
Xt/\(tlf) + 1{91§u}1{91§)‘t1}1{t2t1} [C(t - tl) " /(tl t]xR4 C(t {9<)\sos(11 zn)} ds de ]

,,,,,

¢
Xinr—y T L=y [C(t —t1) + /( R ¢t - {9<A305(I1 ’’’’’ In)} (ds d@]
+ 1{t2t2}l{elgu}l{ezgu—i_@(b_tl)}1{02§)‘t205;1} [C(t - t2) i /(tz,t]XR+ C(t {9<)\SO€(I1 ,,,,, In)} ds da ]

¢
Xinr—y T Lzt [C(t—tl) +/(t ¢t - {Msoe(zl )} (ds d@]

1 ,t/\tz) xRy

13



+ l{tth}1{91SM}1{92§M+<I>(t2—t1)}1{92§)\t205;rl} [C(t - t2) + /(t IR C(t - 8)1{99\505 )} dS d¢9 ]
2, + (T1,.ees Ty

where 1{91§u}1{92Su+‘1>(t2—t1)}1{92§/\t205;1} = 1 following the same lines as in the previous
proof. Hence by induction we derive that

¢ oot - X°¢
Xtog(x:..‘,:vn) Xt/\(tl)

+31 Ct—t; / Ct— N(ds,do)
Z {t>t}[ ) (ti,tAti+1)XR+ ( {9<>\S (961 ﬂcn)} ]

AAAAA

+ 1>,y [((t—tn) +/(t ¢t — {9<)\ et zn)} N(ds d9]

nst] XR4

Taking the expectation we get that :

¢ L+ ¢
E|Xyoeq, . ac)} ]E[Xt/\(tl )]

+ Z 1{t2t2} [C(t - tl) + /(t, AL C(t - S)E |:)\S © 8?;3“'7&:")} dS]
i=1 (2l z+1)

+ >0 [C(t—tn) +/t

(tn] (@152n)

C(t=9)E Mol )] ds]
tAt] +n

N /0 (t—s)E P\ ©Car, e n)} ds

+Zl{t>t}[ (t=t)+ /@

S T [C(t—tn)+/(t S E Aol ] ds].

(6= 9E ot Jds
i tAti41) ( ) [ (CI n)}

Since we assume t > t,,

E Xcogzz ,arn) /Ct—s )\ os( gcn)}ds—kzg“t—t

The conclusion follows by Proposition 5.2. O

Theorem 5.4. Let ( = ® or ( =1 (recall Notation 4.2).

(i) Fors>0
s —i—,ufO fo r)drdu, if ( =1,

wfy Y(u)du, if ¢ = .
(ii) Let s <t. We have

E [X;I’XE] —E[X?]E [Xﬂ + u/os C(t — v)T(s — ) <1 + /0 \I’(w)dw) dv

14



+M/ / Clt— )W (u — v)B(s — v) (1+/0v\11(v—w)dw> dvdu. (5.2)
<1 + /O u‘P(w)dw) du
/v Ty - v)dy) dvdu.

(5.3)

E[Xlef] ~E[X!1]E Xf —l—u/sé“(t—u) <1+/us\lf(y—u)dy)
n

+u// C(t —u)¥ u—v)(l—l—/ovlll(w)dw) (1

Proof. Through this proof we adopt the notations that
b
/ Oy(t)dt :=1, V(a,b), 0<a <b,

and for n € N*, tny = {21,y an) € ([0,8] xRy)™5 8 <-or <ty < s}

We start with Part (i). By the pseudo-chaotic expansion of X ¢, we have that

+
8

1
n!

3
Il
—

Hence using Relation (3.8) and Proposition 3.10
+o00

E [Xg} - Z g [In(cfﬁ)}

n!

+oo
:Z/ 1‘1, ’ n)dl’ld%’n

n

+00
:MZ/O (s —to) [T @t = tia)dty - - - dt,

o 0t < <tn<s o

where the last equality follows from Proposition 4.6. Lemma 4.4 gives that

= /.LZ/ (I)(tz — tifl)dtl s dtn

0<t1<-<tn<s,;_

+oo
= MZ/{) /0 D, 1(u—r)drdu
n=1

_ M/OS (1 + /Ou\Il(r)dr> du.

The second part of Lemma 4.4 implies that

n

+o0o
E [X2] :MZ/O @(s—tn)H(I)(ti—ti_l)dt1-~-dtn
=1

<t1<-<tp<s i=2
—MZ/ s—rdr—u/ U(r)dr.
0

15



We turn to Part (ii). Let £ = ® or £ = 1. Using Mecke’s formula (3.7), Lemma 5.1 and
Proposition 5.3, we get

E[XfXC]
ik Xﬂ

+oo
= (21, yxn)E Xcog dxy---dz,
(@1,0,7n)
_Z/ (X1, X)) /tg(tu)cptl"" du+ZCt7t ]dxl -dzy,
5 0

where !t In is given by (5.1). Thus using Proposition 4.6, we get

E | X¢X;]

:i"/ /t".../m/n &2, )0 - - - O, [/{:C(t—u)gptlw--,t"(u)du—l-gg(t—ti)] diy---dt,

—+o00 " n
—MZ/ /t §8—tn) ti —ti1 [/Ct—u "’t"(u)du—i';C(t—ti)] dty---dty

Using the definition of ¢ given by (5.1) that is

Ot (u) = p <1 +/ U(u—v dv) —i—Z\I/ )1t +00)} (W);u > 0,
0

the previous expression can be written as :

E[ngg]
- [ (-t f[zq)ti—ti_l)[/gt—u o du+ZCt—t]dt1 d
S Y T TR | OSRGOS 8 P
> [ [ f[@t—t“

[ctt-w Z Wl 1)1 ooy () + g 1) dty -t
=/ﬂ[/0t<(t—u>(1+/o w<u—vdv)du]z// 5s—t>ili®<ti—tu>dt1---dtn

16



CE[L

és_tn H

=2

i — ti—1 Z
j=1

n

( (t—t;) +

C(t —u)U(u — tj)du> dty - - - dt,.

Using the computations of Part (i) we identify that

+00 sty
S

In addition, if { =1,

)

In case ( = ® we have

Lot

(s —tn) H<I> i tiia)dty - dtn:E[Xg].

¥l o)do)

E [Xﬂ .
(- v)dv) du]

Bt — u) /u U(u — v)dvdu}
(t — u)T(u— v dudv]

v

O(t—v— )dudv}

/t
v
\I/ * D) (t — v)dv}

W(t — v)dv — /Ot Bt v)dv}

—u/ot‘ll(t—v)dv—E[Xﬂ.

where we have used the fact that ¥ « ® = ¥ — ®. Hence

E [ngﬂ

—E [Xf] E [XC}

+HZ// 5s—t y[Te -
=2

We now deal with the term in y. We have

A

ST

j=1n=j

to n
§(s —tn) [ 2t — tic1)
i=2

=2

ti-1) Z

f 5 —ty) H O(t; —ti—1)

(C(t —t;) + /:C(t —u)W(u— tj)du> dty - - dty,.

Jj=1

(C(t — tj) + /t C(t — u)\I/(u — tj)du> dty---dt,
<C(t—tj) +

n
J=1

t

Ct —u)W(u— tj)du> dty---dt,

tj

17



n

400 +00 tn ts
_ZZ/ / g(s_t”)Hq)(ti_tifl)C(t—tj)dtl--.dtn

j=1n=j 0 o
+00 +00 .5t t n .

—i—ZZ/ / f(S—tn)H(I)(ti—ti—l)/ C(t —uw)¥(u—tj)dudty - - - dty,
j=1n=;70 70 0 i=2 t;
J J

- T1+T2

We treat the two terms separately. We will make use for both terms of Fubini’s theorem. For
term 75 the domain of integration is :

0<t1<"'<tj<tj+1<"'<tn<s; tj<u<t.

We rewrite this domain as

t sAu
/ / / dtl cee dtj_l / dtj_H cee dtn dtjdu.
0 JO 0<ty <<ty ti<tjy1<-<tn<s

Hence we have

15

“+00 +00 n
—ZZ// gs—t)ch(t—tH/gt—u)xp(u—t)dudtl - dty,

j=1ln=j =2

+00 +00 tn 4o n
—ZZ// C(t—u)¥(u—t;) /gs—t / / Dty — tp1)dtjyy - db,_1dt,

Jj=1n=j tj k= j+1

7j—1 to ‘7
/ / / H (ID tg — tg 1)dt1 dtj_gdtj_l dtjdu.
0
By Lemma 4.4,
t; ti—1 ty J tj
/ / cee / H (I)(tg — tgfl)dtl tee dtj_gdtj_l = / CI’j_l(tj — w)dw
o Jo 0 72 0

and

S tn tjt2 n

g(s—tn)/ .. / H D(ty—ty_1)dtjiy - dty_1dty,
tj tj i k=j11

Ji oy —ty)dy,  HE=1
=9 Pn_jri(s —1t;), ifé=d®and j>n+1;
£(s —t5), ifé=® and j =n.

In addition, recalling that /@0 =1, we have Z/ x)dr = 1+/\II( )dx.

18



o IfE=1

oo +00 ot rsAu s t;
Ty = Z Z/ / C(t — u)\II(u — tj> / CIJn_j(y — tj)dy X / (I)j_l(tj — w)dwdtjdu
=1 n=j 0 JO t; 0
too 400 ot rsau s v
= Z Z/ / C(t —u)¥(u—v) / O, _i(y —v)dy x / Qi1 (v —w)dwdvdu

_ jz:/ot /OSM C(t = u)W(u—v) (1 + /v Uy — v)dy) x /Ov ®;_1(v — w)dwdvdu

:/Ot/omg(t_u)q;(u_v) (1+/v \P(y—v)dy) <1+/0v\1'(v—w)dw) dvdu.

o I[f&E=0D,
+00 400 g SAu
T2=ZZ// ¢t —u)¥(u—t;)
—1a—:J0 Jo
j=ln=j
S tn ti+2 n
X / £(s — tn)/ .. / H Dty — tp_1)dtjs1-- - dtn_1dt,
L t b k=jt1
t; tj—1 to J
X / / cee / H (I)(tg — tg_l)dtl s dtj_zdtj_l dtjdu
0o Jo 0 25

100 ot rsAu ”
= Z/(; /0 C(t — U)\II(U — tj)CI)(S — tj) /(; (I)j_l(tj — w)dwdtjdu
j=1

400 +o00 t  prsAu 4
+ Z Z / / Ct —u)¥(u—1;)Pp—js1(s — t;) /0 Q;_1(t; — w)dwdt;du

=Jo Jo
+00 it psAu t
+]~;/0 ; C(t —u)¥(u—t;)(¥(s —t;) _q)(s_tj))/o Qi1 (t; — w)dwdtjdu
T0O .t rsAu t
-3 L[ = wwta e - o) [M a0 - wdudsa
+T00 it rsAu v
= ;/0 ) C(t—u)¥(u—v)¥(s —v) / Qi1 (v —w)dwdvdu

Using once again Fubini’s theorem we get
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+00 +00 n

Tl:ZZ/O /0” i f(S—tn)Hfﬁ(ti—ti_l)C(t—tj)dtl---dtn

j:l n=j =2

n

+00 +00 g s tn tjt2
:ZZ/O Clt—t;) (/t g(s_tn)/t_ /t Tt — tea)dtjen - dtn vt

j=1n=j J k=j+1
ti rti—1 to J
X (/0 /O o /0 €H2 Dty —tp_q)dty - - dtj_zdtj_1> dt;.
o IfE=1
n oo s tn ty M
n 400 g s ”
= ;;/o Ct— tj)/tj (I)n*j(y - tj)dy/o q’jﬂ(tj — w)dwdtj
n -+oo s s r
- ;nz:;/o ¢t — r)/r (Dn—j(y—r)dy/o Qi1 (r — w)dwdr
= /Osé(t—U) (H[\I’(y—wdy) <1+/Ou\lf(w)dw> du.
o [fE=0

+00 400 g s tn tjito M
T = ZZ/O C(t_tj) (/t E(s —tn) /t /t H D(ty, —tk_l)dtj+1"'dtn_1dtn

j=1ln=j 7 k=j+1

t; tj—1 to J
x / / / [ ot —teer)dty - dt;_odt; 1 | dt,
o Jo 0 725

oo g t;
= Z/O C(t —5)&(s — tj)/o O;_1(t; — w)dwdt;
=1

+oco oo

+> > /OS C(t = 15)Pnja(s — t)) /O "1t — w)dwd,

j=1n=j+1

+0o0 g v
= ]Z;/O C(t—v)&(s—wv) /0 ®;_1(v — w)dwdv

+oco  +o0o

+ Z Z /05 C(t—1tj)Pp—jt1(s —v) /OU Qi1 (v —w)dwdv

j=1n=j+1

+00 s v
= ]Z;/O C(t—v)P(s—v) /0 Qi1 (v —w)dwdv
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+o00 s )
+ ;/0 C(t—v)(V(s—v)—P(s —0)) /0 ®; (v —w)dwdv

_ /Osg(t_u)\ll(s—v) <1+/0U\Il(w)dw> dv.

Putting together the terms 77 and T3 for £ = 1 (resp. £ = @), we get Relation (5.3) (resp.
Relation (5.2)). O

5.2 Proof of Theorem 2.4

This result is a direct consequence of Theorem 5.4. More precisely, from Part (i) of Theorem
5.4 we recover the well-known expressions of the expectation of the marginals of the Hawkes
process and of its intensity. Indeed (noting that A\, = p + Xf with £ = @)

t ru t
E[H) = put + M/ / U(r)drdu; E[N]=p <1 +/ W(r)dr) ; t>0.
0 JO 0
Proof of Part (i):

We apply Relation (5.3) with ( = 1. We have for any s < ¢,

E[H.H,] = E[H,|E [H]

+,u/os (1+[J U(y —u)dy

s > (1 T /0 “ww)dw) du
/OSAU\I’(U—U) <1+ OU\IJ(w)dw> <1+/US\IJ(y—v)dy> dvdu
+,,,/08 <1+Lsm<y_u)dy> <1+ u\Il(w)dw) du
+u/08 /quz(u—v) <1+/OU\I/(w)dw> <1+ \If(y—v)dy) dvdu

/:/Osxp(u—v) <1+/()U\Il(w)dw> <1+/US\I/(y—U)dy> dvdu

S~

s

S~



o, (o o) (1

14
= E[HS]E[Ht]
14

o (oo o)

Proof of Part (ii):

s t
U(y — v)dy) / U(u — v)dudv
s t
/ U(y — v)dy) 1 —l—/ U(u — v)du> dv.
Let s < t, once should compute using Theorem 5.4: E [X§Xﬂ first with ((,€) = (1,9P)
and then with ((, &) = (®,1). Obviously both quantities are similar. We have by (5.2)

E[(As — p) Hi] = (E[As] — p)E[H{]

:,u/os\li(s—v) (1+/0v\11(w)dw>dv
—|-,u/0t/08/\u\11(u—v)\ll(s—v) <1+/0v\11(v—w)dw> dvdu

:u/() U(s—v) <1—|—/Ov\11(w)dw> dv

Thus

E[\H;] — E[\JE[H,] = M/S T(s —v) <1 + /0 \I/(w)dw) (1 + /Ut\IJ(u - v)du> dv.

0

Similarly using (5.3)

E[H;s (A — p)] = E[H(E[A] — p)

:,u/ostID(t—v) (1+/US\I/(y—v)dy> <1+/0U111(w)dw> v

+u/0t /:Au@(t—u)qf(u—v) (1+/0v\11(w)dw> <1+/US\I/(y—v)dy) dvdu
:u/oscp(t_v) <1+/:\p(y—v)dy> <1+/0U\Il(w)dw> dv

+u/os /qu)(t—u)\ll(u—v) <1+/OU\IJ(w)dw> <1+/US\I’(y—v)dy> dvdu
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Therefore

E[H, )\ — E[H,|E[\] = M/Os U(t— ) <1 + /0 \I’(w)dw) <1 + / T(y — v)dy> dv.

Proof of Part (iii):

(5.2) entails that

Let s < t. Relation

=
= s 2
S S
VR = =
3 = =
= | |
> =
L 5 =
> T
2
o -~
- H v . T
S = — S
_ — = NN =
S S 3 )
=] ! = = = =l
2 o (Qu\ () w w o
—o 5 — | —=
+ S + 2 2 +
T _u R vW N
T T 5 1 s TSz =
| _ = _ _ + + _ _
=< 2 | < /mu\(l\(l\t =
T= 5 L= 5 === 5
=S~ S )
ST it s 2oz T
S - = B L,
S N
S BE 3 I B 3 3 3z B 3
= + + 1 + + + I +
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+ u/os (s — o) <1 + /0 (o w)dw> /: Bt — u)U(u — v)dudy
=E[(As — )] E[(A — )]
4 u/os Bt — v)U(s — v) <1 + /0 \I/(w)dw> dv
4 u/os (s —v) (1 + /0 W(o - w)dw) /OM B(t — v — ) (x)dwdv
— E[( — w)]E[(v — 1)
—I—,u/OS\I/(s—v)\I/(t—v) <1+/0U‘I/(v—w)dw> dv.

Hence

E[AA] —E N E[A] = M/: U(s—v)U(t—0) (1 + /0 (v — w)dw> dv.
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