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Abstract: Lithium-ion batteries are seen as a key element in reducing global greenhouse gas emis-
sions from the transport and energy sectors. However, efforts are still needed to minimize their
environmental impact. This article presents a path towards a circular economy and more sustainable
batteries, thanks to their reuse in mobile charging stations for electric vehicles. This work presents the
results of characterization tests and modeling of second life batteries. The presented characterization
test and electrical models can be used as references to evaluate the performance of aged batteries after
their first life. Detailed test procedures and data results are provided in an open-access data paper.

Keywords: second life battery; reuse; charging; sustainability; modeling; equivalent circuit model;
open science

1. Introduction

Mitigating climate change is seen as a major challenge for the 21st century. According
to the latest report from the Intergovernmental Panel on Climate Change, transport and
electricity generation are responsible for 18% and 36% of the global greenhouse gas emis-
sions, respectively [1]. To reduce this pollution, electrified vehicles and renewable energies
are presented as interesting options. For these applications, lithium-ion batteries are key
energy storage elements [1,2].

In 2021, 340 GWh of batteries have been produced, and these quantities are expected
to increase significantly, possibly reaching 3500 GWh per year by 2030 [3]. In other words,
to date, 10.8 kWh of batteries are currently being produced every second. Unfortunately,
it is well known that their production is not yet sustainable. This means that none of the
lithium-ion batteries produced can be manufactured without using natural resources and
significant amounts of energy. Larcher and Tarascon pointed out that it takes over 400 kWh
of energy to produce 1 kWh of lithium-ion battery with over 75% of this energy consumed
during the material production phase [4]. In order to achieve sustainable energy production
and transport, it is essential to develop solutions to reduce the negative impact of both the
batteries already on the market as well as on the future generations of batteries.

The waste management hierarchy shown in Figure 1 establishes an order of preference
for actions to reduce and manage waste [5]. Reduction, reuse, recycling, recovery and
disposal are the actions that should be taken to reduce the environmental impact of a
product. Reduction is the preferred action and consists of designing the product in order to
limit the waste it will generate at the end of its life. In the context of batteries, reduction
consists of minimizing the number of materials used in a battery, in other words, reducing
the size of the battery. Electric vehicles powered by smaller batteries would be more
economical and more environmentally-friendly [6,7].
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Figure 1. Waste Management Hierarchy.

However, such vehicles would have a shorter range and would be more dependent
on charging infrastructure. To enable this shift, a reliable charging network needs to be
developed. Mobile chargers are a solution to strengthen the existing infrastructure system.
A mobile charging station can be defined as a charger capable of delivering energy to
vehicles autonomously, i.e., without human assistance and without the need for an external
power supply. This technology has the advantage of maximizing the utilization rate of the
charging station as these chargers are able to move from one vehicle to another. They also
provide a more flexible charging solution, as they are designed to be quickly deployed at
any location, with the ability to adapt the energy embedded and the duration of stay to the
needs of the drivers [8,9]. Figure 2 shows two autonomous mobile charging stations.

Figure 2. Mobile charging stations from Mob-Energy [10] and Volkswagen [11].

As the energy stored by these robot-like chargers is limited, they should be considered
as a complementary technology to fixed chargers. To date, existing mobile charging stations
can deliver up to 30 kWh at a maximum charging rate of 50 kW [12]. Powering these mobile
charging stations with reused batteries is possible and would be a further step towards a
circular economy. Reuse can be defined as the complete or partial reuse of the battery for
the original purpose for which it was designed [13]. In the literature, reused batteries are
commonly referred to as “second life batteries”.

While there is a broad consensus in the battery community to recognize the envi-
ronmental benefits of reuse, the economic interest of second life batteries is still being
debated. Finding applications that could accept the constraints of reused batteries is still
a challenge. To date, most studies have focused on stationary applications [14–17]. Since
the volume required for these applications is limited, few authors have presented mobile
applications as an interesting alternative [18–20]. In addition to the application choice,
battery performance evolution needs to be carefully tracked as it has a significant impact
on the economic interest of battery reuse [21,22].
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Although research about second life batteries is gaining interest, two important limita-
tions of the existing studies remain:

First, two definitions of battery reuse coexist in the literature. Most authors define
second life batteries in terms of performance level. A threshold of 20 or 30% capacity loss is
often considered as the boundary between first and second life [23–26]. Studies considering
this definition answer the following research question: how does the performance of
deeply aged batteries evolve? Other authors define reused batteries as batteries that have
undergone a change of application [27,28]. This definition raises another research question:
what is the effect of an application change on the evolution of battery performance? To
date, there is a lack of experimental or modeling studies investigating the performance
evolution of a battery that has undergone an application change. This is an important gap
since the operating conditions can vary significantly from the first life to the second life.

Secondly, much of the existing research has examined batteries that have been aged
in a laboratory. This method has been preferred because of the complexity of acquiring
batteries after their electric vehicle life. Laboratory studies also allow control of operating
conditions during the whole life of the battery. Nevertheless, in real-world situations users
of second life batteries do not have access to the data during first-life use. The battery
performance must be assessed to determine the battery’s suitability for a second life. In
recent years, few studies have assessed the performance of batteries extracted from electric
vehicles [29–31]. Nevertheless, these papers are pioneer works focusing on experimental
performance assessment. No work has yet been carried out on the electrical modeling of
such batteries. Further studies should be conducted to get more insights into battery reuse
after the automotive life.

1.1. Contributions

The authors aim to fill the gaps described above by presenting an experimental and
modeling study on a battery extracted from an electric vehicle and reused in a mobile
application. This article contributes to the existing research on second life batteries in
various aspects.

1. Description of a new possible application for second life batteries
In this article, a new possible application for second life batteries is presented: the mobile
charging station. To the best of the authors’ knowledge, this is one of the first studies to
present in detail a mobile application for reused batteries.

2. Experimental evaluation of second life battery performance
In this study, a characterization test is performed to evaluate the performance and calibrate
the electrical models of the second life battery. The capacity of the battery cell is measured
at three temperatures and the resistance of the battery cell is characterized at the same three
temperatures using current at various charge/discharge rates and depths of discharge. This
experimental work contributes to the existing literature on second life batteries as it is one
of the first to evaluate the performance of a high-capacity prismatic cell extracted from real
second life electric vehicle battery modules.

3. Modeling second life battery performance
This study presents two electrical models that can be used as a reference to evaluate and
emulate second life battery performance. The influence of usage profile and temperature on
model accuracy is also evaluated. This modeling work is central to estimating the energy
stored in the mobile charging station, which is the first step in developing pricing, charging
schedules, and energy management strategies. This is one of the first articles to model a
second life battery cell extracted from an electric vehicle.

4. Open access publishing of the experimental data and software
Experimental data recorded during the characterization test are published as open-source
along with the article. The open software used for data processing has also been shared.
To the best of the authors’ knowledge, this is one of the first articles to share experimental
data on second life batteries and the software used to analyze these data [32–34].
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1.2. Layout

The article is organized as follows: Section 2 presents the experimental evaluation of
the second life battery performance. In Section 3, the electrical models are calibrated thanks
to the experimental result and their accuracy is evaluated thanks to a mobile charging
station and a WLTC profile in Section 4. Finally, conclusions are drawn and an outlook for
future studies is given.

2. Second-Life Cell Performance Assessment

This section presents the experiments conducted to assess the performance of a second
life battery cell. This performance assessment is necessary to tailor the reuse application to
the capabilities of the battery. The data produced for this study are available in a public
repository along with a detailed description of the cell and setup characteristics as well as
the testing procedures and quality control [32].

2.1. Experimental Setup

In this study, a second life SAMSUNG SDI 94Ah cell with NMC positive electrode was
tested at 0, 25 and 40 °C. The main characteristics of the cell are summarized in Table 1. This
cell was extracted from a BMW i3 module purchased from the second life battery market.
To ensure the representativeness of the study, the 12 cells of the module were tested and
one cell with comparable performance to the others was selected.

Table 1. Samsung SDI 94Ah main characteristics. Data from [35].

Characteristics Values

Format Prismatic
Nominal capacity [Ah] 94

Positive electrode material NMC
Negative electrode material Graphite

Nominal voltage [V] 3.68
Maximal voltage [V] 4.15
Minimal voltage [V] 2.7

Specific energy [Wh/kg] 165
Size L × W × H [mm] 173 × 125 × 45

Weight [kg] 2.06

The experimental setup consisted of a Bitrode battery testing system and two climate
chambers (Vötsch VT 3050 and Friocell 707).

Table 2 shows the characterization test protocol at a single temperature and Figure 3
is the voltage profile of the test. Step 1 is a capacity test, consisting of a sequence of three
full charge/discharge cycles. Step 2 is an impedance measurement thanks to a sequence
of current pulses at different depths of discharge (10, 20, 30, 40, 50, 60, 70, 80 and 90%)
and current levels (0.3C, 0.5C, 0.8C, 1C and 1.3C). Step 3 is a pseudo-open circuit voltage
measurement thanks to a full discharge/charge at C/20. Finally, step 4 is the validation
cycle used to assess the accuracy of the models in mobile charging station usage. The
validation profiles and results are described in detail in Sections 3 and 4.

Table 2. Reference characterization test.

Step Test Estimated Duration (h)

1 Capacity test 18
2 Impedance test 8
3 Pseudo OCV test 42
4 Mobile charging station cycles 12
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Figure 3. Voltage profile of the test. Step 1 is a capacity test, step 2 is the impedance measurement,
step 3 is the low-current measurement and step 4 is the validation cycle.

For the characterization of a cell at 0, 25 and 40 °C, authors estimate that in 273 h (3
times 91 h) the climate chamber consumed 136.5 kWh and the cycler 94.5 kWh, giving
a total consumption of 231 kWh. In France, at the time of the experiment, this electrical
consumption generated about 14.7 kg CO2 eq and cost 53 € [36]. In order to minimize
the cost of battery research, the data has been made open access. The authors hope that
this data will benefit future research and allow a reduction in the number of experiments
conducted.

2.2. Capacity Measurement

The capacity is measured in step 1 of the characterization test shown in Figure 3. The
third measurement of discharge capacity in step 1 is taken as the reference and the capacity
is calculated according to Equation (A1). Figure 4 shows the influence of temperature on
the discharge capacity.
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Figure 4. Discharge capacity measured at 0 °C (blue bar), 25 °C (green bar) and 40 °C (red bar).

The capacities listed in the datasheet were measured in discharge with a constant
current-constant voltage profile and a 1C current. This method is similar to the one used in
this work. A state of health “capacity” can therefore be calculated thanks to Equation (A2).
Table 3 compares the capacities measured during step 1 at 0, 25 and 40 °C with the datasheet
information.



World Electr. Veh. J. 2023, 14, 94 6 of 21

2.3. Resistance Measurement

Resistance is determined during step 2 of the characterization test presented in Figure 3.
Resistance is affected by temperature, sign and intensity of the current and the depth of
discharge of the cell. The depth of discharge and resistance are calculated according to
Equations (A3) and (A4).

Figure 5 shows the influence of temperature and depth of discharge over the discharge
resistance. The measurement is made in discharge with a current rate of −1C and a 5 s
resistance is considered.

Figure 5. Discharge resistance of a second life cell at 0 (blue points), 25 (green squares) and 40 °C (red
diamonds). Measurement is made at −1C and a 5 s resistance is considered.

State of health is an indicator of the evolution of the resistance since the beginning of
the battery’s life. It can be calculated using Equation (A5). Table 3 compares the resistances
measured during step 2 at 0, 25 and 40 °C with the data sheet information.

2.4. Performance Comparison of a Fresh and Second Life Cell

This article evaluates the performance of a high-capacity prismatic cell taken from an
electric vehicle. Table 3 compares the capacity and resistance measured on the second life
cell with the data provided in the datasheet.

Table 3. Performance comparison between a fresh cell (datasheet) and a second life cell (experiments).
“-” means that the state of health could not be calculated.

Temperature Fresh Cell Second Life
Cell State of Health

Capacity
(CC-CV, −1C)

0 °C No data 90.5 Ah -
25 °C 95.2 Ah 92.4 Ah 97%
40 °C 95.7 Ah 93.3 Ah 97%

Resistance
(5 s, DoD 50%, −1C)

0 °C No data 2.3 mΩ -
25 °C 0.75 mΩ 1.3 mΩ 27%
40 °C No data 1.6 mΩ -
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The result presented above shows through experimental results that a second life and a
fresh cell can perform comparably. This result could be extended to the module level as the
tested cell was selected as a representative element of the performance of the 11 other cells
in the module. To explain this high level of performance, the authors hypothesize that the
tested second life cell came from a crashed vehicle. This study highlights the pertinence of
defining the second life battery based on an application change rather than a performance
level. Batteries can reach the end of their automotive life with a performance level well
above the commonly accepted threshold of 20% capacity loss.

3. Second-Life Cell Modeling

Accurate estimation of a lithium-ion cell’s voltage behavior over time is paramount
in most applications. In fact, the efficiency of thermal management, energy management,
and balancing strategies depends heavily on the accuracy of the estimate [37–41]. In a large
number of industrial applications where real-time control is required, electrical models are
preferred over electrochemical [42]. Their ability to accurately emulate voltage with limited
computational cost makes them suitable for embedded applications. In addition, they can
be characterized using non-destructive methods [43–45].

This section presents the equivalent circuit models used in the study and the procedure
used to calibrate and validate them. The work presented can be divided into three parts.
First, two equivalent circuit models capable of emulating the voltage response of a lithium-
ion cell are presented. Then, the parameters of the models at 0, 25 and 40 °C are identified.
Finally, the accuracy of each model has been evaluated thanks to two usage profiles: a
Worldwide Harmonized Light Vehicles Test Procedures cycle and a profile representative
of a real mobile charging station usage. Data processing and modeling have been carried
out thanks to two open software: DATTES and VEHLIB.

DATTES is a free and open-source Matlab/Octave set of tools for processing experi-
mental data on energy storage systems [33]. This software is capable of processing data
from many different battery cyclers and the most common battery techniques, including
capacity and impedance measurements or OCV, ICA and EIS analysis. It allows users to
process experimental data using a methodology carefully described in the documentation,
or to customize the analysis method according to their needs.

VEHLIB is a free and open-source energy management simulation software for elec-
trified vehicles developed in MATLAB/Simulink [34]. It is based on a block diagram
description combined with principles from Bond Graph theory.

3.1. Model Definition

In this article, two equivalent circuit models have been chosen.
The first one is shown in Figure 6 and will be named “CPE model”. It consists of

an open circuit voltage (OCV) source in series with two elements: a resistance R0 which
models the ohmic behavior and a Constant Phase Element (CPE) associated with the other
dynamic behavior.

R0

C1 C2

CPE

Ucell

I

UCPEUR0

Uoc

Figure 6. CPE model.
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This model emulates the battery voltage response when a current is applied according
to Equation (1).

Ucell = Uoc + UR0 + UCPE (1)

with

• Ucell : the voltage response of the cell (V)
• Uoc: the open circuit voltage (V)
• UR0: the ohmic drop (V)
• UCPE: the voltage dynamic modeled by the constant phase element (V)

The second model is shown in Figure 7 and will be named “RC model”. It consists
of a voltage source OCV in series with resistance R0 which models the ohmic behavior, a
first RC circuit for modeling the charge transfer and double layer processes and a second
RC circuit associated with the diffusion behavior. To maximize the model accuracy during
relaxation, adding more RC circuits would be necessary [46]. However, this would also
dramatically increase the computational time for more advanced simulations using this
model. This model emulates the battery voltage response when a current is applied
according to Equation (2).

Ucell = Uoc + UR0 + UR1C1 + UR2C2 (2)

with

• Ucell : the voltage response of the cell (V)
• Uoc: the open circuit voltage (V)
• UR0: the ohmic drop (V)
• URiCi: the voltage dynamic modeled by i-th RC circuit (V)

I

Uoc

R0

R1 R2

Ucell

UR0

UR1C1 UR2C2

C1 C2

Figure 7. RC model.

For each temperature, the RC and CPE parameters of the models are calibrated in
two steps according to the phenomena modeled. The static or thermodynamic behavior
is modeled by the open circuit voltage, while the dynamic or polarization behavior is
modeled by the parameters R0 + CPE or R0 + R1C1 + R2C2.

3.2. Static Behavior Identification

The static behavior of a battery is usually modeled by an open-circuit voltage source
whose behavior evolves with the depth of discharge, temperature and state of health of the
battery. The influence of aging is not considered in this study.

In this study, the open circuit voltage (OCV) is determined at C/20 thanks to step 3 of
the test shown in Figure 3. It is calculated by averaging the low rate charge and discharge
voltage curves, a technique known as pseudo open circuit voltage. In the datasheet, the
open circuit voltage is measured using a galvanostatic intermittent titration technique
at 1/3C. This method is slower but more accurate than pseudo-OCV because it is less
subject to current polarization [47]. In this work, pseudo-OCV has been favored for its
speed in producing a sufficient number of experimental points to accurately model the
dependence of open circuit voltage on the depth of discharge. Figure 8 shows the influence
of temperature and depth of discharge on the open circuit voltage.
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Figure 8. Experimental OCV-DoD relationship curves for second life battery at 0 °C (blue line), 25 °C
(green line) and 40 °C (red line).

In order to model the influence of the depth of discharge on the open circuit voltage,
100 experimental points were considered, ranging from 0% to 100% depth of discharge.
Linear interpolation is used between two experimental points for intermediate levels of
discharge depth. This method was favored as it maximizes accuracy compared to modeling
thanks to an equation.

3.3. Dynamic Behavior Identification

The dynamic behavior of a battery is modeled by the impedance parameters of the
model. These parameters are influenced by the depth of discharge, temperature and state
of health of the battery. The influence of aging is not considered in this study.

The resistance R0 models the ohmic drop, it is determined first as it is the shortest
dynamic phenomenon that will be modeled in this study. The influence of discharge
depth and temperature on the resistance was determined experimentally in step 2 of the
characterization test shown in Figure 3. To model the influence of discharge depth on R0,
10 experimental points were considered from discharge depth 10% to 90% and at a current
rate of −1C. A logarithmic interpolation is considered between two experimental points for
intermediate levels of discharge depth. The influence of the depth of discharge on the 0 s
resistance is modeled according to Equation (A6). The result of the resistance interpolation
is shown in Figure 9.

Figure 9. Experimental result and model response (lines) for 0 s discharge resistance versus depth of
discharge and temperature 0 (blue), 25 (green) and 40 °C (red).
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The parameters R1, C1, R2, C2, Q and α are intended to emulate the dynamic behavior
of a mobile charging station. To model the influence of the depth of discharge on these
parameters, 10 experimental points were considered, ranging from a depth of discharge
of 10% to 90% and at a current rate of −1C. The equations used to model the influence of
the depth of discharge on these parameters are presented in Appendix A and the values of
models parameters are available in Appendix B.

4. Models Accuracy Assessment

The previous sections presented the identification of model parameters. It consisted
in determining the parameters responsible for modeling the different battery dynamics
separately thanks to the experimental data collected during the characterization test. In
this section, the different parameters are collected to build the RC and CPE models and to
validate their accuracy.

4.1. Accuracy on a WLTC Profile

To facilitate comparison with other modeling studies, a popular usage profile was
used to validate the model: the worldwide harmonized light vehicles test procedures cycle.
Wheel power demand data available for a Golf-GTE PHEV and previously published in [48]
were used. In [48], the Golf-GTE PHEV chassis (mass, aerodynamics, rolling resistance,
etc.) was used to evaluate the battery demand over the driving cycle. The VEHLIB library
was used to perform the simulation [34,49]. Figure 10 shows the Worldwide Harmonized
Light Vehicles Test Cycle profile used.

Figure 10. (a) Power, (b) state of charge, (c) voltage and (d) current evolution during a Worldwide
Harmonized Light Vehicles Test Cycle profile.

4.1.1. Influence of the Model Choice over Models Accuracy

Figure 11 shows in blue line the second life cell voltage measured at 25 °C and
compared to CPE model response in solid line and RC model in dashed line.
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Figure 11. (a) Experimental data (blue line) compared to simulation results for the CPE model (solid
line) and the RC model (dashed line) at 25 °C. (b) Zoom around 5 min.

A large part of the error comes from the dynamic behavior, more precisely from
the interpolation of the resistance at the intermediate level of the depth of discharge. To
improve the accuracy of the models, the parameters responsible for the voltage dynamics,
especially at the end of charge and discharge, should be optimized. Efforts could also be
made to more accurately account for the relaxation effect.

Figure 12 shows the error distribution functions of the models. For both the CPE
model in the solid line and the RC model in the dashed line, the simulation error is less
than ±7 mV, ±22 mV, and ±40 mV in 50, 90, and 99% of the profile, respectively.
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Figure 12. Error distribution functions for the CPE model (solid line) and the RC model (dashed line)
emulating a cell voltage response used with a WLTC profile at 25 °C.
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4.1.2. Influence of the Temperature over Models Accuracy

In this section, the influence of temperature on model accuracy is assessed thanks to a
WLTC profile. Figure 13 presents the influence of temperature on the RC model accuracy.
The error distribution function is plotted in blue for 0 °C, green for 25 °C and red for 40 °C.
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Figure 13. Influence of temperature over RC model ((left), dashed line) and CPE model ((right), solid
line) accuracy. Blue lines are at 0 °C, green lines at 25 °C and red lines at 40 °C.

For the RC model, simulation error is lower than ±16 mV, ±25 mV and ±40 mV in,
respectively, 50, 90 and 99% of the profile. While for the CPE model, simulation error is
lower than ±15 mV, ±32 mV and ±50 mV in, respectively, 50, 90 and 99% of the profile.

4.2. Accuracy on A Mobile Charging Station Profile

A mobile charging station’s usage profile inspired by real ones has been used to
compare the model’s capabilities to emulate the voltage response of the reused batteries.
The real usage profiles were provided by the company Mob-Energy. Figure 14 shows the
usage profile of the mobile charger with power levels given for a single lithium-ion cell.

Figure 14. (a) Power, (b) state of charge, (c) voltage and (d) current evolution during a mobile
charging station usage profile.
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The first step of the profile consists of a high power discharge corresponding to the
energy transfer from the charger to the vehicle. In this step, the discharge power reaches
−150 W at the cell scale, which corresponds to a 7200 W discharge at the robot scale. Then
the robot charger moves to grid charging, which corresponds to the low power discharge
(almost 0 W). Finally, the mobile charger is charged from the grid. In this step, the charging
power reaches 300 W at the cell scale, which corresponds to a 14,400 W charge at the robot
scale. It can now move on to the next vehicle to charge. This pattern is repeated 12 times in
a 24-h period. The voltage, state of charge and current responses of a cell are also shown.

Influence of the Model Choice over Models Accuracy

Figure 15 shows in blue line the second life cell voltage measured with a mobile
charger profile at 25 °C. It is compared with the response of the CPE model in the solid line
and the RC model in the dashed line. The cumulative distribution function of both models
is also shown.
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Figure 15. Influence of model choice over accuracy at 25 °C. Left, voltage profile; right error distribu-
tion (blue line = measurements, green solid line = CPE model, green dashed line = RC model).

For both the CPE and RC models, the simulation error is less than ±25 mV, ±45 mV and
±61 mV in 50, 90 and 99% of the profile, respectively. The accuracy of the models is lower
in this usage profile, which can be explained by the wider range of the depth of discharge.
The interpolation of the dynamic parameters in the middle of the depth of discharge is
responsible for more than 75% of the model inaccuracy. To improve the accuracy of the
models, more experimental data points should be collected and efforts should focus on
interpolation techniques.

4.3. Computation Time and Error Assessment

Table 4 shows the accuracy and computation time of the models for different temper-
atures using a thirty-minute WLTC profile and an eleven-hour mobile charging station
profile, respectively. The simulations were run on SIMULINK R2021a with an ode15s solver
and a maximum step size of 100 ms. The computer used was a DELL Latitude 5290 laptop
with an Intel® Core™ i7-8650U CPU and a clock speed of 1.90 GHz.

CPE and RC models have a comparable absolute average error, but simulation time
is significantly in favor of the latter. Both models perform reasonably well, with accu-
racy levels around 1%, which is in the order of magnitude of models presented in the
literature [50–53].

Models are more accurate with the WLTC profile compared to the mobile charging
station one. This difference can be explained by the severity of the charger profile. The
performance of the models is sufficient to estimate, accurately and with low computa-
tional load, the energy stored in the mobile charging station and its efficiency at a given
time. These quantities are central for defining optimal pricing, scheduling, and energy
management to maximize profits and minimize battery degradation [54–56].
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Table 4. Accuracy and computation time for different temperatures using the mobile charging station
and WLTC profiles.

W
LT

C

CPE Model RC Model

Accuracy
(RMSE)

0 °C 17.5 mV 14.8 mV
25 °C 10.5 mV 12.9 mV
40 °C 15.9 mV 19.2 mV

Computation time
0 °C 11.2 s 3 s
25 °C 8.7 s 3.1 s
40 °C 9.9 s 3.3 s

C
ha

rg
er

CPE model RC model

Accuracy
(RMSE)

0 °C 32.6 mV 35.4 mV
25 °C 29.5 mV 27.2 mV

Computation time 0 °C 71.9 s 35.6 s
25 °C 80.8 s 35.1 s

If a better estimation of the energy stored in the charging station at a given time is
required, the accuracy of the models could be improved by adding parameters to the
models. However, this strategy would certainly increase the computational time, so a
trade-off between model accuracy and computational time must be made.

5. Conclusions

This article presents an experimental evaluation of the performance of a second life
battery. This experimental work contributes to the existing literature on second life batteries
as it is one of the first to evaluate the performance of a high-capacity prismatic cell extracted
from an electric vehicle battery pack. The characterization of a cell extracted from an electric
vehicle has shown that a second life and a fresh cell can perform comparably. This study
highlights the relevance of defining second life batteries based on a change of application
rather than a performance threshold between first and second life.

The modeling study conducted has demonstrated the ability of two models to accu-
rately emulate the voltage response of a second life battery. The influence of usage profile
and temperature on the accuracy of the models was also evaluated. This study contributes
to the development of battery reuse by presenting a new possible application: mobile
charging stations. This work is also the first step in the development of pricing, charging
schedule, and energy management strategies for battery-powered mobile charging stations.

Finally, this study was conducted with an open-science approach. Characterization
data are shared along with a detailed description of the test procedures [32]. Data processing
has also been made thanks to two open software: DATTES and VEHLIB [33,34].
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Appendix A. Equations

Appendix A.1. Capacity

Q(t) =
1

3600

∫ t

t0

i(t)dt (A1)

with

• Q(t): the discharge capacity measured (Ah)
• t − t0: the duration of a discharge cycle (s)
• i: the discharge current applied to the cell (A)

Appendix A.2. State of Health Capacity

SoHQ = 100 × Q(t)
QBOL

(A2)

with

• SoHQ: the state of health “capacity” (%)
• Q(t): the capacity measured at a given time (Ah)
• QBOL: the capacity measured at the beginning of life (BOL) (Ah)

Appendix A.3. Depth of Discharge

DoD = DoDt0 − 100 × 1
3600 × QBOL

∫ t

t0

i(t)dt) (A3)

with

• DoD: the depth of discharge of the cell (%)
• DoDt0: the initial cell depth of discharge (%)
• QBOL: the capacity measured at the beginning of life (BOL) (Ah)
• i(t): the current at a given time (A) (Current is negative in discharge)

Appendix A.4. Pulse Resistance

R∆t(t) =
∆V
∆I

(A4)

with

• R∆t(t): the resistance measured at a given time (Ω)
• ∆t: the time after the pulse beginning (s)
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• ∆V: the voltage variation after ∆t (V)
• ∆I: the current pulse amplitude (A)

Appendix A.5. State of Health Resistance

SoHR = 100 × (1 − R(t)− RBOL
RBOL

) (A5)

with

• SoHR: the state of health “resistance” (%)
• R(t): the resistance measured at a given time (mΩ)
• RBOL: the resistance measured at the beginning of life (BOL) (mΩ)

Appendix A.6. Resistance Dependence to Depth of Discharge

R(DoD) = r2 × log(DoD)2 + r1 × log(DoD) + r0 (A6)

with

• R(DoD): the resistance for a given depth of discharge (Ω)
• ri: the polynomial coefficient of the model (Ω)

Appendix A.7. C1 Dependence to Depth of Discharge

C1(DoD) = c1,3 × (DoD)3 + c1,2 × (DoD)2 + c1,1 × (DoD) + c1,0 (A7)

with

• C1(DoD): the resistance for a given depth of discharge (F)
• ci: the polynomial coefficient of the model (F)

Appendix A.8. RC Impedance

ZRC(jw) =
1

1 + RCjw
(A8)

with

• ZRC(jw): the RC impedance (Ω)
• R: the resistance(Ω)
• R: the capacitor (F)

Appendix A.9. R1C1 Pulse Response Voltage

UR1C1 = Icell × exp(
−t
τ1

) (A9)

with

• UR1C1: the voltage polarization caused by R1C1 (V)
• τ1: the polarization time constant of the fastest dynamic phenomena (s)

Appendix A.10. R2C2 Pulse Response Voltage

UR2C2 = Icell × exp(
−t
τ2

) (A10)

with

• UR2C2: the voltage polarization caused by R2C2 (V)
• τ2: the polarization time constant of the fastest dynamic phenomena (s)
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Appendix A.11. CPE Impedance

ZCPE(jw) =
1

Q(jw)α
(A11)

with

• ZCPE(jw): the CPE impedance (Ω)
• Q(DoD): the main CPE element for a given depth of discharge (Ω−1sα)
• α: the depression factor of the CPE (-)

Appendix A.12. CPE Voltage

UCPE(t) = Icell ×
(t − t1)

α − (t − t2)
α

Q × Γ(α + 1)
(A12)

with

• UCPE: the voltage polarization caused by the CPE element (V)
• t1: the time at the beginning of the pulse (s)
• t2: the time at the end of the pulse (s)
• α: the depression factor of the CPE (-)
• Q: the main CPE element (Ω−1sα)
• Γ: the Gamma function

Appendix A.13. Gamma Function

Γ(α) =
∫ ∞

0
tα−1 × 10−tdt (A13)

with

• Γ: the Gamma function
• t: the time (s)
• α: the depression factor of the CPE (-)

Appendix B. Models Parameters

Table A1. OCV models parameters for DoD from 1% to 9%.

DoD 1 2 3 4 5 6 7 8 9

OCV
4.150 4.099 4.080 4.069 4.053 4.046 4.038 4.029 4.021
4.150 4.105 4.089 4.082 4.075 4.067 4.058 4.049 4.039
4.150 4.120 4.109 4.094 4.084 4.073 4.061 4.053 4.042

Table A2. OCV models parameters for DoD from 10% to 19%.

DoD 10 11 12 13 14 15 16 17 18 19

OCV
4.011 4.001 3.991 3.981 3.969 3.959 3.948 3.936 3.925 3.913
4.029 4.019 4.008 3.997 3.986 3.975 3.964 3.952 3.940 3.929
4.023 4.009 3.997 3.990 3.982 3.974 3.965 3.956 3.947 3.937

Table A3. OCV models parameters for DoD from 20% to 29%.

DoD 20 21 22 23 24 25 26 27 28 29

OCV
3.902 3.890 3.879 3.867 3.856 3.845 3.834 3.823 3.813 3.803
3.917 3.905 3.894 3.882 3.871 3.859 3.849 3.838 3.827 3.817
3.927 3.916 3.906 3.895 3.885 3.874 3.863 3.853 3.842 3.831
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Table A4. OCV models parameters for DoD from 30% to 39%.

DoD 30 31 32 33 34 35 36 37 38 39

OCV
3.792 3.783 3.773 3.764 3.755 3.745 3.738 3.730 3.723 3.716
3.807 3.797 3.788 3.778 3.769 3.761 3.752 3.744 3.737 3.729
3.821 3.811 3.801 3.791 3.781 3.772 3.763 3.754 3.746 3.738

Table A5. OCV models parameters for DoD from 40% to 49%.

DoD 40 41 42 43 44 45 46 47 48 49

OCV
3.709 3.702 3.696 3.690 3.685 3.679 3.674 3.669 3.665 3.661
3.722 3.716 3.709 3.703 3.698 3.692 3.687 3.682 3.678 3.674
3.730 3.723 3.716 3.709 3.702 3.696 3.690 3.685 3.680 3.675

Table A6. OCV models parameters for DoD from 50% to 59%.

DoD 50 51 52 53 54 55 56 57 58 59

OCV
3.658 3.654 3.651 3.647 3.644 3.641 3.639 3.636 3.633 3.630
3.669 3.666 3.663 3.659 3.656 3.653 3.651 3.648 3.645 3.643
3.671 3.667 3.663 3.659 3.656 3.653 3.649 3.647 3.644 3.642

Table A7. OCV models parameters for DoD from 60% to 69%.

DoD 60 61 62 63 64 65 66 67 68 69

OCV
3.628 3.625 3.622 3.619 3.616 3.612 3.608 3.604 3.599 3.595
3.640 3.637 3.635 3.632 3.629 3.626 3.623 3.619 3.615 3.611
3.639 3.637 3.634 3.632 3.629 3.627 3.624 3.621 3.618 3.615

Table A8. OCV models parameters for DoD from 70% to 79%.

DoD 70 71 72 73 74 75 76 77 78 79

OCV
3.589 3.583 3.577 3.569 3.561 3.552 3.543 3.532 3.520 3.508
3.606 3.601 3.596 3.589 3.583 3.576 3.568 3.559 3.549 3.538
3.611 3.607 3.602 3.597 3.591 3.585 3.577 3.569 3.561 3.551

Table A9. OCV models parameters for DoD from 80% to 89%.

DoD 80 81 82 83 84 85 86 87 88 89

OCV
3.494 3.479 3.463 3.445 3.426 3.405 3.383 3.359 3.333 3.305
3.527 3.514 3.500 3.486 3.469 3.452 3.433 3.413 3.390 3.367
3.540 3.529 3.516 3.502 3.486 3.469 3.451 3.431 3.410 3.387

Table A10. OCV models parameters for DoD from 90% to 100%.

DoD 90 91 92 93 94 95 96 97 98 99 100

OCV
3.275 3.244 3.209 3.173 3.135 3.094 3.050 3.004 2.955 2.903 2.700
3.342 3.315 3.286 3.255 3.222 3.187 3.150 3.110 3.068 2.944 2.700
3.362 3.335 3.306 3.275 3.241 3.205 3.167 3.127 3.083 2.977 2.700

Table A11. R0 models parameters in discharge.

R0 Discharge

Temperature r0,2,dch r0,1,dch r0,0,dch

0 °C 5.746 × 10−4 −4.720 × 10−3 1.157 × 10−2

25 °C 1.259 × 10−4 8.614 × 10−4 5.356 × 10−3

40 °C −1.501 × 10−4 9.962 × 10−4 −9.188 × 10−5
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Table A12. R0 models parameters in charge.

R0 Charge

Temperature r0,2,ch r0,1,ch r0,0,ch

0 °C 6.953 × 10−4 −5.542 × 10−3 1.311 × 10−2

25 °C −5.455 × 10−5 2.307 × 10−2 5.995 × 10−3

40 °C 2.273 × 10−4 −1.776 × 10−3 5.070 × 10−3

Table A13. R1 models parameters.

R1

Temperature r1,2 r1,1 r1,0

0 °C 2.037 × 10−4 −1.697 × 10−3 4.208 × 10−3

25 °C 5.111 × 10−5 −5.698 × 10−4 1.847 × 10−4

40 °C 6.204 × 10−5 −4.265 × 10−4 1.405 × 10−3

Table A14. R2 models parameters.

R2

Temperature r2,2 r2,1 r2,0

0 °C 5.399 × 10−6 −2.517 × 10−5 2.366 × 10−5

25 °C 2.813 × 10−6 −1.355 × 10−5 1.555 × 10−5

40 °C 5.994 × 10−7 −3.216 × 10−6 6.739 × 10−6

Table A15. C1 and C2 models parameters.

C1 C2

Temperature c1,3 c1,2 c1,1 c1,0 C2

0 °C −3.094 547 −3.119 × 104 6.601 × 105 58, 422
25 °C −2.517 380.3 −1.765 × 104 4.053 × 105 62, 841
40 °C −1.610 178.7 −3902 1.703 × 105 95, 467

Table A16. Q and α models parameters.

Temperature Q α

0 °C 3873 0.1
25 °C 4852 0.1
40 °C 5812 0.1
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