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Steering undulatory micro-swimmers in a fluid flow through reinforcement learning
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Y Université Cote d’Azur, Inria, CNRS, Sophia-Antipolis, France

2Ecole Nationale Supérieure des Mines de Paris, PSL University, CNRS, Cemef, Sophia-Antipolis, France

This work aims at finding optimal navigation policies for thin, deformable microswimmers that
progress in a viscous fluid by propagating a sinusoidal undulation along their slender body. These
active filaments are embedded in a prescribed, non-homogeneous flow, in which their swimming un-
dulations have to compete with the drifts, strains, and deformations inflicted by the outer velocity
field. Such an intricate situation, where swimming and navigation are tightly bonded, is addressed
using various methods of reinforcement learning. Each swimmer has only access to restricted in-
formation on its configuration and has to select accordingly an action among a limited set. The
optimisation problem then consists in finding the policy leading to the most efficient displacement
in a given direction. It is found that usual methods do not converge and this pitfall is interpreted as
a combined consequence of the non-Markovianity of the decision process, together with the highly
chaotic nature of the dynamics, which is responsible for high variability in learning efficiencies. Still,
we provide an alternative method to construct efficient policies, which is based on running several
independent realisations of @Q-learning. This allows the construction of a set of admissible policies
whose properties can be studied in detail and compared to assess their efficiency and robustness.

I. INTRODUCTION

A number of microorganisms, including bacteria and
plankton, are natural examples of active, self-propelled
particles. They often inspire the design of artificial
devices used for industrial micro-manufacturing, toxic
waste disposal, targeted drug delivery and localised medi-
cal diagnostics [I]. Recent technological developments in
the use of micro-swimmers in medicine open new fron-
tiers, such as microscopic-scale surgery directly inside
the human body and medicine and drugs delivery in
very precise places where their efficiency will be optimal.
Much work has been devoted to designing adequate nano-
robots and studying the way they can be propelled and
controlled using an external magnetic field [2], in partic-
ular for in-vivo conditions. Still, many questions remain
open on how to optimise the displacement of these micro-
swimmers, and in particular whether their behaviour is
altered when they are embedded in complex flows com-
prising obstacles, walls, or having non-Newtonian proper-
ties. This is particularly important to design new strate-
gies that will allow artificial swimmers to reach today
inaccessible regions of the human body.

Studying and optimising the movement of swimmers
and micro-swimmers is generally addressed in two suc-
cessive steps. The first is to find an appropriate swim-
ming strategy by choosing the composition, shape, or de-
formation that will lead to an efficient locomotion. The
second step is to define a navigation strategy that takes
into account obstacles, fluctuations in the surrounding
flow, and its geometry, with the aim to minimise the
time needed or the energy used to reach a specific target.
Studying swimming strategies at the microscopic level
requires advanced tools to describe fluid-structure inter-
actions [3 [], to take a non-Newtonian rheology of the
surrounding fluid into account [5], to model the hydrody-
namics stresses due to the vicinity of walls [6]. Finding
an effective strategy then relies on biomimetics [7] [§] or

on solving costly problems of optimal control [9]. As a
matter of fact, such swimming issues are most of the time
addressed in situations where the surrounding flow is at
rest. This is justified by the complexity and the computa-
tional costs that would be required to accurately model
the intricate fluid-structure interactions occurring in a
chaotic or turbulent medium.

Regarding navigation problems, there is an increasing
interest in considering complicated carrier flows (see [10]
for a recent review). The swimming mechanisms are
often oversimplified and one rather focuses on how to
adjust macroscopic active features of the swimmers in
order to optimise their long-term displacement. Under
such conditions, the use of machine learning techniques
has proved efficiency [I1I]. Reinforcement learning has
for instance been used to address navigation in a turbu-
lent flow and to construct strategies that allow swimmers
to find optimal paths to their targets in such a chaotic
and fluctuating environment [I2HI8]. Navigation prob-
lems have also been studied from different perspectives
such as finding new paths in the presence of obstacles
that can be modelled as barriers of potential [I5]. As
to approaches that use deep reinforcement learning, they
demonstrated successes in various applications, such as
terrain-adaptive dynamic locomotion [19] or real-world
manipulation tasks [20].

Here we want to address the situation where locomo-
tion and navigation are tightly dependent on each other.
Our goal is to show the feasibility of using machine learn-
ing approaches for a mesoscopic model of swimmer, and
in particular to understand if such approaches are able,
not only to make the swimmer move, but also to have it
at the same time navigate a complex environment. The
swimmers are assumed to be simple, deformable, inexten-
sible thin filaments whose interactions with the fluid are
explicitly described by the slender-body theory. Among
the different types of swimming, we have chosen wave
locomotion which is a self-propulsion strategy that re-



lies on the generation and propagation of an undulation
along the swimmer [2I]. This is a relatively simple, but
remarkably robust technique that builds on the interac-
tions between the swimmer and the fluid and appears
in a variety of swimming strategies observed in nature.
We consider the problem where such swimmers are aim-
ing at moving as fast as possible in a given direction,
being at the same time embedded in a space-periodic,
time-stationary, incompressible fluid flow that produces
headwinds and deformations hindering their mobility.

We find that in such settings, the undulatory swim-
mers progress efficiently only if they follow a policy that
prescribes different actions to be performed depending
on their configuration. We focus on a simple, paradig-
matic case: The actions and observations of the envi-
ronment by the swimmer are both chosen from discrete
sets that consist, respectively, of swimming either hori-
zontally or vertically with different amplitudes and hav-
ing sparse information on its orientation and the local
direction of the flow. We look for optimal policies for
this partially-observable Markov decision process, by ap-
plying and comparing various algorithms of reinforce-
ment learning, ranging from the popular @)-learning tech-
nique to approximation methods (differential SARSA
and Actor-Critic). We find that these approaches do not
provide satisfactory results: Either they do not converge,
or if they do so, they require prohibiting long times. We
propose an alternative method that can be seen as be-
longing to the class of competitive Q-learning approaches.
It builds on the observation that, because of the highly
chaotic character of the dynamics, individual realisations
of simple, deterministic Q-learning are able to identify,
quite quickly, a diversity of policies that lead to a rea-
sonable displacement of the swimmer. The analysis of
these admissible strategies can then be easily refined and
systematised in order to rank them and select the most
efficient ones. The advantage of this method is that it
provides a short list of policies whose robustness can be
tested and compared by varying the problem setting, for
instance, the physical attributes of the swimmer (length,
elasticity) or the properties of the surrounding flow.

The paper is organised as follows. Section [[I] intro-
duces the swimmer model and reports results on how
the efficiency of its locomotion depends on its physical
properties. In Section[[II} we describe the outer flow and
formulate the navigation problem in terms of discrete
observations and actions. We also show that a policy
is needed for the swimmer’s displacement and introduce
a naive strategy that allows it. Section [[V]is dedicated
to a detailed comparison of various reinforcement learn-
ing techniques, leading to introduce the competitive Q-
learning approach described above. Results on the per-
formances and robustness of the short-listed policies are
reported in Section [V] including trials performed in un-
steady flows that are solving the Navier—Stokes equation.
Finally, Section [VI] gathers concluding remarks and per-
spectives.

II. A MODEL OF UNDULATORY
THREADLIKE SWIMMER

A. Dynamics of deformable slender bodies

We consider elongated, flexible, inextensible swim-
mers. We moreover assume that they are very thin,
meaning that their cross-section diameter d is much
smaller than their length ¢. This leads to describe their
interactions with the surrounding viscous fluid in terms
of the slender-body theory [22]. The swimmers are em-
bedded in an incompressible flow whose velocity field is
denoted by u(z,t). We neglect the swimmers feedback
onto this prescribed flow, which is justified in the limit
when swimmers are very thin and dilute. The confor-
mation of an individual swimmer at time ¢ is given by
a curve X (s,t) parametrised by its arc-length s € [0, 4.
We neglect the swimmer’s inertia, so that its dynamics
is given by equating to 0 the sum of the forces that act
on it, namely

—(R[0:X —u(X,t)]+ 04(T0:X)
~KoiX+ f(s,t)=0. (1)

This equation of motion, which corresponds to the over-
damped Cosserat equation, is the same as that obtained
by resistive force theory to describe bio-filaments [23].
The first term on the left-hand side involves the drag
coefficient ¢ = 8w /[21log(¢/d) — 1] (with p the fluid dy-
namic viscosity) and the local Oseen resistance tensor
R=1-(1/2)9,X d,X". This expression of the force
exerted by the fluid assumes that, despite an arbitrary
length, the fibre’s thickness is so small that its perturba-
tion on the flow has a vanishingly small Reynolds num-
ber, whence a linear but anisotropic drag. The second
force appearing in Eq. is the tension. Its amplitude T
results from the inextensibility constraint |0s X (s, )| = 1,
valid at all time ¢ and all position s along the swimmer.
The third term is the bending elasticity force and de-
pends on the swimmer’s flexural rigidity K (product of
Young’s modulus and inertia). The last term, denoted
by f, is a prescribed internal force that accounts for the
active behaviour of the swimmer responsible for its lo-
comotion. Equation (1)) is associated with the free-end
boundary conditions 95X (s,t) = 0 and 92X (s,t) = 0 at
the swimmer’s extremities s = 0 and ¢. The tension it-
self satisfies a second-order differential equation obtained
by imposing d;|0; X |* = 0 with the boundary conditions
T(s,t)=0at s=0and /.

In the absence of active force (f = 0), the swimmer
is just a passive, flexible but inextensible fibre, whose
dynamics depends on two non-dimensional parameters.
One is given by the ratio £/ L between the fibre’s length ¢
and the characteristic spatial scale L of the fluid flow. It
characterises to which extent the fibre samples the fluid
flow length scales and monitors geometrical interactions
with surrounding structures and eddies [24 25]. The
other parameter is (U¢/KL)Y*¢, where U is a typical



magnitude of the fluid velocity. It measures the fibre’s
flexibility and in particular its likeliness to be bent or
buckled by the flow [26H28]. The larger it is, the more
deformable is the fibre when it is subject to shear or com-
pression.

B. The undulatory swimming procedure

We focus on swimmers that move by propagating a
sinusoidal plane wave along their body. This undula-
tion is assumed to be applied through the active body
force f appearing in the dynamical equation . The
swimmers are thus assumed to have the ability to adapt
their curvature along their body, as in the case of ne-
matodes [29, B0]. Such settings are somewhat different
from the beating of cilia or flagella, for which it is rather a
time-periodic boundary data that is imposed to a flexible
beating appendage, as in the case of sperm cells [31] [32].
We choose here to write the active force as

f(s,t) =ACvlcos(2rks/t—vit)p (2)

where p is a unit vector in a direction orthogonal to that
in which the swimmer is expected to move. The wave has
frequency v and wavenumber 27k /¢ where k is an inte-
ger. To ensure self-propulsion, we impose that the force
f is not a global source of momentum for the swimmer,
namely that [ fds = 0, justifying why the wavenumber
has to be chosen as a multiple of (27/¢). The strength of
the active force is controlled by the dimensionless ampli-
tude A.

The resulting swimming speed in the p direction,
which is hereafter denoted by Viwim, non-trivially de-
pends on the forcing parameters and the physical prop-
erties of the swimmer. To our knowledge, there is at
present no analytic expression for Viwim, even in the ab-
sence of external fluid flow (v = 0). This can be ex-
plained by the intricate role played by inextensibility
and tension and the imposed free-end boundary condi-
tions that prevent from obtaining an explicit solution
for the fibre conformation X for this force. Still, when
rescaling spatial scales by the swimmer’s length ¢ and
time scales by the wave frequency v~!, one finds that
Viwim = v (A, F), where F = ((v/K)Y*( is a non-
dimensional measure of the swimmer’s flexibility under
the action of the active force and the W¥.’s are non-
dimensional functions indexed by the wavenumber k. To
obtain their behaviour, we have recourse to numerics.

To set our physical parameters and understand bet-
ter how the swimmers respond to activation, we have
performed numerical simulations of the over-damped
Cosserat equation for isolated fibres in a fluid flow at
rest. We use the second-order, centred finite-difference
scheme of [33] with N = 201 to 801 grid-points along
the fibre’s arc-length. The inextensibility constraint is
enforced by a penalisation method. Time marching uses
a second-order semi-implicit Adams—Bashforth method
with time step ranging from 6t = 1073 to 10~*. We have

performed several simulations varying the forcing ampli-
tude, its wavenumber, and the swimmer bending elastic-
ity. After transients, the swimmer, which is initialised
in a straight configuration, develops an undulating mo-
tion corresponding to a travelling wave propagating from
its head (s = 0) to its tail (s = £). Once this periodic
regime is attained, we measure the time required for its
displacement over several lengths ¢ in order to evaluate
the asymptotic swimming speed Viwim-

0.02
J\/ @

0.015 1 W

\
0.01} ~/\/\/

0.005 /\’\’\]

—k=2 |
—k=3
—k=4

Swimming speed Vi (in units of v)

0 0.2 0.4 0.6 0.8
Non-dimensional forcing amplitude A

0.02 -

(b)

0.015 -

0.01 -

Viwim/ (€v)

0.005 - A=008 ]

—A=0.16
—A =035

0 5 10 15 20 25
Flexibility F = (@/[()l,dg

FIG. 1. Swimming speed in the absence of fluid velocity
field, (a) as a function of the forcing amplitude, for flexibility
F =15 and three various values of the wavenumber (k = 2,
3, and 4, as labelled), and (b) as a function of the swim-
mer’s flexibility F, for k = 2 and three values of the forcing
dimensionless amplitude A.

The dependence of the swimming speed upon the am-
plitude parameter A is shown in Fig. a), for different
wave-numbers k and a fixed dimensionless flexibility F.
Several representative configurations of the swimmer are
also shown, with a dot indicating its head (s = 0). At
small forcing amplitudes, the undulation of the swim-
mer is very close to the imposed wave and the swimming
speed increases quadratically. This behaviour can be ob-
tained from a linear expansion of Eq. at A < 1.
To leading order the swimmer is aligned with p*, the
unit vector orthogonal to the force, and it moves along
this direction. The projection of its position can thus
be expanded as pt - X = —s + X| with X| < 1.
In the transverse direction, one gets from Eq. that
X, = p-X = O(A). The inextensibility constraint
reads [0;X|*> = (1 — 9:X7)? + (0:X4%)* = 1, implying
that the longitudinal perturbation X is of the order of
(X%)2. This indeed implies that Viywim ~ 9 X] = O(A?).



This quadratic growth saturates for A =~ 0.1-0.2 and the
swimming speed then attains a maximum. This opti-
mal speed slowly decreases and shifts toward larger val-
ues of A when k increases. One consequently observes
that achieving a given swimming speed is getting more
energetic, or even impossible, when the wavenumber of
the undulation is taken larger. Beyond this maximum,
swimming becomes less and less efficient at larger forc-
ing amplitudes. At such value the swimmer’s distorsion
is highly non-linear and bending elasticity becomes im-
portant and induces an important dissipation.

Figure b) represents again Viyim, but this time as a
function of the non-dimensional flexibility F, for k = 2
and three different amplitudes of forcing, before, at the
maximum, and after. The swimming speed attains a
maximum at intermediate values of . When too stiff,
the swimmer is not able to develop any significant un-
dulation as the power input from the active force is dis-
sipated by bending elasticity. At very large values of
the flexibility, the swimmer is conversely too limp and
energy is dissipated through viscous drag. An optimal
locomotion is attained when the two dissipative mecha-
nisms balance.

This preliminary study of undulatory swimming in the
absence of an external flow allows us to properly choose
the physical parameters that will be considered. Here-
after we focus on the forcing wavenumber k£ = 2, the
flexibility is chosen to be F = 15, and the forcing am-
plitudes are picked before the saturation of swimming
efficiency, i.e. A <0.15.

III. STATEMENT OF THE NAVIGATION
PROBLEM

We consider the two-dimensional navigation problem,
which consists in having the swimmer moving as fast as
possible in the x; > 0 direction in the presence of a pre-
scribed external fluid flow. In Sec.[[ITA] after introducing
the model flow, we demonstrate that displacement can
only occur if the swimmer follows a strategy. We then
present in Sec. [[ITB| the observations and actions that
can be used by the swimmers to control its displacement
and we formulate the optimisation problem. We finally
introduce in Sec.[[TLC|a “naive” strategy and evaluate its
performance, with the aspiration that the reinforcement-
learning methods applied in Sec. [[V] can outperform it.

A. Swimming in a cellular flow

To design a navigation strategy, we consider an undu-
latory swimmer that is embedded is a two-dimensional
cellular flow. More specifically, we prescribe the outer
fluid velocity to be u = ViU = (—0,¥,0,¥) with
the stream function taking the simple periodic form
U(xz,t) = (LU/7) cos(wxy/L) cos(mxe/L). The spatial
domain is hence covered by a tile of cells mimicking ed-

dies. Their size L is chosen of the same order of magni-
tude as the fiber length ¢. The velocity field has an am-
plitude U to be compared to the swimming velocity Viwim
introduced in previous section. Such a two-dimensional
flow is a stationary solution of the incompressible Euler
equations and is used, for instance, to model the convec-
tion cells present in steady Rayleigh—Bénard convection.
It is often employed to study the effects of fluid shear
and rotation on transport and mixing. It moreover has
the convenience of being easily reproducible by experi-
ments [34]. As seen later, even if the motion of tracers
in such a flow is not chaotic, the dynamics of swimmers
can be so.

Our aim is to maximise the swimmer displacement to-
ward the x; > 0 direction. When using the basic swim-
ming, that is to say always binding the fibre to swim
with the force constantly applied along the direction
Pp = es, one does not observe any long-term, net displace-
ment. We have indeed perform a set of numerical simu-
lations where the swimmer is initialised in a straight con-
figuration, with its head always oriented toward x; > 0,
and varying its initial angle with the horizontal direction.
Unless otherwise stated, we always use a discretisation of
the swimmer with N = 201 grid-points and a time step
0t = 1073, Performance is then monitored by

£
a’:l(t):el-X(t):%/o e X(s,0)ds,  (3)

i.e. by the horizontal displacement of the swimmer’s cen-
tre of mass X.

Figure [2h reports the evolution of the displacement of
swimmers initialised with various initial orientations. Af-
ter crossing a few cells, they get systematically trapped
on rather stable cyclic orbits, preventing them from fur-
ther displacements. We identify two types of cyclic trap,
which are illustrated in Fig. 2b. In the case shown in
blue, the swimmer is oriented in the wrong direction (to-
wards 1 < 0) and swims in a counterflow that pushes
it to the right and exactly compensates its locomotion.
The position of its center of mass barely changes during
an undulation period. In the second case, shown in red,
the swimmer alternatively swims to the left, is rotated
by the flow, swims to the right, then changes again di-
rection, and so on. The mean abscissa Z1(t) performs
in that case a cyclic motion with an amplitude ~ 1.6 L
and a period corresponding to approximately 300 forc-
ing periods. The black line shows the position X (t) of
the swimmer’s center of mass sampled over more than 30
cycles. Actually, it does not exactly form a closed loop
and tiny deviations can be observed from one cycle to the
other. Despite this, such a cyclic motion remains stable
and persists for hundreds of cycles. Note that these sim-
ulations indicate a very sensitive dependence upon the
swimmer’s initial orientation as a tiny variation of the
initial angle can lead the swimmer to end up in distant
cells of the flow and in different configurations. This sen-
sitivity is a hallmark of a chaotic behaviour. However it
also indicates that the swimmers dynamics is not ergodic



@ o Celogueten the swimmer arc-length). We hereafter denote by S this
: set of states. Because of the high dimensionality of S, a

full description of the swimmer state is clearly not possi-
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FIG. 2. Swimmers continuously undulating in the vertical
direction without any specific strategy. The parameters are
here F = 15, U = 0.025¢v and ¢/L = 1. (a) Displacement
along the horizontal direction z; as a function of time for
initially-straight swimmers released with various angles with
the z1 axis. (b) Two instances of trapped swimmers: The
blue one is oriented toward 1 < 0 and is stuck between two
cells where it swims against the flow. The red one performs
a cycle across several cells, during which it is tumbled back
and forth by the flow; The trajectory of the swimmer’s centre
of mass is shown as a black line. The fluid vorticity w =
O1ue — O2uy is represented as coloured contour lines.

when they continuously undulate in such a flow.

Hence the swimmers do not show any net displace-
ment if they just follow their basic swimming procedure
without observing any further strategy. Moreover, an ad-
equate navigation policy should be able to prevent, or at
least destabilise, the two kinds of trap that were identi-
fied. Such an observation can be used to make a guess on
adequate minimal observations and actions that should
be accounted for in the swimmer’s decision process.

B. The optimisation problem

Our problem is to optimise navigation for a swimmer
by controlling the parameters of the actuating force based
on the current state of the swimmer. This problem is
typically studied using the formalism of Markov deci-
sion processes (MDPs), which assumes that the state of
the system is fully observable. This requires grabbing
an information that lives, in principle, in the infinite-
dimensional set of all two-dimensional curves s — X (s, t)
with length ¢, and in numerics, in the (N+1)-dimensional
manifold of RZY formed by attainable discretised config-
urations (N being the number of points used to discretise

ble, neither in numerics, nor in practical applications.
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FIG. 3. (a) The discretisation of observations depends on
both the swimmer orientation, which can be towards positive
or negative abscissae, and on the strength of the horizontal
fluid velocity at its head uy, which divides the flow in regions
of three different kinds. (b) The discretisation of actions set
whether the swimmer should propagate an undulation in the
horizontal or vertical direction, and with which amplitude A.

Instead of assuming a full information on the state
o € S, we consider that only a minimalistic informa-
tion is available. This problem falls under the cat-
egory of partially-observable Markov decision processes
(POMDPs), where the observations of the agent —the
swimmer — are not sufficient to infer the true state of the
system. As a result, optimal decision strategies must rely
on a limited amount of data, making the problem even
more challenging. We denote by O the set of all possi-
ble observations w. We infer from previous section that
the swimmer requires information on two features of its
state: whether or not it is rightly oriented and whether
the fluid velocity helps or hinders its displacement to-
wards z; > 0. More specifically, the first property is de-
duced from the sign of X(0,t) — Z1(¢), namely whether
the swimmer’s head is located on the right (w = 0,1, 2)
or on the left (w = 3,4,5) of its center of mass. The
second property is obtained from the horizontal compo-
nent up, = ey - u(X(0,t),t) of the fluid velocity at the



swimmer’s head. Three cases are distinguished: either
up < —ug and the swimmer feels a headwind (w = 0, 3),
either up > wug and it feels a tailwind (w = 2,5), or
|un| < up and it feels no significant wind (w = 1,4). ug is
a parameter that we fix to ug/U = 1/5. This makes up
for a total of 6 possible observations that are illustrated
and numbered in Fig. [3{(a), so that O = {0,1,2,3,4,5}.

The various actions that the swimmer can take are il-
lustrated in Fig. b). Seven choices are possible, con-
sisting in doing nothing (in black, @« = 0) or apply-
ing the active force either in the horizontal (p = e,
in red, @« = 0,1,2) or in the vertical (p = es, in blue,
a =4,5,6) direction, choosing among three possible am-
plitudes: A = 14y (o = 2,4), A = 24, (o = 1,5), or
A=Ay (o =0,6), where the base non-dimensional am-
plitude is fixed to Ag = 0.08. The set of all possible ac-
tions is again discrete and denoted A = {0,1,2,3,4,5,6}.

We assume that the swimmer observes its environment
at discrete times t,, = nAt with n € N. We choose the
time step At smaller than all physical timescales (in prac-
tice, we fix At = 0.2v71). A navigation strategy consists
in following a policy m, which associates to each couple
(an,wpn) € A X O, a probability 7(ay,|w,) to choose the
action v, having observed w,, at time ¢,,. A deterministic
policy corresponds to having 7(a|w) = 1 for a = a,(w)
and 7(a|w) = 0 otherwise. Finding an optimal strategy
consists in finding the policy 7, that maximises a given
reward over time.

To formally define our POMDP we use the tuple
(S, A,0,R, T,Q), where S, A, and O are the state, ac-
tion, and observation sets introduced above. The deci-
sion process also depends on the reward function R, the
transition function 7', and the observation function 2.
The reward function R maps the current state o, € S
and action «;, € A to a real number measuring the ben-
efit of having chosen this action. As we are interested in
maximising the motion of the swimmer to the right, the
chosen reward is the horizontal displacement of its centre
of mass R(on,an) = Z1(tns1) — ZT1(t,). The transition
function T is the function that maps the current state
and the action taken by the swimmer to the next state:
Ont1 = T(opn,a,). Such a function clearly exists be-
cause the full dynamics is deterministic and Markovian.
Finally, the observation function € is the function that
maps the state to the observation sensed by the swimmer:
wn, = Q(0y,). A given policy 7 defines a (possibly stochas-
tic) flow on S: o, — opy1 = T(0op, o) With «,, chosen
with probability law 7(:|Q2(c,)). The policy thus fully
determines the sequence {(oy,, ay,),n > 0} for a given gy.

We aim at finding a policy 7 that maximises the long-
term displacement of the swimmer towards positive ab-
scissae. Formalising this optimisation problem requires
introducing an adequate objective function. One could
naively think of maximising the actual asymptotic dis-
placement imy o0 [Z1(tn) — Z1(t0)] = D R(0n, o).
The infinite-horizon sum is however expected to diverge,
because we seek policies leading to effective displacement.
Such a pitfall is usually circumvented in MDPs by intro-

ducing a discount factor v to ensure convergence. One
then maximises the discounted return
o0
RE<[a] =) e R(on, an). (4)

n=0

The discount factor v attributes more importance to im-
mediate rewards than to those obtained in a distant fu-
ture. The choice of this parameter is largely problem-
dependent and can have a significant impact on the
learned policy. As seen later, we use such a reward in
our implementation of @-learning (Sec. . Still, as
discussed in [35], using a discounted reward can be prob-
lematic for POMDPs. One can alternatively maximise
the so-called differential return

R [7] = Z(R(O‘n, o) — Rl7))
where R[] :1\}i—r>noo % Z<R(O‘n, ap)). (5)

This formulation weights equally all rewards. It makes
use of the mean reward R[r] that is averaged over both
time and the realisations of the POMDP.

In the framework of MDP (for which w = o),
one often introduces the state value function Vi(o) =
(R]r] | o9 = o), which quantifies the quality of the pol-
icy m when we start from the state o. A particularly
useful function when searching for an optimal policy is
the Q-value function

Qr(o,a) = (R[] | 00 = 0,0 = @) . (6)

It assesses the value of the policy m when taking the spe-
cific action « in a given state . Typically, value-based
reinforcement learning algorithms try to learn an esti-
mate Q, of the optimal Q-value function over all possi-
ble policies and use it to extract an optimal deterministic
policy 7, as

m(alo) = 1if a = ag, (o) = argmax,, Q. (o, a’),
and 0 otherwise. (7)

Such an optimal policy always exists for MDPs, in the
sense that it maximises the value function V(o) for all
states o.

For our partially-observable settings, the agent does
not have a full information on ¢ and the the @-value
function (@ becomes irrelevant to the navigation prob-
lem. A policy that is optimal in the same sense as in
MPD is thus no longer guaranteed to exist [35]. Still,
as seen above, one can instead use a different optimality
criterion and maximise the differential return . Fol-
lowing [35], the @-value function can be then be defined
by projecting @), on observations, namely

Qr(w, @) = Y Qr(0,0) P(o|w) (8)
cES

where P(o|w) is the probability to be in state o, given
observation w.



C. A naive strategy

We introduce in this section a policy allowing the
swimmer to reasonably move in the x; > 0 direction.
We call it the naive strategy. It consists in following
rather simple rules: If the swimmer has the proper orien-
tation and simultaneously feels no headwind (w = 4,5),
the sinusoidal force is applied with maximal ampli-
tude Ag in the direction p = ez (o = 6). If the swimmer
is wrongly oriented and faces the x; < 0 direction, or
experiences a headwind (all other observations), then no
force is applied and the locomotion is stopped (o = 3).
This naive policy is shown in Fig. [Bh, using a graphical
representation that we will employed later on to describe
other policies: The different observations w are repre-
sented as 6 vertically aligned coloured boxes, each colour
(from red to blue) standing for the action « taken when
w is observed.

This policy breaks the symmetry z; — —x; and thus
induces a positive drift. It moreover prevents the swim-
mer from being indefinitely trapped by similar mecha-
nisms as those observed in Sec. [ITAl in the absence of
any strategy. We performed numerical simulations of
100 naive swimmers initialised at ¢ = 0 at the centre
of a cell in a straight configuration, but with different
initial orientations spanning [—7/2,7/2]. As we can see
from Fig. [@p, the naive strategy leads to a positive aver-
age displacement, with a distribution of swimmers that
perceptibly spreads with time. Sometimes the swimmers
temporarily fall in a trap and their displacement stays ap-
proximately constant during rather long times. As seen
from the sample of trajectories of Fig. [dk, these trapping
events correspond to the swimmer turning several times
around a given cell before escaping and pursuing its mo-
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U = 0.0250, ¢/L =1, ug/U = 1/5, and A9 = 0.08. (a)
Swimmer’s horizontal displacement 6,%1 = Z1(t + 7) — Z1(¢),
showing an average velocity V & 0.75 Viwim. (b) Zoom on
much shorter times showing a succession of fast displacements
and periods of trapping. (c) Variance of the swimmer’s dis-
placement Var [0,Z1] = ([6-Z1 — (6792’1)]2). (d) Corresponding
skewness S = ([6,%1 — (6,21)])/(Var [0,21])*/? and flatness
F = ([6:Z1 — (6:Z1)]")/(Var [6,Z1]).

tion towards x1 > 0. The quasi-periodic cycles of Fig.
are no more stable and the naive strategy makes endless
trapping impossible. Thanks to that, all trajectories are
asymptotically moving toward x; > 0 and the dynamics
of swimmers that follow this policy becomes statistically
stationary and ergodic.

Figure [5| shows more detailed statistics on the displace-
ment of swimmers that follow the naive policy. As can be
seen in Fig. [Bh, the displacement 6,21 = Z1 (t+7) — Z1(t)
approaches a self-averaged linear behaviour §,Z; ~ V 7
at large time 7. The average horizontal speed V is ap-
proximately 0.75 times the speed Viwim that the swimmer
has in the absence of an external flow. When zooming on
much shorter timescales (Fig. ), one actually observes
that this average displacement consists of an alternate
sequence of inefficient trapping periods and efficient dis-
placements, during which the swimmer swings smoothly
between cells with a speed slightly exceeding Viwim. As
we will see later, the long-term balance between these
two kinds of events is precisely what determines the ef-
fectiveness of a given policy.

The variance of §,Z; is shown in Fig. [fk. Its depen-
dence on 7 follows three successive regimes. At short
times 7 < 10/v, one has Var [§,Z;] oc 72, resulting from
swimmers moving with an instantaneous velocity differ-
ent from V', and thus deviations o 7 from the average
displacement. The corresponding higher-order moments
of 8, %, (skewness S and flatness F) are shown in Fig. [5d.
One observes at small time lags S < 0 with |S] < 1
and thus an almost-symmetric distribution of 6.z, so
that trapping is certainly not contributing much to this
regime. Fluctuations are sub-Gaussian, i.e. F < 3.
At larger times, naive swimmers follow an intermediate
regime where the variance of §,Z; grows super-diffusively,
approximately as t'57. This regime displays a negative
skewness, meaning that trapping is involved. The flat-



ness reaches values above 3, indicating a significant con-
tribution from extreme events. As seen later (Sec. ,
this intermediate regime falls in a range during which
swimmers have a significant probability to be trapped.
It extends to significantly long times, of the order of
7 &~ 500/v, above which the displacement becomes a se-
quence of independent events. The resulting ultimate
regime is diffusive, i.e. Var[0,Z1] o< 7. The skewness
tends asymptotically to S = 0 and the flatness decreases
to possibly approach F = 3.

We aim at finding policies that outperform this naive
strategy. For that, we test in next section various meth-
ods of reinforcement learning. It will be important to
keep in mind that, even if the swimmer follows a strat-
egy leading to a significant displacement, trapping can be
present and result in a significant dependence on history,
over times exceeding thousands of undulatory beats.

IV. REINFORCEMENT LEARNING
A. (Q-learning

Here, we first test the performance of classical Q-
learning. This method, which has been borrowed from
MDPs, has been extensively and successfully applied
in the past to optimise the navigation of active swim-
mers [12HIT].

Method

@-learning is based on the value-iteration update of
the Bellman equation. At each step t,, = nAt, the swim-
mer has at disposal an estimation @, of the @Q-table.
It makes an observation w,, of its environment, takes an
action according to the running policy, which is in the -
greedy case, is such that a,, = argmax,Q;, (W, @) with
probability 1 — €, other actions being chosen uniformly
with probability €/6. The swimmer then receives a re-
ward R, = Z1(tn+1) — Z1(t,) and the Q-table is updated
accordingly. The whole procedure is summarised in Al-
gorithm

Algorithm 1 Q-learning

Parameters: rates A and +v; exploration parameter ¢
1: Initialise @ and w
2: forn=1,2,... do
3: Take action o with the e-greedy law given by Q(w, )
4: Evolve the swimmer to the new state ¢’
5 Measure reward R and observation w’ = (o)
6: Qw,a) + (1 - AA)Q(w, @)
7: +AAL[R+ e " max, Q(w', o))
8: ww
9: end for

In addition to € € [0, 1] that controls how much ran-
domness is put in the learning process, the method de-

pends upon two parameters, which are here appropri-
ately expressed as inverse time scales. The first is the
learning rate A that we chose as the inverse of the time
needed by a swimmer to cross one cell with velocity Viwim
in the absence of outer flow, namely here A = v/40 for
Ag = 0.08. This rate sets the timescale at which the Q-
table is updated. A smaller A would have led to adapting
the policy with a too long delay compared to the dynam-
ical timescales of the swimmer, and thus to inefficient
adjustments. A larger A would imply that the Q-table is
updated too fast compared to the actual time needed to
discern the outcomes of a given action. The second pa-
rameter is the discount rate «, which sets the horizon of
future rewards. It was chosen as the inverse of the time
needed by the swimmer to travel across ten cells with
Viwim, namely v = v/400. The corresponding timescale
is at the edge of the long-correlated regime observed in
previous section for the naive policy. Initial entries of the
Q-table are all set to an arbitrary positive number, equal
in our case to 0.25 L.

For MDPs, successive iterations of the procedure[I]lead
to convergence of the entries of the @-table to the opti-
mal @-value function @ in the limit when n — oo and
€ — 0 simultaneously. Convergence results rely on the
usual stochastic approximation assumptions on the learn-
ing rate and are valid as long as all the state-action pairs
are indefinitely visited with a positive probability. The
associated empirical greedy policy then converges to the
optimal deterministic policy m, given by Eq. @ How-
ever, such convergence results only hold in the Marko-
vian case. There is no guarantee that they extend to our
settings and actually, counter-examples have been con-
structed in [35] showing that @Q-learning techniques do
not generally apply to POMDPs. We nevertheless test
this procedure below.

Non-convergence of e-greedy Q-learning

Figure [6fa) shows the displacement of swimmers dur-
ing the evolution of @-learning for decreasing values of
the exploration parameter €. All instances lead to a net
displacement of the swimmer. It consists of long periods
of forward motions interrupted by phases during which
the swimmer barely progresses. These alternations be-
come less and less frequent when ¢ decreases. Figure @(b)
shows the time-evolution of the policy followed by the
swimmer for ¢ = 0.025. Each extended period of for-
ward motion corresponds to a stabilisation of the run-
ning policy. For instance, between times ¢ = 0.7 and
1.4x 105,71, the swimmer maintains an average horizon-
tal velocity ~ 0.45 Vyyim that is smaller, but comparable
to the performance of the naive strategy. During this
time interval, the swimmer follows a policy that differs
from the naive one only by favouring a vigorous horizon-
tal undulation (« = 0, bright red) when a headwind is
observed (w = 0 and 3). This temporarily learned policy
is however forgotten at times ¢ > 1.5 x 105»~!. Other
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sustainable strategies are selected later on, giving rise
to subsequent periods of forward motion with different,
but comparable horizontal velocities. These numerical
experiments obtained at varying ¢ allow us to extrapo-
late to what would be obtained if the level of randomness
were decreased progressively: As the duration of forward-
motion periods expands when ¢ increases, the learning
procedure will probably get stacked to a given policy de-
termined by the history of the swimmer’s trajectory and
thus very unlikely to be the optimum. This gives ev-
idence that @-learning methods do not easily converge
for our problem.

We interpret the above-mentioned loss of memory as
a consequence of long-term trapping phases that can
clearly not be detected from our reduced set of obser-
vations. The underlying mechanism gets clearer when
looking at the time evolution of the @-table entries in
Fig.[7l The periods of forward motion are associated with
an increase of all Q¢(w, ), with the current running pol-
icy weakly singling out given entries. Once the swimmer
enters a phase of quasi immobilisation, this growth stops
and all entries of the @-table decrease simultaneously,
without any possibility to keep in mind the previously
learned strategy. Hence, convergence could in principle
be only achieved if the learning rates is small enough to
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FIG. 7.  Time evolution of the different components of the
Q table obtained for ¢ = 0.025, as in Fig. [fp. The six panels
correspond to the various values of the observation w, while
the different colours stand for the action «, as labeled.

filter out such trapping events, and would thus require
running the @-learning algorithm for extravagantly long
times.

An iterative Markovian approximation

Motivated by the suspicion that convergence could re-
quire very long times, we test here the idea to approx-
imate the dynamical evolution of the swimmer by an
MDP. Our hope is that this approximation will cap-
ture the most relevant information of our optimisation
problem, namely, the transition probabilities between the
states of our environment and the distribution of the re-
wards obtained by our agent. The advantages of this
approach are twofold: First, since the MDP only cares
about the transitions and the rewards process abstracting
away all the other aspects of the dynamics, the associated
learning algorithms will run significantly faster, without
having to simulate simultaneously the whole swimmer
dynamics; Second, this approach would separate the is-
sue of non-Markovianity from other potential difficulties.

Our procedure consists in constructing a sequence of
policies mg, m, ...7 that will hopefully converge to
the optimal 7. At each step, we simulate a swimmer
that follows the policy mg, trying out at every time step
t = t,, all possible actions to monitor the new observa-
tion and reward at time ¢,41. This is used to construct
numerical approximations to the transition probability
pr k(W |w, ) of observing w’ at time t + At given that
w was observed and action a was performed at time ¢,
together with the corresponding distribution of rewards
pr.;k(Rlw, ). Both distributions depend of course on
. We then use the approximate probabilities pr ; and
PR,k to run the Q-learning algorithm that, because of the
Markovian formulation imposed now, is ensured to con-
verge. This leads to construct the optimal policy 741
associated to the approximate system. This procedure
is reiterated changing the base policy to w41, until it
attains a fixed point. The method is summarised in Al-
gorithm [2]



Algorithm 2 Iterative Markovian approximation

1: Initialise policy mo

2: repeat for k=0,1,2,...

3 Simulate a swimmer that follows policy 7
4: Measure pri(w'|w, @) and pr.x(R|w, )

5 Use them to find the optimal policy mx41
6

. until Te41 € {7T0,7|’1,...,7Tk}

The motivation behind this procedure is that, if the
Markovian approximation is not too far off, then it is
natural to think that the optimal policy 741 of the ap-
proximate system should be at least an improvement on
the policy 7 if not also the optimal policy when we go
back to the real system. Hence, if the optimal policy
7, is a fixed point of our procedure, then the sequence
{mk; k > 0} would converge to it, thus solving our prob-
lem.

We have run this procedure, choosing for the initial
policy my the naive strategy of Sec. [[IIC] After three
iterations the algorithm circled back to the policy we en-
countered on the first iteration w3 = m;. Hence this pro-
posed procedure does not lead to any improvement with
respect to the naive policy. This could be again a sign
of the highly non-Markovian nature of our setting. We
therefore test in the next section various approximation-
based methods that could in principle lead to efficient
results for POMDPs.

B. Approximation-based methods

In the previous section, we made use of the traditional
@-learning with discounted return to estimate the
action-value function. We applied blindly this method by
replacing states with observations and obtained only lim-
ited success. Here, we will explore two approaches that
belong to the broad class of approzximation methods for
reinforcement learning [36]: the semi-gradient differen-
tial SARSA and the Actor-Critic policy-gradient method.
Both use a formulation of the optimisation problem in
which value functions are estimated in terms of the dif-
ferential return instead of the discounted return.

The main motivation for using such approximation
methods is the partially-observable nature of our prob-
lem. In such settings, accurate estimations of the action-
value function @ are difficult, hindering the convergence
of exact-solution algorithms like Q-learning [35]. How-
ever, by using approximation methods, such as neural
networks or other parametric models, we can represent
the policy and value function in a way that takes into
account only the available observations rather than the
full state. Such methods are flexible and effective and,
in particular, they provide a way to trade-off between
the quality of the solution and computational complex-
ity. This makes them a good choice for problems with
large or continuous state spaces, where exact solution
methods are not applicable. They can also search for
optimal stochastic policies, which can help ensure explo-
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ration during the learning process, particularly when the
optimal policy may not be deterministic, as is often the
case in POMDPs [35], though not likely in our exact
case. For these reasons, approximation methods allow
us to effectively address the partial observability issue
and achieve good performance, at least in theory, with-
out compromising the underlying theory of reinforcement
learning.

1. Semi-gradient differential SARSA

The semi-gradient differential SARSA algorithm is a
value-based method, like Q-learning. It similarly builds
on the idea of estimating the action-value function @ to
construct an optimal policy, but uses for that the differ-
ential return instead of the discounted return. A key dif-
ference between this method and traditional SARSA or
Q-learning is that it involves an approximation of the Q-
function in place of its exact value. We use here the linear
parametrisation Q(o, o) = Qy (0, o) = Z” i 00(0),i Oar,j
where 0 is the Kronecker delta, ¢ — (o) = w is
the observation function introduced in Sec. [[ITB] and
n € RS x R7 denotes the approximation parameters.
This approach aggregates together all states leading to
the same observation (similarly to what we did for Q-
learning). The partial observability of the problem is
then devolved to this specific choice of the approxima-
tion. Such a method was used successfully in [37] to find
the optimal swimming strategy for Najafi’s swimmer [3§]

The main idea of semi-gradient differential SARSA
is to update the approximation of the value function
by combining the gradient descent and temporal differ-
ence (TD) learning methods in order to converge to the
parameters m* that approximate best the optimal Q-
function. The action at the n-th step is chosen, as in
Q-learning, such that «,, = argmax,Qy (0, @) with pos-
sibly an e-greedy step. The resulting procedure is sum-
marised in Algorithm

Algorithm 3 Semi-gradient differential SARSA

Algorithm parameters: rates A1, \2; exploration parameter ¢

1: Initialise w, o, R, and the approximation parameters 1
2: forn=1,2,... do
3: Take action « and evolve to the new state o’

4: Measure reward R and observation w’ = Q(o”")
5: Choose action o/ with e-greedy law given by Qp(o”, ")
6: Compute the error § = R— R+ Oy (o', @) — Op (0, a)
7. R+ R+MAtG
8: NN+ XAtdVOy(o,a)
9: ww, oo
10: end for

Figure|8[reports results obtained with this method. We
have here chosen the rates Ay = 0.025v and A2 = 0.025v,
which corresponds to the inverse of the times needed by
the swimmer to cross one and ten cells with Viyim, respec-
tively. The displacements obtained for different values of



the exploration parameter ¢ (Fig. ) are by an order of
magnitude smaller than those resulting from the e-greedy
Q@-learning algorithm. In addition, results indicate that
the learning performance decreases when e decreases, at
variance with what was observed for Q)-learning. At the
largest value of €, one finds forward-moving periods to be
much shorter and trapping phases much more frequent.
Still, when zooming on an interval of time when the swim-
mer significantly progresses, one observes that the local
velocity is comparable to those obtained with @-learning.
As can be seen from Fig. [8p, the corresponding running
policy fluctuates much, and significant displacement only
occurs when the policy is able to maintain for a signifi-
cant amount of time the action o = 6 (undulate vertically
with maximal amplitude) for the two most favourable ob-
servations w = 4 and 5 (corresponding to being rightly
oriented with no headwind).
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FIG. 8. Results of semi-gradient differential SARSA ob-
tained with the same physical parameters as in Fig. [6] of pre-
vious subsection. (a) Time-evolution of the displacement for
three different values of the exploration parameter . (b)
Time evolution of the optimal policy shown here for ¢ = 0.1.
Both figures show as insets a zoom on a time interval during
which the swimmer significantly progresses.

We found that in our setting, the semi-gradient differ-
ential SARSA method is not able to learn properly due to
a non-ergodicity of the environment. Indeed, the swim-
mer is often trapped in a situation where it observes the
same observation w = 3 (being wrongly oriented with no
headwind), performs the same action o = 6 (undulate
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vertically with maximal amplitude), and remains indefi-
nitely trapped in this situation. (The curve associated to
e = 0.025 in Fig. |8p is an example of such a situation.)
This is due to the fact that in a large set of configurations
leading to observation w = 3, the swimmer performing
action o = 6 remains in the same set of configurations.
Furthermore, the swimmer keeps on being stuck, even if
it performs other actions but not for a long-enough time,
so that its probability of escaping decreases exponentially
fast as e — 0.

2. Actor-Critic policy-gradient method

Policy-gradient methods strongly differ from Q-
learning and semi-gradient differential SARSA in that,
instead of learning the function @, they learn directly the
policy 7 by interacting with the environment. Addition-
ally, instead of using the temporal difference rule to learn
the estimates, policy-gradient methods are gradient-
based, meaning that the policy is itself approximated,
similarly to the value function for differential SARSA,
by an estimate g, which involves a set of parameters 0
that are learned using gradient descent.

We furthermore use here an Actor-Critic version of
such a method. The “actor” represents the policy, while
the “critic” estimates the value function. This separa-
tion can help improve the stability and convergence of
the policy-gradient algorithm, as well as reduce the vari-
ance of the gradient samples used to update the policy
parameters. Together, the actor and the critic form a
coalition where the actor selects actions and the critic
evaluates the quality of those actions to provide feedback
to the actor to improve its policy.

The general scheme of the Actor-Critic algorithm is
sketched in Fig. [Qh. After a change in the environment,
both the actor and the critic are informed about the new
observation w of the system. The critic, which has also
access to the reward, updates its approximation V,, of
the value function and communicates to the actor the
temporal-difference (TD) error ¢, which measures the
difference between the expected return and the actual
return. The actor uses the information that ¢ provides
on the quality of the approximated policy 7g in order to
update it and decides, according to the observation w,
the action to be taken throughout the next step.

We choose to represent the policy by the soft-max
parametrisation

. 1 4

7(alo) = Fg(alo) = %: Zee”(SQ(J)J Oajs (9)
with normalising factor Z; = > y e%. The approximated
policy hence depends on the state o only through the ob-
servation w = (o). This seamlessly takes into account
partial observability by considering only the available in-
formation rather than the full state of the system. The
policy parameters @ € RS x R” are optimising a perfor-
mance measure given by the average return R[rg] defined
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evolution of the displacement obtained for the actor-critic al-
gorithm for fixed hyper-parameters. Inset (c) Time evolution
of the value function for the six different values of the obser-
vation w, as labelled.

in Eq. . The gradient-ascent procedure used by the
actor to update 6 requires to approximate the gradient
Ve R[rg] of the performance measure. We rely on the
policy-gradient theorem (see, e.g., [36])

21— (o (oo Yorelalo)
VGR[WB]—<Q”9(’ ) 7o (c|o) >

= <Qﬁ9(07 a) Vo IOgﬁe(a‘U» ) (10)

which allows us to instantiate the performance-measure
gradient as VgR[mg] ~ Oy(0,a) Vglogig(alo), where
Q,, is an approximation of the value function, at the
hands of the critic, 7 being the associated parametri-
sation parameters.

We can use the value function as a baseline for a better
estimate of the gradient. Since (Vi,(0) Vg log rg(alo)) =
0, the gradient can be rewritten as

VoR[mg] = (Az,(0,a) Vg logwg(ala)), (11)

where Az, (0,0) = Qz,(0,a) — Vi, (0) is the advan-
tage function. We furthermore use that the temporal-
difference error of the value function is an unbiased esti-
mate of the advantage function, namely

Az, (0,a) = (0), with (12)

§ = R(ot, ) — R[fte] + Vg (0i1at) — Vap(0t),

leading to sample the performance-measure gradient as
VoR[mg| ~ § Vg log7g(a,|,0:) and use this approxima-
tion to update the policy parameters. As for the gradient
of the policy, we use the soft-max approximation (@ to
write

. 1 4.
o, ;log o(alo) = 00(0),i0a,j — geel] 09(0),i

wo(jlo)].  (13)

In practice we use an approximation of the value function
Vo (0) = Vy(0) = >, ni0g(s),; With parameters n € RS,
in order to compute 6. We trivially get 0,,Vyp(o) =
5(2(0‘),2'-

= 59(0),75 [6o¢,j -

12

Summing up these expressions finally yields the proce-
dure presented in Algorithm [

Algorithm 4 Policy gradient / Actor-Critic

1: Algorithm parameters: rates A1, A2, A3

2: Initialize w, o, R and the parameters 8 and

3: Initialize the state o and the action «

4: forn=1,2,... do

Take action o and evolve to the new state o’
Measure reward R and new observation w’ = Q(o”")
Select the next action o’ ~ 7g(-|o")

Compute the TD error § = R — R+ Vi (o) — V(o)
R+ R+ MAtS

10: n(w) < n(w) + A2Atd

11: O(w, ) < O(w, ) + A3At 6 [0a, — 7ro(-| 0)]

12: wew, a+—ad

13: end for

We evaluate the performance of the actor-critic policy
gradient algorithm in our navigation problem with the
learning rates Ay =5 x 10~7v and Ay = A\3 = 5 x 10~ 5v.
The results reported in Fig. [0p show that the swimmer
reaches a swimming velocity that is similar to that of
the e-greedy @-learning algorithm during forward mo-
tion periods. However, unlike the @Q-learning algorithm
which suffers from an enormous variability, the results
obtained by actor-critic are more consistent and stable,
showing minimal variability across different realisations.
As seen in Fig. Ph , the learning process of the swim-
mer shows the desired behaviour as the swimming veloc-
ity systematically, albeit slowly, improves overtime. The
evolution of the value function of the different observa-
tions (Fig. [0k) uncovers a sizeable amount of the story, it
highlights how the swimmer initially learns to distinguish
that tailwind is better than no significant wind, which in
turn is better than headwind. Much later in the process,
it ends up learning the obvious (to us humans) fact that
being righty oriented is better than being wrongly ori-
ented. Eventually, as can be seen by the very end of this
run, it starts to make more precise evaluations by start-
ing to learn that orientation is more important than the
wind direction and magnitude. This improvement, which
is only reached at the end of the run, indicates that there
is still significant potential for further improvement in the
swimmer’s performance when using such an algorithm.

Regarding the policy, as shown in Fig. [I0] the swimmer
evolves and adapts its strategy over time in the course
of the learning process. The policy starts from a ran-
dom state where the swimmer is equally likely to choose
any of the seven possible actions and thus basically being
carried along by the flow. Over time, it learns to select
with higher probabilities the actions that are more likely
to lead to an improvement in its horizontal displacement.
The swimmer, for instance, eventually discovers that ac-
tion 6 is the most effective when it is oriented in the right
direction and the wind is blowing in the right direction
or not significant. This may seem obvious to us, but it
took the swimmer a long time to figure it out. It is worth
mentioning that this run for the actor-critic algorithm is
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FIG. 10. Time evolution of the approximated policies, shown
for each value of the observation w € {0..5}. The probability
of choosing a given action « is shown as a coloured area.

longer by a factor of 10 compared to previous runs, but
the performance of the swimmer still improves consis-
tently, although at a slower pace than in the early stages
of the process.

All in all, the actor-critic algorithm presents a learn-
ing process that is more stable and consistent across runs
compared to Q-learning. This stability leads to a policy
that is incrementally improved during learning, result-
ing in the desired feature of improved performance over
time. However, despite its consistent learning process,
the swimmer’s performance achieved through the actor-
critic algorithm falls short of the results obtained with the
naive strategy and requires substantial computational re-
sources if it is to surpass it.

C. Competitive Q-learning

We have seen in previous subsections that various
methods of reinforcement learning fail to provide a sat-
isfactory answer to our optimisation problem. On the
one hand, the idea of bluntly applying methods designed
for Markovian systems, such as @-learning, suffers non-
convergence. On the other hand, approximation ap-
proaches, which were in principle developed to tackle par-
tial observability, face issues related to an extremely slow
convergence, if any, making their use ineffective or even
prohibitive. Moreover, all the policies that emerged as in-
termediate or asymptotic outcomes of these trials, were
found to be significantly less performant than the naive
strategy introduced in Sec. [[ITC] We interpret these dif-
ficulties as a consequence of the rather brusque manner
with which we have projected the high-dimensional set
of swimmer’s configurations onto a very small number
of discrete observables. Such a reduction of information
triggers the chaoticity of the system, including of the
learning process and this explains the sensitivity of our
results to both the method and the particular chosen tra-
jectory during iterative optimisation procedures.

In light of these observations, we present here a new
perspective. In place of searching for a single efficient pol-
icy that would possibly outperform the naive strategy, we
propose to construct a set of admissible policies. To make
such a construction as easy as possible, we consider 200
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FIG. 11. Results of 200 realisations of deterministic Q-
learning. (a) Average swimming speeds, ordered by decreas-
ing performance. The two dotted lines show the velocities
of the naive policy and that obtained with the Actor-Critic
algorithm; the two dashed vertical lines mark quasi discon-
tinuities in the swimmers performance. (b) Strategies that
significantly lead to the swimmer’s displacement, again or-
dered from the most performant to the least. The two dashed
vertical lines mark the same change of behaviour as on the
left panel.

different realisations of deterministic @-learning (with a
vanishing exploration parameter i.e., ¢ = 0) that are ob-
tained by choosing randomly the initial orientation of the
swimmer. Each realisation of the learning algorithm is
run in parallel to the others for a time t = 2x10°v~!. Af-
ter this duration, the deterministic Q)-learning algorithm
has in all cases stabilised to a given policy, even if the en-
tries of the @-table have not converged. This evolution
to a fixed policy is a result of our decision to eliminate
exploration by setting € = 0. The 200 policies obtained
this way are then used to construct our admissible set.

Figure shows the asymptotic velocity 6,Z1/7 at-
tained by these 200 instances of (-learning, ordered by
decreasing efficiency. One observes roughly three classes
of policies, which are separated in the plot by vertical
dashed lines. The top 15% perform better, or compara-
bly to the naive strategy. The next 15 to 37% realisations
overcome the strategy obtained by the actor-critic algo-
rithm and give a reasonable displacement of the swim-
mer. Finally, the worse 63% do not yield any signifi-
cant displacement. These three regimes are separated by
abrupt jumps in the average velocity. As evidenced from
Fig. [[1p, they correspond to significant changes in the



corresponding policies. The top 15% policies clearly be-
long to the same category as the naive strategy. They
are all prescribing a vigorous vertical undulation (a = 6)
when the swimmer is favourably oriented and feels no
headwind (w = 4 and 5). They essentially recommend
to stop swimming (« = 3) for a right orientation and a
headwind (w = 3) or when the swimmer is directed the
wrong way and experiences a headwind (w = 1 and 2).
They favour horizontal undulations (o = 0 and 1) or to
stop swimming (o« = 3) when the swimmer is wrongly
oriented with the flow blowing to the left. These top
strategies mostly differ by the actions chosen for w = 0,
1, and 2. The separation with the second family of poli-
cies is clear from Fig. [[Ip: It corresponds to a change in
the action performed for w = 3, from stopping swimming
to undulating in the horizontal direction. The second
change separating the second and third categories is as
clear: The policies stop there prescribing a vertical un-
dulation in the favourable configuration w = 6.

When looking with more detail at the 15% top-ranked
outcomes of Q-learning, one notices that the correspond-
ing policies are rather few. They indeed form a set of
five admissible policies whose performances are very sim-
ilar and overtake each other depending on the realisa-
tion of the algorithm. In addition to the naive strat-
egy, which can be written as a, = [3,3,3,3,6,6] where
the i-th element of the array corresponds to the action
o (w) followed when w = 4, the other four policies are
a. = [0,3,3,3,6,6], [1,3,3,3,6,6], [3,3,0,3,6,6], and
[0,1,3,3,6,6]. Notice that none of these five policies
emerged, neither in an intermediate stage, nor asymp-
totically, in the various trials of reinforcement learning
in previous subsections. We select these five strategies
to define a set of admissible deterministic policies that
are potential solutions to our optimal navigation prob-
lem. In the next section, we address with more detail
their actual performance and robustness when varying
the physical settings in our system.

V. PERFORMANCE AND ROBUSTNESS OF
THE ADMISSIBLE POLICIES

A. Long-term statistics

We here provide details on the performance of the five
admissible strategies obtained from competitive realisa-
tions of deterministic Q-learning in Sec.[[V C| Figure [I2h
shows the time evolution of the velocity 0,Z;/7 along
trajectories that each follow one of the selected policies
(velocities are there expressed in units of the swimming
speed Viwim in absence of flow). Unambiguous differences
in the performance of the different policies are only vis-
ible for 7 > 10°/~1, the shorter time lags being essen-
tially dominated by violent fluctuations of the displace-
ment. This very slow convergence of the time averages
along the swimmer dynamics can clearly be an important
source of difficulties when using iterative optimisation al-
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gorithms. We hereafter label these trajectories from (1)
to (5) using their efficiency ranking. The naive policy is
(@ and the diagrams of the other admissible policies are
shown in inset of Fig. [[2k.

The variances of the displacement over a time 7 evalu-
ated for the five policies are shown in Fig. [I2b. We have
here divided it by the time lag 7 in order to measure ef-
fective coefficients of diffusion. One observes almost the
same ordering of trajectories (except for (5)), suggesting
that good performance goes together with weaker fluctu-
ations. All curves saturate to a plateau at large times,
indicating a long-term diffusive regime of the horizontal
displacement about its average, as already observed for
the naive strategy in Sec. [[ILC} The asymptotic value
gives an estimate of the associated coefficient of diffu-
sion. For all policies, it is of the order of the fluid-flow
units, namely UL, which is itself of the order of the dis-
placement units ~ Viyim#. This means that, on a time
L /Viwim needed by the swimmer to travel across a cell, it
typically diffuses over a distance equal to the cell size L it-
self. This strong diffusion accounts for the observed slow
convergence of the average velocity. The order of magni-
tude of diffusion exactly corresponds to a finite contribu-
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FIG. 12. Comparison of the admissible strategies () to (5)
— as depicted in the inset of panel (¢) — again evaluated for
F =15 U =0.0250v, {/L = 1, uo/U = 0.2, and Ay = 0.08.
(a) Time-averaged horizontal velocity §-Z1/7 as a function
of the time lag 7. (b) Effective diffusion coefficient obtained
from the variance of 6-Z1. (c¢) Complementary cumulative
distribution function of the first passage time T4 from x; =
jLtox1=(j+1)L.



tion from trapping. It indicates that on a time L/Viyim,
the swimmers can remain with a finite probability in the
same cell rather than moving to the next one.

These considerations become much clearer when mea-
suring the probability distribution of the time Ty; that
the swimmer needs to travel from one cell to the next
adjacent one. The complementary cumulative distribu-
tion functions obtained for the five policies are shown in
Fig. [I2k. All curves almost collapse on the top of each
other, up to times corresponding to hundreds of undu-
latory beats. Admissible policies therefore differ little in
their ability to move the swimmer when its conditions
are standard. Nonetheless, marked difference are found
in the tails of the distributions, which are sampling trap-
ping events. The two most performant policies () and
(2)) are associated to lesser probabilities of getting a long
transition time 77 ;. This can be interpreted as a con-
sequence of the horizontal undulation that both policies
recommend when the swimmer is wrongly oriented with
a negative fluid velocity (w = 0). Such a choice appar-
ently makes a difference with the two next policies ((3)
and (@) that both display a fatter tail in the distribution
of T'y1. For these two policies, the swimmer stops undu-
lating when in such a configuration. Finally, policy (),
which is beaten by the four others, shows a higher proba-
bility at smaller values of 1.1, possibly indicating that it
is more likely to bring about trapping, even if swimmers
can then escape faster.

B. Robustness with respect to the physical
parameters

Here we address the performance of admissible policies
by varying the physical properties of the swimmer. We
have performed a set of numerical simulations where we
alternatively vary the size ratio ¢/L, the swimmer flex-
ibility F = (Cv/K)Y*¢, or the velocity ratio U/Viyim,
while keeping constant the two other parameters. We es-
timated from these simulations average swimming speeds
by monitoring again the asymptotic displacements of the
swimmers.

Figure shows the performance of five policies ob-
tained at varying the length ¢ of the swimmer. We find
that dependence upon policy is only visible for swim-
mers that are sufficiently small compared to the cell size,
whereas at larger sizes, the five policies perform compara-
bly well. One indeed observes for ¢ < 0.8 L that the per-
formance ranking of policies is completely shuffled. The
swimmers following the otherwise efficient policies (I) and
(2) barely move towards x; > 0, while the best perfor-
mance is achieved by (3). This can be understood by the
fact that tumbling and trapping completely change their
natures for short swimmers (or equivalently large-scale
fluid inhomogeneities). The action of trying to escape by
a vigorous vertical swim seems hence less efficient than
just stopping to swim and waiting for being conveyed by
the flow in a more favourable region. At larger swimmer
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FIG. 13. Robustness of the admissible strategies (1) to (5)
when varying the swimmers physical parameters. All results
where obtained for uo/U = 0.2 and Ap = 0.08. (a) Aver-
age swimming speed as a function of the ratio between the
swimmer length ¢ and the flow length scale L (for F = 15
and U = 0.025/¢v both fixed). (b) Same, as a function of
the swimmer flexibility F = ((v/K)'/*¢ and the flow length
scale L (for ¢/L =1 and U = 0.0254v). (c) Same as before,
varying this time the fluid flow velocity U (for ¢/L = 1 and
F = 15). On each panel, the vertical dashed line shows the
parameter value used in earlier sections.

sizes (¢ 2 0.8 L), the ranking between the various poli-
cies seems almost independent of ¢/ L, even if the various
policies seem to asymptotically perform similarly. The
swimming speed seems to saturate for ¢ > 1.8 L. This
due to the fact that long swimmers are very unlikely to
get tumbled by the flow, so that what only matters are
the actions performed for observations w = 3, 4, and 5
and they are identical for the five admissible policies.

Figure shows dependence upon flexibility. The
various policies perform equally well for rigid swimmers
(small F). In that case, they are almost never bent, nor
buckled by the flow. This prevents trapping, and thus
does not allow the various policies to display any differ-
ences in performance. At the same time and as seen in
Sec. [[TB] much energy is dissipated by the elastic forces,
hindering efficient swimming motions. The differences
between the various strategies is however much more vis-
ible for flexible swimmers (large F). Policies that effi-
ciently prevent long-term traps ((I), @ and (5)) stand
clearly out from the two others. This divergence is pro-
moted by flexibility, because the swimmers are more and
more likely to get trapped when F increases.

Finally, figure show results obtained when varying
the amplitude U of the outer fluid flow. For all poli-
cies, the average horizontal velocity decreases from the
swimming speed in the absence of flow (U = 0) to very
small values for strong fluid flows. None of the admissible
policies lead to any significant displacement of the swim-
mers for fluid velocities exceeding ~ 0.045 v ~ 2.5 Vywim-
It seems from our measurements that the performance
ranking between the five policies does not depend on U.

C. Tests in two-dimensional unsteady flows

To assess further the robustness of the proposed poli-
cies, we consider now the case where the swimmers are



moving in a more realistic stationary flow that solves the
incompressible Navier—Stokes equations. The fluid veloc-
ity field, in place of being a steady cellular flow, is now a
solution of

pt [Oru +u - Vu] = —Vp + uV3u — au + V*iF,
V-u=0, (14)

where pr is the fluid mass density, assumed constant, p is
its dynamic viscosity, a is a friction coefficient account-
ing for the two-dimensional confinement of the flow, and
V1 F is an external incompressible force that maintains
the flow in motion. We choose the stationary cellular
force F = (@UL/7) cos(wxy /L) cos(mxs/L), with a forc-
ing amplitude U and a spatial period L that set the large
velocity and length scales of the flow. The dynamics then
depends upon two non-dimensional parameters, the vis-
cous Reynolds number Re, = p¢U L/p, which balances
inertia and viscous dissipation, and the friction Reynolds
number Re, = peU/(La), which balances inertia and
friction. Depending on them, the flow might bifurcate
between different regimes [39, [40]. We assume Re,, > 1,
so that viscous dissipation acts only at small scales, pos-
sibly yielding a direct turbulent cascade of enstrophy. By
contrast Re, is used as a control parameter. With this
choice one recovers when Re, < 1 the stationary cellular
flow that has been previously considered. When Re,, in-
creases, the flow transitions to a turbulent regime where
it is unsteady and chaotic. Hllustrations of the associated
vorticity fields are given in Fig. and b.

Average swimming speed (in units of Vigin)

2 4 6 8 10
Friction Reynolds number Re,

FIG. 14.

Swimmers immersed in a non-steady flow that
follow the five admissible policies. Left panels: snapshot of
the fluid vorticity w = d1u1 — d2u1 (contour lines in back-
ground), together with the instantaneous position of swim-
mers coloured according to the policy they follow, for (a)
Ren ~ 2 and (b) Req ~ 9.5. Right panel (c) Average swim-
ming speed as a function of the friction Reynolds number Re,
for the five admissible policies, as labeled.

We have performed several numerical simulations of
the fluid velocity at varying the friction Reynolds num-
ber Re,. We used a pseudo-spectral solver with 2562 col-
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location points, second-order Runge-Kutta time march-
ing, and implicit integration of the linear viscous and
friction terms. The velocity is assumed 27-periodic and
we set L = m/2. Various swimmers are embedded in the
flow (20 for each policy from (D) to (§)) and we monitor
their progression toward x; > 0. In all simulations, both
physical and navigation parameters are kept the same as
in Sec. namely F = 15, U = 0.025¢v, (/L = 1,
uo/U = 0.2, and Ay = 0.08. The average horizontal
speed of such swimmers is reported in Fig.[T4p as a func-
tion of the friction Reynolds number. At low Re,, one
recovers the same performance ranking as previously ob-
served in stationary cellular flows. However, for Re, > 4,
the flow develops a chaotic regime characterised by open
streamlines with rather strong jets where the swimmer
might be entrained in an inappropriate direction. The
performance of policies (3) and (4) drops down signifi-
cantly, while the other policies continue to operate rel-
atively well. This dissimilarity can be explained by the
contrasting responses to trapping observed in Sec. [VA]
Policies (1), (@) and (5) have in common to promote a
horizontal undulation when the swimmer is wrongly ori-
ented with a headwind. This action allows the swimmer
to move transversally and escape strong persistent jets
that otherwise sweep it toward z; < 0. This makes ap-
parently a noticeable difference at intermediate values of
Re,.

VI. CONCLUDING REMARKS

We have studied in this paper the question of optimis-
ing the displacement of undulatory, deformable micro-
swimmers evolving in a prescribed, non-homogeneous
outer flow. Our physical model imposes close links be-
tween the macroscopic displacement of the swimmer and
its microscopic active deformation that induces motil-
ity. This clearly differs from standard optimal-navigation
problems, which generally assume a scale separation be-
tween these two mechanisms that is sufficiently large to
consider them independent from each other. We used
reinforcement-learning methods to address this problem,
trying constantly to interpret the outcomes of our ap-
proaches in terms of the underlying physics. An impor-
tant message that we want to convey is the necessity of
determining the relevant physical timescales of the prob-
lem. This leads not only to choosing appropriate hyper-
parameters of the learning schemes, but also to estimat-
ing and understanding their convergence rate.

In our settings, the swimmer’s configurations form a
high-dimensional set from which we arbitrarily decided to
exploit only very partial information. However, these set-
tings happened to constitute a clear instance where the
prescription of only a limited knowledge of the state of
the agent has drastic impacts on the optimisation of the
decision process. We have tested several methods, rang-
ing from simple Q-learning to more sophisticated approx-
imation methods. All these trials lead to prohibitively-



long convergence times, if not infinite. To our opinion,
this is due to the fact that the information on the swim-
mer’s configuration is so coarse that our problem deviates
in a significant manner from the usual Markovian frame-
work. This, combined with chaotic dynamics, leads to
tremendous fluctuations with respect to initial data that
jeopardise the outcomes of reinforcement-learning proce-
dures. The combination of a very-partially observable
character with a highly-chaotic nature of the system is
certainly a feature shared by many other practical de-
cision problems. It would be of significant interest to
formalise better such connections by evaluating for in-
stance the stability and ergodicity of the global dynami-
cal system defined as the union of the iterative learning
procedure and the underlying dynamics.

Despite these difficulties, we have proposed an alter-
native approach based on concurrent realisations of rein-
forcement learning. Instead of limiting the optimisation
procedure to searching for a unique satisfactory approx-
imation of the optimal policy, we shifted our objective
to constructing an almost-comprehensive set of admissi-
ble strategies whose performance and robustness might
be assessed subsequently. The case we have considered
is particularly rich, while remaining tractable. The set
of admissible strategies was obtained in a quite simple
manner by running different instances of deterministic Q-
learning, whose results proved to be particularly sensitive
to the specific initialisation of the algorithm. Moreover,
the set constructed this way reduces to only five different
admissible policies, making rather easy any systematic
assessment on their efficiencies. Still, as demonstrated
in Sec. [V] the performance of each of these policies can
appreciably vary when changing the physical parameters
of the swimmer or the type of fluid flow in which it is
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immersed. Such a systematic investigation would have
been impossible if one had to solve, for each setting, an
expensive optimisation problem.

Finally, let us stress that most of the difficulties we
faced could be stemming from the arbitrary choice of
limited observables and actions that we considered in the
decision process. The motivation for such a prescription
was mainly coming from practical applications. In gen-
eral, the amount of accessible information and of pos-
sible manoeuvres is strongly constrained by the design,
cost, and efficiency of sensors and engines that equip a
micro-robot, or by the primitive nature of the micro-
organisms in consideration. However, it could largely
be that the observables and actions that we have chosen
are not enough for this physical model and the associ-
ated navigation problem. It would thus be interesting to
repeat this analysis and the reinforcement-learning trials
by adding, at both ends of the decision process, encoder-
decoder neural networks that would automatically ex-
tract and redistribute the relevant information. Inter-
preting the encoded information could be highly perti-
nent to the design of optimal sensors and actuators and
their implementation in practical applications.
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