Sabah Al-Fedaghi
email: salfedaghi@yahoo.com

Redrafting Requirements Modeling Using a Single Multilevel Diagram

Keywords: conceptual modeling, inconsistency, Stoic ontology, requirement specification, events, states I

The complexity of software-based systems has increased significantly, especially with regards to capturing requirements along with dependencies among requirements. A conceptual model is a way of thinking about and making sense of the real world's complexities. In this paper, we focused on two approaches in this context: (a) multiple models applied to the same system with simultaneous usage of dissimilar notations vs. (b) a single model that utilizes a single framework of notations. In the first approach, inconsistencies arise among models that require a great deal of painstaking discipline and coordination between them. The multiple-model notion is based on the claim that it is not possible to present all application views in a single representation, so diverse models are used, with each model representing a different view. This article advocates a second approach that utilizes a single model with multilevel (static/dynamic and behavioral) specification. To substantiate this approach's feasibility, we embrace the occurrence-only model, which comprises (a) Stoic ontology, (b) thinging machine (TM) language and (c) Lupascian logic. In this paper, we focus on TM modeling as the mechanism of single-model building. We claim that a TM can be a unifying diagrammatic language for virtually all current modeling languages. To demonstrate such a claim, we redraft almost all the diagrammatic representations in The Handbook of Requirements Modeling of the International Requirements Engineering Board. This redrafting includes context, class, activity, use case, data flow and state diagrams. The results seem to indicate that there are no difficulties in representing all views in TM.

INTRODUCTION

The real world's increasing complexity suggests the need to reconsider how to carry out conceptual modeling [START_REF] Lukyanenko | System: A core conceptual modelling construct for capturing complexity[END_REF]. A conceptual model is -a way of thinking about and making sense of the complexities of the real world‖ [START_REF] Patton | Qualitative Research and Evaluation Methods[END_REF]. In this situation, maintaining consistency is a crucial aspect of model-driven software engineering [START_REF] Mens | Detecting and resolving model inconsistencies using transformation dependency analysis[END_REF].

Additionally, the rate at which software-based systems' complexity grows has increased significantly, especially regarding capturing requirements along with dependencies among requirements [START_REF] Cziharz | Handbook of Requirements Modeling According to the IREB Standard: Education and Training for IREB Certified Professional for Requirements Engineering Advanced Level "Requirements Modeling[END_REF]. Precise requirements analysis and capture are of great significance in identifying user needs in the early stages of the development process.

- --*Retired June 2021, seconded fall semester 2021/2022 Errors that resulted from improperly defined requirements lead to additional effort in respecification, redesign, redevelopment and retesting. In this case, costs increase tremendously.

These facts clearly show how important the precise requirements analysis and capture are [START_REF] Ramsch | Classical requirements and test analysis a discontinued model?[END_REF]. It is essential that the requirements are elaborated to such an extent that they are easy to read and unambiguous but still offer the developers enough freedom in their implementation [START_REF] Ramsch | Classical requirements and test analysis a discontinued model?[END_REF].

System development involves a multi-stakeholder (including software engineers) effort that requires a shared understanding of the system requirements [START_REF] Glinz | Handbook for the CPRE Foundation Level according to the IREB Standard[END_REF]. Problems with requirements arise when different stakeholders envisage different solutions for a given problem, with the consequence that they specify different, conflicting requirements for that problem [START_REF] Glinz | Handbook for the CPRE Foundation Level according to the IREB Standard[END_REF].

Requirements modeling will help enhance shared understanding among stakeholders. Modeling is a particular way of ratifying explicit requirements though abstract representation of the part of reality to be created. Models help infer coarse concepts and increase the possibility of interpreting them correctly, thus contributing to the creation of proper shared understanding [START_REF] Glinz | On shared understanding in software engineering[END_REF]. To specify such a model, a diagrammatic language is created to support the requirements' elicitation, analysis, and documentation process. It is a language designed specifically for easy consumption by executive, business and technical stakeholders [START_REF] Beatty | An Introduction to Requirements Modeling Language, Visual Models for Software Requirements[END_REF].

A. Problem

When developing many models to treat the same system with the simultaneous usage of dissimilar notations, we face genuine difficulties in keeping various system accounts consistent with each other. Other difficulties include traceability, process mapping, changeability, completeness, over-specification, conformity and documentation [START_REF] Kelemen | Process based unification for multi-model software process improvement[END_REF]. They necessitate a great deal of painstaking discipline and synchronization between the models. Such a multiple-model approach is based on the claim that it is not possible to present all application views in a single model, so diverse representations are used, with each model representing a different view. According to [START_REF] Glinz | Handbook for the CPRE Foundation Level according to the IREB Standard[END_REF], -If multiple models are used to describe the requirements, it is important to keep these models consistent with each other. This requires a lot of discipline and coordination between the models.‖ An indepth study of UML [START_REF] O'keefe | The Meaning of UML Models[END_REF] showed that the official definition of UML 2 includes inconsistent UML models.

Nevertheless, the current prevailing line of software system development promotes the notion of unification, as in Everything is an object [START_REF] Bézivin | On the unification power of models[END_REF], and unified multiple modeling. Unification refers to a unifying notation that incorporates the best of a number of other notations as well as current best practice in one generally applicable notation [START_REF] Karsai | Unification or integration? The challenge of semantics in heterogeneous modeling[END_REF].

An alternative approach is the use of an integrative approach of a single model that enables requirements specification in a uniform diagrammatic language. Several attempts have been made in this direction. In this paper, we use a model called a thinging machine (TM) modeling [START_REF] Al-Fedaghi | Conceptual modeling of an IP phone communication system: A case study[END_REF][START_REF] Al-Fedaghi | Modeling system events and negative events using thinging machines based on Lupascian logic[END_REF]. For brevity, we will focus on modeling behavior or the change of the system aspects over time, as we will illustrate next.

B. Motivation: Behavior Models

We specifically divide the conceptualization process into two distinct phases: a static portrait of potentialities and dynamic representation of actualities. The potentiality refers to the possibility of coming into existence as an event. The terms here are based on the ontological model, called the occurrence-only model, presented in [START_REF] Al-Fedaghi | Antithesis of object orientation: Occurrence-only modeling applied in engineering and medicine[END_REF], and will be reviewed briefly later in this paper. Potentiality is a basic philosophical notion with many related notions (e.g., remoteness and papery; e.g., semen, embryo, and baby [START_REF] Shihadeh | The Ontology of Possibility[END_REF]). In this context, we will try not to become involved in deep philosophical aspects at this phase of our research. The material in this paper is oriented toward minimizing these aspects and delaying further exploration of future research.

We use the notion of potentiality in the Stoic sense as subsistence not existence of things (see [START_REF] Al-Fedaghi | Modeling system events and negative events using thinging machines based on Lupascian logic[END_REF]) and utilize it in a static timeless level of modeling. For example, we tie this stacity with the notion of state (as in state machine) to support our claim that state diagrams are not exactly a dynamic description. In this line of thinking, if we know an object's state, we still need to know about its timed version. A person is in love is a (static) state condition, but we still, at the dynamic level, have to supplement the statement with an instance of this person (e.g., William Shakespeare time: 1582-1616). Further, we need to know when he/she fell in love (e.g., time: age 20 and up) to transform the static statement to a dynamic description. This claim implies that such (software) diagrams as UML state, activity and sequence diagrams fall short of being behavior models. In two-level modeling, the static and dynamic descriptions are separated in timeless and time-infested levels, as illustrated next.

According to [START_REF] Bock | Ontological Behavior Modeling[END_REF], UML has three ways to specify behaviors. Each emphasizes different aspects: activities for inputs and outputs between actions and their time ordering, state machines for reacting to notification of external events and interactions for messages between objects. Ref. [START_REF] Bock | Ontological Behavior Modeling[END_REF] explained that -the real-world implications of anything said in behavior languages are what occurs when behaviors actually happen.‖ For example, a factory operation for changing an object's color happens many times every day at many factories, each involving a different object, different colors and so on. Each time the behavior happens is a separate behavior occurrence. Accordingly, it seems that [START_REF] Bock | Ontological Behavior Modeling[END_REF] argue that behavior is specified in terms of types that are instantiated repeatedly. The semantics of behavior languages specify which occurrences (Fig. 1 right) cannot be expressed completely (Fig. 1 left). Additionally, [START_REF] Bock | Ontological Behavior Modeling[END_REF] proposed specifying the successions between behavior events, as Fig. 2 shows.

The TM modeling, as will be demonstrated in this paper, fills the diagrammatical gap between the left and right diagrams of Fig. 1. TM treats activities, objects and states in a uniform way as events. We show that a TM provides an alternative ontological foundation and modeling language for most current approaches to modeling behavior.

C. Two-level Modeling

This section illustrates the notion of vertical representations over a single model.

Instead of the common approach of separate diagrammatic representation of static and dynamic features (e.g., class vs. state diagram), a TM language assembles a model that has vertically dynamic representation over static representation. Staticity refers to timelessness. The static TM model is built from subsisting regions with a logical order imposed by potential flows and triggering. The static model comprises fixed parts, and it simply subsists, e.g., -the flow of traffic depends on cars [and flow] without being anything but the cars‖ [START_REF] De Harven | How nothing can be something: The Stoic theory of void[END_REF]. Traffic is not itself a solid body, but it is nonetheless real because it depends on cars for its subsistence; this subsistence is captured in the static region. Cars are entities that exist as physical things. Traffic is a process that subsists as a region of the existing traffic. If there are no cars; still, traffic subsists as a potential thing. Suppose that the traffic -disappears‖ even though there are cars and roads (e.g., due to COVID-19). The absence of traffic may mean, (a) There is such a thing called traffic, but it currently does not occur (stopped).

(b) There is no such thing called traffic, just as there is no life after death and no round square even though there are squares and circles. Clearly, (a) is the plausible answer. If there is a thing called traffic that is not currently actualized (exists), then where is it? The Stoic answer is it subsists.

GAP

To make the notion of subsistence clearer to computer scientists, consider the process of addition instead of traffic, expressed by the code ADD A,B. The instruction ADD A,B is of course just a code for the process of addition. The process of addition subsists in ADD A,B, and it comes into existence when actualized in the execution of ADD A,B. When it is not executed, the addition process is subsisting in ADD A,B. We categorize ADD A,B as the static description of addition, and when it is executed, it is realized dynamically, e.g., fetch operand A in ALU, fetch operand B into ALU. So, the code ADD A,B is not addition; it is where addition subsists. When the addition does not exist, i.e., in the execution mode, it is not in the -nonexistence‖ mode because it is still there in reality waiting for execution. On the other hand, ADD A,B does not exist signifies its disappearance or vanishing, e.g., it was erased or never written as a code. That is why the Stoics believed the meaning (Lekta) subsisted in linguistic expressions. Therefore, the meaning of ADD A,B is certainly not the linguistic symbols. It may be described as what subsists inside ADD A,B that can actualize in reality.

Subsistence is as real as existence. A stoppage of a process does not mean its destruction, just as the stoppage of an engine does not mean its disappearance. The engine is still there, but it is no longer running. The existence and not existence of running (working) depend on the engine because running cannot exist by itself without an engine. In this case, if running does not exist, it subsists, ready to exist again. The subsistence of running is not its destruction as in the living of humans and animals vs. non-living (death) that will not occur (to the living) again (potentiality) when it stops. Similarly, the stoppage of traffic means that cars and roads are still there, but the traffic process is still in reality as a subsisting phenomenon ready to exist again. In this case, according to the Stoics, reality can be described in the form of alternating between existence and subsistence.

Here, we see that potentiality is a weaker feature than possibility. Potentiality of existence implies a thing exists by itself or inside an existing thing. Possibility implies a thing exists by itself. Therefore, cars and roads are possible, whereas traffic is a potential (needs cars and road to exist). Because traffic's existence is based on the existence of -cars and road‖ and the description of traffic subsistence is a region that includes cars and road, the whole region is a potentiality that includes the stronger feature of possibility.

Fig. 3 shows existing traffic as a repeated event of car flow. Fig. 4 shows the static traffic as a region of process (event). The subsistence of the static traffic becomes an existing event. The region of traffic subsists as a potentiality. The notion in these two figures will be discussed in the second section of the paper.

Building a dynamic model involves representing existing things (e.g., physical things, earthquakes, yards, outer space). Existence here evolves from potentiality of the static diagram. This two-level modeling is based on the Stoic two-level being that adopts two kinds of reality: existence and subsistence. Such a two-level model is missing from most current modeling approaches.

Example: Consider the state diagram shown in Fig. 5 [START_REF] Libretexts | Finite-state machine overview[END_REF], which models a turnstile used to control access to subways. Depositing a coin in a slot of the turnstile unlocks the arms, allowing a single customer to push through. After the customer passes through, the arms are locked again until another coin is inserted.

According to [START_REF] Wagner | An ontology for state analysis: Formalizing the mapping to SysML[END_REF], -Understanding state is fundamental to successful modeling. Everything we need to know and everything we want to do can be expressed in terms of the states of the system under control because ultimately those are the things we wish to control.‖ Nevertheless, the state (in software modeling) is typically defined in an informal way.

The OMG [START_REF] Omg | Precise Semantics of UML State Machines (PSSM)[END_REF] -document Semantics of UML State Machines‖ mentions the term -state‖ 2,462 times but does not define it.

Semantically, a behavior means whatever a system does that is publicly observable. It is a description of doing [START_REF] Kim | Mind and Behavior[END_REF]. A state is a description of the status of a system that is waiting to execute a set of actions. It is a description of having something done [START_REF] Kim | Mind and Behavior[END_REF].

The turnstile is a system that includes a passenger and a machine. The passenger does actions, and the machine has something done to it. So, the machine, not the system, does the waiting, and the passenger, not the system, does the actions. Therefore, it seems the state diagram involves missing implicit knowledge, a mixture of whom does what and ambiguity between doing something and having something done. By contrast, a TM contains only actionsin fact, only five actions-in any system: create, process, release, transfer and receive.

A static description is a sequence of states that a system passes through, like the model [START_REF] Bock | Ontological Behavior Modeling[END_REF] discussed in the previous subsection, which is built using types such as paint and dry that are nonindividual (nonobject) notions. The occurrences of paint and dry are specified in another diagram. Dynamic models, in contrast, describe how those states unfold in time [START_REF] Boccardi | Computational externalism: The semantic picture of implementation[END_REF]. They are used to understand how the system changes over time. In the turnstile example, Fig. 5 is built from types (not instances): coin, locked, push, etc. Therefore, it is a static representation. A static description is a sequence of states that a system passes through, like the model [START_REF] Bock | Ontological Behavior Modeling[END_REF] discussed in the previous subsection, which is built using types such as paint and dry that are nonindividual (nonobject) notions. Dynamic models, in contrast, describe how those states unfold in time [START_REF] Boccardi | Computational externalism: The semantic picture of implementation[END_REF]. They are used to understand how the system changes over time.

Static TM model: Fig. 6 shows the static TM model. Coin is received to trigger (dashed arrow number 1) releasing the lock to the open position (2), pushing past (3) triggers moving the lock to the locked position [START_REF] Cziharz | Handbook of Requirements Modeling According to the IREB Standard: Education and Training for IREB Certified Professional for Requirements Engineering Advanced Level "Requirements Modeling[END_REF].

Dynamic TM model: To construct this model, we need to define what an event is. A TM event is constructed from a sub-diagram of the static diagram (called region) and time. Fig. 7 shows the event Coins are deposited in the turnstile machine. For simplicity, we will represent the event by its region. Fig. 8 shows the dynamic system with four events, E 1-E 4 . Fig. 9 shows the behavioral model of the turnstile system in terms of the sequence of events.

D. Solution: A Single Multilevel Model

The previous section illustrated the idea of vertical modeling. The work in this article embraces modeling based on -everything is event‖ instead of -everything is object.‖ The approach is called occurrence-only modeling, in which an occurrence means an event or Process where a Process (capitalized to distinguish it from -process‖ as an action in a TM) is defined as an assembly of events that form a whole (i.e., a high-level event) [START_REF] Al-Fedaghi | Antithesis of object orientation: Occurrence-only modeling applied in engineering and medicine[END_REF]). An event's presence (signifies an occurrence) is defined in time and -region‖ (a portion of the description of the potential world), and the event's absence (negation) is its region [START_REF] Al-Fedaghi | Antithesis of object orientation: Occurrence-only modeling applied in engineering and medicine[END_REF].

In a TM, objects are nothing more than long events. The underlining paradigm includes (a) Stoic ontology that has two types of being, existence and subsistence, (b) a TM that limits activities to five generic actions and (c) Lupascian logic, which handles negative events.

Our work in this paper focuses on TM modeling. We claim that a TM as a single multilevel model can potentially be a unifying diagrammatic language for almost all current modeling languages. To substantiate such a claim, we redraft in TM almost all diagrammatic representations in [START_REF] Cziharz | Handbook of Requirements Modeling According to the IREB Standard: Education and Training for IREB Certified Professional for Requirements Engineering Advanced Level "Requirements Modeling[END_REF]. The redrafting diagrams as Fig. 10 shows. The results seem to indicate no difficulties in representing these diagrams in a TM. Note that Fig. 10 includes BPNM, ER and sequence diagrams referring to previous publications, in which these diagrams were represented in a TM.

E. Paper's Structure

The next section comprises a general review of the occurrence-only framework of modeling that includes TM.

Regions of potentialities

Lupascian logic Actualization/ Becoming

Use case Diagram

BPMN ER

Thinging Machines

Occurrence-Only

Stoic ontology Existence

Events and Processes

II. OCCURRENCE-ONLY MODELING

Occurrence-only conceptual modeling is founded on three grounds [START_REF] Al-Fedaghi | Antithesis of object orientation: Occurrence-only modeling applied in engineering and medicine[END_REF], TM, Stoic ontology and Lupascian logic. Here, we emphasize TM materials. More information on Stoic ontology and Lupascian logic can be found in [START_REF] Al-Fedaghi | Modeling system events and negative events using thinging machines based on Lupascian logic[END_REF]. The TM basic modeling entity is called a thimac (thing/machine) because it is conceptualized with the dual nature of a thing and machine. The machine consists of five actions: create, process, release, transfer and receive. (See Fig. 11). A thimac as a thing is created, processed, released, transferred and received. A thimac as a machine creates, processes, releases, transfers and receives. Therefore, instead of the famous saying "everything flows," in a TM, every thimac creates, processes, releases, transfers and/or receives, and every thimac is created, processed, released, transferred and/or received.

The TM machine actions are described as follows.

1) Arrive: A thing arrives to a machine.

2) Accept: A thing enters the machine. For simplification, we assume that arriving things are accepted (see Fig. 11); therefore, we can combine the arrive and accept stages into the receive stage.

3) Release: A thing is ready for transfer outside the machine.

4) Process: A thing is changed, handled and examined, but no new thing results.

5) Transfer:

A thing is input into or output from a machine.

6) Create: A new thing manifested in a machine

Additionally, the TM model includes a triggering mechanism (denoted by a dashed arrow in this article's figures), which initiates a (non-sequential) flow from one machine to another. Moreover, each action may have its own memory storage (denoted by a cylinder in the TM diagram) of things. For simplicity, we may omit create in some diagrams because the box representing the thimac implies its beingness (in the model).

III. STATIC MODELS

Starting with this section, we convert diagrams from [START_REF] Cziharz | Handbook of Requirements Modeling According to the IREB Standard: Education and Training for IREB Certified Professional for Requirements Engineering Advanced Level "Requirements Modeling[END_REF] into TM diagrams discussed in the introduction. The aim is to substantiate our claim that TM as a single multilevel model can, potentially, be a unifying diagrammatic language for almost all current modeling languages.

According to [START_REF] Bézivin | On the unification power of models[END_REF], since the inception of the notion -Everything is an object,‖ the unification principle has been the engine most helpful in the direction of simplicity, generality and power of integration. The idea of an object was a scheme unifying data and process. According to [START_REF] Cziharz | Handbook of Requirements Modeling According to the IREB Standard: Education and Training for IREB Certified Professional for Requirements Engineering Advanced Level "Requirements Modeling[END_REF], to make the complexity of the modeling manageable, various views of the system are represented through diagrams. Each diagram is based on a specific diagram type, which in turn is defined via a modeling language. A number of diagram types and associated modeling languages are available for requirements modeling.

The selection of the diagram type depends on the purpose, which thus determines which specific system requirements should be documented and which persons are the -target audience‖ for the requirements models. Diagram types used are those that allow the modeling of processoriented aspects, such as event-based process chains or BPMN diagrams as part of the business analysis, as well as UML activity diagrams [START_REF] Cziharz | Handbook of Requirements Modeling According to the IREB Standard: Education and Training for IREB Certified Professional for Requirements Engineering Advanced Level "Requirements Modeling[END_REF].

A. Text and Diagram

Fig. 12 from [START_REF] Cziharz | Handbook of Requirements Modeling According to the IREB Standard: Education and Training for IREB Certified Professional for Requirements Engineering Advanced Level "Requirements Modeling[END_REF] shows the difference between -textual‖ and -modeled‖ requirements and Fig. 13 shows its corresponding static TM model. In Fig. 12, the left panel shows textual requirements that specify necessary behavior in relation to the input of data via an entry screen. The right panel shows the requirements modeled in which -a model is regarded as an abstracting image of the properties of a system‖ [START_REF] Cziharz | Handbook of Requirements Modeling According to the IREB Standard: Education and Training for IREB Certified Professional for Requirements Engineering Advanced Level "Requirements Modeling[END_REF]. This example shows that -the interactions of the various aspects of the required system behavior are explicitly visible in the modeled requirements, whereas this information is only implicitly present in the textual requirements‖ [START_REF] Cziharz | Handbook of Requirements Modeling According to the IREB Standard: Education and Training for IREB Certified Professional for Requirements Engineering Advanced Level "Requirements Modeling[END_REF].

Fig. 13, the static TM diagram that corresponds to Fig. 12, involves the user (Number 1 in the figure) and the system (2). The entry mask (3) is retrieved and sent to the user (4) to be displayed [START_REF] Ramsch | Classical requirements and test analysis a discontinued model?[END_REF]. The user is supposed to input something (6) that flows to the system [START_REF] Glinz | On shared understanding in software engineering[END_REF] where it is examined [START_REF] Beatty | An Introduction to Requirements Modeling Language, Visual Models for Software Requirements[END_REF]. If the input is wrong, then this triggers [START_REF] Kelemen | Process based unification for multi-model software process improvement[END_REF] an error message sent to the user [START_REF] O'keefe | The Meaning of UML Models[END_REF]. Otherwise, the user is asked [START_REF] Bézivin | On the unification power of models[END_REF] to enter data [START_REF] Karsai | Unification or integration? The challenge of semantics in heterogeneous modeling[END_REF]. The user enters the data (13) that moves to the system (14) to be examined [START_REF] Al-Fedaghi | Antithesis of object orientation: Occurrence-only modeling applied in engineering and medicine[END_REF]. If there is an error in the data, then this creates a data error message (16) sent to the user [START_REF] Bock | Ontological Behavior Modeling[END_REF]; otherwise the data is stored [START_REF] De Harven | How nothing can be something: The Stoic theory of void[END_REF]. Fig. 13 is an engineering schema based on the static specification and forms the foundation of the dynamic model. As before, for the sake of simplification, events will be represented by their regions. The following more meaningful events are more optimal than the generic events (events of the five generis actions) as shown in Fig. 14; thus, we list the following events. E 1 : The system sends the entry mask to be displayed to the user. E 2 : The user sends input to the system. E 3 : The system finds an error in the input. E 4 : An error message is sent to the user. E 5 : The system requests to enter data. E 6 : The user sends data. E 7 : The system finds an error in the data. E 8 : The system sends a data error message. E 9 : The system stores the data. Fig. 15 shows the behavior diagram.

B. Context Modeling

A challenge in requirements engineering is understanding the context of the system under development. A context diagram is used to identify the necessary interfaces between the system under development and its context. It is the part of a system's environment and relevant for communicating the system and its requirements [START_REF] Glinz | Handbook for the CPRE Foundation Level according to the IREB Standard[END_REF].

Fig. 16 shows an example of a context diagram using structured analysis. The overall system in Fig. 16 (an early warning system in the mining industry) is represented as a circle in the middle. The human is labeled as a stick figure, and the organizational and technical neighboring systems are represented as boxes. The interface is modeled in the form of data flows to and from neighboring systems [START_REF] Cziharz | Handbook of Requirements Modeling According to the IREB Standard: Education and Training for IREB Certified Professional for Requirements Engineering Advanced Level "Requirements Modeling[END_REF]. Fig. 17 shows the corresponding context diagram using TM modeling. We used a simplification where the actions, release, transfer and receive, are not shown.

C. Class Diagram

According to [START_REF] Cziharz | Handbook of Requirements Modeling According to the IREB Standard: Education and Training for IREB Certified Professional for Requirements Engineering Advanced Level "Requirements Modeling[END_REF], a -class‖ is a template that defines the common properties of many objects. The objects are then referred to as instances of these classes. The class diagram in Fig. 18 includes a -part/whole‖ UML relationship. For the sake of simplicity, do not include starting point (see Fig. 18) in the corresponding model, Fig. 19.

Process: Create

Early Warning System Sensor Admin

Data

Data error

Error?

E 6 E 5 E 4 E 3 E 2 E 1 E 7 E 8 E 9
Fig. 14 The dynamic diagram 1) Static model Fig. 19 shows the static TM model, where the route contains the destination as part of its composition that cannot exist as a separate part, detached from a specific route. Place of interest in the figure involves the so-called aggregation with route where a route has zero (null value) or more place of interest, and a place of interest has at most one route (at a time).

The process of constructing the route starts at pink number 1, and it is assumed that route 2 contains data: the ID 3 of the route, and other attributes 4 (not shown in the figure) and also destination 5 as a subthimac of the route. These fields form the composite part of route 6 that places of interest 7 will complete. Thus, the destination is part of the route that exists and perishes with the route.

Place of interest 7 is part of the route that is injected in route as follows. The place of interest is received 8 (independently from route) and processed 9 to extract the place of interest ID 10 and its route ID 11. We assume that the place of interest data includes its route ID to be inserted in. This data is necessary to, 1) Insert the place of interest in its route 12 (the brown box labeled Assigning Places to route).

2) Enforce the constraints as follows.

Enforcing that a place of interest is associated with only on route: The route ID and place of interest ID 13 are processed 14 to create the tuple (ID, ID) 15 that flows to the system 16. There, the tuple (ID, ID) is compared 17 with a similar tuple in a table 18 that registers all current existing relationships between IDs of routes and places of interests. Thus, if the given new destination already has different route, an error occurs 19; otherwise, 20 the tuple (ID, ID) is added to the table if it is not already there. Thus, inserting the places of interest in the route is performed Fig. 19 can easily be more elaborated (e.g., searching the (ID, ID) table), and it can easily be simplified.

2) Dynamic model that corresponds to the class

Fig. 20 shows the dynamic model. The dynamic model operates on the assumption that route data are stored in one file that includes multi-fields for places of interest. The dynamic model captures inputting one route with places of interest that is input one after another. The selected events are as follows: E 1 : Input route, including destination, E 2 : Input place of interest, E 3 : Extract the two IDs of a route and its place of interest, E 4 : Construct the IDs tuple E 5 : Search the ID tuples for whether the place of interest is already associated with the other route, E 6 : If the place of interest is already associated with a route, then issue an error message, E 7 : Add the IDs tuple to the table if not already there, and E 8 : Insert the place of interest in the route.

Process

Route

Places of interest Places of interest

Fig. 21 shows the behavioral model for this Process.

IV. DYNAMIC MODELING

According to [START_REF] Cziharz | Handbook of Requirements Modeling According to the IREB Standard: Education and Training for IREB Certified Professional for Requirements Engineering Advanced Level "Requirements Modeling[END_REF], dynamic views -offer a lot of different abstraction criteria for specifying different aspects of the functionality.‖ Ref. [START_REF] Cziharz | Handbook of Requirements Modeling According to the IREB Standard: Education and Training for IREB Certified Professional for Requirements Engineering Advanced Level "Requirements Modeling[END_REF] provides the following types of dynamic views: use case view, control flow-oriented view, data flow-oriented view, state-oriented view and scenario view.

A. Use Case

Fig. 22 shows a sample use case. Fig. 23 shows the corresponding TM model. Notably, the difference between the two representations is not just a matter of replacing the stickman with boxes. In TM modeling, the diagram in Fig. 23 is the base model that is enhanced repeatedly at the behavior level in contrast to the stickman notation that disappears in the next modeling phases.

B. Data Flow Diagram

According to [START_REF] Cziharz | Handbook of Requirements Modeling According to the IREB Standard: Education and Training for IREB Certified Professional for Requirements Engineering Advanced Level "Requirements Modeling[END_REF], data flow diagrams are often used to model requirements from a data flow-oriented perspective. Such a diagram can easily be constructed in different levels of TM models.

C. Activity Diagram

According to [START_REF] Cziharz | Handbook of Requirements Modeling According to the IREB Standard: Education and Training for IREB Certified Professional for Requirements Engineering Advanced Level "Requirements Modeling[END_REF], UML activity diagrams can model requirements from the control flow perspective, and these diagrams are useful mainly for communication between the persons involved: -the completeness of the specification can be achieved with supplementary activity descriptions.‖ Ref. [START_REF] Cziharz | Handbook of Requirements Modeling According to the IREB Standard: Education and Training for IREB Certified Professional for Requirements Engineering Advanced Level "Requirements Modeling[END_REF] introduces a model for activity diagrams, -which are relevant for requirements engineering: the interruptible activity region‖ where the user terminates the activity by clicking on -Cancel.‖ However, the example is not clear; hence, we illustrate the notion of interruptible activity from an example taken from [START_REF] Boufenara | On formalizing UML2 activities using TPNets: Case studies[END_REF] as shown in Fig. 24.

Fig. 21 The behavioral model for constructing one route. The example involves a commercial order process in which a customer belonging to the system could intervene and stop the order processing procedure. Ref. [START_REF] Boufenara | On formalizing UML2 activities using TPNets: Case studies[END_REF] modeled this case using an activity diagram of the process order activity, including the interruptible region (left) and its corresponding Petri Nets cancellation event (right).

Fig. 25 shows the corresponding TM model. First, an order request arrives at the system (pink number 1). The request is processed to check the request [START_REF] Patton | Qualitative Research and Evaluation Methods[END_REF]. Assuming it is okay, the system creates the order (3) used to create an estimated price (4) that is sent to the customer (5). To save space in this paper, we will not describe the rest of the order procedure. Additionally, the customer can interrupt the order operations by a cancellation signal (6) that is processed [START_REF] Glinz | On shared understanding in software engineering[END_REF] to cancel order progress at any phase.

Fig. 26 shows the dynamic of this ordering system. Fig. 27 shows the behavior system. Note that R i in Fig. 27 represents the region of E i , that is the negative event, -not (or stop) R i ‖ reverting to the static level as described in Section 2. In the behavior model, if the cancelation event R 7 coincides with any of the other events, then the event reverts to the static level, halting any progress in the order processing. Fig. 28 illustrates the progress of events in such a system.

D. State Diagram

According to [START_REF] Cziharz | Handbook of Requirements Modeling According to the IREB Standard: Education and Training for IREB Certified Professional for Requirements Engineering Advanced Level "Requirements Modeling[END_REF], the state space of the system is modeled in the state-oriented view within the dynamic view. The states and state changes observable at the interface between the system and the system context are modeled in this view. A state change of the system can be triggered by an event. Ref. [START_REF] Cziharz | Handbook of Requirements Modeling According to the IREB Standard: Education and Training for IREB Certified Professional for Requirements Engineering Advanced Level "Requirements Modeling[END_REF] gives a typical example of the states of the object request for leave in a business-oriented system. This example does not have enough details to be understood completely by the author of this paper. However, the literature has many state diagrams of request for leave in business-oriented systems, and we selected an example (Fig. 29) to model taken from [START_REF]Workflow[END_REF] to demonstrate our aim.

The state diagram in Fig. 29 involves the following: an employee submits the request, the supervisor approves the timesheet and the HR department reviews and finalizes the decision. The states are: drafting the request, pending manager's approval, returned, pending HR's approval, approved or rejected. Fig. 30 shows the corresponding TM model. First, the employee submits the leave request (blue Number 1) and sends it to the manager (2).

Fig. 28 Illustration of progress of events

The manager processes (3) the request to either reject (4) it or return it to the employee (5 and 6). The employee can also recall [START_REF] Glinz | On shared understanding in software engineering[END_REF] the leave request, returning it to him/her. We assume that this recall proceeds processing the halt request. The manager may approve (8) the leave request and forward it to HR [START_REF] Kelemen | Process based unification for multi-model software process improvement[END_REF]. HR processes [START_REF] O'keefe | The Meaning of UML Models[END_REF] the leave request to approve it [START_REF] Bézivin | On the unification power of models[END_REF] or reject it [START_REF] Karsai | Unification or integration? The challenge of semantics in heterogeneous modeling[END_REF] and returns it to the manager [START_REF] Al-Fedaghi | Conceptual modeling of an IP phone communication system: A case study[END_REF] or sends to the employee [START_REF] Al-Fedaghi | Modeling system events and negative events using thinging machines based on Lupascian logic[END_REF].

Fig. 31 and 32 show the dynamic and behavioral models, respectively.

V. CONCLUSION

The importance of unification in modeling in requirements engineering hardly needs justification. This unified modeling enables systematizing the domain and minimizes internal inconsistencies. The dominant UMLbased methodology aims at -unifying notation that incorporates the best of a number of other notations as well as current best practice in one generally applicable notation‖ [START_REF] Hunt | Guide to the Unified Process Featuring UML, Java and Design Patterns[END_REF]. This paper attempts to demonstrate another type of unification in which a unified model provides a coherent account of unconnected notions and reveals connections between phenomena believed to be unrelated.

In this paper, we focused on two approaches in this context: multimodeling that applies simultaneous usage of dissimilar notations vs. uni-modeling that utilizes a single framework of notations. Of course, the issue needs further investigation, but the TM model is clearly a viable approach to accomplishing the alternative type of modeling unification.

E

Fig. 2 Fig. 1 (

 21 Fig. 2 Successions between behaviour events [17]

Fig. 5

 5 Fig. 5 Turnstile state machine (from [19]).

Fig. 3 Fig. 4

 34 Fig. 3 The event Traffic as an existing thing.

 Sections 3 and 4 consist of converting the following modeling tool diagrams to TM: textual requirements, context modeling, class diagram, use case, data flow diagram, activity diagram and state diagram.

3 Fig. 6 TMFig. 7 Fig. 9 TMFig. 10 A

 367910 Fig. 8 TM dynamic model of the turnstile system.

Fig. 13 StaticFig. 12

 1312 Fig. 13 Static TM specification of the given requirements.

Fig. 19 Fig. 20

 1920 Fig. 19 The static model of the class associations in the given example

Fig. 22 Fig. 24 Fig. 23 TM

 222423 Fig. 22 Sample use case (from [4]).

Fig. 29

 29 Fig. 29 States of a request for leave (from [25]).

17 Corresponding context diagram Fig. 16 Context diagram (from [4]). E 1 E 2 E 3 E 4 E 8 E 5 E 7 Show entry mask User input Error Error message Enter data Store data E 6 Data Error message Data input Fig. 15 The behavior diagram Entry mask

	User	System
	Create Create Warning Protocol Create Data Messages Receive Create Operator Request display Create Create Receive Release Transfer Transfer Receive Transfer Transfer Receive Transfer Transfer Transfer Transfer Receive Transfer Transfer Release Release Error message Fig. Process: Receive Release Transfer Transfer	Statistics system Daily results Process Create Process: Error? Data Process Release Release Create Create Enter data

E 1 E 2 E 3 E 4

	To			
	Input route		E 6	Error
	including destination	E 5 Searching in the ID	E 7	E 8
		tuples whether the		
		place of interest is		
		already associated		
		with the other route		

enforce the association (1 route, *places of interest

	Extract two IDs	Construct the IDs tuple	
	Input place		
	of interest	Add the IDs to the table if it is not already there	Add the place of interest to the route

7 Fig. 25 Static model of various phases of a customer's order Process: cancelation E 1 E 2 E 5 E 4 E 3

	Transfer	Receive		Process: check order request Process 2
	Order		
	request Order 3	Create: order transaction	cancelation Process:
		4			Process: calculation
	Transfer	Release	5	Create: estimated price
	Transfer		Receive	Cancelation	6
	Transfer	Receive	Process: check order request Process
	Order	
	request	
		Order	Create: order transaction
					Process: calculation
		Transfer	Release	Create: estimated price
	Transfer	Receive	Cancelation

Fig. 26 Dynamic model of the order system E 6 Fig. 27 The behavior model of the order system.

	E 6	E 6		
			R 1		R 3
	E 1	E 2	E 3	E 4	E 5
		E 6	R 2	E 6	R 4
	E 1	R 1			
	E 6				
	E 2	R 2			
		E 6			
		E 3	R 3		
		E 6			
		E 4	R 4	
			E 6		
			E 5		

11 E 1 E 5 E 2 E 4 E 6 E 7 E 9 E 10 E 3 E 8 Fig. 32 Behavioural model

	1	Create Employee Release Leave request Transfer 2	Manager Transfer	Receive	3	4	Rejected Process	8	HR 9	12	Rejected Process	10
		Create	Release	Transfer	Transfer	Receive	Process					Approved	Release	Transfer	Transfer Receive	Approved	11
	7		6					5		Receive	Transfer	13	Release	Transfer
			Receive	Transfer	Transfer				Process		
			Receive	Transfer									Release	Transfer	14
										Fig. 30 Static model
	Create Create Employee Release Leave request Transfer E	Manager Transfer	Receive	Rejected Approved Process E 4 E 5	Release	Transfer	HR Transfer Receive E 8	Rejected Process	Approved E 7
												Receive	Transfer	Release	Transfer
			Receive	Transfer	Transfer						
		Receive	Transfer									Release	Transfer

1 Fig. 31 Dynamic model E 9 E 10 E 11

	Release E 2	Transfer	Transfer	Receive	Process	E 6
					Process E 3