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NUMERICAL COMPUTATION OF DARK SOLITONS OF A NONLOCAL

NONLINEAR SCHRÖDINGER EQUATION

ANDRÉ DE LAIRE, GUILLAUME DUJARDIN, AND SALVADOR LÓPEZ-MARTÍNEZ

Abstract. The existence and decay properties of dark solitons for a large class of nonlinear
nonlocal Gross-Pitaevskii equations with nonzero boundary conditions in dimension one has
been established recently [10]. Mathematically, these solitons correspond to minimizers of the
energy at fixed momentum and are orbitally stable. This paper provides a numerical method
to compute approximations of such solitons for these types of equations, and provides actual
numerical experiments for several types of physically relevant nonlocal potentials. These
simulations allow us to obtain a variety of dark solitons, and to comment on their shapes
in terms of the parameters of the nonlocal potential. In particular, they suggest that, given
the dispersion relation, the speed of sound and the Landau speed are important values to
understand the properties of these dark solitons. They also allow us to test the necessity of
some sufficient conditions in the theoretical result proving existence of the dark solitons.

AMS Classification. 35Q55; 35C07; 35B35; 35C08; 37K40

Keywords. Nonlocal Schrödinger equation, Gross–Pitaevskii equation, numerical methods, numerical
computations, traveling waves, dark solitons, nonzero conditions at infinity.

1. Introduction

We consider the one-dimensional nonlocal Gross–Pitaevskii equation for Ψ : R� RÑ C
(1) iBtΨ � B2xΨ� pW � p1� |Ψ|2qqΨ,
with nonvanishing boundary conditions at infinity, i.e.

(2) lim
|x|Ñ�8

|Ψpx, tq| � 1, for all t,

and appropriate initial conditions, where � denotes the convolution in space with a tempered distri-
bution W. This equation appears, for instance, as a model for the evolution of a one-dimensional
optical beam of intensity |Ψ|2 in a self-defocusing nonlocal Kerr-like medium, where W characterizes
the nonlocal response of the medium [18, 15]. In this case, condition (2) is natural when studying
dark optical solitons. In all the physical situations, W is assumed to be a real-valued and symmetric
distribution, so that (1) is a Hamiltonian equation, and the energy and momentum

EpΨptqq �1

2

»
R
|BxΨptq|2 dx� 1

4

»
R
pW � p1� |Ψptq|2qqp1� |Ψptq|2q dx,(3)

P pΨptqq �
»
R
xiBxΨptq,ΨptqyC

�
1� 1

|Ψptq|2



dx,(4)

are formally conserved, where xz1, z2yC � <pz1z̄2q, for z1, z2 P C.
In the most typical first approximation, W is considered as a Dirac delta function δ0, which, from

(1), leads to the standard Gross–Pitaevskii equation

(5) iBtΨ � B2xΨ� p1� |Ψ|2qΨ,
with nonvanishing conditions at infinity. We refer to [11, 10, 9] for more details about the theory and
applications of equations (1) and (5).
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Dark solitons play a fundamental role in the dynamics of finite-energy solutions to (1) propagating
in a constant background. Thus, these solutions have brought theoretical and experimental attention
in the last decades (see e.g. [12, 3, 7]). Precisely, these solitons correspond to smooth traveling wave
solutions of the form Ψpx, tq � upx � ctq, for some speed c P R, with localized derivative. Therefore,
we focus on finding functions u : RÑ C solving

(TWc) icu1 � u2 � pW � p1� |u|2qqu � 0,

and belonging to the energy space

EpRq � tv P H1
locpRq : 1� |v|2 P L2pRq, v1 P L2pRqu.

Notice that this is justified by assuming that the Fourier transform of W is bounded, i.e. that xW P
L8pRq (see [10]). Note that, in this paper, we use the convention that for f P L1pRq,pfpξq � »

R
e�ixξfpxqdx, ξ P R,

so that pδ0 � 1. Moreover, we only consider distributions W such that xW is (bounded and) continuous,

so that we can, and will, also assume the normalization condition xWp0q � 1.
Notice that any constant function u of modulus 1 is a solution to (TWc) with zero energy. We refer

to such functions as trivial solutions. Observe that there are also oscillating solutions to (TWc) with
infinite energy such as

u�r,cpxq � r exp
�
ix
��c�ac2 � 4p1� r2q

2

		
, for all r P p0, 1q and c P R.

Another remark is that, by taking the complex conjugate of u in equation (TWc), we only need to
consider c ¥ 0.

In the sequel, when we refer to a solution or a soliton to (TWc), we implicitly assume that it is a
nontrivial finite-energy solution to (TWc). Let us recall the following result concerning the properties
of these solutions.

Lemma 1 (Decay properties of dark solitons (see [10])). Let W be a real-valued even tempered dis-

tribution such that xW P L8pRq. Assume that c ¥ 0 and that u P EpRq is a solution to (TWc). Then
u is bounded and of class C8pRq. Moreover, if c ¡ 0, then u does not vanish on R and there exists a
smooth lifting of u. More precisely, there is real-valued function θ P C8pRq and another C8 function
η over R with values in p�8, 1q such that u � ?

1� ηeiθ on R, with for all k P N, θ1, η P HkpRq, and

(6) |u|p�8q � 1, Djup�8q � Djθp�8q � Djηp�8q � 0, for all j ¥ 1.

In addition, the existence of such solutions is also proved in [10], and we can rewrite this result as
follows. For the sake of completeness, we provide a proof in Appendix.

Theorem 2. Let W be a real-valued even tempered distribution such that xW P L8pRq. Assume that
there is σ P p0, 1s such that

(7) inf
R

�xWpξq � ξ2{2� � σ.

Then, for almost every c P p0,?2σq, there exists a nontrivial solution u P EpRq to (TWc).

Furthermore, by imposing some extra conditions on W, it is proved in [10] that the existence holds
true for every c P p0,?2σq. These kinds of conditions are satisfied, for instance, by the Dirac delta

function W � δ0, so that xW � 1. This agrees with the results in [5], where the authors show that for
c P r0,?2q, the unique solutions, up translation and multiplication by a complex constant of modulus
one, are explicitly given by

(8) ucpxq �
c

2� c2

2
tanh

�?
2� c2

2
x

�
� i

c?
2
.
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In addition, they show that if c ¥ ?
2, the only solutions to (2) are the trivial ones.

Concerning the nonlocal equation (1), as explained in [11], the Bogoliubov dispersion relation is
given by

(9) ωpξq �
b
ξ4 � 2xWpξqξ2.

Thus, assuming that xW is continuous and non-negative in 0, we get ωpξq � p2xWp0qq1{2|ξ|, for ξ � 0.
We infer that the value of the sonic speed is

(10) cspWq :�
def

lim
ξÑ0

ωpξq
ξ

� p2xWp0qq1{2.

With our normalization xWp0q � 1, the sonic speed is hence set to cs �
?

2.

In [10], the authors proved that if xW is smooth in a neighborhood of the origin, with xW ¥ 0 a.e.

on R, xWp0q � 1 and pxWq2p0q � �1, then (TWc) admits no nontrivial solution for the sonic speed
cs �

?
2.

Another important concept in the study of superfluids is the Landau’s critical speed, that explains
the existence of excitations in a superfluid called rotons. Mathematically, the Landau speed is defined
as

(11) cLpWq :�
def

inf
R

ωpξq
|ξ| ,

and the Landau’s criterion is that there exists a point ξrot ¡ 0, that we call roton minimum, such that
cLpWq � ωpξrotq{|ξrot|. Thus, if ω is differentiable at ξrot ¡ 0, a roton minimum ξrot is a point where
the group velocity ω1pξrotq and the phase velocity ωpξrotq{ξrot are equal. In classical weakly interacting
BEC, the Landau’s speed and sonic speed are equal cLpWq � cspWq, while in some superfluids such as
4He, the Landau’s speed is smaller than the speed of sound [2]. In the physical literature, it is expected
that when cLpWq   cspWq, solitons solution should include some additional density oscillations around
the vortex, due to the presence of a roton minimum. Moreover, Berloff and Roberts provided some
formal arguments in higher dimensions, indicating that the condition c   cLpWq should be necessary
to obtain nontrivial solitons [4].

To give an idea of the existence of a roton minimum, let us consider the Gaussian potential xWλpξq �
e�λ

2ξ2 . If λ P r0,?2{2q, the dispersion curve ξ ÞÑ ωpξq is convex, we have cLpWλq � cs �
?

2, and
the aspect of this curve is similar to the one depicted in the left panel of Figure 1. In contrast, if
λ ¡ ?

2{2, ω is concave near the origin and there is a roton minimum ξrot ¡ 0 as depicted in the right
panel in Figure 1, where the slope of the green line corresponds to the Landau speed.

In this context, we can recast Theorem 2 as follows

Corollary 3. Let W as in Theorem 2. Then the Landau’s critical speed is given by

(12) cLpWq �
?

2σ,

and, for almost every c P p0, cLpWqq, there exists a nontrivial solution u P EpRq to (TWc).

As seen in Lemma 1, if c ¡ 0, then solutions to (TWc) do not vanish, i.e. |upxq| ¡ 0, for all x P R.
Moreover, as shown in [10], for c ¡ 0, the change of variables, η � 1� |u|2 allows us to recast (TWc)
as a single real-valued equation

(13) Jcpη, λq � 0,

where

(14) Jcpη, λq :� η2 � 2Wλ � η � c2η � c2η2

2p1� ηq �
pη1q2

2p1� ηq � 2pWλ � ηqη.
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ξ

ωλ

?
2ξ

ξ

ωλ

?
2ξ

cLξ

Figure 1. Dispersion curve ξ ÞÑ ωλpξq (red), sound speed curve ξ ÞÑ ?
2 � ξ

(blue), and Landau speed curve ξ ÞÑ cL� ξ (green), for the Gaussian potentialxWpξq � e�λ
2ξ2 with λ � 1{2 (left panel), and λ � 5 (right panel). In the left

panel, the sonic speed cs �
?

2 is equal to the Landau speed cL.

Notice that in (14), instead of a single potential W, we have introduced a family of potentials Wλ

indexed by a real parameter λ. This will allow us to relate the nonlocal equation (13) to the local one.
In fact, in several examples below, we will choose the family Wλ such that W0 � δ0.

By Lemma 1, if u is a solution to (TWc) with c ¡ 0, then η   1 on R, so that Jc is well-defined.
Also, we can recover u from η by setting

(15) upxq �
a

1� ηpxqeiθpxq, where θpxq � c

2

» x
0

ηpsq
1� ηpsqds.

Moreover, if η solves (13), then the momentum (4) and the energy (3) can be computed as follows (see
[10] for details)

Epηq � c2

8

»
R

ηpxq2
1� ηpxqdx� 1

8

»
R

η1pxq2
1� ηpxqdx� 1

4

»
R
pWλ � ηq pxqηpxqdx,(16)

P pηq � c

4

»
R

ηpxq2
1� ηpxqdx.(17)

For instance, in these new variables, the soliton uc in (8), associated with the solution to (TWc)
when W � δ0, reads, for c P p0,?2q,

(18) ηcpxq � 2� c2

2
sech2

�?
2� c2

2
x



, and θcpxq � arctan

�?
2� c2

c
tanh

�?
2� c2

2
x

��
.

The main purpose of this article is to provide a numerical scheme to obtain approximate solutions
to (TWc) for some c ¡ 0 and to implement this method to provide actual numerical experiments
providing us with families of such dark solitons for several physically relevant potentials W. To do so,
we introduce in Section 2 six families of physically relevant potentials Wλ. We also analyze the corre-
sponding dispersion relations, sonic speeds and Landau speeds, and also discuss the existence of roton
minima. Section 3 is devoted to a stability criterion which ensures orbital stability of dark solitons.
We describe the numerical method we propose in Section 4 for the computation of approximation of
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dark solitons (i.e. solutions to (TWc)). This method uses the equivalent equation (13) in η, which
is first reduced to a bounded interval with homogeneous Dirichlet boundary conditions thanks to the
decay properties (Lemma 1), and then discretized by finite differences. The corresponding discrete
analog to (13) is then solved numerically by minimizing a residue by gradient descent. This allows
us to obtain numerical results in Section 5 for the six families Wλ of nonlocal potentials introduced
in Section 2. In particular, this gives insight into the profiles of dark solitons to (TWc), and allows
for an investigation of the role of the Landau speed, and the stability of solitons (in connection with
Section 3).

2. Examples of interaction potentials

We consider six examples of interacting potentials Wλ studied in [10]. They fulfill the hypotheses

of Theorem 2 and Corollary 3. More precisely, they are even tempered distributions, with xW P L8pRq
and xW is of class C2 in a neighborhood of the origin, satisfying the normalization condition

(19) xWp0q � 1.

In addition, in all our examples, except the last one, the potentials are parametrized by λ P Λ � R,
such that W0 � δ0. Thus, for λ � 0, some solutions to (TWc) are explicitly given by the soliton (18),
for speed c P p0,?2q, that we will use later to initiate our numerical method.

We use the dispersion curve ω defined in (9), and the Landau speed in (11). When the potential is
parametrized by λ P Λ, we denote for simplicity ωλ the corresponding dispersion curve and

cLpλq � cLpWλq.
We remark that the sign of ω2pξq, for small positive ξ corresponds to the sign of 1 � pxWq2pξq.

Therefore, if pxWq2p0q ¡ �1, then the curve ω is convex close to the origin, and lies above the tangent?
2ξ, for small ξ ¡ 0. If pxWq2p0q   �1, then the curve ω is concave close to the origin, and lies below

the tangent
?

2ξ, for small ξ ¡ 0. See for instance the potentials in Figure 1.

Example 1. Let β ¡ 0 and λ P p�8, β{2q, we consider

(E1) Wλpxq � β

β � 2λ

�
δ0 � λe�β|x|

	
, x P R, i.e. xWλpξq � β

β � 2λ

�
1� 2λβ

ξ2 � β2

	
, ξ P R.

This kind of potential has been used in [18] for the study of dark solitons in a self-defocusing nonlocal
Kerr-like medium. If λ ¡ 0, the potential Wλ represents a strong repulsive interaction between particles
that coincide in space, while the interaction becomes attractive otherwise, being this attraction more
significant at short distances. In contrast, for λ   0, the potential Wλ is purely repulsive. According
to Theorem 2 and Corollary 3, for this potential, we distinguish the following cases:

(1) If β ¥ ?
2, then there is a soliton for a.e. c P p0,?2q and for every λ P p�8, β{2q.

(2) If β P p0,?2q, then there is a soliton for a.e. c P p0, cLpλqq and for every λ P p�8, β{2q, where

cLpλq �
a

2σpλq and

(20) σpλq �

$'&'%
1 if � β3

2p2�β2q   λ   β
2 ,

βp1�a�λpβ � 2λqq
β � 2λ

� β

d
�λ

β � 2λ
� β2

2
if λ ¤ � β3

2p2�β2q .

In particular, in this second case, as a function of λ, cL is continuous, positive and limλÑ�8 cLpλq �
pβp2?2�βqq1{2. Notice that the critical value �β3{p2p2� β2qq, corresponds to the zero of the function

1� pxWλq2.
In Figure 2, we depict the dispersion curve ωλ for two values of pβ, λq. In the left panel, we have

β � 0.15 and λ � 0.05, so that xW2
λp0q ¡ �1, the function ω is convex and its graph lies above that

of the tangent at the origin ξ ÞÑ ?
2ξ. There is no roton minimum and the Landau speed is cL �

?
2.

In the center panel, we have β � 0.5 and λ � �1, so that xW2
λp0q   �1, and ωλ is concave near the
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origin, and is below the tangent
?

2ξ, for ξ À 1. In this case, the Landau speed cL � 1.19 is less than?
2 and there is a roton for ωλ. For the sake of clarity, the right panel shows the curve ωλpξq{ξ for

β � 0.5 and λ � �1.

ξ

ωλ

?
2ξ

ξ

ωλ

?
2ξ

cLξ

ξ

ωλpξq{ξ

?
2

cL

Figure 2. Dispersion curves ξ ÞÑ ωλpξq for potential (E1). Left: β � 0.15
and λ � 0.05. Center and right: β � 0.5 and λ � �1, so that cL � 1.19.

Example 2. Another interesting example proposed in [17] is the Gaussian function, for λ P Rzt0u,
(E2) Wλpxq � 1

2|λ|?π e�
x2

4λ2 , x P R, i.e. yWλpξq � e�λ
2ξ2 , ξ P R,

with W0 � δ0 and xW0 � 1. This potential is a classical model for a smooth approximation of the

Dirac delta function, as λ goes to zero. The function 1� pxWλq2 vanishes at λ� � ?
2{2. According to

Corollary 3, for λ P r0, 1{?2q, we have existence for almost every c P p0,?2q. Also, for λ ¥ ?
2{2, we

have existence of solitons for almost every c P p0, cLpλqq, where

(21) cLpλq � 1

λ

a
1� lnp2λ2q.

In Figure 3, we depict the dispersion curve ωλ for two values of λ. In the left and center panels, we
have λ � 1, there is a roton minimum and cL � 1.3, so the Landau speed is very close to the speed of
sound. In the right panel, we have λ � 3, there is also a roton minimum and cL � 0.66.

ξ

ωλ

?
2ξ

cLξ

ξ

ωλpξq{ξ?
2

cL

ξ

ωλ

?
2ξ

cLξ

Figure 3. Dispersion curves ξ ÞÑ ωλpξq for potential (E2). Left and center:
λ � 1 so that cL � 1.3. Right: λ � 3 so that cL � 0.66.

Example 3. The next potential, so-called rectangular potential, was used in [1] to study super-
solids, and also in [14] as a model in nonlocal materials. In addition, it can be seen as a nonsmooth
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approximation of the Dirac delta when λ ¡ 0 is small,

(E3) Wλpxq �
" 1

2|λ| if |x| ¤ |λ|
0 otherwise,

x P R, i.e. xWλpξq � sincpλξq � sinpλξq
λξ

, ξ P R.

In this case, as a function of λ, the function 1�pxWλq2p0q vanishes at λ� � ?
3. Moreover, the Landau

speed cLpλq is less than
?

2 for λ ¡ ?
3. Note that λ � 2 yields a Landau speed of cLp2q � 1.374,

and λ � 4.5, yields a Landau speed of cLp4.5q � 0.624. In Figure 4, we show the respective dispersion
curves: In the left and center panels, we see that for λ � 2, there is a roton minimum. In the right
panel, we see a roton minimum for λ � 4.5.

ξ

ωλ
?

2ξ

cLξ

ξ

ωλpξq{ξ

?
2

cL

ξ

ωλ?
2ξ

cLξ

Figure 4. Dispersion curves ξ ÞÑ ωλpξq for potential (E3). Left and center:
λ � 2, so that cL � 1.374. Right: λ � 4.5, so that cL � 0.624.

Example 4. The following potential was proposed in [20] as a simple model for interactions in a Bose–
Einstein condensate. It is given by a contact interaction δ0 and two Dirac delta functions centered at
�λ, as

(E4) Wλ � 2δ0 � 1

2
pδ�λ � δλq , i.e. xWλpξq � 2� cospλξq, ξ P R.

For any λ ¥ 0, we have cLpλq �
?

2 and Corollary 3 provides the existence of solitons for almost
every speed c P p0,?2q. Notice the dispersion curve ωλ can have inflection points as seen in Figure 5.
However, the dispersion curve has no roton minimum, for any λ ¥ 0.
Example 5. As pointed out in [15] in the context of solitons in nonlocal media, when the response
function is narrow compared to the extent of the beam, it is possible to use the Taylor expansion

xWpξq � xWp0q � ξpxWp0qq1 � ξ2

2
pxWp0qq2 � 1� λ

ξ2

2
, with λ �

»
R
x2Wpxqdx.

Here we used (19), and the fact that W is even. In this case, xW is not bounded and it leads to a
quasilinear equation. In order to have a truly nonlocal model, we modify it by considering the the
Bochner–Riesz potential given by

(E5) xWλpξq �
�

1� λ
ξ2

2

	�
, ξ P R.

From a mathematical point of view, the Bochner–Riesz potential is also interesting because is not
smooth in the Fourier variable. Even though we do not need to use the potential in the physical
variable for our simulations, we give its expression to show the slow decay and oscillations at infinity:

Wλpxq �
?
λ

πx2

�?
λ

sin
�
x
a

2{λ�
x

�
?

2 cos
�
x
a

2{λ�	.
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ξ

ωλ

?
2ξ

ξ

ωλ

?
2ξ

Figure 5. Dispersion curves ξ ÞÑ ωλpξq for potential (E4). Left: λ � 2.
Right: λ � 10.

In Section 5, we perform numerical simulation for λ � 1 and λ � 4. For λ � 1, we get cLp1q �
?

2.
This is a critical value, since the dispersion curve coincides with tangent

?
2ξ, for ξ P r0,?2s, as seen

in the left panel of Figure 5. For λ � 4, the Landau speed is cL � ?
2{2 � 0.7, and there is a roton

minimum, as seen in the right panel of Figure 5.

ξ

ωλ

?
2ξ

ξ

ωλ

?
2ξ

cLξ

Figure 6. Dispersion curves ξ ÞÑ ωλpξq for (E5). Left: λ � 1. Right: λ � 4,
so that cL �

?
2{2.

Example 6. For our last example, we consider the potential defined by its Fourier transform

(E6) xWpξq � p1� aξ2 � bξ4qe�cξ2 .
This potential was proposed in [4, 19] to describe a quantum fluid exhibiting a roton-maxon spectrum
such as Helium 4. In [11], some numerical simulations were done for a � �36, b � 2687, c � 30, and
a branch of solitons was found with speeds in p0,?2q. Therefore, we will consider the same values of
pa, b, cq, to compare our results with theirs. Also, the value of cL is approximately equal to 0.596, so
that Corollary 3 gives the existence of solitons for almost every speed c   cL.
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ξ

ωλ

?
2ξ

cLξ

Figure 7. Dispersion curves for (E6), with cL#0.596.

3. Stability of dark solitons

In the case W � δ0, where the dark solitons are explicitly given by the formulas in (18), Lin showed in
[16] their orbital stability for c P p0,?2q (see also [8]). His proof relied on the general Grillakis-Shatah-
Strauss theory [13], that could still be applied to the nonlocal evolution equation (1), to determine
if the dark solitons are orbitally stable. We now recall briefly the idea of the method in our context.
Let us fix W and assume that there exists c ¡ 0 such that for any c P p0, cq, there is a solution upcq to
(TWc), and that the local branch c P p0, cq Ñ upcq P EpRq is C1, so that c P p0, cq Ñ ηpcq P H1pRq is
C1, where ηpcq � 1� |upcq|2.

Using (16) and (17), we can check that the functions Ẽpcq � Epηpcqq and P̃ pcq � P pηpcqq satisfy
Hamilton group relation

(22) Ẽ1pcq � cP̃ 1pcq.
Let us assume also that the spectral assumptions in the Grillakis-Shatah-Strauss theory hold. This

is probably true because of the mountain-pass theorem used to prove Theorem 2. Then, the second
derivative of the function dpcq � Ẽpcq � cP̃ pcq determines the stability. More precisely, if d2pcq   0,

the soliton is stable. In view of (22), we have d2pcq � �P̃ pcq, so that the stability holds if c ÞÑ P̃ pcq
has negative derivative.

In the literature, the energy-momentum pE,P q diagram is preferred to depict the local branch of
solitons, and the stability is guaranteed by the strict concavity of the map P Ñ E, assuming it is of
class C2, since

(23)
dE

dP
� c, and

d2E

dP 2
� d

dP

�
dE

dP



� dc

dP
.

An alternative method to establish the orbital stability was given in [11] by using a min-

imization approach, assuming that W is an even tempered distribution with xW P L8pRq X
C3pRq, xW ¥ 0 on R, with xWp0q � 1 such that xWpξq ¥ 1� ξ2{2, for all |ξ|   1{?2.

For q ¥ 0, they consider the minimization curve

(24) Eminpqq :� inftEpvq : v P EpRq, ppvq � qu,
and set

(25) q� � suptq ¡ 0 | @v P EpRq, Epvq ¤ Eminpqq ñ inf
R
|v| ¡ 0u.
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Figure 8. Curve Emin and solitons in the case W � δ0.

Theorem 4 in [11] establishes that if Emin is concave on R�, then the set of solutions of
the minimization problem (24) is orbitally stable, for all q P p0, q�q. Their proof is based on
the Lions-Cazenave argument. When W � δ0, using (8), it is possible to check directly that
Emin is smooth on R�, strictly concave on r0, π{2s, and constant on pπ{2,8q, as depicted in
Figure 8. Moreover, in view of (23), the slope of the tangent to the curve is exactly c, for
q P p0, π{2q, and the curve remains below the critical line

?
2q.

Therefore, both criteria explained above can be used to prove that the dark solitons are
stable for every c P p0,?2q. The case c � 0 corresponding to the black soliton is more involved
and is beyond the scope of this work. One problem is that the momentum (4) is ill-defined
for perturbations of the black soliton, thus it is necessary to introduce some renormalized
momentum (see [6]).

Concerning the examples in Section 2, de Laire and Mennuni were able to prove in [11]
that the minimization curve Emin is indeed concave for the potential (E1), which implies
the stability of the solitons. They conjectured that in all these examples we should have
q� � π{2, that Emin should be strictly concave on r0, π{2s, and constant on pπ{2,8q. This
was corroborated by some numerical simulations in [11].

In this paper, we adopt a different approach. Indeed, we do not minimize the energy at
fixed momentum, to end up with dark solitons at some speed that need to be computed
afterward. In contrast, we take advantage of the equivalent form (13) of (TWc), which uses
implicitly parts of the results of Lemma 1, and we solve it by a simple gradient descent method
on its residue, after discretization. This method is described in Section 4 and implemented
on the six potentials of Section 2 in Section 5. It has at least two advantages. First, it allows
to us fix the speed of the soliton prior to the computation. Second, it allows us to work in
a vector space, since the change of unknown from u in (TWc) to η in (13) took away the
inhomogeneous boundary condition.

4. The discretized problem

4.1. The discretization of (13). For the discretization of Jcp�, λq defined in (14), we fix
some L ¡ 0 and we work on the bounded closed interval r�L{2, L{2s. We introduce a number
N ¥ 1 of interior points, and set δx � L{pN � 1q for k P t0, . . . , N � 1u, xk � kδx�L{2. We
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define the matrix corresponding to the centered first derivative with homogeneous Dirichlet
boundary conditions as

(26) D � 1

2δx

�
�������

0 1 0 . . . 0

�1 0 1
. . .

...

0 �1 0
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 �1 0

�
������
,

so that D P MN pRq is skew-symmetric. We also define the matrix corresponding to the
classical second order derivative with homogeneous Dirichlet boundary conditions as

(27) A � 1

δx2

�
�������

�2 1 0 . . . 0

1 �2 1
. . .

...

0 1 �2
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 1 �2

�
������
.

Of course, A P MN pRq is symmetric. For λ P Λ, we define the interacting potential vector
Vλ P RN with the entries pVλqk �Wλpxkq for k P t1, . . . , Nu, provided Wλ is a smooth enough
function.

Eventually, we define the discretized analogue of Jc defined in (14) for η P RN and λ P Λ
as

(28) Jδxc pη, λq � Aη�2Vλ �η�c2η�c2η.η.{p2p1�ηqq�pDη.Dηq.{p2p1�ηqq�2pVλ �ηq.η,
where . and .{ stand for componentwise multiplication and division respectively, and � stands
for the convolution of vectors. This discrete convolution corresponds to the restriction to
t1, � � � , Nu of the usual convolution of the two infinite sequences consisting in its two argu-
ments completed by zeros. This is consistent with the continuous context, since we expect the
first and last components of both arguments (Vλ and η) to be small, provided L ¡ 0 has been
chosen large enough. We define the numerical momentum of η a solution to Jδxc pη, λq � 0RN ,
by the discrete analogues to (17) and (16)

P δx � c

4
δx

Ņ

k�1

η2
k

1� ηk ,(29)

Eδx � c2

8
δx

Ņ

k�1

η2
k

1� ηk �
1

8
δx

Ņ

k�1

pDηq2k
1� ηk �

1

4
δx

Ņ

k�1

pVλ � ηqk ηk.(30)

4.2. The minimization algorithm. Since we are interested in nontrivial zeros of the func-
tion Jc at fixed c P R, we adopt the following strategy: we minimize at fixed λ P Λ and
c P R the squared euclidean norm of the vector-valued function η ÞÑ Jδxc pη, λq, starting from
a discretization of the known nontrivial solution (18) (for λ � 0 and for the given c), using a
gradient method with adaptative step. This requires the introduction of the function

(31) F δxλ pηq � δx}Jδxc pη, λq}2.
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Observe that η ÞÑ Jδxc pη, λq is a smooth function on some neighborhood of 0 in RN , and
so is F δxλ . Moreover, its partial differential with respect to η at some point pη, λq is given by

(32) @ω P RN , BηJδxc pη, λqpωq � Aω � 2Vλ � ω � c2ω

� �p2c2η.p1� η{2q �Dη.Dηq.{p2p1� ηq.p1� ηqq� .ω
� pDη.{p1� ηqq .pDωq � 2pVλ � ηq.ω � 2η.pVλ � ωq.

From this, we infer that

(33) ∇F δxλ pηq � 2δx
�
BηJδxc pη, λq

�t
Jδxc pη, λq,

where
�BηJδxc pη, λq�t is the adjoint of the linear mapping ω ÞÑ BηJδxc pη, λqpωq from RN to

itself defined in (32).
With the notations above, the gradient iteration starting from a given ηn P RN reads

(34) ηn�1 � ηn � h∇F δxλ pηnq,
for some h ¡ 0. After this step, the number F δxλ pηn�1q is computed and compared to F δxλ pηnq.
If it is greater, then the step h is divided by 2 and step (34) is performed again with the new
h and the same n. If not, then one changes n in n� 1 and performs (34) again. The method
stops if (at least) one of the three criteria below is fulfilled:

(i) F δxλ pηnq is smaller than ε2 for some given ε ¡ 0. In this case, we consider that the
method has converged.

(ii) h is below some given hmin ¡ 0. In this case, we consider that the method has not
converged.

(iii) n has become greater than some given integer nmax. In this case, we consider that
the method has not converged.

Of course, if the method (34) converges, then its limit is a critical point of the function
F δxλ . This point may not be a zero of the function F δxλ . This is a reason for the check of

the size of F δxλ in point (i) above. Moreover, the convergence of the method is only local in

RN . In order to avoid convergence to the trivial critical point of F δxλ (that is η � 0), we
initialize the method (34) with a projection of the continuous soliton ηc defined in (18) on
the grid x1, � � � , xN . Of course, this soliton ηc is not a soliton for a fixed Wλ in general (in
particular when λ � 0), but it proves itself far away enough from the trivial soliton to obtain
convergence to a nontrivial soliton in the numerical examples presented in the next section.

Instead of the explicit gradient method (34) to minimize (31), one could have chosen several
other options, such as implicit gradient methods, or Gauss–Newton methods, for example.
In this paper, we focus on (34) because it is explicit (in contrast to the other aforementioned
methods, it does not require to solve a linear or nonlinear system at each step) and it proves
itself stable enough in this context. Indeed, one would expect to have a CFL-type condition
on h{δx3 to ensure stability of (34). However, for the values of δx used in the numerical
experiments of Section 5, this condition appears less restrictive than the condition on h
implied by the condition on the sign of the difference of the values of F δxλ between two

successive iterations (i.e. F δxλ pηn�1q � F δxλ pηnq   0).

5. Numerical results

In this section, we consider the six potentials described in Section 2 and compute numeri-
cally nontrivial minimizers η P RN of the function F δxλ defined in (31) for several values of λ
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and c P p0,?2q, by using the algorithm described in Section 4.2. In the sequel, the number of
interior points N is odd and M � pN�1q{2 is therefore an integer corresponding to the index
k of the middle of the vector η (it satisfies xM � 0 with the notations of Section 4.1). Using
(15), we recover from η an approximate solution u of the solution u to (TWc) by setting

θk �

$''''''&
''''''%

� c
2
δx

M�1¸
p�k

1

2

�
ηp

1� ηp �
ηp�1

1� ηp�1



if k ¤M � 1,

0 if k �M,

c

2
δx

ķ

p�M�1

1

2

�
ηp�1

1� ηp�1
� ηp

1� ηp



if k ¥M � 1,

and

uk �
a

1� ηkeiθk ,
for k P t1, � � � , Nu.

Recall that we initialize the method with ηc, which corresponds to the solution to (TWc)
for W � δ0 (see (18)). One of the difficulties is that, for values of c close to

?
2, the size of

the numerical support of the soliton η tends to infinity.

5.1. Solitons with potential (E1). We consider the potential Wλ defined in (E1) with
β � 1.0 and λ � 0.4, so that β{pβ � 2λq � 5.0. In particular, according to (20), we have

cLpλq �
?

2, xW2p0q ¡ �1, and the aspect of ω is the same as the one in the left panel
of Figure 2. The numerical experiments are carried out with L � 50, N � 999, so that
δx � 0.05, and ε2 � δx{4. The parameter hmin is so small and the parameter nmax is so big
that the method has always converged in these numerical experiments. The results displayed
in Figure 9 allow us to see the shape of the numerical minimizers η as functions of x, and
the phases θ, for several values of c. These results confirm that the support of the minimizer
η tends to spread as the speed c increases. Moreover, the maximum of η (corresponding to
the minimum of u) tends to decrease as c increases. This is similar to the case of the Dirac
potential λ � 0 in this nonlocal case (λ � 0.4). The results displayed in Figure 10 show
the evolution of the momentum P δx and the energy Eδx (see (29) and (30)) of the numerical
minimizers as functions of the speed c, together with the evolution of Eδx as a function of
P δx.

Concerning the stability criteria and conjectures explained in Section 3, we see that every-
thing is fulfilled numerically: the mapping c ÞÑ P δx is strictly decreasing, the curve P δx ÞÑ Eδx

is below and tangent to the line
?

2P δx, and is strictly concave on p0, π{2q. Therefore, these
facts confirm numerically the stability of the solitons for c P p0,?2q.

Next, we consider the same potential (E1) with β � 0.15 and λ � 0.05, so that β{pβ�2λq �
3.0 and cL � ?

2. The numerical experiments are carried out with L � 400 and N � 6399,
so that δx � 6.25e � 2 and ε2 � 0.01. The parameter hmin is so small and the parameter
nmax is so big that the method has always converged in these numerical experiments. The
numerical results are displayed in Figure 11. Note that, even though cL � ?

2 in this case,
the numerical method converged to 0 when starting from the soliton with speed c � 1.25,
which is not displayed in the numerical results. For the other speeds, the numerical method
converged to nonzero solitons, which are displayed in Figure 11. The energy P δx as a function
of the momentum P δx is displayed on the left panel of Figure 12. The dispersion curve is
depicted in the left panel in Figure 2, where there is no roton minimum and the computed
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Figure 9. Numerically computed solitons for potential (E1) with β � 1.0
and λ � 0.4 showing ηk (left panel) and θk (right panel) as functions of xk.
Numerical parameters are indicated in the text.
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Figure 10. Energy and momentum for numerically computed solitons for
potential (E1) with β � 1.0 and λ � 0.4. The first two panels show P δx and
Eδx as functions of c, while the last one depicts Eδx as a function of P δx. On
the last panel, the dashed line corresponds to P δx ÞÑ P δx

?
2.

solitons are strictly decreasing on R�, as well as the curves of momentum P δx and energy
Eδx.

We examine the potential (E1) with β � 0.5 and λ � �1.0, so that β{pβ � 2λq � 0.2,
whose dispersion curve is depicted in the right panel in Figure 2. Notice that ωλ has a roton
minimum and that cLpλq � 1.19. The numerical experiments are carried out with L � 60
and N � 2399, so that δx � 2.5e � 2 and ε2 � 6.25e � 3. The parameter hmin is so small
and the parameter nmax is so big that the method has always converged in these numerical
experiments. The numerical results are displayed in Figure 13. Note that, despite the fact
that the Landau speed is cL#1.19, the numerical method converged to a nonzero soliton
for c � 1.25, which is displayed in the numerical results. Observe that, in contrast to the
two previous experiments for potential (E1), the minimizers η are not strictly decreasing on
R�except for c � 1.25, and take negative values, which means that |u| � ?

1� η has values
above 1.0. This leads thinking that the existence of a roton minimum of the dispersion curve
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Figure 11. Numerically computed solitons for potential (E1) with β � 0.15
and λ � 0.05, showing ηk (left panel) and θk (right panel) as function of xk.
First line: from �L{2 to L{2. Second line: from �20 to �20.

is related to the oscillation of solitons. Remarkably, the only minimizer without oscillations
corresponds to c � 1.25, which is above the Landau speed.

The energy Eδx as a function of the momentum P δx is displayed in the right panel of
Figure 12 for pβ, λq � p0.15, 0.05q and pβ, λq � p0.5,�1.0q. We see that the existence of a
roton minimum does not change the aspect of the curve pEδx, P δxq, that seems to be strictly
concave, so that the computed solitons should be stable.

We end this subsection by studying the effect of the parameter λ, for the same potential
(E1), on the minimum value of |u|, and the L2 and H1-norms of the solitons. For this purpose,
we fix β � 0.5 and c � 0.1, and we let λ vary in the interval r�10, 0.2s. For the numerical
computations, we set L � 60 and N � 1201, so that δx#4.99e�2 and ε2#1.25e�2. Numerical
solitons η and their phases θ are displayed in Figure 14. The behavior of the minimum of
u the soliton width, and the L2 and H1 norms of η as functions of λ are displayed in
Figure 15. Let us recall that the critical value for the presence of a roton minimum in ω is
λ� � �β3{p2p2� β2qq, that is λ�# � 0.0357 when β � 0.5. In Figure 14, we see that the
solitons exhibit a negative bump for λ ¤ λ�, and that they are strictly decreasing for λ ¡ λ�,
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Figure 13. Numerically computed solitons for potential (E1) with β � 0.5
and λ � �1.0, showing ηk (left panel) and θk (right panel) as function of xk.

supporting the link between a roton minimum and the oscillations. In addition, we remark
a monotonic behavior on the minimum value of |u|, on the width of η, and on the L2 and
H1-norms of the solitons, independently of the presence of a roton minimum.

5.2. Solitons with potential (E2). We consider now the Gaussian potential Wλ defined in
(E2) in Example 2. We take first λ � 1.0 and compute numerically nontrivial minimizers of
the function F δxλ defined in (31) λ � 1.0 and several values of c using the algorithm described
in Subsection 4.2. The numerical experiments are carried out with L � 50, N � 999, so
that δx � 0.05, and ε2 � δx{4. In this case, δξ � 2π{L#0.13. The results are displayed in
Figures 16 and 17. As explained in Example 2, we expect solutions for every c P p0, cLp1qq,
where cLp1q � #1.30, in agreement with Figures 16 and 17. Moreover, the presence of a
roton minimum (see middle panel in Figure 3) should imply the presence of oscillations on
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Figure 14. Numerically computed solitons for potential (E1) with β � 0.5
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R�, which is indeed seen in these figures. Notice that for c � 1.25, ηk shows no oscillation
on R�, but the there is a bump in its phase θk, so there is an oscillation of uk.

Next, we run another experiment with a larger λ to make the potential more long range.
We chose λ � 3, and run another series of computation of numerical minimizers for several
values of c as before. As seen in Example 2, there is a roton minimum and the Landau speed
is cLp3q#0.66. To take into account the larger supports of the minimizers, we take L � 100
and N � 1999 so that δx � 0.05 and ε2 � 1.25e � 2. The results are displayed in Figures 18
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Figure 16. Numerically computed solitons for potential (E2) with λ � 1.0,
showing ηk (left panel) and θk (right panel) as function of xk.
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Figure 17. Numerically computed solitons for potential (E2) with λ � 1.0.
On the left: P δx as a function of c. In the middle: Eδx as a function of c. On
the right: Eδx as a function of P δx.

and 19. We have thus obtained soliton for speeds above the Landau speed, which seem to
be stable, due to the aspect of the curves in Figure 19. This is an unexpected result, that
shows that the physical conjecture of the role of the Landau speed is not valid in this case.
However, the fact that there is bigger gap between cL and

?
2 (than for λ � 1), could be an

indication of the more oscillating behavior of the solitons in Figure 18.

5.3. Solitons with potential (E3). We study now the rectangular potential Wλ defined in
(E3) in Example 3. We start by computing numerically nontrivial minimizers of the function
F δxλ in (31) for λ � 2.0 and several values of c as described in Subsection 4.2. The numerical
experiments are carried out with L � 50, N � 999, so that δx � 0.05, and ε2 � δx{4. In this
case, δξ � 2π{L � 0.13. The results are displayed in Figures 20 and 21. As seen in Figure 4,
there is a roton minimum and the Landau speed cL#1.374 is very close to the speed of sound.
This agrees of the small bump on ηk, except for the soliton with speed c � 1.25, whose
profile ηk and phase ηk seem to be strictly monotone on R�. As in all previous examples,
the monotonicity of c ÞÑ P δ indicates that these are stable solitons.
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Figure 18. Numerically computed solitons for potential (E2) with λ � 3.0,
showing ηk (left panel) and θk (right panel) as function of xk.
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Figure 19. Numerically computed solitons for potential (E2) with λ � 3.0,
showing P δx (left) and Eδx (center) as a function of c. On the right, Eδx as a
function of P δx.

We perform another experiment for λ � 4.5, with L � 80, N � 1599 and a tolerance of
ε1 � δx{4 � 1.25e� 2. The results are displayed in Figures 22 and 23.

In this case, cL#.624 and the dispersion curve is depicted in Figure 4. We found a change
on the behavior of soliton similar to one detected in Subsection 5.2, i.e. a more oscillating
behavior of the solitons. Concerning the stability, the curve P δx is strictly decreasing for
c ¤ 075, but it is not clear the exact behavior of the curve for c ¡ 0.75.

5.4. Solitons with potential (E4). In this subsection, we consider the potential Wλ in (E4)
in Example 4, given by three Dirac delta functions, so that the Landau speed is cLpλq �

?
2,

for any λ ¥ 0, and there is no roton minimum. We will investigate numerical soliton for λ � 2
and λ � 10, whose dispersion curve are given in Figure 5.

We first compute numerically nontrivial minimizers of F δxλ in (31) for λ � 2.0 using the
algorithm described in Subsection 4.2. The numerical experiments are carried out with L �
50, N � 999, so that δx � 0.05, and ε2 � δx{4. In this case, δξ � 2π{L � 0.13. The results
are displayed in Figures 24 and 25. As expected, the aspect of the dispersion curve in the left
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Figure 20. Numerically computed solitons for potential (E3) with λ � 2.0,
showing ηk (left panel) and θk (right panel) as a function of xk.
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Figure 21. Numerically computed solitons for potential (E3) with λ � 2.0,
showing P δx (left) and Eδx (center) as a function of c. On the right, Eδx as a
function of P δx.

panel of Figure 5 agrees with the monotonicity of the numerical solitons in Figure 24, which
should be stable in view of the results in Figure 25.

We perform another experiment for λ � 10.0 with L � 300, N � 5999, so that δx � 0.05
and ε2{δx{4. In this case, δξ � 2π{L � 0.021. The numerical results are displayed in
Figures 26 and 27. Even though there is no roton minimum and the Landau speed coincides
with the speed of sound, we see an oscillating behavior of the solutions. In view of the
dispersion curve in Figure 5, we conjecture that the oscillation are related to the existence of
inflection points of the dispersion curve. Once again, these solitons should be stable in view
of the curves in Figure 27.

Another point is that, despite the oscillations in η in Figure 26, the minimum values are of
order minus a few 10�3 for all speed. This may indicate that the corresponding continuous
solitons η are indeed non-negative, so that the corresponding function u has modulus bounded
by 1.

5.5. Solitons with potential (E5). In this subsection, we consider the Bochner-Riesz po-
tential Wλ defined in (E5), for λ � 2 and λ � 4, as explained in Example 5.
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Figure 22. Numerically computed solitons for potential (E3) with λ � 4.5,
showing ηk (left) and θk (right) as a function of xk.
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Figure 23. Numerically computed solitons for potential (E3) with λ � 4.5,
showing P δx (left) and Eδx (center) as a function of c. On the right, Eδx as a
function of P δx.

We compute first nontrivial minimizers of the function F δxλ for λ � 1.0, as before, taking
L � 200 and N � 3999, so that δx � 0.05, and ε2 � δx{4. In this case, δξ � 2π{L � 0.13.
The results are displayed in Figures 28 and 29. Clearly, λ � 1 is a critical case for the
dispersion curve, since it is given by a straight line in interval r0,?2s, as seen in Figure 6.
Even though ωλ has no inflection point, the non-differentiability at ξ � ?

2 could be related to
the oscillations of solitons in Figure 28. These solitons should be stable in view of Figure 29.

We run another experiment with λ � 4.0, L � 300, N � 5999, so that δx � 0.05. The
results are displayed in Figures 30 and 31. Even though in this case cL#0.7, we obtain again
solitons for every subsonic speed, that seem stable since c ÞÑ P δx is decreasing. The more
oscillating behavior of the soliton, could be explained by the gap between cL and

?
2, as in

Subsection 5.3.

5.6. Solitons with potential (E6). We consider the potential W defined in (E6). The
minimizers are computed with L � 800 and N � 7999 so that δx � 0.1. The results are
displayed in Figures 32 and 33. As seen in Figure 7, there is a roton minimum and cL#0.596.
This is no obstacle for the computation of soliton for every subsonic speed. Since P δx is a
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Figure 24. Numerically computed solitons for potential (E4) with λ � 2.0,
showing ηk (left) and θk (right) as a function of xk.
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Figure 25. Numerically computed solitons for potential (E4) with λ � 2.0,
showing P δx (left) and Eδx (center) as a function of c. On the right, Eδx as a
function of P δx.

strictly decreasing function, these solitons should be stable. The highly oscillating behavior
could be explained again by the gap between the Landau speed and the speed of sound.

6. Conclusion

This paper introduces a numerical method to compute dark solitons to the nonlocal Gross–
Pitaevskii equation with nonlocal realistic potentials, with a prescribed speed. Using an ad
hoc formulation of the problem (see (13)-(14), and the discrete analogue (28)), one has to
solve a nonlinear nonlocal problem (Jδxc pη, λq � 0RN for a fixed parameter value λ P R)
in the neighborhood of a guess, which is linked with the known continuous soliton with
same speed for λ � 0. This problem is solved numerically by a gradient descent method
minimizing the residue, and allows for numerical simulations for several physically realistic
nonlocal interaction potentials.

Theses numerical simulations provide insight into the behavior of solitons and allow us to
discuss the influence of the nonlocal interactions on the shape of the dark solitons, as well
as on their stability. Moreover, they suggest that the speed of sound and the Landau speed,
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Figure 26. Numerically computed solitons for potential (E4) with λ � 10.0,
showing ηk (left) and θk (right) as a function of xk.
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Figure 27. Numerically computed solitons for potential (E4) with λ � 10.0,
showing P δx (left) and Eδx (right) as a function of c. On the right, Eδx as a
function of P δx.

given by the dispersion relation, are important values for understanding the properties of
these dark solitons.

In future research, we hope to find more precise criteria for determining the behavior of
dark solitons. For instance, we aim to obtain conditions on the interaction potential to ensure
that the corresponding dark solitons exhibit either monotonic or oscillating behavior.
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S. López-Mart́ınez was supported by the Madrid Government (Comunidad de Madrid – Spain)
under the multiannual Agreement with UAM in the line for the Excellence of the University
Research Staff in the context of the V PRICIT (Regional Program of Research and Techno-
logical Innovation).



24 A. DE LAIRE, G. DUJARDIN, AND S. LÓPEZ-MARTÍNEZ
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Figure 28. Numerically computed solitons for potential (E5) with λ � 1.0,
showing ηk (left) and θk (right) as a function of xk.
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Figure 29. Numerically computed solitons for potential (E5) with λ � 1.0,
showing P δx (left) and Eδx (center) as a function of c. On the right, Eδx as a
function of P δx.
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Figure 30. Numerically computed solitons for potential (E5) with λ � 4.0,
showing ηk (left) and θk (right) as a function of xk.
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Figure 31. Numerically computed solitons for potential (E5) with λ � 4.0,
showing P δx (left) and Eδx (center) as a function of c. On the right, Eδx as a
function of P δx.
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Figure 32. Numerically computed solitons for potential (E6), showing ηk
(left) and θk (right) as a function of xk.
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Figure 33. Numerically computed solitons for potential (E6), showing P δx

(left) and Eδx (center) as a function of c. On the right, Eδx as a function of
P δx.
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Appendix

Proof of Theorem 2. Let m � infξPRpxWpξq�q, where s� � mints, 0u, and let R �
a

2pσ �mq.
For any σ̃ P p0, σq, we choose k � pσ̃ �mq{R2 � pσ̃ �mq{p2pσ �mqq. Clearly, k P p0, 1{2q.

On the one hand, for a.e. |ξ| ¥ R, one trivially has

xWpξq ¥ m � σ̃ � kR2 ¥ σ̃ � kξ2.

On the other hand, observe that σ � ξ2{2 ¥ σ̃ � kξ2 if, and only if, |ξ| ¤ R. Therefore, for
a.e. |ξ| ¤ R, we get

xWpξq ¥ σ � ξ2

2
¥ σ̃ � kξ2.

We may now apply Theorem 1.1 in [10] and get a solution to (TWc) for a.e. c P p0,?2σ̃q.
Taking σ̃ arbitrarily close to σ we obtain a solution for a.e. c P p0,?2σq, which completes the
proof. �
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[5] F. Béthuel, P. Gravejat, and J.-C. Saut. Existence and properties of travelling waves for the Gross-
Pitaevskii equation. In Stationary and time dependent Gross-Pitaevskii equations, volume 473 of Contemp.
Math., pages 55–103. Amer. Math. Soc., Providence, RI, 2008.
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