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ABSTRACT

Context. Adaptive optics (AO) is a technique allowing for ground-based telescopes’ angular resolution to be improved drastically. The
wavefront sensor (WFS) is one of the key components of such systems, driving the fundamental performance limitations.
Aims. In this paper, we focus on a specific class of WFS: the Fourier-filtering wavefront sensors (FFWFSs). This class is known for
its extremely high sensitivity. However, a clear and comprehensive noise propagation model for any kind of FFWFS is lacking.
Methods. Considering read-out noise and photon noise, we derived a simple and comprehensive model allowing us to understand how
these noises propagate in the phase reconstruction in the linear framework.
Results. This new noise propagation model works for any kind of FFWFS, and it allows one to revisit the fundamental sensitivity limit
of these sensors. Furthermore, a new comparison between widely used FFWFSs is held. We focus on the two main FFWFS classes
used: the Zernike WFS (ZWFS) and the pyramid WFS (PWFS), bringing new understanding of their behavior.

Key words. techniques: high angular resolution – instrumentation: adaptive optics

1. Introduction

Adaptive optics (AO) is a technique allowing one to compen-
sate for the impact of atmospheric turbulence on telescopes
that has become essential for a large number of astrophysical
applications. Motivated in particular by the hunt for exoplanets
(Kasper 2012), AO systems pushing the limits of performance
are now being developed, and they are referred to as extreme AO
systems (XAOs). These systems rely on high-order deformable
mirrors with fast real-time computation. The fundamental limits
of such instruments are based on the quality of the measurements
provided by the optical device at the heart of this technique:
the wavefront sensor (WFS). One key aspect driving the XAO
instruments is the WFS sensitivity, which can limit the number
of controlled modes and the speed of the loop. The Fourier-
filtering WFS (FFWFS) represents a wide class of sensors,
which are of particular interest thanks to their superior sensi-
tivity. From a general point of view, a FFWFS consists of a
phase mask located in an intermediate focal plane which per-
forms an optical Fourier filtering. This filtering operation allows
for the conversion of phase information at the entrance pupil into
amplitude at the pupil plane, where a quadratic sensor is used
to record the signal (Vérinaud 2004; Guyon 2005; Fauvarque
et al. 2016). The FFWFS can exhibit an extra optical stage called
modulation, which consists in making the electromagnetic field
spin around the tip of the filtering mask during one integration
time of the detector. This well-known operation allows for the
dynamic range to be increased at the expense of the sensitivity
(Ragazzoni 1996).

The goal of this paper is to introduce a simple and com-
prehensive model for noise propagation through any FFWFS,
allowing one to quantitatively compare them within a fixed and
clear framework. Inspired by an approach already employed
for the Shack–Hartmann wavefront sensor (Rigaut & Gendron
1992), we first derived a noise propagation model in the linear
regime that can be applied to any FFWFS (Sect. 2). We then
show all the potential of this model by interpreting the behavior
of two widely used classes of FFWFSs in a new way in Sect. 3:
the Zernike WFS (ZWFS) and the pyramid WFS (PWFS).

2. Noise propagation and sensitivity in the linear
regime

2.1. Reduced intensities: A standard way to process FFWFS
signal

For this study, the FFWFS signal has been processed in a stan-
dard way leading to a quantity, referred to as reduced intensities.
If we called I(ϕ) the intensities recorded on the detector for
a given phase ϕ, we built the reduced intensities ∆I(ϕ) the
following way:

∆I(ϕ) =
I(ϕ)
Nph
− I0, (1)

where Nph is the number of photo-electrons available for the
measurement and I0 is the reference intensities. We would like
to specify that the normalization by the total flux is absolutely
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required; otherwise, a change in flux would be interpreted as
phase aberration. In this paper, we assume that we are work-
ing around a flat wavefront and we therefore define the reference
intensities I0 as the normalized intensities recorded on the WFS
detector for a flat wavefront in the pupil:

I0 =
I(ϕ = 0)

Nph
. (2)

The reduced intensities provide the simplest way to process
FFWFS signal by taking in account all the pixels on the detector,
which is a procedure independent from the shape of the mask
and structure of the modulation (Fauvarque 2017).

2.2. Noise propagation in the linear regime

To derive the noise propagation model, we made some assump-
tions: (i) we made the small-phase approximation, which allowed
us to assume that the FFWFSs are working in their linear regime;
and (ii) we also assumed that we were working with a monochro-
matic light of wavelength λ. In that framework, the FFWFS
response to a modal basis [ϕ1, ..., ϕi, ..., ϕN] (for which the rms
value of each mode is set to 1 in any chosen unit) is fully char-
acterized by the interaction matrix D built through a push-pull
calibration process:

D = [δI(ϕ1), ..., δI(ϕi), ..., δI(ϕN)], (3)

where δI(ϕi) is constructed the following way:

δI(ϕi) =
∆I(ϵϕi) − ∆I(−ϵϕi)

2ϵ
, (4)

and where ϵ is a scalar small enough to remain in the lin-
ear regime of the sensor. By computing the reconstructor D†
defined as the pseudo-inverse of D (i.e., D† = (DtD)−1Dt)
and assuming small-phase approximation, we have the following
relationship, which allow us to reconstruct the incoming phase,
provided that the sensing conditions were the same as calibration
(same wavelength λ, same pupil, etc.):

ϕ = D†∆I(ϕ). (5)

When the signal that is delivered by the camera is affected by
noise, one can write the following:

Ib(ϕ) = I(ϕ) + b(ϕ), (6)

where b is the noise, which may depend on the phase to be
measured. By applying the reduced intensities’ computation on
these noisy intensities (assuming a noise-free I0), one gets the
following:

∆Ib(ϕ) = ∆I(ϕ) +
b(ϕ)
Nph
= ∆I(ϕ) + n(ϕ), (7)

where n(ϕ) can be seen as a “noise-to-signal ratio”. The smaller
its value is, the less reduced intensities are affected by noise. This
quantity propagates in the phase reconstruction in the following
way:

ϕ + ξ = D†(∆I(ϕ) + n(ϕ))

ξ = D†n(ϕ),
(8)

where ξ is therefore the phase estimation error due to noise. One
can study the statistical behavior of this phase error with respect

to the statistical behavior of noise. For that, we write ⟨·⟩ which
is the operator averaging on noise realizations. We can compute
the error covariance matrix as follows:

⟨ξξt⟩ = D†⟨n(ϕ)nt(ϕ)⟩D†t, (9)

where ⟨n(ϕ)nt(ϕ)⟩ is the noise covariance matrix (Rigaut &
Gendron 1992). Starting from this equation, it is possible to
establish a noise propagation model for all FFWFS sensors.

2.2.1. Sensitivity to read-out noise

We first focus on the behavior with respect to the read-out noise.
This noise only depends on the detector; it is therefore indepen-
dent from the incoming phase and the FFWFS characteristics
(namely the mask and the modulation). Assuming that each pixel
noise is decorrelated with the others and that noise is the same
for each pixel with a standard deviationσron (in e− px−1 frame−1),
one can write the following:

⟨n(ϕ)nt(ϕ)⟩ = ⟨nnt⟩ =
σ2

ron

N2
ph

I, (10)

where I is the identity matrix. Equation (9) can be rewritten as
follows:

⟨ξξt⟩ =
σ2

ron

N2
ph

D†D†t =
σ2

ron

N2
ph

(DtD)−1. (11)

By using the modal basis generated by the singular-value
decomposition of D, DtD becomes diagonal. We assume this
assertion to be still true for any modal basis. This assumption is
quite strong because it is stating (to some extend) that there is no
cross talk between measurements, which is not always the case
for the considered FFWFSs. One should carefully analyze the
elements of (DtD)−1 to fully grasp the inversion process at stake
(Rigaut & Gendron 1992). Nonetheless, assumingDtD as being
diagonal allows one to drastically simplify the study because it
is then possible to compute the variance of each mode due to
noise propagation with the diagonal terms of Eq. (11). For a
given mode ϕi, it leads to the following:

σ2
ϕi
=

σ2
ron

(DtD)i,i × N2
ph

, (12)

which gives, in standard deviation,

σϕi =

√
Nsap × σron√

Nsap ×
√

(DtD)i,i × Nph
. (13)

In this equation, we have included Nsap, which is the number
of subapertures used for the measurement in the pupil. It allows
for the sensitivity s(ϕi) to read-out noise for a given mode ϕi to
be defined as follows:

s(ϕi) =
√

Nsap ×
√

(DtD)i,i. (14)

Adding the quantity
√

Nsap allows for different masks for
any given sampling to be compared, provided that the consid-
ered mode ϕi is well sampled. Equation (14) can be reformulated
in the following way:

s(ϕi) =
√

Nsap ×
∣∣∣∣∣∣δI(ϕi)

∣∣∣∣∣∣
2, (15)

with the sensitivity to RON for a given mode ϕi therefore being
the two-norm of its corresponding column in the interaction
matrix. One can understand from Eq. (13) that a higher sensi-
tivity subsequently leads to less noise propagation. Therefore,
we aim to design WFS reaching the higher sensitivity possible.
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2.2.2. Sensitivity to photon noise

Photon noise follows a Poisson distribution, and therefore the
variance of the distribution is equal to the average of the intensi-
ties. Hence, we can assume that ⟨n(ϕ)nt(ϕ)⟩ is diagonal and write
the following:

⟨n(ϕ)nt(ϕ)⟩ =
diag(I(ϕ))

N2
ph

, (16)

where diag(I(ϕ)) is a square matrix whose diagonal elements are
the values of I(ϕ). However, by definition, this noise depends on
the illumination pattern on the detector. It therefore depends on
the modulation, the mask, and also the incoming phase. Because
we are working in the linear regime, we can assume that

I(ϕ) = I0 + ∆I(ϕ) ≈ I0, for ϕ ≪ 1, (17)

which means that the intensities on the detector can be approx-
imated by the ones corresponding to a flat wavefront. Because
I0 is already a normalized map, diag(I(ϕ)) = Nph × diag(I0). We
can then write

⟨n(ϕ)nt(ϕ)⟩ = ⟨nnt⟩ =
diag(I0)

Nph
, (18)

and by injecting this formula in Eq. (9),

⟨ξξt⟩τ =
1

Nph
D†diag(I0)D†t. (19)

Since D†D†t = (DtD)−1, one can rearrange the previous equa-
tion as follows:

⟨ξξt⟩τ =
1

Nph

(
(diag(1/

√
I0)D)tdiag(1/

√
I0)D
)−1
. (20)

As was done for the RON noise, assuming the diagonality of
the matrix

(diag(1/
√

I0)D)tdiag(1/
√

I0)D

allows onne to simply write the phase error for a given mode ϕi
as follows:

σϕi =
1√

[(diag(1/
√

I0)D)tdiag(1/sqrtI0)D]i,i ×
√

N
. (21)

Due to this last formula, we decided to call sensitivity to
photon noise sγ the following quantity:

sγ(ϕi) =
√

[(diag(1/
√

I0)D)tdiag(1/
√

I0)D]i,i. (22)

In a more comprehensive way, the photon noise sensitivity to
the mode ϕi is calculated by the following operation:

sγ(ϕi) =
∣∣∣∣∣∣δI(ϕi)
√

I0

∣∣∣∣∣∣
2. (23)

One could wonder if there should be a special procedure
for nonilluminated pixels in I0. In that case, these pixels exhibit
a null value in the interaction matrix and add no contribution
to the sensitivity computation. The formulas given in Eqs. (13)
and (21) give a relationship between the phase error, the number

of photons available for the measurement, the RON, the num-
ber of subapertures, and the intrinsic properties of the studied
FFWFSs. The noise propagation for a given mode ϕi is then
quantified through the formula

σ2
ϕi
=

Nsap × σ
2
ron

s2(ϕi) × N2
ph

+
1

s2
γ(ϕi) × Nph

, (24)

where σ2
ϕi

is given in u2, and where u is the unit used to nor-
malize the modes to rms 1 when building the interaction matrix
(usually radians or nanometers). We would like to mention that
s(ϕi) and sγ(ϕi) have no reason to be equal. When comparing dif-
ferent FFWFSs in terms of sensitivity, we thus need to compare
their RON sensitivity and their photon noise sensitivity. This
kind of formula was already derived in Guyon (2005) for simpli-
fied and idealized cases of 4PWFS and ZWFS. Providing their
interaction matrix and the linear regime, Eq. (24) provides a uni-
fied scheme that works for any kind of modulation and mask, and
it does not use an analytical model: the computed sensitivities are
therefore more accurate with this derivation.

2.3. Maximum sensitivity limit

The columns of the interaction matrix are encoding the deriva-
tive of the signal with respect to the phase. Hence, the sensitivity
expressions given in Eqs. (15) and (23) are actually describing a
metric called Fisher information (Plantet 2015). This metric is
bounded by the Cramer–Rao bound, and it is then possible to
show that both sensitivities defined here (for RON and photon
noise) have a maximum value of 2 (Paterson 2008; Bouchet et al.
2021):

0 ≤ s ≤ 2
0 ≤ sγ ≤ 2.

(25)

These boundaries are therefore useful to provide an absolute
reference to compare FFWFS sensitivities. We would like to add
that the Cramer–Rao bound actually works for any kind of WFS,
and these boundaries extend out of the FFWFS scope.

3. Sensitivity comparison of different FFWFS

The goal of this section is to use the metrics defined previously
to compare well-known and widely used FFWFSs. We subse-
quently focus on two main classes of FFWSs: ZWFS and PWFS.
We subsequently show that the use of the RON sensitivity, on
the one hand, and the photon noise sensitivity, on the other
hand, highlight some important properties of these sensors. For
our comparison, we computed sensitivities with respect to the
Fourier modes, which are simply defined by the sum of a cosine
and a sine carrying a given spatial frequency f (Fauvarque et al.
2019). The following quantity then encodes the sensitivity

sf =
1
√

2

√
s
(

cosf

)2
+ s
(

sinf

)2
. (26)

3.1. Zernike class

The ZWFS is known for its extremely high sensitivity while
having a low dynamic range, which makes it a unique sensor
for second stage AO systems or quasi-static aberrations’ cali-
bration sensor (Jensen-Clem et al. 2012; N’Diaye et al. 2016;
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Ruane et al. 2020). This sensor is composed of a focal plane
mask made of a phase shifting dot which can be fully described
by two parameters: its diameter p and phase shift d. In a previ-
ous paper (Chambouleyron et al. 2021), we extensively described
and analyzed the impact that the influence of the mask parame-
ters have on sensitivity, but only for RON. We have extended
this study by applying our metric developed for photon noise
sensitivity to have a better understanding of the behavior of this
sensor. Usually, the ZWFS is used in what we call here the clas-
sical ZWFS configuration: p = 1.06 λ/D and d = π/2 (Vigan
et al. 2019). We remind the reader that the linear signal for the
ZWFS is fully located in the footprint of the pupil image onto the
detector plane, meaning that all photons outside of the footprint
are left unused in the linear regime (Fauvarque 2017).

3.1.1. Diameter

It was shown that increasing the ZWFS diameter can signifi-
cantly increase the RON sensitivity for high spatial frequencies,
at the expense of low spatial frequency located inside the dot
perimeter (Chambouleyron et al. 2021). Our goal is to assess if
this statement also applies for the photon noise sensitivity. In
this study, we have fixed the dot phase shift to π/2. Figure 1
shows the sensitivity for RON and photon noise computed in
the case of three different diameters: p = 1.06 λ/D, p = 2 λ/D,
and p = 5 λ/D. We see that the behavior for RON described
in Chambouleyron et al. (2021) is also seen for photon noise: a
high sensitivity gain for high spatial frequencies and a drop in
sensitivity for frequencies located inside the dot. We would like
to remind readers that changing mask parameters also affects the
reference intensities I0, which are plotted in Fig. 1 for the consid-
ered configurations. Finally, all conclusions that were drawn in
the Z2WFS study are still valid for the photon noise sensitivity.

3.1.2. Phase shift

We now focus on the impact of the dot phase shift on sensitiv-
ity. It is already know that for RON sensitivity, the maximum
is reached for d = π/2 no matter what is chosen as diameter
size p. One could wonder if this assertion remains true for pho-
ton noise sensitivity. As a first step to answer this question, we
fixed p = 1.06λ/D and let the depth vary between 0 and 2π. We
focused on the sensitivity for a given spatial frequency corre-
sponding to six cycles in the diameter. The choice of this spatial
frequency is arbitrary, but motivated by the fact that its foot-
print in the focal plane is located far from the phase shifting dot
boundaries and not inside the phase-shifting area. The ZWFS
behavior with respect to this frequency is then representative of
all the high-order modes. The results are given Fig. 2. We can
see that for the RON sensitivity, the maximum value is indeed
reached at d = π/2. We also notice the coronagraphic config-
uration corresponding to d = π for which the intensities on the
detector do not have any linear dependence on the entrance phase
(Roddier 1997). One can also notice the symmetric behavior of
this curve, which is perfectly logical because of the 2π wrapping
of the phase. For the photon noise sensitivity, the curve exhibits
a slightly different behavior: the maximum value is not reached
for π/2, but for d = 0.8π. This configuration is very instruc-
tive because it gives us profound insight into how optimal RON
sensitivity configurations can differ from optimal photon noise
sensitivity configurations.

To understand why d = 0.8π incites better performance with
respect to photon noise, we have to focus on the structure of the
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Fig. 1. Senstivities to RON and photon noise for a different configu-
ration of the ZWFS. Phase shift fixed at d = π/2 and diameter p =
1.06 λ/D, p = 2 λ/D, and p = 5 λ/D. We can see that the two kind of
sensitivities follow the same trends.
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Fig. 2. Sensitivities for a given spatial frequency corresponding to six
cycles in the diameter for p = 1.06 λ/D, while varying phase shift d.
The maximum values are reached for a different value of d.

reference intensities. In the case of a WFS sensitivity for pho-
ton noise, photons are the source of signal but also of noise. We
have shown the importance of the reference intensities in the
previous section (Eq. (22)). In the configuration p = 1.06λ/D
and d = 0.8π, the sensor exhibits a behavior close to the coron-
agraphic one. Therefore, the reference intensities have a limited
number of photons in the pupil footprint, as is shown in Fig. 3
which shows the percentage of photons available in the pupil
footprint of the reference intensities while increasing phase shift
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Fig. 3. Percentage of photons kept in the pupil footprint for a configu-
ration with diameter p = 1.06λ/D, while changing phase shift d. The
reference intensities for d = 0.8π are represented on the right.

for diameter p = 1.06λ/D. Here is a way to understand the pho-
ton noise sensitivity curve’s shape that is presented in Fig. 2:
in assuming uniform reference intensities for the configuration
p = 1.06λ/D while changing the depth d, it can be interpreted
as the ratio between the RON sensitivity curve given in the same
figure and the pupil footprint flux curve shown in Fig. 3. The
maximum found at d = 0.8π can therefore be seen as a trade-
off between high signal (d = π/2) and low noise produced by
photons (d = π). This configuration is a nice example of the
“dark-WFS” concept, which is a class of sensor for which ref-
erence intensities would gather a limited number of photons
(Ragazzoni 2015).

We then plotted the sensitivity for all the spatial frequencies
for different configurations, as was done in the previous subsec-
tion when varying the diameter p. Here, we continue to explore
the instructive d = 0.8π configuration as an example by com-
paring the classical ZWFS configurations with two other sets of
parameters for the dot shape: p = 1.06λ/D with d = 0.8π, and
p = 2λ/D with d = 0.8π. The results are given in Fig. 4. For the
p = 1.06λ/D with a d = 0.8π configuration, the RON sensitiv-
ity is lower for all spatial frequencies compared to the classical
ZWFS, while it is always higher for photon noise sensitivity.
However, increasing the dot diameter to a value of p = 2λ/D
while having d = 0.8π decreases the gain for photon noise sensi-
tivity for all frequencies. This can be easily explained by the fact
that in this configuration, the large size of the dot prevents coro-
nagraphic behavior and does not remove a significant amount of
photons from the pupil footprint in reference intensities.

One could push the analysis further by studying the photon
noise sensitivity behavior for a full set of different diameter p
and phase shift d and for all spatial frequencies. That is out of the
scope of this paper. We have demonstrated the benefit of using
two different sensitivity metrics for RON and photon noise and
have therefore introduced the required tools to carry out a fine
study of the ZWFS class.

3.2. Pyramid class

In this section, we study another FFWFS class: the PWFS. This
class relies on a pyramidal shape of the phase mask, which splits
the electromagnetic field into different beams (Ragazzoni 1996).
For the PWFS, the extra optical module called “modulation” pre-
sented in the introduction is added. We study the impact of the
following parameters on sensitivities: (i) the number of faces,
which determines the number of pupil images that formed on
the detector; and (ii) the angle of the faces, which determines the
relative separation between pupil images.
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Fig. 4. Sensitivities to RON and photon noise for a different configu-
ration of the ZWFS. The “dark” ZWFS configuration corresponds to
p = 1.06λ/D and d = 0.8π.
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CAMÉRA SCIENCE CALCULATEUR TEMPS RÉEL
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Fig. 5. PWFS with a different number of faces. Top: arg(mask) for
4PWFS, 5PWFS, and axicon. Bottom: reference intensities associated
to the nonmodulated case.

3.2.1. Number of faces

We start this study by analyzing the impact of the number of
faces on PWFS sensitivities. To that end, we use five different
configurations: a three-sided pyramid (3PWFS), the most widely
used one; a four-sided pyramid (4PWFS); a five-sided pyramid
(5PWFS); a six-sided pyramid (6PWFS); and finally a pyramid
with an infinite number of faces, forming what we call an axi-
con. As an example, in Fig. 5, we show the phase masks and the
corresponding reference intensities of the 4PWFS, 5PWFS, and
axicon in the nonmodulated case.

We assess the impact of the number of faces on sensitiv-
ities by considering two modulation cases: a modulated case
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atmosphère

aZWFS OWFSa
200 mm THORCAM - USB ORCA filter

� =
2⇡

�
n(�, V ) ⇥ 2d (1)

PWFS FPWFS ZWFS

1

Phase shift

-0.5 0 0.5 1 1.5 2

S
e
n
si

ti
v
it

y
-

R
O

N

0

0.5

1

1.5

2

RON

Photon noise

Phase shift

-0.5 0 0.5 1 1.5 2

S
e
n
si

ti
v
it

y
-

R
O

N

0

0.5

1

1.5

2

RON

Photon noise

Formula

vincent.chambouleyron

August 2021

1 Introduction

rmod = 1 �/D
rmod = 3 �/D
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Fig. 6. RON sensitivities for the PWFS when changing the number of
faces. Left: nonmodulated cases. Right: modulation at 3 λ/D.

with a given modulation radius rmod = 3 λ/D and the nonmodu-
lated case rmod = 0 λ/D. Because the considered masks are not
axisymmetric (except for axicon), we could analyze their sen-
sitivities in the frequencies’ space by extracting 2D sensitivity
maps. For an easier comparison, we decided to extract radial cuts
from these maps. For that, we chose a direction which does not
lie on any edges for the considered configurations.

RON sensitivity. We analyze first the RON sensitivity.
Figure 6 shows the results of our study for different PWFS cases.
We would like to point out that the sensitivity scale stops at 1
for better readability, but we remind readers that the maximum
sensitivity is 2.

In the nonmodulated case, we note that reducing the number
of faces increases the sensitivity. The gain in sensitivity is log-
ically proportional to the number of useful pixels: if the linear
signal reaches more pixels, the PWFS lets more RON propa-
gate. Therefore, the plateau for the 3PWFS is four-thirds higher
than the 4PWFS, for example. When modulating (right panel
of Fig. 6), we observed the same relative behavior: the fewer
faces, the better. We can see the well-known loss of sensitivity
for spatial frequencies located in the modulation radius. We also
spotted a global loss for all spatial frequencies. One can also note
the different behavior for the axicon: its sensitivity is decreasing
drastically compared to other configurations.

Photon noise sensitivity. We now analyze the impact of
the number of faces with respect to photon noise sensitivity.
The results are given in Fig. 7. We start our analysis with the
modulated case (right panel). As for the RON sensitivity, we
see that the sensitivity increases when reducing the number of
faces. When modulating, the distribution of photons is mainly
uniform in the pupil images. The ratio between sensitivities is
then proportional to the square root of the number of faces ratio
because the signal-to-noise ratio increases with the square root
of the number of photons. For instance, the 3PWFS exhibits
an increased sensitivity of

√
4/
√

3 with respect to the 4PWFS.
However, when looking at the nonmodulated cases (Fig. 7, left
panel), all the different PWFS configurations exhibit the same
sensitivities. This behavior can be explained by the fact that, in
the nonmodulated case, diffraction effects by the edges of the
masks have a significant impact on the intensities recorded on
the detector.

This study shows that the 3PWFS exhibits a better sensi-
tivity than the other configurations for the RON sensitivity (as
expected and already tackled in previous studies Schatz et al.
2021). We show here for the first time that this superiority is also
true for photon noise sensitivity, but only when modulated.

Formula

vincent.chambouleyron

August 2021

1 Introduction

rmod = 1 �
rmod = 3 �/D
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Fig. 7. Photon noise sensitivities for the PWFS when changing the num-
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Fig. 8. Flattened PWFS: periodicity of the oscillating sensitivity de-
pends on the pupil overlapping ratio.

the FPWFS has already been studied. We used this example of
five configurations with a different overlapping ratio (percentage
of pupil diameter), and plotted their respective sensitivity curves
in figure 9. We find the well-know oscillating curves. One can
notice that there are some configurations that show a better
sensitivity to RON with respect to the classical PWFS for
all spatial frequencies. However, one could wonder if such
configurations are still more sensitive than the classical PWFS
when considering the photon noise sensitivity. Thanks to our
new propagation model, we can assess this question for the first
time.
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Fig. 9. RON sensitivities for different FPWFS configurations (nonmod-
ulated cases).

Photon noise sensitivity: We computed the sensitivity to pho-
ton noise with the same overlapping configurations studied just
before. Sensitivity curves are given figure 10. These sensitivity
curves show a very different story: this time, we can see that
there is no configuration which is always above the classical
PWFS. If some configuration has a better sensitivity for some
frequencies, it is always at the expense of others. The curves are
oscillating around the classical PWFS one. These results bring
a new understanding of the FPWFS class, showing that the FP-
WFS configurations are not as interesting as one could have ex-
pected for the photon noise sensitivity. The sensitivity curves
given in figures 9 and 10 can be compared to the ones computed

for the ZWFS class given in figure 2, where one can notice that in
its optimal configurations, the ZWFS class outreaches the PWFS
for a large set of spatial frequencies.

Fig. 10. Photon noise sensitivities for different FPWFS configurations
(nonmodulated cases).

4. Conclusion and perspectives

In this paper, we have derived a simple and comprehensive noise
propagation model for all FFWFSs. This model relies on the
small phases’ approximation and allows one to define two kinds
of sensitivities which describe FFWFS behavior with respect to
noise. There is the RON sensitivity which is computed through
the interaction matrix, and the photon noise sensitivity which is
computed through the interaction matrix and the reference in-
tensities. These two bounded quantities can be used to link the
number of photons available for the phase measurement and the
estimation error variance. It provides a unified model which al-
lows one to quantitatively compare all FFWFSs and that goes
beyond the results given in Guyon (2005). We have demon-
strated the usefulness of this model by applying it to ZWFS and
PWFS, highlighting for the first time some interesting proper-
ties of these sensors and exhibiting unprecedented comparisons.
The fact that we now have well-defined criteria for the RON
and photon noise sensitivities can lead us to try to optimize the
mask shape to reach sensitivities close to the maximum value of
2 (Chambouleyron et al. 2022).

This noise propagation model was derived assuming a linear
regime. Here, we did not intend to analyze the dynamic range of
the studied FFWFSs. Therefore, this study is just giving a part
of the full description these sensors. On top of that, it is well
known that FFWFSs are not working in their linear regime when
working in closed-loop, leading to nonlinear effects that can be
described at first order by a loss of sensitivity for each mode (the
so-called optical gain effect Chambouleyron et al. (2020)). One
could therefore define the effective sensitivities, which would be
the sensitivities defined in this paper, weighted by the loss of
sensitivities induced by nonlinearities.
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Fig. 8. Flattened PWFS: periodicity of the oscillating sensitivity
depends on the pupil overlapping ratio.

We also emphasize a key aspect when comparing PWFS to
ZWFS: the nonmodulated PWFSs have a better photon noise
sensitivity than the classical ZWFS (p = 1.06 λ/D and d = π/2).
This observation seems important since the classical ZWFS is
often presented as the most sensitive FFWFS. We see here that in
its classical configuration, that is far from being the case because
its sensitivities do not reach the maximum value of 2.

3.2.2. Angle

We now study the impact of the pyramid angle on sensitivities.
For this study, we chose a nonmodulated 4PWFS. We already
know that decreasing the PWFS angle can change its behavior
as soon as the pupils are overlapping, creating a configuration
called the flattened PWFS (FPWFS) which can be interpreted as
a mix between a PWFS and a shearing-interferometer. We call a
classical PWFS the one showing no overlapping. It was already
demonstrated (Fauvarque et al. 2015) that the FPWFS class
exhibits an oscillating sensitivity curve, whose period depends
on the separation between pupil images (illustration given in
Fig. 8).

RON sensitivity. Following the same procedure as before,
we started this study with the sensitivity to RON. This aspect of
the FPWFS has already been studied. We used this example of
five configurations with a different overlapping ratio (percentage
of pupil diameter), and plotted their respective sensitivity curves
in Fig. 9. We find the well-known oscillating curves. One can
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Fig. 8. Flattened PWFS: periodicity of the oscillating sensitivity de-
pends on the pupil overlapping ratio.

the FPWFS has already been studied. We used this example of
five configurations with a different overlapping ratio (percentage
of pupil diameter), and plotted their respective sensitivity curves
in figure 9. We find the well-know oscillating curves. One can
notice that there are some configurations that show a better
sensitivity to RON with respect to the classical PWFS for
all spatial frequencies. However, one could wonder if such
configurations are still more sensitive than the classical PWFS
when considering the photon noise sensitivity. Thanks to our
new propagation model, we can assess this question for the first
time.
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Photon noise sensitivity: We computed the sensitivity to pho-
ton noise with the same overlapping configurations studied just
before. Sensitivity curves are given figure 10. These sensitivity
curves show a very different story: this time, we can see that
there is no configuration which is always above the classical
PWFS. If some configuration has a better sensitivity for some
frequencies, it is always at the expense of others. The curves are
oscillating around the classical PWFS one. These results bring
a new understanding of the FPWFS class, showing that the FP-
WFS configurations are not as interesting as one could have ex-
pected for the photon noise sensitivity. The sensitivity curves
given in figures 9 and 10 can be compared to the ones computed

for the ZWFS class given in figure 2, where one can notice that in
its optimal configurations, the ZWFS class outreaches the PWFS
for a large set of spatial frequencies.

Fig. 10. Photon noise sensitivities for different FPWFS configurations
(nonmodulated cases).

4. Conclusion and perspectives

In this paper, we have derived a simple and comprehensive noise
propagation model for all FFWFSs. This model relies on the
small phases’ approximation and allows one to define two kinds
of sensitivities which describe FFWFS behavior with respect to
noise. There is the RON sensitivity which is computed through
the interaction matrix, and the photon noise sensitivity which is
computed through the interaction matrix and the reference in-
tensities. These two bounded quantities can be used to link the
number of photons available for the phase measurement and the
estimation error variance. It provides a unified model which al-
lows one to quantitatively compare all FFWFSs and that goes
beyond the results given in Guyon (2005). We have demon-
strated the usefulness of this model by applying it to ZWFS and
PWFS, highlighting for the first time some interesting proper-
ties of these sensors and exhibiting unprecedented comparisons.
The fact that we now have well-defined criteria for the RON
and photon noise sensitivities can lead us to try to optimize the
mask shape to reach sensitivities close to the maximum value of
2 (Chambouleyron et al. 2022).

This noise propagation model was derived assuming a linear
regime. Here, we did not intend to analyze the dynamic range of
the studied FFWFSs. Therefore, this study is just giving a part
of the full description these sensors. On top of that, it is well
known that FFWFSs are not working in their linear regime when
working in closed-loop, leading to nonlinear effects that can be
described at first order by a loss of sensitivity for each mode (the
so-called optical gain effect Chambouleyron et al. (2020)). One
could therefore define the effective sensitivities, which would be
the sensitivities defined in this paper, weighted by the loss of
sensitivities induced by nonlinearities.
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the FPWFS has already been studied. We used this example of
five configurations with a different overlapping ratio (percentage
of pupil diameter), and plotted their respective sensitivity curves
in figure 9. We find the well-know oscillating curves. One can
notice that there are some configurations that show a better
sensitivity to RON with respect to the classical PWFS for
all spatial frequencies. However, one could wonder if such
configurations are still more sensitive than the classical PWFS
when considering the photon noise sensitivity. Thanks to our
new propagation model, we can assess this question for the first
time.
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Photon noise sensitivity: We computed the sensitivity to pho-
ton noise with the same overlapping configurations studied just
before. Sensitivity curves are given figure 10. These sensitivity
curves show a very different story: this time, we can see that
there is no configuration which is always above the classical
PWFS. If some configuration has a better sensitivity for some
frequencies, it is always at the expense of others. The curves are
oscillating around the classical PWFS one. These results bring
a new understanding of the FPWFS class, showing that the FP-
WFS configurations are not as interesting as one could have ex-
pected for the photon noise sensitivity. The sensitivity curves
given in figures 9 and 10 can be compared to the ones computed

for the ZWFS class given in figure 2, where one can notice that in
its optimal configurations, the ZWFS class outreaches the PWFS
for a large set of spatial frequencies.
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Fig. 10. Photon noise sensitivities for different FPWFS configurations
(nonmodulated cases).

4. Conclusion and perspectives

In this paper, we have derived a simple and comprehensive noise
propagation model for all FFWFSs. This model relies on the
small phases’ approximation and allows one to define two kinds
of sensitivities which describe FFWFS behavior with respect to
noise. There is the RON sensitivity which is computed through
the interaction matrix, and the photon noise sensitivity which is
computed through the interaction matrix and the reference in-
tensities. These two bounded quantities can be used to link the
number of photons available for the phase measurement and the
estimation error variance. It provides a unified model which al-
lows one to quantitatively compare all FFWFSs and that goes
beyond the results given in Guyon (2005). We have demon-
strated the usefulness of this model by applying it to ZWFS and
PWFS, highlighting for the first time some interesting proper-
ties of these sensors and exhibiting unprecedented comparisons.
The fact that we now have well-defined criteria for the RON
and photon noise sensitivities can lead us to try to optimize the
mask shape to reach sensitivities close to the maximum value of
2 (Chambouleyron et al. 2022).

This noise propagation model was derived assuming a linear
regime. Here, we did not intend to analyze the dynamic range of
the studied FFWFSs. Therefore, this study is just giving a part
of the full description these sensors. On top of that, it is well
known that FFWFSs are not working in their linear regime when
working in closed-loop, leading to nonlinear effects that can be
described at first order by a loss of sensitivity for each mode (the
so-called optical gain effect Chambouleyron et al. (2020)). One
could therefore define the effective sensitivities, which would be
the sensitivities defined in this paper, weighted by the loss of
sensitivities induced by nonlinearities.
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Fig. 10. Photon noise sensitivities for different FPWFS configurations
(nonmodulated cases).

notice that there are some configurations that show a better sen-
sitivity to RON with respect to the classical PWFS for all spatial
frequencies. However, one could wonder if such configurations
are still more sensitive than the classical PWFS when consider-
ing the photon noise sensitivity. Thanks to our new propagation
model, we can assess this question for the first time.

Photon noise sensitivity. We computed the sensitivity to
photon noise with the same overlapping configurations studied
just before. Sensitivity curves are given Fig. 10. These sensi-
tivity curves show a very different story: this time, we can see
that there is no configuration which is always above the classical
PWFS. If some configuration has a better sensitivity for some
frequencies, it is always at the expense of others. The curves
are oscillating around the classical PWFS one. These results
bring a new understanding of the FPWFS class, showing that the
FPWFS configurations are not as interesting as one could have
expected for the photon noise sensitivity. The sensitivity curves
given in Figs. 9 and 10 can be compared to the ones computed
for the ZWFS class given in Fig. 2, where one can notice that in
its optimal configurations, the ZWFS class outreaches the PWFS
for a large set of spatial frequencies.

4. Conclusion and perspectives

In this paper, we have derived a simple and comprehensive noise
propagation model for all FFWFSs. This model relies on the
small phases’ approximation and allows one to define two kinds

of sensitivities which describe FFWFS behavior with respect to
noise. There is the RON sensitivity which is computed through
the interaction matrix, and the photon noise sensitivity which
is computed through the interaction matrix and the reference
intensities. These two bounded quantities can be used to link
the number of photons available for the phase measurement and
the estimation error variance. It provides a unified model which
allows one to quantitatively compare all FFWFSs and that goes
beyond the results given in Guyon (2005). We have demon-
strated the usefulness of this model by applying it to ZWFS and
PWFS, highlighting for the first time some interesting properties
of these sensors and exhibiting unprecedented comparisons. The
fact that we now have well-defined criteria for the RON and pho-
ton noise sensitivities can lead us to try to optimize the mask
shape to reach sensitivities close to the maximum value of 2
(Chambouleyron et al. 2022).

This noise propagation model was derived assuming a linear
regime. Here, we did not intend to analyze the dynamic range of
the studied FFWFSs. Therefore, this study is just giving a part
of the full description these sensors. On top of that, it is well
known that FFWFSs are not working in their linear regime when
working in closed-loop, leading to nonlinear effects that can be
described at first order by a loss of sensitivity for each mode (the
so-called optical gain effect Chambouleyron et al. 2020). One
could therefore define the effective sensitivities, which would be
the sensitivities defined in this paper, weighted by the loss of
sensitivities induced by nonlinearities.
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