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Abstract

The present study investigates the contribution of first-order accuracy and uncertainty to
global performance monitoring. After a set of four trials of an orientation matching task,
participants first reported their perceived mean response, and then a region around that
mean estimate corresponding to their estimation of their responses’ dispersion. We could
assess how first-order performance, endogenous uncertainty (estimated from the variability
of first-order performance), and exogenous uncertainty impacted global performance
monitoring. In two experiments, we found that participants were able to track and use the
average and dispersion of their first-order performance to monitor global performance. The
calibration of metacognitive judgments to first-order performance was better when
endogenous uncertainty was lower. Similarly, exogenous sources of uncertainty (i.e.,
stimulus- and attention-related) also modulated the calibration between global metacognitive
reports and first-order performance. These results suggest that people can reliably estimate
the mean and variability of their performance and use it together with exogenous uncertainty
to inform their global performance monitoring. However, this capacity decreases in the
presence of both internal and external uncertainty. We discuss these results in light of the
role of uncertainty in perceptual metacognition and the relationship between local and global
performance monitoring.
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Introduction

Imagine hanging a frame on a wall, trying to align it with the wall’s edges or with other
frames. Before drilling a hole and permanently altering the wall, a certain level of confidence
in the frame orientation has to be reached. To know when this acceptable orientation has
been achieved, one needs to monitor one’s own performance, to build a metacognitive
judgment over a series of actions. Metacognition, the ability to critically assess our
perception and actions (Dunlosky 2008; Fleming, Dolan, and Frith 2012; Koriat 2007) is thus
fundamental to shaping and adjusting behavior in such a task (Desender, Boldt, and Yeung
2018). In studying this crucial aspect of cognition, an increasing number of studies
investigate the mechanisms and factors explaining how metacognitive judgements are
formed, most commonly by assessing how we compute confidence estimates about our
performance on a task (Kepecs and Mainen 2012; Mamassian 2016). Several sources of
information for confidence have been identified. Sensory information and prior knowledge
contributing to perceptual decisions are also used in confidence judgments (Kiani and
Shadlen 2009), although they might not contribute equally (Constant et al. 2022).
Confidence also appears to depend on post-decisional processes (Balsdon, Mamassian,
and Wyart 2021; van den Berg et al. 2016; Murphy et al. 2015; Pereira, Perrin, and Faivre
2022; Pleskac and Busemeyer 2010), and on the monitoring of action-related signals (Faivre
et al. 2018, 2020; Filevich, Koß, and Faivre 2020; Gajdos et al. 2019; Pereira et al. 2020).

Most of the research so far has focused on local confidence judgements following one
unique event or task, but recently, the need to develop new paradigms to approach
metacognition has been highlighted as a crucial goal for the future of the field (Rahnev et al.
2022) and a few studies saw their interest shift toward the metacognitive evaluation of a
series of events (Lee, de Gardelle, and Mamassian 2021) and more global estimations of
self-performance (Rouault, Dayan, and Fleming 2019). In the frame example, evaluating
one’s own performance requires assessing how far from the target orientation the frame is,
but may also depend on the magnitude of each consecutive adjustment, i.e., the variability of
performance in time. Such broadening to consider performance monitoring following several
events is further motivated by the importance of global beliefs in shaping our decisions and
actions (Bandura 1977; Elliott et al. 1996; Zacharopoulos et al. 2014). With this line of
research in mind, the current study sought to investigate if global performance monitoring
pertaining to several repetitions of the same task was formed using similar performance and
stimulus-related cues as the metacognitive judgments referring to a single trial, and if
different sources of uncertainty (endogenous or exogenous) had comparable impacts.

Humans are able to assess both the mean and variance information about a group of visual
stimuli at the perceptual level and use it to guide behavior (Desender et al. 2018; de
Gardelle and Summerfield 2011; Ji and Hayward 2021; Michael, de Gardelle, and
Summerfield 2014). It has also been shown that individuals are able to monitor their
sensorimotor performance when asked to continuously track a visual target on a screen and
use it for a subsequent confidence judgment (Locke, Mamassian, and Landy 2020).
Moreover, a recent study suggests that both exogenous uncertainty (linked to the stimulus)
and endogenous uncertainty (linked to the variance in participants’ responses when
answering about stimuli) influence confidence (Geurts et al. 2022). Based on these studies,
we expected participants to evaluate their own performance based on their mean
performance and corresponding variability, in addition to the uncertainty related to the stimuli
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they observed. Although most studies examine confidence judgments on binary tasks
(correct versus incorrect trials), variability in binary responses is calculated in a less
straightforward manner than for continuous responses. Here, by measuring performance
monitoring following a continuous orientation reproduction task, we could assess how
internal response variability affects global metacognitive estimates.

In each trial, participants were asked to reproduce the orientation of a stimulus they had just
seen for a brief period of time. After four trials involving the same target orientation (+/- a
jitter), we asked participants for two types of global performance monitoring: (1) a report of
the mean orientation response across a set of four orientation-matching trials. This report
required participants to track their individual trial responses and monitor the accuracy of their
global performance over these individual trials. In the case of a participant with perfect
performance monitoring, this report should be equal to the average of their actual responses
on a set. (2) a report of a confidence zone, i.e., how far around this mean orientation
response the participants thought their responses landed in the corresponding set of four
trials. This report required the participants to monitor the dispersion of their own responses
over these individual trials. In the case of a participant with performance monitoring, this
report should overlap perfectly with the dispersion of responses across a set of four trials.

We predicted that participants would use their mean performance, endogenous uncertainty
(performance-related), and exogenous uncertainty (stimulus-related) to compute these
metacognitive reports. Exogenous uncertainty was manipulated by displaying ordinal or
cardinal orientations which are known to differ in terms of sensory noise (i.e., oblique effect;
Appelle 1972; Girshick, Landy, and Simoncelli 2011). We examined another source of
exogenous uncertainty in a second experiment, where we additionally manipulated the
allocation of attention by varying the proportion of valid versus invalid exogenous cueing
across the set of four orientation matching trials. Such exogenous manipulation is known to
increase uncertainty (Carrasco 2011), impacting both perceptual decisions and confidence
for isolated events (Denison et al. 2018). We predicted that this change in participants’ focus
would also influence the participants’ global metacognitive reports.

Methods
The study design and analysis plan were registered prior to data acquisition on a public
repository (https://osf.io/knufx). All procedures were performed in accordance with ethical
standards and were approved by our institutional research committee
(CERGA-Avis-2022-16).

Participants
Participants were recruited via the Prolific marketplace (https://www.prolific.co/). Data was
collected on a server from the Pavlovia platform (https://pavlovia.org/), and the experimental
scripts were written using HTML/JavaScript/CSS, and the JsPsych library
(https://www.jspsych.org/7.0/). We adopted an open-ended sequential Bayes factor design,
and stopped data collection when our statistical model reached strong evidence for either H0
(the variable of interest does not contribute to reported confidence) or H1 (the variable of
interest contributed to reported confidence) for our main variable of interest (SDset = standard
deviation of the participant’s response within a set of trials), or any interaction including this
variable. Thus, data were acquired until a Bayes factor equal or inferior to 0.2 or equal or
superior to 5 was obtained. In experiment 1, 40 participants were recruited and 36
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participants were included (19 females, mean age +/- SD: 26.2 +/- 7 yo, see exclusion
criteria); in experiment 2, 40 participants were recruited and 38 participants were included
(18 females, mean age +/- SD: 26.2 +/- 8 yo, see exclusion criteria).

Procedure
Experiment 1
Experiment 1 assessed the relative contributions of external and internal uncertainty to
global metacognitive judgments. We manipulated exogenous uncertainty by setting the
stimulus orientation to be either cardinal or oblique, and we approximated the endogenous
uncertainty using participants’ behavioral variability. Thus, our exogenous/endogenous
distinction for uncertainty relied on the origin of the change in uncertainty: experimental (i.e.,
exogenous) or from the participants’ response (i.e., endogenous). The first part of the
experiment ensured a similar difficulty level across participants using a staircase procedure
(Levitt 1971). After a fixation cross (shown for 1 s), a visual stimulus (Gabor patch) made to
occupy 80% of the screen’s height, was displayed on a dark gray background (HEX color
code #222222) for 500 ms, generated by overlaying a 2D Gaussian window on a sine-wave
grating (spatial frequency = 2 cycles/°), with an initial Michelson contrast of 0.6, oriented at
cardinal (0º, 90º) or oblique (45º, 135º) orientations. The visual stimulus was immediately
followed by a mask made with concentric circles and Gaussian noise presented for 300 ms
to avoid after-effects (Barbosa and Kouider 2018). Once the mask disappeared, a white
response bar appeared at a random initial angle. Participants were instructed to click on the
bar and drag it until its orientation matched the orientation of the previously seen Gabor
patch. When participants were satisfied with the bar orientation, they validated and ended
the trial by pressing the spacebar (Fig. 1. A). If the absolute error between the actual target
angle and the participants’ response was above 10º, the contrast of the next Gabor patch
increased by 0.005. If the absolute error between the actual target angle and the
participants’ response was under 10º twice in a row, the contrast of the next Gabor patch
decreased by 0.005. This staircase-like procedure stopped after 80 trials, and the final
contrast level was kept for the rest of the experiment. This procedure allowed us to match
the task difficulty between participants. Participants also had the possibility to click on a
button to skip a trial when the response bar appeared if they missed the corresponding
Gabor patch (e.g. if they looked away when the visual stimulus was presented). They were
instructed to use this button only if they did not see the visual stimulus, not if they did not
remember or were unsure about its orientation (see exclusion criteria section for the
processing of these “missed” trials). This initial part of the experiment lasted around 5
minutes.

The main part of the experiment started after this initial calibration phase. Once again,
participants were asked to move the response bar to match the orientation after seeing the
same sequence as in the calibration phase (Gabor patch – mask – response bar). However,
this time, this sequence was presented four times in a row, with the same angular orientation
and a predetermined jitter of either -5, -2.5, 2.5, or 5° with a randomized order. After
performing these four trials, participants were asked to assess their overall performance
(Fig. 1. A.). To do so, a circle of the same size as the Gabor patch was presented to the
participants, with a bar to mark the diameter (at a random orientation) that could be moved
and an interactive red “confidence” area around this bar. They were requested (1) to rotate
the central bar to match the mean of the orientation they reported in the previous set of trials
and then (2) to adjust the size of the confidence area following the instruction: “now that you
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reported your target orientation, how precise were you in matching this orientation across the
past four trials?”. Each step was validated by pressing the spacebar. Each orientation level
([0º, 45º, 90º, or 135º]) was repeated 24 times in a pseudorandomized order, and the
experiment was divided into 4 blocks. Between each block, the participants were
encouraged to take a short break. This part of the experiment lasted approximately 40 min
for a total of 384 trials (96 sets).

Figure 1: Summary experiments’ procedure. A. Bar orientation task: a Gabor patch was displayed
at an angle of 0º, 45º, 90º, or 135º (+/- jitter [-5º, -2.5º, 2.5º, 5º]) from the horizontal, followed by a
mask made of concentric circles. Then, the response bar appeared, and participants were asked to
rotate it until its orientation matched the orientation of the Gabor patch they saw. This sequence of
stimuli was used both in the initial calibration and the main phase of the experiment. In the main

6



phase of the experiment, each target angle (+/- jitter) was presented four times in a row. Then, the
participants were asked to report (1) their mean response orientation, (2) their “zone of confidence”,
i.e., how precise they thought they had reported the correct orientation across the four previous trials.
B. Schematic representation of experiment 2 including exogenous attentional cueing. Two Gabor
patches were presented to the participants, followed by the response bar appearing on the side of the
screen corresponding to the stimulus that should be reported. The exogenous cue shown before
displaying the Gabor patches could be valid (same side as the Gabor patch to be reported at the end
of the trial, upper panel) or invalid (opposite side to the Gabor patch to be reported at the end of the
trial, lower panel). The number of valid/invalid trials varied, creating four different conditions of
exogenous cueing.

Experiment 2
Experiment 2 attempted to replicate our main findings from Experiment 1 while introducing
another exogenous manipulation of uncertainty by influencing the participants’ level of
attention through exogenous cueing (Posner 1980). This method is known to induce an
additional uncertainty that observers incorporate into their perceptual decision and local
confidence estimates (Denison et al. 2018). We hypothesized that this type of
attentional-related uncertainty would also affect the participants’ performance monitoring
over each set of four trials.

To test this hypothesis, we used the same experimental procedure as described above with
the following modifications. Participants were no longer presented with just one but two
Gabor patches with different orientations (cardinal orientations only, +/- jitter), one on the
right side of the screen, the other on the left side of the screen (Figure 1. B). Participants
were instructed to remember both orientations. Both Gabor patches were then masked, and
a response bar appeared on the side of the screen corresponding to the Gabor’s orientation
that had to be reported. On each stimulus presentation, before the appearance of the two
Gabor patches, an arrow appeared for 300 ms pointing either toward the stimulus to be
reported (valid cue) or towards the opposite side (invalid cue). Like in Experiment 1,
participants were asked to match the target stimulus’ orientation and to assess their
performance (mean target orientation and zone of confidence angle) after four trials. Within a
set of four trials, the number of valid cues was parametrically varied. A set could contain four
(full set), three (valid set), two (neutral set), or one valid cues (invalid set) — but there were
no sets with no valid cues —, resulting in four different conditions of cueing at the level of a
set. Each cardinal orientation ([0º, 90º]) was repeated 72 times in a pseudorandomized
order, divided in 4 blocks. This part of the experiment lasted approximately 60 min for a total
of 576 trials (144 sets, including 47 full, 47 valid, 25 neural, and 25 invalid sets). This
imbalance in favor of valid cueing was chosen to implement our attentional manipulation, as
it meant that participants had a strategic advantage if they took into account the cue instead
of simply discarding it.

Data analysis
First-order analyses
We estimated first-order performance as the difference between the target angle (Gabor
patch orientation) and the participants’ response (response bar orientation) on each trial. We
analyzed it as a function of stimulus orientation using Bayesian mixed-effects linear
regressions.

● M_orientation: ErrorTrial ~ Orientation + (Orientation| participant)
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Second-order analyses
We expected participants to take into account their actual performance and the different
sources of uncertainty when monitoring their performance over a set of four consecutive
trials. Thus, we calculated the mean error (MeanErrorSet) and response standard deviation
(SDset) for each set of four trials, and evaluated their contribution to two metacognitive
variables (1) Reported_Mean, i.e., the absolute difference between the reported mean
response orientation and the actual orientation presented across the four trials. (2)
Reported_Dispersion, i.e., the angle of the confidence area. These two metacognitive
variables decrease when participants evaluate that their performance is high. Since we
expected participants’ metacognitive reports to appropriately reflect their performance and
the level of exogenous uncertainty, we predicted accurate performance monitoring i) when
the participants’ responses within a set were more accurate on average, hence closer to the
orientation they had to reproduce (MeanErrorSet closer to 0), ii) when the participants’
responses in a set were less variable and therefore endogenous uncertainty was lower
(decreased SDset), iii) when external uncertainty was low, i.e., for cardinal orientations
compared to oblique orientations.

To test these predictions, we used Bayesian mixed-effects linear regressions with the
following formulae to examine each variable:

M1: Reported_Mean ~ poly(MeanErrorSet,2) * SDset * Orientation +
(poly(MeanErrorSet,2) + SDset + Orientation| participant)

M2: Reported_Dispersion ~ poly(MeanErrorSet,2) * SDset * Orientation +
(poly(MeanErrorSet,2) + SDset + Orientation| participant)

We added a quadratic expansion to MeanErrorSet using poly(MeanErrorSet,2) to account for
the expected U-shape relationship it had with our dependent variables. Indeed, worse
performance on a set corresponded to a larger MeanErrorSet, involving either an overshoot
(negative MeanErrorSet) or undershoot (positive MeanErrorSet). In both cases, we expected
Reported_Mean and Reported_Dispersion to increase with the absolute value of
MeanErrorSet and to decrease when MeanErrorSet gets closer to 0. In the results section,
effects involving the linear component will be noted as MeanErrorSet1, while the quadratic
component will be written as MeanErrorSet2.

All models were fitted once using an uninformed, neutral prior (Gaussian distribution with
mean = 0 and SD = 2) and a second time with a prior informed by the result of a pilot study
(N = 19 participants) using the same experimental procedure as in Experiment 1. Those
informed priors had the same means as the pilot posterior means, and SDs equal to 1.5
times the pilot posterior SDs. We reasoned that taking into account the results with both
types of priors is of interest since using an informed prior leads to more precise but more
biased estimates (Morris, Vesk, and McCarthy 2013; Zampieri et al. 2021). Uninformed and
informed priors provided qualitatively similar results. The results obtained with informed
priors can be found in the Supplementary Materials.

Transformations
To account for between-participants variation, we z-scored all ratings separately for each
participant and used z-scored values to fit models, except for MeanErrorSet: MeanErrorSet
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could be a positive or negative angle and participants were not expected to equally over and
undershoot when matching the target orientation. Therefore, we did not expect MeanErrorSet
to be centered on 0. In an hypothetical case where a participant only overshot, resulting in
only negative MeanErrorSet, after a Z-transformation the largest MeanErrorSet_z values (most
positive z-values) would be the ones closest to 0 in the raw data. Given our models’ syntax,
for this theoretical participant, the model would test an increase in our metacognitive
variables when MeanErrorSet gets closer to 0 while we were actually predicting an increase in
our metacognitive variables when the magnitude of MeanErrorSet increased. Note that we
could not simply use absolute values of MeanErrorSet in our model because of collinearity
between |MeanErrorSet| and SDset.

Inference criteria
We used a criterion of BF10 = 5 or BF01 = 0.02.

Data exclusion
Participants were excluded in case they did not use the confidence zone properly (i.e., no
significant difference in the zone of confidence between conditions) or made an orienting
error superior to 45º in more than half trials (four participants in Experiment 1, two
participants in Experiment 2). Finally, response time distributions were inspected to ensure
the good quality of the collected data, however no participants were excluded based on this
criterion.
When a trial was flagged as missed (see procedure), the whole set of trials was removed
from further analysis to avoid having “random guess” trials included in the metacognitive
assessment of their performance. Moreover, trials were excluded if participants took an
unusually long time to respond (trial duration above 10 seconds). After applying these
criteria, a total of 130 trials (out of 13 328, all participants included) were excluded from
Experiment 1 and 435 (out of 20 532, all participants included) from Experiment 2.

Exploratory analyses
We asked participants not only for a point estimate of their global performance via the report
of their mean response orientation, but also for a dispersion around it. Thus, as an
exploratory analysis, we also examined the relationship between these two metacognitive
reports by adding Reported_Mean as a factor to the model M2:

M2_Extended: Reported_Dispersion ~ Reported_Mean * poly(MeanErrorSet,2) *
SDset * Orientation + (Reported_Mean + poly(MeanErrorSet,2) + SDset + Orientation|
participant)

Results
Experiment 1

Concerning first-order performance, the mean absolute error (+/- SD) on a single matching
orientation was 7.54° (+/- 3.42) and we did not observe clear evidence of an oblique effect,
i.e. smaller errors for cardinal than oblique orientations (effect of orientation: M = 0.22, 95%
CI = [0.05, 0.38], BF10 = 1.14).
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We now turn to analyses of the Reported_Mean, which reflects the magnitude of the
difference between the actual mean target orientation of the Gabor patch in a set and the
mean response orientation reported by the participant. Table 1 gathers the full outcome table
for the Bayesian mixed-effects regression M1. This regression revealed a main effect of
endogenous uncertainty: Reported_Mean increased with participants’ response variability,
(SDSet: posterior distribution of the model estimate mean: M = 0.22, 95% CI = [0.16, 0.28],
BF10 > 1000). However, this effect was reduced when both sources of noise increased: the
increase of Reported_Mean with SDSet was weaker for oblique than for cardinal stimuli (M =
-0.15, 95% CI = [-0.22, -0.08], BF10 > 1000, Fig. 2.A).

The model also revealed moderate evidence for a triple interaction between MeanErrorSet2,
SDset_z, and Orientation (M = -2.33, 95% CI = [-4.62, -0.06], BF10 = 3.73, Fig. 2.B and C).
This interaction reflects that Reported_Mean increased in sets where participants were less
accurate on average (MeanErrorSet2 x SDset_z: M = -3.63, 95% CI = [-5.51, -1.78], BF10 >
1000), but this interaction between accuracy and endogenous uncertainty decreased in
conditions of higher exogenous uncertainty (i.e., for oblique orientations). In other words,
both endogenous and exogenous sources of uncertainty decreased the capacity of
participants to monitor the result of their actual performance in a set of trials.

Figure 2: Variation of the error between the actual mean target orientation and the reported
mean response orientation (Reported_Mean) reported by participants after a set of trials
depending on first-order performance and stimulus orientation. A. The magnitude of
Reported_Mean changed with the participant’s variability on a set (SDSet) in a steeper manner for
cardinal (low sensory uncertainty in light blue) than for oblique stimuli (high sensory uncertainty in
dark blue). Although the model took continuous variables as input, for illustrative purposes we plotted
dots and error bars that represent the mean ± 95% confidence interval over participants after grouping
the values SDSet in deciles. B. Model prediction reflecting the triple interaction between MeanErrorSet2,
SDset_z, and Orientation. Lines and shaded areas correspond to the regression model predictions and
95% confidence interval. C. The histograms represent the distribution of Reported_Mean values and
illustrate the triple interaction. For illustrative purposes we divided the sets into two levels of absolute
values of MeanErrorSet (high on the upper panel, low in the lower panel) and two levels of SDSet

(green/orange: low/high endogenous uncertainty, i.e., less/more variable responses within the set).
We observe more low values of Reported_Mean for sets corresponding to more accurate
performance (low mean error) and low exogenous uncertainty, especially for low endogenous
uncertainty sets (left lower panel). A degradation in accuracy of the first order performance (upper
panels) and/or an increase in exogenous uncertainty (right panels) lead to higher Reported_Mean and
reduces the difference between low and high endogenous sets.
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Table 1: Full outcome table for the M1 and M2 Bayesian mixed-effects regressions to assess the
contribution of MeanErrorSet, SDset, and orientation to Reported_Mean and Reported_Dispersion. _z
indicates that the variable has been z transformed. ^2 indicates that the quadratic component of the
corresponding variable is considered.
Reported_Mean_z (M1) Estimate Est.Error l-95% CI u-95% CI BF10

Intercept -0.15 0.05 -0.25 -0.06

MeanErrorSet -0.96 1.71 -4.33 2.43 0.96

MeanErrorSet^2 3.21 2.02 -0.62 7.13 3.45

SDset_z 0.22 0.03 0.16 0.28 1000

Orientation 0.23 0.11 0.03 0.45 0.7

MeanErrorSet x SDset_z 0.74 0.83 -0.87 2.34 0.62

MeanErrorSet ^2 x SDset_z -3.63 0.92 -5.46 -1.84 1000

MeanErrorSet x Orientation -2.05 1.47 -4.93 0.85 2.08

MeanErrorSet ^2 x Orientation 2.99 1.67 -0.37 6.26 3.85

SDset _z x Orientation -0.15 0.04 -0.22 -0.08 1000

MeanErrorSet x SDset _z x Orientation 1.18 1.02 -0.86 3.22 0.98

MeanErrorSet ^2 x SDset _z x Orientation -2.33 1.19 -4.62 -0.06 3.7

Reported_Dispersion_z (M2) Estimate Est.Error l-95% CI u-95% CI BF10

Intercept -0.11 0.04 -0.18 -0.04

MeanErrorSet -0.11 1.23 -2.49 2.28 0.62

MeanErrorSet^2 1.92 1.50 -1.11 4.68 2.04

SDset_z 0.28 0.04 0.20 0.36 1000

Orientation 0.21 0.07 0.08 0.35 3.15

MeanErrorSet x SDset_z -0.00 0.80 -1.56 1.57 0.39

MeanErrorSet ^2 x SDset_z 2.21 0.80 0.60 3.81 15.81

MeanErrorSet x Orientation 0.82 1.37 -1.84 3.59 0.83

MeanErrorSet ^2 x Orientation 0.02 1.56 -2.93 3.01 0.76

SDset _z x Orientation -0.14 0.04 -0.21 -0.07 20.16

MeanErrorSet x SDset _z x Orientation -0.47 1.05 -2.54 1.56 0.57

MeanErrorSet ^2 x SDset _z x Orientation -1.04 1.13 -3.31 1.16 0.88

The same Bayesian mixed-effects regression applied to the confidence zone revealed the
same pattern of results as we found for the reported mean (Table 1). Participants reported a
larger dispersion of their responses (i.e., reported a larger confidence zone) in noisier
conditions, whether the noise corresponded to high endogenous uncertainty (SDSet: M =
0.28, 95% CI = [0.20, 0.36], BF10 > 1000) or exogenous uncertainty (cardinal versus
oblique: M = 0.21, 95% CI = [0.08, 0.35], BF10 = 3.15). However, once again this effect was
reduced when both sources of noise increased: the increase of Reported_Dispersion with
SDSet was weaker for oblique than for cardinal stimuli (M = -0.14, 95% CI = [-0.21, -0.06],
BF10 = 20.16, Fig. 3.A).
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Moreover, the increase of Reported_Dispersion with increasing endogenous uncertainty was
amplified when the magnitude of the participant’s mean error also increased (MeanErrorSet2 x
SDset_z: M = 2.21, 95% CI = [0.68, 3.78], BF10 = 15.81). In other words, Reported_Dispersion
reflected the degradation of both aspects of the first-order performance (MeanErrorSet and
SDSet, Fig. 3.B and C).

Figure 3: Variation of the angle of the confidence zone (Reported_Dispersion) depending on
first-order performance and stimulus orientation. A. Reported_Dispersion increased with the
variability of the participants’ responses on a set (SDSet), in a steeper manner for cardinal (low sensory
uncertainty in light blue) than for oblique stimuli (high sensory uncertainty in dark blue). Although the
model took continuous variables as input, for illustrative purposes we plotted dots and error bars that
represent the mean ± 95% confidence interval over participants after grouping the values SDset in
deciles. B. Model predictions corresponding to the interaction between MeanErrorSet2 and SDset_z.
Continuous lines and shaded areas correspond to the regression model predictions and 95%
confidence interval. C. Histograms represent the distribution of Reported_Dispersion values and
illustrate the double interaction, revealing that participants reported smaller Reported_Dispersion
when MeanErrorSet and SDSet were both smaller (lower panel). For illustrative purposes we divided the
sets into two levels of absolute values of MeanErrorSet (high on the upper panel, low in the lower
panel) and two levels of SDSet (green/orange: low/high endogenous uncertainty, i.e., less/more
variable responses within the set).

Finally, we examined the relation between Reported_Dispersion and Reported_Mean
(M2_extended, Table 2). This model indicates that Reported_Dispersion increased with
Reported_Mean (M = 0.22, 95% CI = [0.15, 0.29], BF > 1000), i.e., participants reported a
larger dispersion of their performance when their mean response orientation was less
accurate. This correlation between the two metacognitive reports tended to be more
pronounced under low exogenous uncertainty (Reported_Mean x Orientation: M= -0.11, 95%
CI = [-0.19, -0.04], BF10 = 1.43, Fig. 4. A).

We also observed another interaction between Reported_Mean and MeanErrorSet2 (M=
-2.10, 95% CI = [-3.86, -0.44], BF10 > 5;), indicating that relationship between
Reported_Dispersion and MeanErrorSet was weaker when Reported_Mean decreased (i.e.,
when the mean response orientation was more accurate, Fig. 4. B-C). Thus, the perceived
mean response and the actual performance accuracy interacted in influencing how precise
the participants perceived their performance to be.
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Figure 4: Variation of the angle of the confidence zone (Reported_Dispersion) depending on
the error between the actual mean target orientation and the reported mean response
orientation, first-order performance and stimulus orientation. A. Reported_Dispersion increased
when the accuracy of the reported mean response orientation decreased (higher Reported_Mean), in
a steeper manner for cardinal (low sensory uncertainty in light blue) than for oblique stimuli (high
sensory uncertainty in dark blue). B. Model (M2_extended) predictions corresponding to the
interaction between MeanErrorSet2 and Reported_Mean, C. The distribution of Reported_Dispersion
values illustrates this interaction revealing that participants reported a more precise performance
(smaller Reported_Dispersion) when both the accuracy of the actual and the accuracy of the reported
performance were better (smaller MeanErrorSet and Reported_Mean, lower panel, blue distribution).
Continuous lines and shaded areas correspond to the regression model predictions and 95%
confidence interval. Although the model took continuous variables as input, for illustrative purposes
we plotted dots and error bars that represent the mean ± 95% confidence interval over participants
after grouping the values of the independent variables in deciles in the panel A. Similarly, histograms
in panels C and E were plotted after dividing the sets into two levels of each independent variable.
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Table 2: Full outcome table for the M2_extended regression to assess the link between
Reported_Mean and Reported_Dispersion. _z indicates that the variable has been z transformed. ^2
indicates that the quadratic component of the variable is considered.
Reported_Dispersion_z Estimate Est.Error l-95% CI u-95% CI BF

Intercept -0.06 0.04 -0.13 0.01

Reported_Mean_z 0.22 0.04 0.15 0.29 1000

MeanErrorSet -0.24 1.30 -2.76 2.27 0.63

MeanErrorSet^2 1.66 1.66 -1.58 4.84 1.39

SDset_z 0.24 0.04 0.16 0.32 1000

Orientation 0.16 0.07 0.03 0.29 0.62

Reported_Mean_z x MeanErrorSet -0.12 0.88 -1.86 1.64 0.43

Reported_Mean_z x MeanErrorSet^2 -2.11 0.84 -3.86 -0.44 8.35

Reported_Mean_z x SDset_z -0.02 0.02 -0.07 0.01 0.02

MeanErrorSet x SDset_z 0.78 0.93 -1.07 2.57 0.70

MeanErrorSet^2 x SDset_z 2.60 1.17 0.23 4.86 6.67

Reported_Mean_z x Orientation -0.11 0.04 -0.19 -0.04 1.43

MeanErrorSet x Orientation 0.99 1.40 -1.77 3.67 0.91

MeanErrorSet^2 x Orientation 0.20 1.75 -3.39 3.58 0.81

SDset_z x Orientation -0.09 0.04 -0.17 -0.02 0.39

Reported_Mean_z x MeanErrorSet x SDset_z -1.04 0.50 -2.06 -0.09 2.04

Reported_Mean_z x MeanErrorSet^2 x SDset_z -0.09 0.46 -1.00 0.85 0.22

Reported_Mean_z x MeanErrorSet x Orientation -0.14 1.01 -2.15 1.84 0.48

Reported_Mean_z x MeanErrorSet^2 x
Orientation 0.96 0.92 -0.84 2.77 0.68

Reported_Mean_z x SDset_z x Orientation -0.02 0.03 -0.07 0.04 0.02

MeanErrorSet x SDset_z x Orientation -0.68 1.10 -2.78 1.50 0.71

MeanErrorSet^2 x SDset_z x Orientation -2.12 1.34 -4.82 0.52 2.13

Reported_Mean_z x MeanErrorSet x SDset_z x
Orientation -0.18 0.70 -1.54 1.24 0.37

Reported_Mean_z x MeanErrorSet^2 x SDset_z x
Orientation 1.20 0.65 -0.09 2.44 1.56
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Experiment 2
Overall, Experiment 1 revealed that observers considered their accuracy as well as both
endogenous (response variability) and exogenous (sensory uncertainty) sources of
uncertainty when monitoring their own performance in an orientation reproduction task. In
Experiment 2, we sought to replicate these results and examine another source of
uncertainty modulation via exogenous attentional cueing. To manipulate participants’
attentional focus, we presented two instead of one gabor patch on each trial, and preceded
them with a valid or an invalid exogenous cue. Within a set of four trials, all cues (full set),
three cues (valid set), two cues (neutral set), or only one cue could be valid (invalid set),
resulting in four different conditions of cueing at the level of a set. Because the change in the
participants’ attentional focus came from an experimental, stimulus-related, manipulation, we
considered that these conditions resulted in different levels of exogenous uncertainty.

Mean (+/- SD) first-order performance pooled across all sets, was 7.43° +/- 4.14 Participants
made larger errors on single trials that were invalidly cued, as compared to validly cued trials
(M = -0.22, 95% CI = [-0.29, -0.14], BF10 > 1000). This confirms that our attentional
manipulation was effective.

Regarding global performance monitoring, we replicated the effect of MeanErrorSet and SDSet

on both Reported_Mean and Reported_Dispersion (Fig. 5, Table 3). Reported_Mean
increased with SDSet (SDSet: M = 0.18, 95% CI = [0.09, 0.27], BF10 > 5) and this effect was
amplified by the magnitude of MeanErrorSet (MeanErrorSet2 x SDSet: M = 2.42, 95% CI = [0.64,
4.28], BF10 > 5). Similarly, Reported_Dispersion increased with SDSet (M = 0.23, 95% CI =
[0.15, 0.32], BF10 > 5) and this effect was also modulated by the magnitude of MeanErrorSet
(MeanErrorSet2x SDSet: M = -4.28, 95% CI = [-6.19, -2.44], BF10 > 5). Once again, these
results suggest that participants correctly accounted for changes in the performance
accuracy and endogenous uncertainty when monitoring different aspects of their
performance over a series of trials.
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Figure 5: Variations of the error between the actual mean target orientation and the mean
target orientation (Reported_Mean, A, B, C) and the confidence zone (Reported_Dispersion, D,
E, F) depending on first-order performance.
A. Reported_Mean increased with the variability of the participants’ responses on a set (SDSet). B.
Model predictions corresponding to the interaction between MeanErrorSet2 and SDset_z. C.The
distribution of Reported_Mean values illustrates this double interaction revealing that participants
reported smaller Reported_Mean when they were more accurate (smaller absolute MeanErrorSet) and
more precise (smaller SDSet) in the orientation reproduction task. Thus, we observe more low values
of Reported_Mean for low mean error (lower panel) and especially for sets with low endogenous
uncertainty (in green). D. Similarly, Reported_Dispersion increased with the variability of the
participants’ responses on a set (SDSet). E. Model predictions corresponding to the interaction
between MeanErrorSet2 and SDset_z. F. The distribution of Reported_Dispersion values illustrates this
double interaction revealing that participants felt that the responses were more precise (smaller
Reported_Dispersion) when their responses were more accurate and precise (smaller MeanErrorSet
and SDSet, respectively). Continuous lines and shaded areas correspond to the regression model
predictions and 95% confidence interval. Although the model took continuous variables as input, for
illustrative purposes we plotted dots and error bars that represent the mean ± 95% confidence interval
over participants after grouping the values of the independent variables in deciles in panels A and D.
Similarly, histograms in panels C and F were plotted after dividing the sets into two levels of each
independent variable.
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The cueing condition modulated the effect of the participants’ first-order performance on the
report of their mean response orientation: the relationship between Reported_Mean and
MeanErrorSet changed with the proportion of invalid cues in a set (MeanErrorSet^2 x Cueing:
M = 4.70, 95% CI = [2.01, 7.45], BF10 > 5; MeanErrorSet^2 x SDset x Cueing: M = -2.40, 95%
CI = [-3.66, -1.13], BF10 > 5, Fig. 6.). Reported_Mean increased with lower set accuracy
(increasing of the absolute value of MeanErrorSet) especially under low attentional focus; and
this effect of reduced attention towards the target stimulus was less pronounced with
increasing endogenous uncertainty. This last result suggests once again a difficulty in
accounting for both sources of uncertainty (endogenous and exogenous) when monitoring
the performance over several trials.

Figure 6: Variations of the angle of Reported_Mean depending on the participant’s
performance and the cueing condition. For illustrative purposes we divided the sets into two levels
of absolute values of MeanErrorSet (grey: high mean error, yellow: low mean error on the set) and two
levels of SDSet (higher panel: low endogenous uncertainty, i.e., less variable responses with a set,
lower panel: high endogenous uncertainty, i.e., more variable responses with a set). A. Regression
model predicted that Reported_Mean increased when the actual performance on the set worsened
(increasing MeanErrorSet^2) especially when participants were distracted by invalid cues. This effect of
cueing was more pronounced in low endogenous uncertainty sets (for less variable responses, upper
panel). B. In agreement with these model predictions, data distribution revealed a higher frequency of
low values of Reported_Mean when the first order performance was more accurate (low mean error in
yellow) when the exogenous and endogenous uncertainty were the lowest (left upper panel). Values
of Reported_Mean increased when the first order performance worsened and the ability to correctly
monitor this change in performance was reduced when both sources of uncertainty are combined.
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Table 3: Full outcome table for the M1 and M2 regressions to assess the contribution of
MeanErrorSet, SDset, and Cueing to Reported_Mean and Reported_Dispersion. _z means the variable
has been z transformed. ^2 means the quadratic component of the corresponding variable is
considered.
Reported_Mean_z (M1) Estimate Est.Error l-95% CI u-95% CI BF10

Intercept -0.00 0.02 -0.04 0.04

MeanErrorSet 0.58 1.57 -2.59 3.70 0.83

MeanErrorSet^2 1.21 1.88 -2.53 4.89 1.17

SDset_z 0.18 0.05 0.09 0.27 16.5

Cueing 0.00 0.01 -0.03 0.03 0.01

MeanErrorSet x SDset_z 1.48 0.74 0.04 2.97 2.92

MeanErrorSet^2 x SDset_z 2.42 0.93 0.64 4.28 20.85

MeanErrorSet x Cueing 0.62 0.94 -1.22 2.44 0.59

MeanErrorSet^2 x Cueing 4.70 1.39 2.01 7.45 292.74

SDset_z x Cueing 0.01 0.02 -0.02 0.04 0.01

MeanErrorSet x SDset_z x Cueing -0.89 0.49 -1.87 0.07 1.28

MeanErrorSet^2 x SDset_z x Cueing -2.40 0.64 -3.66 -1.13 1000

Reported_Dispersion_z (M2) Estimate Est.Error l-95% CI u-95% CI BF10

Intercept -0.01 0.02 -0.05 0.03

MeanErrorSet -0.19 1.60 -3.37 3.00 0.79

MeanErrorSet^2 1.62 1.83 -1.92 5.12 1.3

SDset_z 0.23 0.04 0.15 0.32 1000

Cueing 0.02 0.01 -0.01 0.04 0.02

MeanErrorSet x SDset_z -0.27 0.75 -1.74 1.22 0.39

MeanErrorSet ^2 x SDset_z -4.28 0.96 -6.19 -2.44 1000

MeanErrorSet x Cueing -0.16 0.94 -2.00 1.65 0.48

MeanErrorSet ^2 x Cueing 2.52 1.35 -0.11 5.15 3.81

SDset _z x Cueing -0.02 0.02 -0.05 0.01 0.02

MeanErrorSet x SDset _z x Cueing -0.38 0.49 -1.35 0.60 0.34

MeanErrorSet ^2 x SDset _z x Cueing 1.20 0.65 -0.08 2.45 1.99

Finally, we examined the relation between Reported_Dispersion and Reported_Mean
(M2_extended, Table 4, Figure S4). The regression revealed one triple and one quadruple
interaction involving Reported_Mean (Reported_Mean x MeanErrorSet^2 x SDSet;
Reported_Mean x MeanErrorSet^2 x SDSet x Cueing; Figure 7), showing that the adjustment
of Reported_Dispersion to Reported_Mean decreased when the first-order performance
accuracy decreased (higher MeanErrorSet^2) and/or when the uncertainty increased (higher
SDSet or decreased attentional focus).

18



Table 4: Full outcome table for the M2_extended regression to assess the link between
Reported_Mean and Reported_Dispersion. _z means the variable has been z transformed. ^2 means
the quadratic component of the variable is considered.
Reported_Dispersion_z (M2_extended) Estimate Est.Error l-95% CI u-95% CI BF

Intercept -0.02 0.02 -0.06 0.02

Reported_Mean_z 0.11 0.04 0.03 0.19 0.73

MeanErrorSet -1.10 1.57 -4.16 1.98 1.01

MeanErrorSet^2 1.00 1.79 -2.44 4.58 1.00

SDset_z 0.18 0.04 0.10 0.27 288.90

Cueing 0.02 0.01 -0.01 0.05 0.02

Reported_Mean_z x MeanErrorSet 0.75 1.23 -1.62 3.20 0.74

Reported_Mean_z x MeanErrorSet^2 -1.22 1.20 -3.59 1.16 1.00

Reported_Mean_z x SDset_z 0.03 0.02 -0.01 0.06 0.03

MeanErrorSet x SDset_z 0.72 0.80 -0.89 2.29 0.57

MeanErrorSet^2 x SDset_z 0.66 1.09 -1.49 2.84 0.64

Reported_Mean_z x Cueing 0.00 0.01 -0.03 0.03 0.01

MeanErrorSet x Cueing -0.10 0.93 -1.91 1.65 0.47

MeanErrorSet^2 x Cueing 0.31 1.39 -2.43 3.00 0.71

SDset_z x Cueing -0.01 0.02 -0.04 0.02 0.01

Reported_Mean_z x MeanErrorSet x SDset_z 0.14 0.42 -0.69 0.97 0.23

Reported_Mean_z x MeanErrorSet^2 x SDset_z -1.78 0.42 -2.60 -0.94 1000

Reported_Mean_z x MeanErrorSet x Cueing -0.01 0.80 -1.62 1.52 0.39

Reported_Mean_z x MeanErrorSet^2 x Cueing 0.51 0.81 -1.10 2.13 0.49

Reported_Mean_z x SDset_z x Cueing -0.02 0.01 -0.04 0.00 0.02

MeanErrorSet x SDset_z x Cueing -0.53 0.54 -1.58 0.54 0.44

MeanErrorSet^2 x SDset_z x Cueing -0.56 0.74 -2.07 0.85 0.53

Reported_Mean_z x MeanErrorSet x SDset_z x Cueing -0.38 0.39 -1.14 0.37 0.31

Reported_Mean_z x MeanErrorSet^2 x SDset_z x Cueing 1.09 0.40 0.31 1.86 9.16

19



Discussion
We investigated the contribution of first-order accuracy and uncertainty to global
performance monitoring. In a novel task, we asked participants to provide two kinds of
judgments about their own performance. After a set of four trials of an orientation matching
task, participants first reported their perceived mean response, and then a region around
that mean corresponding to their estimation of their responses’ dispersion. We could assess
how first-order performance, endogenous uncertainty, and exogenous uncertainty impacted
performance monitoring by comparing the difference between mean performance and actual
orientation target (Reported_Mean) as well the estimated dispersion of performance
(Reported_Dispersion). Endogenous uncertainty was estimated from the variability of
first-order performance across the four repetitions of the orientation task. Exogenous
uncertainty was operationalized as the amount of sensory noise affecting the stimuli upon
which the global performance monitoring was made (i.e., stimulus-related oblique effect in
Experiment 1) and was also manipulated by changing the attentional focus manipulated
through exogenous cueing (attention-related uncertainty in Experiment 2).

In these two experiments, we showed that participants arguably used the average and
dispersion of their first-order performance to monitor global performance. The calibration of
metacognitive judgments to first-order performance was better when participants’ responses
were less variable i.e., when the endogenous uncertainty was lower. Similarly, other sources
of uncertainty also modulated the calibration between global metacognitive judgments and
first-order performance. First, higher levels of exogenous uncertainty (oblique vs cardinal
orientations) led to a weaker relationship between metacognitive reports and first-order
responses variability. Second, when manipulating the participants’ attentional focus,
increased attentional-related uncertainty resulting from a higher number of invalid cues also
impacted global metacognitive judgements: participants correctly accounted for changes in
task difficulty with the proportion of invalid cueing when monitoring their global mean
performance, but this effect was less pronounced for sets during which participants’
responses were more variable, i.e. when higher endogenous uncertainty was combined to
the increase in exogenous uncertainty. Two key points can be made from these results: first,
people appeared to reliably estimate the mean and variability of their performance and use it
together with exogenous uncertainty to inform their global performance monitoring. Second,
this capacity decreases in the presence of both endogenous and exogenous uncertainty.

The importance of uncertainty, regardless of its origin, as a contributing factor to local
metacognitive judgments has been highlighted before (Atiya et al. 2021; Denison et al. 2018;
Geurts et al. 2022; Honig, Ma, and Fougnie 2020; Mole et al. 2018; Rahnev 2021). Our
results suggest that uncertainty contributes not only to local metacognitive judgments, i.e.,
judgment of an isolated performance, but also to global performance monitoring, i.e., over a
series of performances and events. If individuals have the ability to track their performance
while performing a visuomotor task (Locke et al. 2020) and to extract summary statistics like
average and variance from a group of stimuli (de Gardelle and Summerfield 2011; Ji and
Hayward 2021), our study highlights that they are also able to use such statistics about their
own performance on a series of trials, in addition to exogenous sensory uncertainty, to
evaluate this performance. Our results also indicate that attention-related uncertainty is also
taken into account to form global judgements, even though the mechanisms connecting
attention to variation in external uncertainty are still not fully defined (Carrasco 2011). For
local metacognitive judgments, the contribution of attention to confidence has only recently

20



been highlighted with an experimental paradigm where participants were asked to categorize
visual stimuli in two embedded categories (Denison et al. 2018). Using a spatial cueing
method similar to ours, this computational study revealed a Bayesian-like link between
attention and confidence. Our results suggest that this finding about local metacognitive
judgments, which has since then been replicated (Recht, Mamassian, and de Gardelle
2022), holds true for global metacognitive judgments as well.

Interestingly, when exogenous uncertainty was experimentally increased, for example in sets
of trials including noisy (oblique orientation) or unattended stimuli (invalid cues), the increase
in variability in first-order responses led to a reduced calibration of global metacognitive
judgements. This effect seems to be an example of metacognitive inefficiency, i.e., a failure
to monitor behavioral accuracy. Identifying and understanding the emergence of
metacognitive inefficiency is an important goal of the research in metacognition (Shekhar
and Rahnev 2021; Rahnev et al., 2022). Our study reveals a potential source of failure at the
level of global performance monitoring; however, the cause of this failure remains an open
question: Do participants show a reduced capacity to assess and use uncertainty in their
global metacognitive judgments when this uncertainty becomes too important (similar to a
ceiling effect where uncertainty cannot be encoded anymore); or does the limited ability
come from a difficulty in combining uncertainty emerging from different sources (endogenous
versus exogenous source of uncertainty)? We argue that approaches like ours are relevant
to address the question of suboptimality and inefficiency at the metacognitive level.

As already mentioned, the present study shows a pattern of results for global performance
monitoring that is similar to a recent study highlighting how uncertainty shaped local
confidence according to Bayesian principles regardless of its exogenous or endogenous
origin (Geurts et al. 2022). The question remains about the mechanisms governing this
contribution of exogenous and endogenous uncertainty to global metacognitive judgments:
First-order performance could influence directly the global metacognitive estimates, or
indirectly by influencing only local metacognitive estimates that are then combined to form
global estimates. Answering this question would require collecting both local and global
metacognitive judgements in the same continuous task, which no one has done so far. As
mentioned before, continuous tasks are ideally suited to finely quantify the formation of local
and global metacognitive judgments as direct functions of exogenous and endogenous
uncertainty. To the best of our knowledge, only two studies have directly examined how
global judgements derive from local confidence estimates (Lee et al. 2021; Rouault et al.
2019). Both studies used binary decisions as metacognitive reports, i.e., participants had to
choose between two sets of trials of the same task (Lee et al. 2021) or two tasks (Rouault et
al. 2019) the one for which they performed better. In both studies, global metacognitive
judgments appeared to integrate information across multiple perceptual decisions and to be
formed from local confidence reports. However, these studies disagree on the question of an
equal contribution of each local estimate to global metacognition (e.g., recency effect found
in Lee et al. but not in Rouault et al.) and on which components of first-order performance
contribute to global metacognitive judgements (accuracy, response time, number of events
to be considered).

We mentioned that the two different global dependent variables collected during our
experiment captured two different aspects of performance monitoring. Our results revealed
that the two variables were not independent. The ability of the participant to track the overall

21



accuracy of the performance across four trials, reflected by the difference between the actual
target on a set and the reported mean response orientation (Reported_Mean) influenced
how participants monitored their response’s dispersion (Reported_Dispersion). First, the
global performance accuracy estimate changed how well the participants accounted for their
actual accuracy (first-order performance accuracy) when reporting their global performance
precision. Second, the magnitude of the correlation between these two types of
metacognitive reports also depended on the level of uncertainty, suggesting once again a
weakening of the calibration mechanisms for global performance precision monitoring when
both endogenous and exogenous uncertainty increased. It is tempting (but unjustified, as we
argue below) to consider that the dispersion estimate reported by the participants constitutes
a measure of metacognitive uncertainty around the global performance mean estimate.
Together, our two measures could then reflect the mean and dispersion distribution of the
global performance monitoring estimate. However, our results suggested that performance
dispersion monitoring was still shaped by the actual first-order performance, thus does not
seem to solely reflect metacognitive uncertainty (i.e., another type of noise corrupting the
estimate formed about the global performance, independently of first-order processes).
Future work is needed to probe further the mechanisms linking different aspects of
performance monitoring and metacognitive judgments in general.

Finally, in regards to the connexion between local and global metacognition, we would like to
emphasize a key interest of our approach: by asking participants to monitor their
performance across four trials on a continuous orientation task, we focus on a metacognitive
process more global than the classical metacognitive judgment reported about an isolated
event or task; yet these collected metacognitive estimates are still anchored in a perceptual
task and are to be considered at a lower conceptual level than global beliefs about
self-performance (i.e., information-based metacognition, Koriat 2007). Thus, our study opens
a new window of observation on the relationship between local and global metacognitive
judgments. Moreover, tasks such as the present one are also useful to finely quantify
metacognition with greater ecological validity, since we are more likely to evaluate our global
performance after several repetitions of the same task in daily life rather than making a
judgment on a visual scale following a single forced choice. This task could therefore help to
capture global metacognitive deficits in neurological or psychiatric disorders (Seow et al.
2021), which is already the subject of intense research at present via local judgements
(Hoven et al. 2019, 2022; Rouy et al. 2021). Uniquely, we also asked participants not only for
a point estimate of their performance, but also for a range around it, stepping away from the
classical reports of confidence. The need for such new paradigms aiming to expand both the
scale and the scope of metacognitive reports has been highlighted as a crucial development
for future metacognitive neuroscience (Katyal and Fleming 2023).
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