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ABSTRACT Deep neural networks have been widely used in several complex tasks such as
robotics, self-driving cars, medicine, etc. However, they have recently shown to be vulnerable
in uncertain environments where inputs are noisy. As a consequence, the robustness of neural
networks has become an essential property for their application in critical systems. Robustness
is the capacity to take the same decision even when inputs are disturbed under different types
of perturbations, including adversarial attacks. The great difficulty today is providing a formal
guarantee of robustness, which is the context of this paper. To do so, abstract interpretation, a
popular state-of-the-art method, consisting of converting the layers of the neural network into
abstract layers, has been recently proposed. An abstract layer can act on a geometric abstract
object or shape comprising implicitly an infinite number of inputs rather than an individual input.
In this paper, we propose a new mathematical formulation of an abstract transformer to convert
a LeakyReLU activation layer to an abstract layer. Moreover, we implement and integrate our
transformer into the ERAN tool. For validation, we assess the performance of our transformer
according to the LeakyReLU hyperparameter, and we study the robustness of the neural network
according to the input perturbation intensity. Our approach is evaluated on three different datasets:
MNIST, Fashion and a robotic dataset. The obtained results demonstrate the efficacy of our
abstract transformer in terms of mathematical formulation and implementation.

INDEX TERMS Neural network verification, Robustness, Abstract Interpretation, Abstract
transformer, LeakyReLU.

I. INTRODUCTION

During the past decade, Artificial Intelligence (AI) and,
in particular, Machine Learning have achieved a dra-
matic performance increase for a variety of critical tasks.
In particular, Deep Neural Networks (DNN) have rev-
olutionized machine learning and achieved spectacular
performance across a wide range of complex applica-
tions. These applications include computer vision [1], cy-
bersecurity [2], robotics [3], and control of autonomous
systems [4], etc.

In recent years, researchers have focused on studying
the robustness of neural networks in uncertain envi-
ronments, and several research areas, as a result, have

emerged (Figure 1). These areas are usually related to
each other, but often each research work focuses on the
challenges of a particular domain. The first area is called
“robustness improvement of neural networks”. The prin-
ciple is to apply defense techniques in order to obtain
robust models, in the sense that their performance does
not change if the inputs are perturbed. At the end of
this phase, robustness is not guaranteed, as it depends
on the effectiveness of the defense technique. The second
research area is “testing the robustness” by studying the
behavior of the neural network against input perturba-
tions. Indeed, as mentioned before, after the application
of defense techniques, robustness is not guaranteed.
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FIGURE 1. Research areas related to neural network robustness.

Therefore, when we judge that our neural network is
robust, we study its behavior against powerful, well
calculated perturbations, called “adversarial attacks”. If
the network fails against the adversarial attacks, we
turn around again to the robustification phase. The
third research area is the “formal verification of neural
networks”. Indeed, the statement “a neural network is
robust against adversarial attacks” does not mean that
it is robust to all perturbations allowed on the inputs,
but rather that it has a high chance to be robust. In this
respect, a formal proof of robustness should be provided,
and it is in this context that our work fits.

Despite the power of Deep Neural Networks to process
high dimensional inputs, and resolve complex problems
in several critical applications, it has been shown re-
cently that small perturbations in the input space can
trigger incorrect decisions [4]. Concretely, it has been
observed that DNN can be easily fooled, by making their
predictions change, when slightly modifying the inputs.
This modification is carefully chosen, and the modified
samples are known as adversarial examples. These
findings have been instrumental in raising the awareness
that a fundamental challenge today is ensuring that
machine learning systems, and deep neural networks
in particular, behave as intended, when dealing with
disturbed inputs.

Adversarial examples are typically obtained by
slightly perturbing an input, that was originally cor-
rectly classified by the network, in such a way that
the network misclassifies the disturbed input. The ad-
versarial examples are not randomly generated, but
carefully computed. There are several techniques to
generate these examples, but most of them rely on min-
imizing the distance between the adversarial example
and the original one, while ensuring that the prediction
is incorrect. Some techniques require access to all the
classifier parameters (white-box attacks). In contrast,
other techniques require access only to the prediction
function (black-box attacks).

To generate the adversarial examples, several methods

have been proposed in the literature. These techniques
include the Fast Gradient Sign Method (FGSM), pro-
posed by Goodfellow et al. [5], [6], and based on the
gradient descent method. The Basic Iterative Method
(BIM), proposed by Kurabin et al. in [7], is an extension
of FGSM. A second extension of FGSM is the Projected
Gradient Descent (PGD), proposed in [8]. In addition
to gradient-based attacks, the Jacobian Saliency Map
Attack (JSMA), proposed by Parpernot et al. in [9],
consists in disturbing a minimal number of pixels. An-
other popular attack, proposed by Moosavi-Dezfooli et
al. in [10], is DeepFool, which consists of finding the
closest distance from the original input to the decision
boundary.

These adversarial samples can be dangerous as they
may pose a risk to human lives. Take autonomous
driving as an example. An autonomous driving system
should demonstrate robustness against environmental
perturbations such as lighting variation, visibility, etc.
A misinterpretation of such perturbations may lead to
a wrong decision, with potentially catastrophic conse-
quences. To guarantee an acceptable robustness level,
the system has to be evaluated in the face of several chal-
lenges, such as: iq the uncertainty of the uncontrolled
driving environment, iiq occlusion/absence (partially or
totally) of perception, etc.
As an illustration, consider the images of Fig.I in the
context of autonomous vehicles. The image on the left is

FIGURE 2. Adversarial attacks. left: initial image, right: Blurring [11].
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an ordinary image of a limit speed sign 20 km/h, while
a blurring perturbation is added to the image on the
right. Despite the degraded quality of the second image,
both appear to be the same to humans, i.e. a limit speed
sign to 20 km/h. It is therefore surprising that the DNN,
developed for traffic sign classification, misclassifies the
right image as a 80 km/h limit speed sign [11].

An adversarial attack, whatever its type, is just an
example of a well-chosen perturbation that could be
injected into inputs. Given the criticality of certain ap-
plications, it is necessary to formally verify the robust-
ness of the DNN to all possible perturbations, including
adversarial attacks, before making it available to users.
The robustness verification is a task independent of
adversarial attacks and assumes that each DNN input
(pixel) belongs to an interval reflecting the perturbation.
It consists of verifying the capacity of the DNN to take
the same correct decision for all possible perturbations.

To assess robustness, three major approaches have
been proposed in the literature: satisfiability, reacha-
bility and optimization approaches. Satisfiability ap-
proaches consist of transforming the neural network
into a feasibility problem to prove the existence of a
counterexample. If a counterexample is found, the neural
network is considered as not safe; if none is found, the
neural network is safe. On the other side, the reach-
ability approaches consist of calculating the reachable
set (outputs) of all inputs and checking if it is included
in the desired set. Regarding optimization approaches,
they involve formalizing the neural network as a system
of equations of conjunction or disjunction. Typically,
solutions to these systems are achieved through the use
of mathematical programming algorithms.

One of the main advantages of the reachability-based
approaches is their scalability to input dimension. In
this category, an interesting approach, named Abstract
Interpretation, proposed in [12], aims to assess systems
for resistance to unsatisfied specifications, by checking
that the DNN still outputs the same label even if the
inputs become noisy. A key phase of the mathematical
formulation of the abstract interpretation is to convert
the DNN layers into abstract layers. To the best of our
knowledge, only the following activation functions have
been proposed in the literature : Tanh, Sigmoid and
ReLU.

The objective of this paper is to extend the math-
ematical formulation of the Abstract Interpretation to
the LeakyReLU activation function, a recently popular
activation function in the area of neural networks thanks
to its better ability to learn. This enables the assess-
ment of the robustness of neural networks containing
LeakyReLU layers, that is missing in the state-of-the-
art. To achieve this objective, our strategy consists of

the following two contributions1:
‚ We propose a new abstract transformer that allows

the use of Abstract Interpretation for verifying the
robustness of DNN with LeakyReLU activation.
The current state of the art does not include this
transformer.

‚ We integrate the transformer into ERAN (ETH
Robustness Analyzer for Neural Networks), which
is one of the most popular formal tools. Then,
several several experiments for classification tasks
on different datasets are performed. In addition,
we note that the formulation of our transformer is
generic and could be implemented under any formal
tool used for abstract interpretation or interfaced
with ERAN as the tool DNNV [13].

‚ We investigate the robustness of the neural net-
works according to two variables: the hyperparam-
eter of the ReLU activation (α) and the radius of
the maximum allowed perturbation (ϵ).

The rest of the paper is organized as follows. In section
II, the current state of the art on methods for verifying
the robustness of neural networks is given. In section
III, we introduce adversarial attacks and robustness. In
section IV-A, the main principles of Abstract Interpre-
tation are described. Our approach is described in detail
in sectionIV-B. Section V describes the experimental
results, and section VI concludes the paper.

II. STATE OF THE ART
To formally verify the robustness of DNNs against input
perturbations, the state-of-the art approaches can be
grouped according to the formulation of the problem. In
this section, we introduce first the Neural Networks Ver-
ification (NNV) problem. Then, we focus on the three
following formulations: satisfiability problem, reachabil-
ity problem, and optimization problem.

A. NEURAL NETWORKS VERIFICATION (NNV)
PROBLEM
Given a neural network N : x Ñ y, a set of properties P
covering the inputs, and a set of properties Q covering
the outputs, the NNV problem formulation is to seek
an answer to the following question: Is there an input
x resulting into an output y “ Npxq, verifying P and
failing Q ?

For more details, let us take the example of a physical
system, represented by the neural network of Fig.3. This
neural network takes as inputs the measurements (x1
and x2) of two sensors and outputs the prediction y of an
actuator measure, that should be greater than (´5).To
verify the robustness of the input x “ px1, x2q “ p0, 0q,

1A preliminary version had been accepted in two workshops
: DataIA 2020 (https://www.dataia.eu/ws-safety-ai) and Work-
shop on Machine Learning and Certified Systems 2021 (https:
//mlcertifiedsystems.deel.ai/), but no papers had been published.
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let us assume that the inputs can be disturbed by
a maximum perturbation of radius 2. Verifying the
robustness in this case amounts to checking the following
constraint: @px1 ą ´2q^px1 ă 2q^px2 ą ´2q^px2 ă 2q,
we have py ą ´5q

In this example, P is then the constraints that describe
the possible perturbation on the input sensor measure-
ments: px1 ą ´2q ^ px1 ă 2q ^ px2 ą ´2q ^ px2 ă 2q.
As for Q, it is the constraint of the desired value of the
actuator: py ą ´5q

B. SATISFIABILITY APPROACHES
The verification of a neural network can be formulated
as a feasibility problem. It consists in transforming the
neural network into a problem for the existence of a
counterexample. Based on the example of Fig.3, the
verification problem and its formulation are presented
as follows: Prove that for all possible values of inputs
(x1 and x2), are there values of output y that do not
satisfy the property Q of y ?
In more details, the feasibility problem associated with
the example of Fig.3 consists of checking whether there
exists an x1 P r´2, 2s and x2 P r´2, 2s , where
Npx1, x2q ă“ ´5. Formally, a feasibility problem con-
sists of taking all constraints on inputs and the negation
of constraints on outputs. In our example, the feasibility
problem becomes : px1 ą ´2q ^ px1 ă 2q ^ px2 ą

´2q ^ px2 ă 2q ^ py ď ´5q. If the problem admits
a solution, the network N is considered not robust;
otherwise it is robust.

In [14], the authors propose Reluplex. It is the abbre-
viation of ReLU for the simplex algorithm. The simplex
algorithm is an algorithm for solving linear optimization
problems. Its objective is to minimize a function on a set
defined by inequalities. Reluplex’s principle consists in
formalizing the neural network by a set of equations. To
solve this system of equations, starting from an initial
assignment, it tries to correct some constraints violated
at each step. The specification of this approach is that,
from one iteration to another, the constraints between
the variables can be violated.
In [15], the authors propose PLANET, “a Piece-wise
LineAr feed-forward NEural network verification Tool”.
Its principle consists first of replacing the non-linear
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FIGURE 3. Example of neural network

neural network functions by a set of linear equations. It
then tries to find a solution to the system of equations.
The approach supports both types of nodes: ReLU and
Max Pooling.
In [16], the authors proposed the linearization of the
non-convex ReLU activation using the technique Big-M.

C. REACHABILITY APPROACHES
In computer science, the reachability problem in a
system is the problem of determining whether a final
situation is reachable from an initial situation.
Given a neural network N and an input set X, the
reachability set Y is defined as all the possible outputs:
Y “ ty | y “ Npxq,@x P Xu. If the reachable set
is included in the desired set, the neural network is
declared as robust. Otherwise, if the reachable set is
not included, totally or partially, in the desired set, the
neural network is declared as not robust.
The approaches proposed in the literature consist of
performing an exact [17] or approximate [18], [19] reach-
ability analysis to determine the set of outputs. In
[18], the reachability set search problem is formulated
as a chain of optimization problems to compute the
maximum and minimum sensitivity values for each
neural network node. In [19], the authors propose a
verification scheme called “Abstract Interpretation for
Artificial Intelligence”, abbreviated as AI2. The main
idea of AI2 is to model the neural network inputs by
zonohedron-based geometric shapes (the zonohedron is
a special case of the polyhedron geometric shape). A set
of abstract operators is then defined to propagate the
evolution of the zonohedron through the neural network
layers. The approach AI2 is adapted in [20] to verify
the robustness of neural networks against geometric
transformations. Finally, the approach presented in [17]
consists of exactly representing the neural network in-
puts by the union of polyhedra. Then, the computation
of the reachability set is performed at each layer of
the network using a polyhedron manipulation tool. It
is worth mentioning that our approach falls under the
umbrella of reachability approaches.

D. OPTIMIZATION APPROACHES
The optimization-based formulation consists in formal-
izing the neural network by a conjunction or disjunction
of linear properties. These properties model the relations
between the successive layers. Hereafter, an example of
the translation of a “Fully-connected” layer by a set of
conjunctions is given.
First, we introduce variables x⃗i that represent the out-
put vectors of layer i. For each layer, we encode the
calculation of x⃗i knowing x⃗i´1 by constraint Ci as
Ci ” txj

i “ wj
i ˚ xi´1 ` bj

i u, where wj
i is the jth weight

component of wi.
After encoding all the neural network layers by a set
of linear properties (equalities or inequalities), several
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solutions were proposed to solve the problem. These so-
lutions can be split into two groups: iq Primary problem
formulation and iiq Dual problem formulation.

Primal formulation consists in directly solving the
system of equations using linear programming. The ap-
proach of [21], for instance, encodes the neural network
by a set of constraints. Then, the Gurobi algorithm
is applied to find a solution. The approach of [22], by
contrast, looks for the maximum perturbation allowing
to distort the neural network using Mixed-Integer Linear
Programming (MILP).

Dual formulation, on the other hand, consists in using
relaxations (approximations) of linear equations to solve
the optimization problem. The approach of [23], for
instance, uses Lagrangian relaxation to approximate the
boundaries of the neural network nodes. In [24], the
boundaries of nodes are estimated using convex relax-
ation, while in [25], a positive semi-definite optimization
technique is used to approximate the boundaries.

III. ADVERSARIAL ATTACKS AND ROBUSTNESS
In this section, we introduce adversarial attacks and
describe the most popular one, namely FGSM. Then, we
introduce the task of verifying the robustness of neural
networks using abstract interpretation.

A. ADVERSARIAL ATTACKS
An adversarial attack is defined as a small perturbation,
injected into the inputs to fool the classifier’s prediction.
If the neural network is resistant to adversarial attacks,
it is likely to be resistant to other types of perturbations.
Since the latter claim is not guaranteed, we need to
formally verify the robustness of the neural network
against all possible perturbations.
We recall that the goal of this paper is to verify robust-
ness and not to study adversarial attacks. However, it
is useful to describe how these attacks are generated. In
this context, we refer to our research papers [26]–[28] for
more information.

There are many ways to generate adversarial attacks.
We distinguish between two types of attacks depending
on the attacker’s goal: targeted attacks and untargeted
attacks:

‚ Targeted attack: aims to misclassify the input sam-
ple away from its original class to a specific target
class.

‚ Untargeted attack: aims to misclassify the input
sample away from its original class, regardless of
the new output class.

Thereafter, an example of the most popular adversar-
ial attack (FGSM) with its two versions: targeted and
untargeted, is described. Fast Gradient Sign Method
(FGSM) is considered as one of the first proposed
attacks to fool neural networks. Goodfellow et al. [5],
[6] have developed a method for generating adversar-
ial examples based on the gradient descent technique.

Given an original sample x, each of its components is
modified by adding or subtracting a small perturbation
ϵ.
The method consists in considering the sign of the loss
function gradient ∇x Lpx, yq:

‚ if ∇x Lpx, yq is positive, then it means that the
increase of x increases the loss function L.

‚ if ∇x Lpx, yq is negative, then it means that the
increase of x decreases the loss function L.

FGSM can be targeted or untargeted. For the targeted
version, the adversarial function ψ is expressed as in (1):

ψ : X ˆ Y ÝÑ X
px, yq ÞÝÑ ´ε . signp∇x Lpx, yqq

(1)

The adversarial sample x1 is then generated as in (2):

x1 “ x´ ε . signp∇x Lpx, yqq (2)

where y is the target label of the input x.
Regarding the untargeted version, the adversarial func-
tion ρ is expressed as in (3):

ρ : X ˆ Y ÝÑ X
px, yq ÞÝÑ ε . signp∇x Lpx, yqq

(3)

The adversarial sample x1 is is then generated as in (4):

x1 “ x` ε . signp∇x Lpx, yqq (4)

where y is the ground truth of the input x.
FGSM requires the computation of the loss function
gradient, which makes it a simple method. On the
other hand, the only hyperparameter of FGSM is ε, the
maximum allowed perturbation.

B. ROBUSTNESS
To introduce robustness, take the example of Fig.4
where an input has been disrupted to the point of
completely changing the network decision. This is the
FGSM attack, consisting of adding a noise that is pro-
portional to the gradient sign of the loss function. The
input, which was previously correctly classified as Panda
(with a confidence level of 57.7%), has its output label
completely changed once disturbed. It is now classified
as Gibbon, with a confidence level of 99.3%, whereas
for a human, the difference between the disturbed and
the origin images is not perceptible. Consequently, this
error could have disastrous consequences depending on
the context in which it occurs.

It is therefore necessary to be able to check whether a
neural network is able to correctly classify inputs even if
they are disturbed. This is called the verification of the
robustness. To verify the robustness, a Neural Network
Verification (NNV) approach is needed. Thereafter, a
description of the principles of a NNV problem is pre-
sented.
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FIGURE 4. Impact of a FGSM attack on image classification [29]. From left to right: an original image classified as Panda with a confidence of 57.7%. A noise
generated using the FGSM technique. A resulting image classified as Gibbon with a confidence of 99.3% .

FIGURE 5. Abstract Interpretation for Neural Network Verification [19]

The perturbations are of various natures and intensi-
ties. The principle of NNV problem consists in verifying
that, given an initially correctly classified sample, all
its possible perturbations that can be generated remain
correctly classified. For example, to verify the robustness
of a neural network, for image classification, against pix-
els’ illumination, it would be necessary, for any initially
correctly classified image, to generate all possible images
resulting from different kinds of illumination. Then, an
assessment phase should be conducted to verify whether
these images are still correctly classified.
It is not possible, however, to generate this set of
modified images, as it is in fact infinite. This is where the
abstract interpretation comes in, as it allows, instead of
working on each disturbed image separately, considering
an abstract geometrical shape that contains them all. A
neural network adapted to work with this kind of ab-
stract inputs is then used to process this abstract shape
to show whether it verifies the robustness properties.

The verification of robustness takes place after the
neural network has already been trained in its standard
form (non-abstract way). Therefore, as mentioned in
Section II-C, AI2 does not allow us to correct a possible
non-robustness of the neural network but simply to
verify whether the latter is robust or not.

An abstract domain, representing the space of possible
perturbations on the input, is then generated (shown in
Fig.5 on the left by the blue parallelepiped in a simplified
form for readability). This abstract domain is given as

input to the neural network, which will be adapted so
that it can act on abstract sets rather than on individual
inputs. This adaptation of the neural network, i.e. the
abstraction of the neural network, is an important part
of this work. The abstract domain is then propagated
through the neural network, where it is transformed by
its abstract layers as it passes through them. Finally, the
output of the neural network becomes an abstract shape
representing the outputs of all possible perturbations
encapsulated in the input abstract shape. The output
shape is then checked whether it is included in the
desired set. If it is entirely included, the neural network
is declared as robust.

There are various methods for constructing the ab-
stract domain. Each one has its own characteristics, and
affects differently the speed and the precision of the
robustness verification. The authors of [30] studied three
shapes to construct the abstract domain: the box, the
zonotope and the polyhedron. We refer to the reference
[19] for more information.

IV. THEORY OF ABSTRACT INTERPRETATION AND
APPLICATION ON LEAKYRELU
This section is composed of two parts. In the first part
IV-A, we present the principle of abstract interpretation
applied on the ReLU activation function. In the second
section IV-B, we present our extension of abstract inter-
pretation to LeakyReLU.
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A. THEORY OF ABSTRACT INTERPRETATION
Given an input A, correctly classified by the Neural
Network (NN), we want to check whether the NN is
robust if A is disturbed.
Let us represent the image A by its pixels, A “

{px1, x2, ..., xnq, xi P r0, 1s,@i P r1, ns}, and consider
a perturbation consisting in building a ball in L8, of
radius ϵ, centered on A. Then, the input of r0, 1sn is con-
verted to an abstract domain X, defined by

Śn
i“1rli, uis,

where li “ xi ´ ϵ and ui “ xi ` ϵ. These two quantities
are called respectively lower bound and upper bound.

1) The approximation of abstract transformers
For the NN to use abstract domains, it is necessary
to convert their operators into abstract transformers.
An abstract domain is then obtained by applying an
abstract transformer to a NN layer. In this section, to
introduce theses notions, we consider the NN example of
Fig.3. For technical reasons, the neurons of dense layers
have been decomposed into two successive operations:
an affine transformation and then the application of the
ReLU function, defined by x ÞÑ maxp0, xq.

a: Construction of abstract domain
To proceed with the abstraction, each neuron is asso-
ciated with : 1q two linear constraints that define the
polyhedron and 2q two values representing the set of
values that can be reached by this neuron. These four
equalities/inequalities completely define the abstract
domain at each step of the neural network processing,
and they are the ones generated and processed by the
abstract transformers. The abstract NN of the example
in Fig.3 is presented in Fig.6.
Indeed, for each neuron, an abstract domain is gener-
ated, defined by four equalities/inequalities :

‚ The upper bound and the lower bound.

‚ The linear constraints : the upper constraint aď
i and

the lower constraint aě
i .

b: Abstract transformer
An abstract transformer T#

f is an operator acting on
the abstract domain ă aě, aď, l, u ą to transform it
into a new abstract domain ă a1ě, a1ď, l1, u1 ą. It can
be defined as in (5):

T#
f :ă aě, aď, l, u ąÞÑă a1ě, a1ď, l1, u1 ą (5)

As the NN can contain non-linear layers, it would
be possible to obtain non-convex abstract domains.
However, convexity is necessary for optimization. In-
deed, a valid abstract transformer should guarantee the
convexity.

Figure 6 represents an example of an abstract do-
main construction applied to the ReLU function: xj “

maxp0, xiq, where xi P [ui, li]. Since the ReLU curve
is not convex, it is therefore necessary to complete it
to make it convex by transforming the ReLU curve of
Fig.7(a) into the triangle of Fig.7(b).
At this stage, the linear constraints appear to construct
the abstract domain. A triangle is defined by three linear
constraints. To respect the definition of an abstract
domain presented in section IV-A1a, only two linear
constraints are selected. This is detailed in the next
section.

2) Illustrative example: propagation of linear constraints
through the NN
In this section, we illustrate the notion of abstract
domain through the example in Fig.6. The NN is com-
posed of one hidden layer with two neurons and ReLU
activation. This processing in two steps is decomposed
into two operations as it is explained in the beginning
of the section IV-A1.

x1

x2

x3

x4

x5

x6

y

r´2, 2s

r´2, 2s

1

1
1

-1

1

-1

maxp0, x3q

maxp0, x4q

x1 ď 2
x1 ě ´2
l1 “ ´2
b1 “ 2

x1 ď 2
x1 ě ´2
l1 “ ´2
b1 “ 2

x3 ď x1 ` x2
x3 ě x1 ` x2

l1 “ ´4
b1 “ 4

x4 ď x1 ´ x2
x4 ě x1 ´ x2

l1 “ ´4
b1 “ 4

x5 ď 0.5x3 ` 1
x5 ě 0
l1 “ 0
b1 “ 4

x6 ď 0.5x4 ` 1
x5 ě 0
l1 “ 0
b1 “ 4

y ď x5 ` x6
y ě x5 ` x6

l1 “ 0
b1 “ 8

FIGURE 6. Example of abstract Neural Network
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Thereafter, we illustrate the propagation of the ab-
stract domain through the NN. At the input layer, x1
varies between -2 and 2. The lower constraint is then
(l1 “ ´2) and the upper constraint is (u1 “ 2). As for
constraints, the lower constraint aě is (x ě 2) and the
upper constraint aď is (x ď 2). The same reasoning is
valid for x2.

At the second layer, the affine transformation (y “

wTx`b) is applied. As this transformation is linear, the
convexity of the input is preserved in the output, and it
is not necessary to approximate this result. Therefore,
the constraints become (x3 “ x1 ` x2) and (x4 “ x1 ´

x2), and the bounds are calculated using those of x1
and x2. However, although this calculation is exact and
can be defined by strict equality, two linear constraints
are created (upper and lower constraints) to respect the
definition of an abstract domain. For this reason, instead
of using (x3 “ x1 ` x2), the equality is represented by
two equivalent inequalities: (x3 ě x1 ` x2) and (x3 ď

x1 ` x2).
At the third layer, the ReLU activation is applied to

x3 and x4 to give respectively x5 and x6. The calculation
of the bounds is different in this case, and it will be
detailed in Section IV-A4.

At the last layer, the condition of good classification is
verified. For example, assuming that the input belongs
to class 1, defined by y ą 0, we check if the condition (
y ą 0 i.e x5 ą x6) is true for all values of x1 and x2.

3) Important details to apply AI2

To apply AI2, two points are important . The first
remark is about the necessity to have exactly two linear
constraints. During the propagation of the abstract
domain, the number of constraints depends, at each
neuron, on the number of constraints and the number of
neurons in the previous layer. Indeed, if more than two
constraints are considered in each neuron, there will be
twice as many at the next layer. This exponential explo-
sion of the number of constraints will require very long
computations, and when processing images of several
hundred pixels, the computations can quickly become
unmanageable. For this reason, only two constraints are
maintained at each step.

The second remark is about the backsubstitution prin-
ciple [31]. This means that linear constraints are ex-
pressed as functions of inputs, with the best approxi-
mation. Backsubstitution is performed every time that
a nonlinear transformation is performed. It reduces the
loss of information and thus improves accuracy, which
is crucial to avoid incorrect robustness verification.

4) Abstract transformer for ReLU
The abstract transformer for ReLU is proposed in [31].
ReLU is composed of two segments, a segment with
slope 1, corresponding to the case where the input is
strictly positive (li ą 0), and a null segment, correspond-

ing to a negative or null input (ui ď 0). In these two
situations, the output, i.e. the curve segment is convex,
and does not need to be approximated, the output in this
case is exact. The problematic case is when the output
can be either positive or negative: li ă 0 and ui ą 0. In
this case, an approximation is necessary. In summary,
there are three cases to calculate the output of ReLU:

‚ If ui ď 0, the value of the neuron is necessarily
negative and the output is null. The upper and
lower constraints delimiting the abstract domain
are: 0 ď xi and xi ď 0. xi is therefore null and
no approximation is needed.

‚ Similarly, if 0 ď li, the value of the neuron can
only take positive values. In this case, the output
is identical to the input and neither the constraints
nor the bound values are changed.

‚ If li ď0 and 0 ď ui, the result will not be accurate.
Considering the ReLU curve as an abstract domain,
the underlying shape is not convex. By contrast, the
approximation in the two previous cases is exact
and does not need to be approximated.

The last case is the only problematic one. Since con-
vexity should be ensured, it is necessary to approximate
the ReLU curve by keeping the maximum amount of in-
formation. Indeed, three constraints define the abstract
domain, two of which are bound by xj , and one of them
should be removed (Fig.7(b)). On the left, the abstract
domain can be obtained by removing the constraint
(xj ě xi), and on the right, the abstract domain is
obtained by removing the constraint (xj ě 0). The
choice is made according to the area of the abstract
domain. The one with the smallest area allows the least
amount of information to be lost.

The computation of parameters of the abstract do-
main curves (Fig.7(b)) is a problem with two unknowns.
The obtained coefficients are as in (6):

λ “
uj

uj ´ lj

µ “
´ljuj

uj ´ lj

(6)

To conclude, the abstract transformer, T#
f , of ReLU

activation is formalized as follows:
‚ First case: If ui ď0, a1ě “ a1ď “ 0, and l1 “

u1 “ 0; the output is equal to 0.
‚ Second case: If 0 ď li, a1ě “ aě, a1ď “ aď, l1 “ l,

and u1 “ u, the output is the same as the input.
‚ Third case: If ui ě 0 and li ď 0, a1ě “ λ.xi `µ, and
a1ď “ 0 or a1ď “ xi, depending on the configuration
associated with the least loss of information, where
λ “

uj

uj ´lj
and µ “

´ljuj

uj ´lj

B. CONTRIBUTION TO LEAKYRELU
In this section, we present our contribution, namely
the proposition of an abstract transformer for the
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(a) ReLU function (b) Abstract domains depending on the constraint chosen to remove

FIGURE 7. ReLU function: real and abstract domains

FIGURE 8. Abstract LeakyReLU

LeakyReLU activation function, the blue curve of Fig.8,
defined as:

x ÞÑ x if x ą 0, x ÞÑ αx otherwise, where α P R.

To obtain a convex abstract domain, we have con-
nected the two extreme points by the green dashed
segment, and we have extended the curve for negative xi

(magenta segment). The obtained domain is the triangle
of vertices: (ui, uj), (ui, αui) and (li, lj).

There are different ways to construct the abstract
domain. In Fig.8, the latter is created by extending
the slope line α and connecting the end points of the
LeakyReLU. It could also be generated by extending
the line xj “ xi. In this case, comparing the twp areas
generated by the two extensions above, we would retain
the one with minimum loss information.

1) Abstract domain constraints

The constraints of the abstract domain are expressed as
follows:

‚ Lower constraint aď
j = (xj ě αxi)

‚ Upper constraint aě
j = (xj ď λxi ` µ).

After fixing the bounds values of xj , lj and uj , the
parameters λ and µ are calculated as in (7):

piq lj “ αli “ λli ` µ
piiq uj “ ui “ λui ` µ
piq and piiq αli ´ ui “ λpli ´ uiq

Hence λ “ αli´ui

li´ui

(7)

The same reasoning is applied to find µ as in (8):

µ “ pα ´ λqlj (8)

Then, using (8), µ is given in (9).

µ “
liuip1 ´ αq

li ´ ui
(9)

By taking α “ 0, we find exactly the values of
λ and µ associated with classic ReLU. This proves
the consistency of our abstract domain with reference
[31]. To summarize, the abstract transformer T˚

f pă

aď, aě, l, u ąq of LeakyReLU is expressed as follows:
‚ If ui ď 0, aď

i pxq “ aď
j pxq “ αxi, lj “ li, uj “ ui

‚ If li ě 0, aď
i pxq “ aď

j pxq “ xi, lj “ li, uj “ ui

‚ If ui ą 0 and li ă 0 the transformer approximates
the result by an abstract domain constructed by
two linear constraints and the interval [lj ,uj ]:
˝ xj ě αxi

˝ xj ď
pαli´uiqxi`liuip1´αq

li´ui

˝ lj “ αli
˝ uj “ ui.

2) Abstract transformer properties
An abstract transformer should be verified for two
properties: 1q the solidity and 2q the preservation of
the invariant. To accomplish this, we should define the
concretization function γn [31] as in (10):

γn : An ÝÑ Rn

a ÞÑ tx P Rn|@i P t1, 2, ..., nu, aď
i ď xi ^ aě

i ě xiu

(10)

where An is a set of abstract domains. The concretiza-
tion function returns all the elements encapsulated in
the abstract domain An. This function is a purely
theoretical object because this set is infinite in practice.
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a: Property of solidity
The first property to verify for an abstract transformer
is the property of solidity. The abstract transformer T#

f

of the function f : Am ÞÑ An is solid if Tf pγmpaqq Ď

γnpT#
f paqq for all a P Am, where Tf is the concrete

transformer. Unlike the abstract transformer, Tf acts
on concrete elements rather than abstract domains, and
Tf pXq “ tfpXq|x P Xu. This property means that the
abstract transformer over-approximates the behavior of
the concrete transformer.

Proposition IV.1. The abstract transformer defined
for the LeakyReLU activation verifies the solidity prop-
erty: Tf pγmpaqq Ď γnpT#

f paqq.

b: Property of preserving the invariant
The second property to verify is the preservation of
the invariant. It is defined as follows: given an abstract
transformer T#

f such that T#
f paq “ a1, we have γipa

1q Ď
Śi

j“1rl1j , u
1
js. This property indicates that each element

has a lower and an upper bound.

Proposition IV.2. The abstract transformer T#
f de-

fined for LeakyReLU activation such that T#
f paq “ a1,

verifies γjpa1q Ď
Śj

i“1rl1i, u
1
is.

The demonstrations of IV.1 and IV.2 are detailed in the
Appendix section.

V. EXPERIMENTAL RESULTS
A. DATASETS
Our approach was validated on three datasets, including
two popular image benchmarks: MNIST [32] and Fash-
ion [33]. The MNIST dataset consists of 60.000 training
and 10.000 test grayscale images of handwritten digits,
whose resolution is 28 ˆ 28 pixels. The images show
white digits on a black background.
The Fashion dataset consists of 60.000 training grayscale
images and 10.000 test images, with a resolution of 28
ˆ 28 pixels. Each example is assigned to one of the
following labels: T-shirt/top, Trouser, Pullover, Dress,
Coat, Sandal, Shirt, Sneaker, Bag and Ankle boot.
The third dataset, named Robotics, is a collection of
sensor readings obtained by a robot during its naviga-
tion inside a room. For robot navigation, 24 ultrasound
sensors (US) were used, and arranged circularly around
its waist with an arc distance of 15 degrees. The dataset
contains 5456 observations. The possible decisions of the
robot are: 1) Move-Forward, 2q Slight-Right-Turn, 3q

Slight-Left-Turn and 4q Sharp-Right-Turn.

B. EVALUATION TOOL/PROTOCOL
To test our contribution, we have used the ERAN
tool, the Robustness Analyzer for Neural Networks tool,
implemented in [34]. ERAN allows for the verification of
the robustness of a trained neural network against input

perturbation. It uses ELINA (ETH LIibrary for Numer-
ical Analysis, [35]), a C-library that handles the heavy
numerical computations involved in the processing of
abstract domains. As LeakyReLU activation is missing
from ERAN, our abstract transformer was implemented
and integrated into ERAN to be able to evaluate the
robustness of neural networks that contain LeakyReLU
activation layers.
In the evaluation step, the network’s robustness is veri-
fied for each correctly classified sample. Indeed, verifying
robustness for a misclassified sample is unnecessary.
First, ERAN generates the input abstract domain that
will be propagated through the network. The input
abstract domain includes all the possible perturbations.
Then, for each network layer, the associated abstract
transformer is applied to propagate the abstract domain.
The ELINA library provides mathematical tools to rep-
resent and propagate abstract domains.

Our experimental results are represented in terms of
two metrics: performance and robustness.

‚ The performance metric is the neural network’s
classification rate..

‚ The robustness metric is the rate of samples that
retain their (correct) output labels after perturba-
tion.

Regarding the first metric, we recall that the abstract
domain is an over-approximation of a geometric form
that contains all potential input perturbations. Our
formalization of the abstract domain relies on the hy-
perparameter α of the LeakyReLU activation. The more
precise the approximation, the more accurate the anal-
ysis of robustness. Investigating the effect of the α value
on the quality of the approximation of the abstract
domain, is therefore relevant to assess the NN robustness
in a comprehensive way.
Regarding the second metric, we recall that our ab-
stract transformer is constructed and integrated into
ERAN so that the robustness of neural networks with a
LeakyReLU activation layer can be validated. It would
be interesting to examine the robustness of neural net-
works w.r.t the maximal intensity of perturbation ϵ.
Regardless of the value of ϵ, our implementation should
not produce issues.
As evaluation methodology, we ensure that the neural
network’s classification rate remains the same when sub-
jected to a null perturbation as when assessed outside
ERAN. This indicates that the implementation of the
abstract domains is valid. This assessment is carried
out on a collection of eight neural networks with alpha
values ranging from 0 to 2. The obtained results are
shown on the left side of figures (9, 10 and 11).
To asses the effect of epsilon, we select one of the 8
evaluated neural networks (one having a specific alpha)
and evaluate its robustness to input perturbation. For
a comprehensive analysis, we have assessed a range of
perturbation intensity (epsilon) values up to 10%.
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(a) Real vs ERAN performances (b) Performance according to attack intensity

FIGURE 9. Results on the MNIST dataset

C. RESULTS
The goal of our experiments is to validate the imple-
mentation of our abstract domain for LeakyReLU. For
this purpose, we trained several neural networks. Each
neural network is composed of three fully connected lay-
ers followed by a LeakyReLU activation with a different
value of the α hyperparameter. For the same network,
we used the same value of α for all layers. Table 1 sum-
marizes the architecture of the used neural networks.
Figures 9, 10 and 11 show respectively the obtained
results on the three datasets: MNIST, Robotics and
Fashion. These figures show the performance of neural
networks according to the value of the α hyperparameter
of LeakyReLU. These figures include two curves: the
blue curve is associated with the performance of the
neural network outside ERAN, while the green curve
shows its performance inside ERAN.

Two evaluation results are presented: 1q a quality
evaluation of the abstract domain approximation and 2q

a robustness evaluation of the neural network according
to the maximal perturbation epsilon. The obtained
results are shown on the right side of the figures (9, 10
and 11).

Several observations can be drawn from the obtained
results.

As the approximation of the abstract domain is de-
pendent on alpha, for high alpha values, the geometrical
form representing the potential perturbations becomes
too large relative to reality, and the approximation of
the abstract domain becomes too coarse. This remains
a case to examine in order to offer more concise approx-
imations for in the future.
The second observation concerns the neural network’s
robustness to input perturbations. In this assessment,
one model is chosen and evaluated for each dataset.

TABLE 1. Protocol evaluation on used datasets.

Dataset Description Used network archi-
tecture

MNIST 100 test images 3 fully-connected layer
with 50 neurons eachFashion 100 test images

Robotic 1637 test samples

The results demonstrate that the models trained on the
three datasets respond differently to a perturbation of
intensity epsilon. The robotic model is the most robust
in general. In fact, 90% of robustness is always ensured
when epsilon is less than 0.2. On the other hand, the
fashion model is moderately robust; a epsilon value of
0.03 decreases robustness to 16%. At the same epsilon
value (0.03) for MNIST, the model is not robust.

This evaluation demonstrates that our implementa-
tion is correct and that no issues were produced for any
epsilon value. We recall that the purpose of this work is
not to enhance the robustness of already-trained models,
but rather to validate their robustness. To strengthen
the robustness of these models against input perturba-
tions, researchers have devised defensive strategies, with
data augmentation being the most common.

VI. CONCLUSIONS AND PERSPECTIVES
In this paper, we have studied the robustness of neural
networks against input perturbations. The principal
challenge was to provide a formal guarantee of robust-
ness when the input is disturbed. To do this, we have
used the abstract interpretation framework consisting
of converting the neural network layers into abstract
layers. Our contribution has been the proposition of a
mathematical formulation of an abstract transformer to
convert the LeakyReLU activation layer to an abstract
layer. Moreover, our abstract transformer has been im-
plemented and integrated into the ERAN tool.
In the evaluation step, we have investigated the effec-
tiveness of our abstract transformer according to the
LeakyReLU hyperparameter α. On the other hand, we
have studied the robustness of neural networks accord-
ing to the input perturbation ϵ. Our abstract trans-
former was tested on three public datasets: MNIST,
Fashion and a robotic dataset. The obtained results
showed that below a certain value of α, our transformer
is effective. However, for large values of α, the approxi-
mation is too coarse and should be improved. Moreover,
results showed that our implementation is correct and
no bugs were generated for all values of ϵ.

In future work, we plan to improve the approximation
of our abstract domain in the case of large values of α.
Then, we will extend our study to other activation func-
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(a) Real vs ERAN performances (b) Performance according to attack intensity

FIGURE 10. Results on the robotics dataset

(a) Real vs ERAN performances (b) Performance according to attack intensity

FIGURE 11. Results on the Fashion dataset

tions. Furthermore, we intend to validate our proposed
approach with real-world use cases such as self-driving
cars.
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Appendices
VII. PROOF OF SOLIDITY PROPERTY
Proof. To compute LeakyReLUαpxiq, we distinguish three cases according to values of ui and li.
For the first case where ui ď 0, Tf pγj´1paqq can be written as in (11):

Tf pγj´1paqq “ tx P Rj | p@k P r1, j ´ 1s, aď
k ď xk ^ aě

k ě xkq ^ pxj “ LeakyReLUαpxiqqu

“ tx P Rj | p@k P r1, j ´ 1s, aď
k ď xk ^ aě

k ě xkq ^ pxj “ αxjqu

“ tx P Rj | @k P r1, js, a1ď
k ď xk ^ a1ě

k ě xku

“ γjpT#
f paqq

(11)

For the second case where lj ě 0, Tf pγj´1paqq can be written as in (12):

Tf pγj´1paqq “ tx P Rj | p@k P r1, j ´ 1s, aď
k ď xk ^ aě

k ě xkq ^ pxj “ LeakyReLUαpxiqqu

“ tx P Rj | p@k P r1, j ´ 1s, aď
k ď xk ^ aě

k ě xkq ^ pxj “ xiqu

“ tx P Rj | @k P r1, js, a1ď
k ď xk ^ a1ě

k ě xku

“ γipT
#
f paqq

(12)

At this stage we therefore have proof that in both cases the abstract transformer verify the solidity. It should also be
noted that it is sufficient to demonstrate only the inclusion but in both cases the equality has been demonstrated.

Regarding the third case where li ă 0 and ui ą 0, the Tf pγj´1paqq can be written as in (13):

Tf pγj´1paqq “ tx P Rj | p@k P r1, j ´ 1s, aď
k ď xk ^ aě

k ě xkq ^ pxj “ LeakyReLUαpxiqqu

Ď tx P Rj | p@k P r1, j ´ 1s, aď
k ď xk ^ aě

k ě xkq ^ pxj ě αxiq^

pxj ď
pαli ´ uiqxi ` liuip1 ´ αq

li ´ ui
qu

“ tx P Rj | @k P r1, js, a1ď
k ď xk ^ a1ě

k ě xku

“ γjpT#
f paqq

(13)

The inclusion in the second line is the result of the approximation made to correct the non-convexity of the abstract
domain, and it represents the loss of information in the neural network.
In conclusion, the solidity property for the abstract transformer of the LeakyReLU activation was successfully proved.
This property is proved for one of the two different ways of constructing the abstract domain, but for the other way,
the proof is similar.

VIII. PROOF OF THE PROPERTY OF PRESERVING THE INVARIANT
Proof. We should proof that the concretisation of the abstract domain resulting from the abstract transformer of
LeakyReLU is included in a product of interval form rl1i, u

1
is.

If ui ď 0 :
We have p@k P r1, i ´ 1s, aď

k ď xk ^ aě
k ě xkq implies that l1i = αli ď αxi = aď

j pxiq ď xj ď aě
j pxiq = αxi ď αui =

u1
i.

if li ě 0:
we have p@k P r1, i´ 1s, aď

k ď xk ^ aě
k ě xkq implies that l1i = li ď xi = aď

j pxiq ď xj ď aě
j pxiq = xi ď ui.

if ui ą 0 and li ă 0:
we have p@k P r1, i´1s, aď

k ď xk^ aě
k ě xkq implies that l1i αli = αxi = aď

j pxiq ď xj ď aě
j pxiq = pαli´uiqxi`liuip1´αq

li´ui
ď

u1
i.
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