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Abstract: The food and agricultural industries have numerous practical advantages to be gained from
the use of cold plasma technology. This paper attempts to showcase the possible uses of cold plasma
in the food sector, while also highlighting the most recent developments and market trends. The
efficiency of cold plasma in enhancing food products’ quality and shelf life has been demonstrated in
several investigations. This review has concentrated on current research into how this technology
affects various food chain production stages. Cold plasma has become a cutting-edge non-thermal
technique that can be used to ensure food safety. The precise mechanism underlying the effectiveness
of cold plasma is still unclear. Understanding these mechanisms and potential elements that can
restrict or increase their effectiveness and results is crucial to further enhancing and implementing
cold plasma treatment in food processing. The main objective of this review is to investigate the use
of plasma, its exceptional characteristics, and its advantages in safe, sustainable food production.
In particular, this review summarizes recent studies on the use of cold plasma for microorganisms
and pesticides treatment, compiling them and discussing their content. As reported in the literature,
a critical point has also been reviewed about some diverse plasma configurations. A comparative
study of the efficacy of cold plasma in environmental applications (microorganisms/pesticides) has
also been reviewed from the literature.

Keywords: cold plasma; food safety; sustainability

1. Introduction

The science of food preservation has been around for centuries and has permanently
changed. Ancient people used physical methods such as sun drying, roasting, smoking,
fermenting, and salting to store agricultural products [1]. The food business has seen a
demand increase for products over the preceding several decades owing to rising house-
hold incomes. Meanwhile, there has been an increasing concern over food safety in the
food industry.

Food safety is defined as “The state in which all raw materials of food and feedstuffs
entering the human food chain, as well as those destined for animals intended for con-
sumption or production, are fit for human consumption and safe for their intended use” [2].
According to the EU definition, “Food safety is the state of being protected from biological,
chemical, and physical hazards during food processing, storage, and distribution to ensure
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the durability and preservation of quality of the food for human and/or animal consump-
tion”. A balance must be struck between the conservation and preservation of safe food
and the protection of public health.

Despite advancements in food safety and processing, foodborne diseases are increas-
ing. Food and agricultural product safety and security have become significant problems
and difficulties. Food safety issues and nutritional insecurity arise due to rising demand,
food supply shortages, and because food quality issues such as adulteration and other forms
of fraud have become widespread in today’s world [3]. From farm to fork, the industry
should constantly adapt to meet a growing population’s nutritional and consumer expecta-
tions. This objective can only be accomplished within the constraints of available resources
and regulatory requirements [4]. Thermal treatment is the most popular technique for food
preservation by managing pathogenic and contaminant microorganisms, despite several
drawbacks including overcooking, textural damage, alteration in flavor and organoleptic
properties, reduction in nutritional quality due to thermal exposure, etc. [5] Temperature
abuse causes the denaturation of proteins, polyunsaturated fats, and carbohydrates, dam-
aging the cellular structure and function of the treated food. Because of increased consumer
knowledge and understanding, the food production industry is trying to find ways to meet
the growing demand for safe and healthy foods with “fresh-like” qualities.

Scientists have spent decades investigating various processing approaches to produce
safe, shelf-stable food with high nutritional value and quality [6–10]. Cold plasma (CP)
has been applied to remove microorganisms in a variety of foods such as apples [11],
tomatoes [12], and blueberries [13]. This review examines the current state and improve-
ments in CP impact in the food industry to improve food product quality and consumer
safety. It also investigates the effects of the technology, which is responsible for delivering
an optimized solution, on various food production stages, focusing on the limitations to
and future potential for food processing techniques in the industry.

2. Cold Plasma Technology

In 1928, Langmuir invented the term “plasma” to define an ionized gas with a macro-
scopically neutral electrical charge. Since the 17th and 18th centuries, plasma, a semi-
ionized gas composed of excited electrons, ions, and neutrals, has been studied. Plasma is
the fourth state of matter and is composed of particles such as positive and negative ions
and free radicals [14].

Plasma can be created using many sorts of energy that can ionize gases, including
electrical, thermal, optical (UV light), radioactive (gamma radiation), and X-ray electromag-
netic radiation. Despite this, CP is frequently generated using electric or electromagnetic
fields [15]. To generate CP, a plethora of methods are being developed at a rapid pace. These
can operate at normal air pressure or in a partial vacuum. Several gases can technically
be applied in CP; the gas about to be ionized could be as simple as either nitrogen or air.
Alternatively, it could be a more composed mixture containing components of noble gases
such as helium, argon, or neon [7,16]. Electricity, microwaves, or lasers may be used as the
driving energy. This diverse set of design aspects demonstrates CP methods’ adaptability
and the degree to which different types of CP mechanisms are invented and tested. All
CP methods for food processing are classified into one of three groups. The position of
the food to be treated with the CP being generated specifies these groups: a significant
distance from the origin of plasma generation, a reasonable nearness to the generation
source, or even within the zone of generation itself that produces plasma. These groups are
based chiefly on the half-life and properties of charged, active species inside the plasma
and originate almost exclusively from the essence of CP chemistry [14].

2.1. Plasma Production

CP can be generated using various gases and produced by a wide range of methods.
Each distinct method has a broad range of uses. Plasmas are formed by providing power to
a neutral gas, which induces charge transporters. When high-energy electrons or photons
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interact with neutral molecules and atoms in the feed gas, electrons and ions are formed
inside the gaseous phase (electron-impact ionization as well as photoionization) [17,18].

Plasma technology is classified into thermal and low-temperature plasma methods
on the basis of how the plasma is generated. According to various authors, thermal
plasma comprises thermodynamically balanced ions, electrons, and gas molecules. Low-
temperature plasma is generally categorized as semi-equilibrium plasma, in which there is
a local thermodynamic equilibrium among species such as electrons and gas molecules, and
non-equilibrium plasma, in which electrons have higher temperatures and gas molecules
have moderate temperatures, with lower temperatures for the whole system [19–21].

The structure of the fed gas implemented for CP influences the generation of reactive
species. These substances are primarily in charge of antimicrobial activity. The mechanism
of food preservation differs significantly because of the formation of various reactive species
by the various gases and generators used [21]. Plasma reactive species can separate covalent
bonds and initiate various reactions crucial for numerous technological applications [22].

2.2. Cold Plasma Sources

The plasma-generating technologies most often used in food processing are classified
as follows: dielectric barrier discharge (DBD), plasma jet (PJ), corona discharge (CD), ra-
diofrequency (RF), micro-hollow cathode discharge, gliding arc discharge, and microwave
(MW) [23]. The kind of plasma source, the structure, and density of the chemical species
generated, do then generally influence the method application. The DBD and plasma jet
are the two most frequently used forms of CP sources in environmental, biological, and
biomedical applications. This aspect is mainly attributable to their simple design and ability
to be reconfigured to suit a wide range of objectives and treatment needs [24,25]. Some of
the plasma sources are shown in Figure 1.
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3. Uses of Cold Plasma in Food Industry

A CP system has been investigated for a wide range of purposes at numerous phases
of food manufacturing, which include the treatment of ingredients or final products, as
well as the treatment of processing equipment, facilities, and the environment, because of
its numerous advantages. Among the CP benefits are low-temperature operation, short
time frames, power efficiency, and significant antibacterial efficacy with negligible effects
on food quality and the environment [26].

Many researchers have discussed the potential uses of CP for different purposes [27–29].
Some of the CP uses related to food production are shown in Figure 2.
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3.1. Germination

The procedure by which the embryo in the grain evolves to be a plumule and radicle
is known as seed germination. Grains take up water, which causes non-active tissues to
swell and cell division to begin. The radicle develops from micropylar and begins to move
into the growing medium. These eventually develop into the root system, which provides
nourishment and water to the plants during their lifetimes [30].

Seed dormancy is a naturally occurring grain feature that allows a species to reproduce
in order to survive [31]. Plasma treatment generates a variety of agents capable of breaking
dormancy (e.g., UV radiation, radicals, chemical reactions). According to reports, CP has
previously been evaluated with different plants:

CP treatments remedy drought stress damage to oilseed rape. The CP method and
techniques have remarkably improved seedling growth and germination due to improved
seed wettability, antioxidant enzyme activities, soluble sugar and protein contents, and
reduced lipid peroxidation-linked membrane deterioration [32]. Therefore, CP treatment
can be used to protect seeds from the damage caused by drought stress. The CP treatment
can be effective in reducing seedling mortality and improving seed germination rate.

Seed germination rates were found to be faster after plasma treatment. Plasma reactive
species have been shown to be capable of penetrating into the seed coat and having
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a significant impact on the cells within. Furthermore, plasma exposure causes surface
ablation on the seed coat, which actively encourages moisture and oxygen entry into the
embryo and stimulates seed germination. Plasma has also been shown to destabilize the
cell wall and influence the enzyme activity that brings the seed out of dormancy and
encourages germination [33].

Germination and early growth are aided by cold plasma. These effects are linked to
decreases in the percentage of fungi-infected seeds, modifications in the physiochemical
parameters and biochemical properties of seedcoats (higher hydrophilicity), as well as
modifications in antioxidant and phytohormone profiles [34].

Cold helium plasma seed treatment can potentially increase wheat yield by improving
germination, promoting wheat development, and raising its physiological quality, resulting
in improved grain production and better resistance to pests and mycotoxins [35].

CP treatments have been shown to increase soybean germination and seedling produc-
tivity. The improvement in soybean seed germination and seedling growth in response to
CP treatment appears to be due to an increase in water absorption, seed supply consump-
tion, and soluble carbohydrate and protein contents [36].

Peanut seed germination and plant growth also improved with CP treatment. CP
treatment significantly increased seedling growth parameters, improved plant growth
potential, germination percentage, dry mass, enhanced vegetative growth, and dry weight
at the fruiting stage. Additionally, it improved plant length, stem dimension, root dry mass
at maturity level, and yield in field conditions [37].

Brief plasma procedures (30–60 s) have been shown in studies to significantly improve
wheat seeds’ germination properties and seedling growth parameters; the mechanism
of plasma exposure and spending time in an enclosed reactor after the procedure deter-
mined these effects. The most effective treatment was an indirect plasma treatment for
60 s, followed by 24 h of contact time between plasma-produced compounds and grains
after treatment. When compared to control samples, this was found to enhance wheat
germination by 14.7%. Numerous different growth factors have also been enhanced. CP
can be a suitable replacement for pre-sowing grain procedures used in farming to enhance
germination [38].

In optimized conditions, plasma treatment causes the functionalization of the wheat
seed surface with oxygen functional groups, primarily oxidizing the lipid molecules found
naturally on the target surface. Water gets into the seed pericarp smoothly, reducing water
contact angle and higher water uptake [39]. The plasma reaction process has the advantages
of not being harmful to the seed, applicability to a wide range of crop species, and being
environmentally safe [40].

3.2. Pesticide’s Degradation

Several studies showed that CP had the potential to degrade pesticide residues in
fruits and vegetables. CP’s ability to eliminate pesticide residues has been associated with
the production of reactive oxygen and nitrogen species. Pesticides are a large variety of
chemical substances, widely utilized in agricultural production to protect crops and delay
crop deterioration. Nevertheless, pesticide resistance necessitates increased application
rates. Pesticide residues are a source of concern in the food business due to their health
threats [41,42].

After 5 min of plasma treatment at 80 kV, pesticide residues on blueberries satisfactorily
deteriorated with degradation efficiencies of 75% and 80% for boscalid and imidacloprid,
respectively. Appropriate modifications in the evaluated quality characteristics were
noticed for the treatment conditions. These findings imply that CP treatment at 60 kV 5 min
and 60 s at 80 kV can sustain the blueberries’ nutritional qualities [43].

Pesticides in water were successfully degraded using atmospheric pressure dielectric
barrier discharge plasma in air. The discharge was tested at high voltages in the filamentary
regime. It was found to be a quick and effective source of oxygen radicals, excited nitrogen
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species, and other plasma species. Degradation products are distinguished by simpler
chemical groups [44].

According to studies, CP treatment considerably reduced organophosphorus pesti-
cides without any damaging, hazardous, or undesirable effects on the appearance or texture
of many agricultural samples [45,46]. Figure 3 shows the application of cold plasma in food
and water.
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3.3. Pest and Mycotoxin Removal

Controlled atmosphere storage is an efficient way to keep pests and mycotoxin-
producing fungi at bay during storage. However, the use of modified atmosphere storage
is hampered by the technology’s high cost and the need for a greater understanding of its
mechanisms. In recent years, CP has been used to control various pests and mycotoxin-
producing fungi. According to [47], Australia’s existing postharvest cereal grain man-
agement techniques are efficient versus the vast majority of postharvest pathogens and
insect pests. Still, they have several drawbacks, including high expenses for maintenance
and the development of chemical strength and toughness within insect pests. Innovative
postharvest procedures must be sought by Australia’s grain sector. Numerous studies have
shown CP to be effective against fungal species, mycotoxins, and insect infestation, while
having little effect on cereal crops. CP procedures could indeed serve to minimize the
presence of pests in stored foods. Sutar et al., have proved that the treatment of wheat flour
with 60 W for 30 min prevented the development or appearance of insects (larval stage,
pupae, and eggs) [48].

Based on its unique physical and chemical properties, CP is a promising technology
for decontaminating surfaces and air in the food industry. CP is a promising technology for
pest and mycotoxin removal. The tables below illustrate some findings from studies that
examined CP’s impact on pests and mycotoxin (Tables 1 and 2).
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Table 1. Cold plasma experiments illustrating mycotoxin degradation.

Mycotoxin Food Matrix Plasma Type Results References

Fumonisin B2 and ochratoxin A Date palm fruits atmospheric pressure
argon cold plasma jet

Degradation of the
two mycotoxins

after 6 min and 7.5 min plasma
treatments, respectively

[49]

Deoxynivalenol, zearalenone,
enniatins, fumonisin B1 and T2,
Sterigmatocystin, and AAL toxin

Rice extracts dielectric barrier discharge The 60 s treatment extensively
degraded pure mycotoxins [50]

Aflatoxin

Corn high-voltage plasma 90% degradation [51]

Hazelnuts DBD Mycotoxin reduced by 70% [52]

Nuts atmospheric pressure
plasma

Reduces aflatoxin
production (90%)
Degradation of

mycotoxin up to 72%

[53,54]

Hazelnuts, peanuts, and
pistachio nuts low-pressure cold plasma 20 min air plasma treatment

reduced 50% of total aflatoxins [55]

AF B1 Glass coverslip
nitrogen gas plasma
generated by a static
induction thyristor

The concentration reduced to
<1/10th after 15 min [56]

DON, D3G T-2 Barley
low-pressure

microwave-generated
plasma

50% reduction [57]

Table 2. Cold plasma experiments illustrating treatments of insect pests.

Insect Pests Popular Name The Type of Plasma
Method Employed

Greatest Efficient
Treatment Time Outcomes Source

Plodia interpunctella Indian meal moth pulsed plasma jet 20 p/s
larval mortality 86%,

53% pupal mortality and 46%
reduction adult development

[58]

Sitophilus granarius Wheat weevil
vacuum and

electromagnetic field
plasma system

10 s 100% insect pest elimination [59]

Tribolium confusum, Confused
flour beetle, DBD 20 s 100% elimination achieved [60]

Ephestia kuehniella Mediterranean
flour moth DBD 15 min

insect pest elimination at 100%
at all stages [61]

Tribolium castaneum Red flour beetle

Tribolium confusum, Confused flour beetle
plasma jet 15 min

T. confusum and T. castaneum
have an elimination rate of up
to 96% and 88%, respectively

[62]
Tribolium castaneum Red flour beetle

3.4. Food Sterilization

To ensure optimal food safety, it is critical to use reliable and consistent food steriliza-
tion techniques. Due to its capability to inactivate a wide variety of foodborne pathogens
without affecting food quality, CP is a promising food sterilization technology. The most
researched of the numerous potential mechanisms is the chemical interaction of cell mem-
branes with radicals (O, OH...), excited or reactive molecules (O2, O3, NO...), and charged
particles [17,63,64]. Reactive species, created by the breakdown of air such as O3, atomic
oxygen, superoxide, peroxides, and hydroxyl radicals, are critical in the destruction of
microbes and viruses like Coronavirus SARS-CoV-2 [65,66]. NO and NO2 play roles in
microorganism inactivation by degrading chemical components such as protein molecules,
fats, and nucleic acids [67]. Moreover, Hun I. and her collaborators have shown that plasma
can also damage the DNA/RNA, restricting the SARS-CoV-2 for viral replication [66].
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The reactive species generated in plasma interact with the amino acids in proteins,
making structural changes and damaging the microbial cell [20], as shown in Figure 4.

L + OH• −−−→ L• + H2O (1)

L• + O2 −−−→ L-OO• (2)

L-OO• + L −−−→ L• + L-OOH (3)

L-OOH −−−→ L-O• (4)

CP is a versatile germicide practice that can be applied to a wide variety of foods. CP
has been proven effective in treating biofilms and decontaminating foods such as meats,
poultry, fruits, and vegetables. CP systems are being researched and developed worldwide
because investigation has demonstrated that they effectively reduce human pathogens [68].
Some of those studies are shown in Table 3.

Table 3. Studies demonstrating decontamination using cold plasma.

Microorganism Food Matrice Plasma Type Results References

E. coli and
Salmonella Apples surface Atmospheric cold

plasma DBD

Raising the treatment duration
enhanced atmospheric cold

plasma’s antibacterial activities
towards the bacteria species.

[69]

S. aureus, E. coli, C. albicans Orange juice Dielectric barrier
discharge

Staphylococcus aureus, Escherichia
coli, and Candida albicans were

treated for 12, 8, and 25 s,
respectively, and the numbers of
each microorganism decreased

more than 5 logs.

[70]

Salmonella Grape tomatoes Dielectric barrier
discharge

Inactivated Salmonella without
altering the color or firmness

properties of the grape tomatoes.
[12]

Z. rouxii Apple juice Dielectric barrier
discharge

5-log reduction of viable cells
population in 140 s [71]

Escherichia coli Raw chicken breasts Atmospheric pressure
plasma jet

20 mm and longer treatment time
(10 min) in presence of oxygen to

the nitrogen gas.
[72]

S. enterica Egg Direct DBD

The composition of carrier gas
affected the rate of Salmonella

inactivation Plasma treatments did
not deteriorate the quality

attributes of eggs.

[73]

Escherichia coli O157:H7,
Listeria monocytogenes,

Salmonella Typhimurium,
and Aspergillus

Beef jerky flexible thin-layer
plasma system Up to 2- to 3-log reduction [74]

Bacillus atrophaeus,
Escherichia coli Barley and wheat DBD

reduced by 3.2- and 3.2-log10
CFU/g for B. atrophaeus cells and E.

coli respectively
[75]

Bacillus amyloliquefaciens
endospores Wheat DBD 3-log CFU reduction in

microbial load [76]

Mesophiles Chicken breast DBD-ACP—In package 1.90 log CFU/g reduction in
microbial load [77]

L. monocytogenes Strawberries DBD air plasma 4.2 of L. monocytogenes [78]

Psychrophiles Raw chicken breast meat Dielectric discharge >1.0-log reduction in
microbial load [79]

Bacillus tequilensis Black peppercorns Dielectric barrier
discharge

3.4-log CFU/g 1.7-log spores/g
reduction in microbial load [80]
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Table 3. Cont.

Microorganism Food Matrice Plasma Type Results References

Salmonella Korean Rice Cakes DBD Salmonella growth is reduced by
3.9 ± 0.3-log CFU/g. [81]

Bacillus cereus Red pepper powder DBD ≥6.0-log reduction [82]

Enterococcus faecalis Fresh pineapple juice Plasma jet and surface
dielectric barrier discharge 8.2-log reduction [83]

Escherichia coli, Listeria
monocytogenes,

Staphylococcusaureus
Milk DBD 98.75–100% fatality rate [84]
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4. Food Quality and Safety Evaluation

Because of its potential to inactivate foodborne pathogens and extend the shelf-life
of food products, CP, an exceptional state of matter, has been explored for a broad range
of potential uses in the food processing industry. CP has already shown guarantee as
an efficient antimicrobial intervention for food contact surfaces. Despite these potential
benefits, applying CP to improve and enhance food quality and safety takes time due to
food production systems’ complex and variable character.

Most research has concentrated on evaluating the overall appearance of CP-treated
food products, and their sensory and physicochemical properties. Before drawing def-
inite conclusions about the advantages of plasma technology, more attention must be
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paid to the stability of delicate food ingredients such as vitamins and other bioactive con-
stituents [86].These are important quality characteristics that determine food’s nutritional
value and safety.

The harmful impacts of the CP procedure on the organoleptic and nutritional charac-
teristics of foods pose significant obstacles to the advancement of the method. The presence
of OH radicals in CP causes oxidative damage in meat, which reduces validity and shelf-life
due to lipid deterioration and rancidity development [16]. The same type of oxidation has
been reported in cereal products [87].

Consequently, any treatment process used on products containing high levels of lipids
and fats must always be carefully studied and optimized to minimize the oxidation effect,
which can degrade quality aspects [88]. Table 4 summarizes some research findings on the
effect of CP on fruit quality.

Table 4. The effect of cold plasma on fruit quality characteristics [89].

Type of Fruit Plasma Source Gas Type Process Parameters Property References

Mandarin Cold plasma Nitrogen 2·45 GH, 2, 5, 10 min
Significant increase in total

phenolic content and
antioxidant activity

[90]

Walnut Plasma jet Argon 12 kHz, 15 kV, 3–11 min No change in total phenolic
content with plasma treatment [91]

Chokeberry juice Cold atmospheric gas
phase plasma jet Argon 25 kHz, 3 & 5 min

Plasma treated juice showed
higher concentrations of
hydroxycinnamic acids

[92]

Pomegranate juice Cold atmospheric
plasma jet

Argon
Treatment time,

3, 5, 7 min Plasma treatment increases the
total phenolic content [93]

25 kHz, 2·5 kV voltage

Fresh-cut kiwifruit Dielectric barrier
discharge Air Voltage 2–19 V

Improving color retention and
reducing the darkened area
formation during storage

[94]

Blueberries Plasma jet Air

Feed gas set at 60 psi,
frequency of 47 kHz,

power consumption of
549 W, CP for 0, 15, 30,

45, 60, 90 and 120 s

Significant reductions in firmness.
Surface color significantly

impacted after 120 s for the L* and
a* values and 45 s for the b* values

[95]

Strawberries Dielectric barrier
discharge Air 60 kV, 50 Hz Retaining color and firmness

of fruit [96]

Cherry tomatoes Dielectric barrier
discharge Air 60 kV, 50 Hz, 30, 60,

180, 300 s
Maintained color, firmness, pH

and weight [97]

Pear Dielectric barrier
discharge 15 kV, 10–20 min

There are no adverse effects on
the quality characteristics of the
fruits, such as fruit color, mass,
fruit firmness, and fruit soluble

solids content

[98]

Sour cherry juice Jet plasma 10, 15, 20 kV
1–9 min

Insignificant change in color and pH
increase in the level of total phenols [99]

Tender coconut water DBD 18–28 kV
1–3 min

Increase in the level of total
fatty acids

decrease in the level of total
phenols and ascorbic acid

[100]

Kiwi turbid juice
13, 22, 31 W15,

25, 35 Kv
1–5 min

Increase in the level of flavor
and texture

decrease in the level of
total phenols

[101]

5. Advantages and Disadvantages of Cold Plasma

Despite numerous studies, several aspects of the CP technique in the food industry
remain unknown. For example, there are still some research gaps regarding the effects
of CP on allergens and antioxidants. Furthermore, studies on the safety, toxicity, and/or
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health effects of CP-treated food products on humans are required. Because different
plasma components have different effects on different food products, optimization studies
for the type, intensity, and duration of plasma treatments, as well as the food type, are
required [102].

The growing use of green preservation techniques has led to the development of di-
verse technologies, each pursuing application in the food industry worldwide. Regrettably,
most suggested green technologies are either limited due to the high cost of equipment,
have an impact on product quality, are not suitable for all food types, or are insufficient for
maximum food product protection [1]. On the one hand, most literature only described
CP application at pilot-scale levels with limited surface coverage. As a result, increasing
the plasma-generating electrode size may increase the plasma’s quantity and coverage.
Regrettably, this whole progress is time-consuming and expensive [28]. On the other hand,
CP enhances the nutritional quality of some food products by increasing total phenolic
compounds, amino acids, and sugars. Such improvements, however, are dependent on
the gas mixture used to generate plasma and the mode of exposure/penetration over the
food material [28]. Table 5 summarizes some of the advantages of CP technology in the
food industry.

Table 5. Advantages of cold plasma in food industry.

Field Cold Plasma Activity References

Safety

Microbial inactivation [103–105]

Spore inactivation [106]

Toxin and allergens Inactivation [10,107]

Enzyme inactivation [29]

Quality

Preserve nutritional content [108]

No sensory altertion [9]

Physical and structural integrity [109]

Compositional integrity [110]

Shelf life

Reduce protein oxidation [111]

Reduce lipid oxidation [112,113]

Inhibits microorganisms [114]

6. Conclusions

Non-thermal processing techniques have drawn a lot of interest over the past 20 years
from the food sector, which is looking for gentle and efficient processes. Alternative tech-
nologies have the potential to improve functioning and shelf life while decreasing damaging
effects on food nutrients and natural flavor. High-pressure processing, ultrasound, pulsed
electric field, ultraviolet light, high-intensity pulsed light, gamma irradiation, and, most re-
cently, non-thermal plasma, a food technology category using physical and chemical effects
to modify foods without overheating or altering them, are the most effective non-thermal
techniques. Non-thermal treatments offer the possibility to control the treatment of specific
molecules within foods. In addition, they may be gentler on the cellular structure of some
sensitive products. The consumer demand for product safety requires the food research
community to improve food quality and shelf life through various novel technologies.
People expect the food they consume to be safe, and technological advances have made
this a reality for many food products. However, as we have seen in numerous outbreaks
and large-scale recalls involving everything from leafy greens to meat to berries, this is
not always the case. The food research community must continue to work to improve
food safety and quality to meet the ever-growing demand from consumers. Applications
of CP technology are reportedly being utilized nowadays to decontaminate various food
goods. However, CP treatment is rarely employed on a commercial scale in the food sector
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because current research focuses mainly on the processing and characteristics of plasma
in various food products. Although more research is needed to characterize further these
technologies’ effects on food products and human health, they are generally considered
safe when properly applied. Currently, a great deal of research is being conducted on the
effects of plasma on various food products.

To this end, it is necessary to overcome the barriers to adopting and utilizing CP
technology in the food industry effectively. Most of the CP systems discussed in this
review paper are lab-scale configurations, which presents a significant challenge in terms
of commercialization. Additional research studies are required to develop prototypes and
scale up for commercial production. With the right tools and resources, CP technology could
revolutionize the food industry and provide a more efficient, safe, and cost-effective way of
producing food products. With the increasing demand for safe and efficient food processing
methods, CP technology is well-positioned to impact the food industry significantly.
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