Syntheses and Structures of Facial and Meridional Stereoisomers of kappa(2)-N,S-Chelated Ruthenium Borate Complexes

Asif Ahmad, Suvam Saha, Mohammad Zafar, Thierry Roisnel, Prasanta
Ghosh, Sundargopal Ghosh

To cite this version:

Asif Ahmad, Suvam Saha, Mohammad Zafar, Thierry Roisnel, Prasanta Ghosh, et al.. Syn- theses and Structures of Facial and Meridional Stereoisomers of kappa(2)-N,S-Chelated Ruthenium Borate Complexes. European Journal of Organic Chemistry, 2023, 26 (9), pp.e202201283. 10.1002/ejoc. 202201283 . hal-04057787

HAL Id: hal-04057787

https://hal.science/hal-04057787
Submitted on 11 May 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

@(®)

Synthesis and Structures of Facial and Meridional Stereoisomers of $\kappa^{2}-N, S$-Chelated Ruthenium Borate Complexes

Asif Ahmad, ${ }^{[a]}$ Suvam Saha, ${ }^{+[a]}$ Mohammad Zafar, ${ }^{[a]]}$ Thierry Roisnel, ${ }^{[b]}$ Prasanta Ghosh, ${ }^{[c]}$ Sundargopal Ghosh* ${ }^{[a]}$

[a] Asif Ahmad, Suvam Saha, Mohammad Zafar, Dr. Sundargopal Ghosh Department of Chemistry Indian Institute of Technology Madras Chennai 600036, India
E-mail: sghosh@iitm.ac.in
[b] Dr. Thierry Roisnel
Department of ISCR Instruments
Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, F-35000 Rennes, France
[c] Dr. Prasanta Ghosh
Department of Chemistry
R. K. Mission Residential College, Kolkata 700103, India
\dagger These authors contributed equally to this work

Abstract: The trans-mer-[($\left.\kappa^{2}-N, S-\mathrm{NS}_{2} \mathrm{C}_{7} \mathrm{H}_{4}\right) \mathrm{PR}_{3} R u\left\{\mathrm{~K}^{3}-H, S, S^{\prime}-\mathrm{H}_{2} \mathrm{~B}\right.$ $\left.\left(\mathrm{NS}_{2} \mathrm{C}_{7} \mathrm{H}_{4}\right)_{2}\right\}$], (trans-mer-1a: $\mathrm{R}=\mathrm{Cy}$; trans-mer-1b: $\mathrm{R}=\mathrm{Ph}$) complexes are kinetically controlled products that upon thermolysis led to the formation of cis-mer-[($\left.\mathrm{k}^{2}-\mathrm{N}, \mathrm{S}-\mathrm{NS}_{2} \mathrm{C}_{7} \mathrm{H}_{4}\right) \mathrm{PR}_{3} \mathrm{Ru}\left\{\mathrm{k}^{3}-H, S, S^{\prime}-\right.$ $\left.\left.\mathrm{H}_{2} \mathrm{~B}\left(\mathrm{NS}_{2} \mathrm{C}_{7} \mathrm{H}_{4}\right)_{2}\right\}\right]$, (cis-mer-2a: $\mathrm{R}=\mathrm{Cy}$; cis-mer-2b: $\mathrm{R}=\mathrm{Ph}$) and cis-fac-[($\left.\left.\mathrm{K}^{2}-N, S-\mathrm{NS}_{2} \mathrm{C}_{7} \mathrm{H}_{4}\right) \mathrm{PR}_{3} R \mathrm{Ru}\left\{\mathrm{K}^{3}-\mathrm{H}, \mathrm{S}, \mathrm{S}^{\prime}-\mathrm{H}_{2} \mathrm{~B}\left(\mathrm{NS}_{2} \mathrm{C}_{7} \mathrm{H}_{4}\right)_{2}\right\}\right]$, (cis-fac-3a: $\mathrm{R}=\mathrm{Cy}$; cis-fac-3b: $\mathrm{R}=\mathrm{Ph})$ along with complex cis-[($\mathrm{K}^{2}-N, S-$ $\left.\mathrm{NS}_{2} \mathrm{C}_{7} \mathrm{H}_{4}\right)_{2} \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}$], (cis-4). One of the main intentions of this study was to examine the flexibility of the borate and hemilabile N, S chelating mercapto-benzothiazole ligands in adapting different spatial arrangements around metal center. Multinuclear spectroscopic analyses have been done to characterize all new complexes and the structures were further confirmed by singlecrystal X-ray diffraction analysis. Further, Density Functional Theory (DFT) calculations were performed to provide an insight into the bonding of the complexes.

Introduction

The synthesis and study of ruthenium complexes having boroncentered polyfunctional ligands have become a significant research interest over the past few decades. ${ }^{[1]}$ These polyfunctional ligands can stabilize the metal center with different coordination modes occupying preferred geometrical position. For example, Sabo-etienne et al. synthesized a phospinobenzyl-(amino) borane ruthenium complex exhibiting two adjacent $\mathrm{C}-\mathrm{H}$ and $\mathrm{B}-\mathrm{H}$ agostic interactions that participate in selective $\mathrm{B}-\mathrm{H}, \mathrm{C}-\mathrm{H}$, and $\mathrm{B}-\mathrm{C}$ bond activation. ${ }^{[2]}$ Recently, in many reports it have been found that borate ligands can show versatile coordination modes at ruthenium center, ${ }^{[17,3]}$ where the metal center is stabilized by the $1,3-N, S$ donor ligand either in chelating ($\mathrm{K}^{2}-N, S$) or in bridging ($\mu^{2}-N, S / \mu^{1}-S$) coordination modes. ${ }^{[16,3,4,5]}$ In fact, these $1,3-N, S$ chelated ligands have shown the potential hemilabile character to offer coordinative unsaturation at the metal center for further functionalization and to provide access to a large variety of functional groups with different steric and electronic properties.

The coordination chemistry of stable tridentate pincer-type ligands have also played an dominant role in catalysis owing to their ability to inhabit a particular coordination geometry in which the ligand occupies facial (fac) and meridional (mer) sites
a) κ^{3}-fac and κ^{3}-mer coordination geometries of Rhodium DPEphos Complexes

b) fac and mer-tris(bipyrdine) complexes of ruthenium

facial meridional
c) Our work

Chart 1. (a) fac- and mer-rhodium DPEphos complexes, (b) Examples of facand mer-ruthenium complexes, (c) cis-mer and cis-fac complexes, our work.
around metal center. ${ }^{[6,7]}$ For example, "POP" type ligands have been utilised in catalysis for decades, especially the ligand frameworks ${ }^{[8,9]}$ Xantphos or DPEphos [DPEphos $=\operatorname{Bis}\{(2-$ diphenylphosphino)phenyl\}ether] have been used in rhodium catalyzed hydroformylation reaction due to its wide bite angle. ${ }^{[10]}$ For example, Balakrishna and co-workers synthesized and structurally characterized DPEphos complex of ruthenium, fac-
$\left[\mathrm{Ru}\left(\mathrm{S}(\mathrm{O}) \mathrm{Me}_{2}\right)(\mathrm{Cl})_{2}\left(\mathrm{k}^{3}-\mathrm{P}, \mathrm{O}, \mathrm{P}-\mathrm{DPEphos}\right)\right]$ which upon addition of phosphine led to the formation of $m e r-\left[\operatorname{Ru}\left(\mathrm{S}(\mathrm{O}) \mathrm{Me}_{2}\right)(\mathrm{Cl})_{2}\left(\mathrm{k}^{3}-\right.\right.$ P,O,P-DPEphos)]. ${ }^{[11]}$ Weller and co-workers reported rhodium complex, fac-[\{PCyp $\left.\left.\left(\eta^{2}-\mathrm{C}_{5} \mathrm{H}_{7}\right)\right\} \mathrm{Rh}\left(\mathrm{k}^{3}-\mathrm{P}, \mathrm{O}, \mathrm{P}-\mathrm{DPEphos}\right)\right]\left[\mathrm{BAr}_{4}\right]$ (Cyp = cyclopentanyl) which undergoes alkene hydrogenation in H_{2} atmosphere to generate fac-[($\left.\mathrm{PCyp}_{3}\right) \mathrm{Rh}(\mathrm{H})_{2}\left(\mathrm{k}^{3}-\mathrm{P}, \mathrm{O}, \mathrm{P}-\right.$ DPEphos) $]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right]$ complex (Chart 1a). ${ }^{[12 a]}$ Using cationexchange chromatography, Fletcher and co-workers were able to isolate various new fac- and mer-isomers of 5 -functionalized-$2,2^{\prime}$-bipyridine complexes. The relative yield of the fac isomer was decreased significantly with increasing the steric bulk of the substituted group at 5 -position of the bipyridine ligand (Chart 1b). ${ }^{[12 b]}$

The kinetic and thermodynamic stability of transition metal complexes with cis-trans facial and meridional stereoisomers are of considerable interest. ${ }^{[13,14]}$ According to theoretical studies, the trans isomers of these octahedral complexes are kinetically stable and they can be converted to cis form when subjected to thermolysis which has been further supported by the experimental studies. ${ }^{[15]}$ In the course of our recent studies on transtion metal borate complexes, we have synthesized various $\kappa^{2}-N, S$-chelated borate complexes trans-mer-[$\left[\kappa^{2}-N, S\right.$ $\left.\left.\mathrm{NS}_{2} \mathrm{C}_{7} \mathrm{H}_{4}\right) \mathrm{PR}_{3} \mathrm{Ru}\left\{\mathrm{K}^{3}-\mathrm{H}, \mathrm{S}^{\prime}, \mathrm{S}-\mathrm{H}_{2} \mathrm{~B}\left(\mathrm{NS}_{2} \mathrm{C}_{7} \mathrm{H}_{4}\right)_{2}\right\}\right]$, (trans-mer-1a: $\mathrm{R}=$ PCy_{3}, trans-mer-1b: $\mathrm{R}=\mathrm{PPh}_{3}$) and exploited their reactivity towards various small molecules such as boranes silanes, alkynes. ${ }^{[6]}$ While working on these $\mathrm{K}^{2}-N, S$-chelated species, trans-mer-1a-b, we have observed that the aerial oxidation of these Ru (II) complexes generate redox-active $\mathrm{Ru}(\mathrm{III})$ species, mer-[($\left.\mathrm{K}^{2}-\mathrm{N}, \mathrm{S}-\mathrm{NS}_{2} \mathrm{C}_{7} \mathrm{H}_{4}\right)_{2} \mathrm{PR}_{3} \mathrm{Ru}\left\{\mathrm{K}^{1}-\mathrm{S}-\left(\mathrm{NS}_{2} \mathrm{C}_{7} \mathrm{H}_{4}\right)\right)$, (mer-I: $\mathrm{R}=$ PCy_{3}, mer-II: $\mathrm{R}=\mathrm{PPh}_{3}$) (Scheme 1). ${ }^{[17]}$ This is mainly due to the hemilabilaity of the $K^{2}-N, S$-chelated benzothiazole ligand coordinated to the ruthenium center. This observation prompted us to investigate the thermodynamic stability of trans-mer-1a-b at various temperatures. The main goal of this study was to examine the capability of the flexible borate moieties and hemilabile N, S-chelating mercaptobenzothiazolyl ligand to adopt different spatial arrangements at ruthenium center. Based on the coordination modes at the ruthenium center, we describe the novel isomerization reaction of trans-meridional to cis-merdional and cis-facial isomers of ruthenium borate species along with their electronic properties. To gain an insight into the electronic structure of the complexes, density functional theory (DFT) calculations were also carried out.

Results and Discussion

Thermolysis of trans-mer-1a. As shown in Scheme 1, room temperature aerial oxidation of trans-mer-1a-b in CDCl_{3} converted to redox-active Ru(III) complexes, mer-I-III ${ }^{[17]}$ However, when trans-mer-1a was thermolysed at $90^{\circ} \mathrm{C}$ for 24 h , it led to the formation of $\mathbf{2 a}$ and $\mathbf{3 a}$ (Scheme 1). This reaction mixture did not benefit from thin-layer chromatographic (TLC) separation, which was attempted. This is mainly because of the fact that the species $2 \mathbf{a}$ and 3 a are interconvertible in solution. Consequently, due to our inability to separate these complexes into their pure forms, we could not obtain pure spectral data for them. Therefore, we have attempted to fractionally crystalize 2a and $3 \mathbf{a}$ in order to isolate them in pure form. Fortunately, few needle-shaped yellow crystals was produced by a chloroform/hexane solution of 2a and 3a within the J-young

NMR tube which were identified as a $\left[\left(\kappa^{2}-N, S\right.\right.$ $\left.\left.\mathrm{NS}_{2} \mathrm{C}_{7} \mathrm{H}_{4}\right) \mathrm{PPh}_{3} \mathrm{Ru}\left\{\mathrm{K}^{3}-\mathrm{H}, \mathrm{S}, \mathrm{S}^{\prime}-\mathrm{H}_{2} \mathrm{~B}\left(\mathrm{NS}_{2} \mathrm{C}_{7} \mathrm{H}_{4}\right)_{2}\right\}\right]$ 2a that shows cismer geometry (Figure 1b).

Scheme 1. Synthesis of the Ru(II) borate of complexes cis-mer-2a-b, cis-fac-3a-b.

Several attempts to get the crystals of 3a were unsuccessful. As a result, in an attempt to get the analogous molecule of 3a, we have carried out the thermolysis of trans-mer- $\mathbf{1 b}$ that led to the formation of $\mathbf{2 b}$ and $\mathbf{3 b}$, which are also under equillibrium. Fortunately, few needle-shaped yellow crystals was produced by a chloroform/hexane solution of $\mathbf{2 b}$ and $\mathbf{3} \mathbf{b}$ which were identified as a $\left[\left(\kappa^{2}-N, S-\mathrm{NS}_{2} \mathrm{C}_{7} \mathrm{H}_{4}\right) \mathrm{PPh}_{3} R u\left\{\mathrm{~K}^{3}-\mathrm{H}, \mathrm{S}, \mathrm{S}^{\prime}-\mathrm{H}_{2} \mathrm{~B}\left(\mathrm{NS}_{2} \mathrm{C}_{7} \mathrm{H}_{4}\right)_{2}\right\}\right]$ 3b that shows cis-fac geometry, (Figure 1c).

In parallel to the formation of $\mathbf{2 b}$ and $\mathbf{3 b}$, thermolysis of trans-mer- 1 b also yielded 4 . The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4 displays a peak at $\delta=52.3 \mathrm{ppm}$. The ${ }^{1} \mathrm{H}$ NMR spectrum shows peaks in the aromatic region in the range of $\delta=6.88-7.94 \mathrm{ppm}$ that denote the presence of two benzothiazole ligand and two phosphine ligands. The ESI-MS spectra of 4 shows peak at m / z $=958.9921$ having isotopic distribution patterns. To get a clear picture for molecule 4, single crystals appropriate for X-ray diffraction studies were grown from the slow diffusion of a $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane solution at $-5^{\circ} \mathrm{C}$. Based on the X -ray diffraction studies along with the spectroscopic data, we have identified 4 as a cis-[($\left.\left.\mathrm{K}^{2}-N, S-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}_{2}\right)_{2} \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (cis-4, Figure 2, vide infra). ${ }^{[18]}$ Note that, in 2015, cis-4 and cis-[($\mathrm{K}^{2}-N, S-$
$\left.\left.\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{NS}_{2}\right)_{2} \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ complexes were isolated from the thermolysis of $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}_{2}\right]$ with 2-mercaptobenzothiazole and 2-mercaptothiazoline, respectively in presence of NEt_{3} and was characterized spectroscopically. ${ }^{[19]}$ In addition, earlier Sousa and co-workers isolated a series of analogous complexes with various heterocyclic bidentate ligands. ${ }^{[20]}$

Scheme 2. Synthesis of trans-4 and cis-4

As complex cis-4 turned out to be interesting and we have obtained solid-state X-ray structure, we wanted to make it in good quantity for further chemistry, in praticular small molecule activation. ${ }^{[16]}$ Thus in an attempt to synthesize cis-4 in a different route, one equivalent of $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}_{2}\right]$ was treated with two equivalents of potassium salt of 2-mercaptobenzothiazole ligand in THF at room temperature (Scheme 2). Within 4 hours, the colour of the reaction mixture changed from brown to yellow. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture showed one peak at $\delta=52.3 \mathrm{ppm}$ that corresponds to cis-4 and the peak at δ $=41.6 \mathrm{ppm}$ indicates the formation of a new species trans-4 (Figure S21). The mass spectrum of this reaction mixture displays a peak at $\mathrm{m} / \mathrm{z}=958.9921$. The chromatographic separation of this mixture allowed us to isolate cis-4 along with the unknown species, which was converted to cis-4 over time. Systematic evaluation of multinuclear NMR spectroscopic data and mass spectrometric data of the reaction mixture suggested it as the isomer of the cis-4, that is trans-4 (Figures S18-S21). Note that, thermolysis of cis-4 at $90{ }^{\circ} \mathrm{C}$ for 24 hours does not show any conversion of cis-4 to trans-4. Recently, we have reported redox-active complexes, mer-I-II that underwent unusual dual site $\mathrm{B}-\mathrm{H}$ bond activation with boranes. ${ }^{[16]}$ Similarly, the presence of dual active sites in cis-4 prompted us to explore the reactivity of it towards boranes. As shown in Scheme 3, the reaction of cis-4 with BH_{3}. THF at room temperature also led to the formation of trans-mer-1b.
X-ray crystallography and Geometry Assignment. As shown in Figures 1a-b, the solid state X-ray diffraction analyses of suitable crystals of $\mathbf{2 a}$ and $\mathbf{3 b}$ confirmed their molecular structures. Complex 2a crystallizes in a triclinic system with space group $P 7$ and $\mathbf{3 b}$ crystallizes in the monoclinic system with $P 2_{1} / \mathrm{c}$ space group. The molecular structure of $\mathbf{2 a}$ shows a distorted octahedral geometry in which the tris-homoleptic mercaptobenzothizolyl sulfur moieties are coordinated to the ruthenium center in meridional fashion. The phosphine is cis to the hydride ligand and the N, S-donor mercaptobenzothaizolyl ligand is coordinated to ruthenium that formed four-membered ruthenacycle with bite angle $67.60(11)^{\circ}$. Based on the coordination of the donor atoms to ruthenium center, 2a now can be defined as cis-mer-[($\left.\kappa^{2}-N, S-\mathrm{NS}_{2} \mathrm{C}_{7} \mathrm{H}_{4}\right) \mathrm{PCy}_{3} R \mathrm{Ru} \mathrm{K}^{3}-H, S, S^{\prime}-$ $\left.\mathrm{H}_{2} \mathrm{~B}\left(\mathrm{NS}_{2} \mathrm{C}_{7} \mathrm{H}_{4}\right)_{2}\right\}$] (cis-mer-2a). The Ru1-S3 bond distance of 2.3217(14) \AA in cis-mer-2a is significantly shorter than Ru1-S1 and Ru1-S5 bond distances of $2.4618(15)$ and $2.4396(14) ~ A ̊$, respectively. The Ru1-S1-C21-N1 ring is almost flat with a torsion angle of $-0.7(5)^{\circ}$ (Figures 1a).

(a) \wedge-cis-mer-2a

(b) 1 -cis-fac-3b

Figure 1. Molecular structures of cis-mer-2a (a), cis-fac-3b (b), Selected bond lengths (Å) and angles (${ }^{\circ}$). cis-mer-2a (a): Ru1-B1 2.544(6), Ru1-P1 2.3485(14), Ru1-S1 2.4618(15), Ru1-S3 2.3217(14), Ru1-S5 2.4396(14), N1-Ru1-S1 67.60(11), S3-Ru1-S5 87.43(5), S3-Ru1-P1 94.46(5). . cis-fac-3b (b): Ru1-B51 2.578(9), Ru1-P1 2.279(2), Ru1-N22 2.131(7), Ru1-S21 2.317(2), Ru1-S1 2.454(2), Ru1-S11 2.486(2), N22-Ru1-S1 67.6(2), S21-Ru1-S1 103.06(8), S21-Ru1-S11 87.37(]7), S1-Ru1-S11 84.11(8).

The molecular geometries of 3b depicted in Figures 1c revealed distorted octahedral geometry in which the mercaptobezothiazolyl sulpur atoms are coordinated to ruthenium center in a facial fashion. However, the hydride, phosphine and nitrogen donor sites are trans to each of the mercaptobenzothizolyl sulphur atoms. Four equatorial atoms of them are arranged in a square plane (H-S-S-N) and their structures are similar to trans-mer-1b with different orientation of the borate and phosphine ligand around ruthenium center. Interestingly, in both the cases, the hydride ligand is cis-oriented to the phosphine ligand. Three sulfur atoms of tris-homoleptic mercaptobenzothizolyl are coordinated to the ruthenium center in facial fashion. As a result of the donor atoms coordination with the ruthenium centre, $\mathbf{3 b}$ may now be described as cis-fac- $\mathbf{3 b}$. The bite angles (N -Ru-S) for four membered chelating ruthenacycle are $67.6(2)^{\circ}$ for cis-fac-3b. The Ru-B bond distance of 2.575(3) \AA (cis-fac-3b) are comparatively shorter as compared to trans-mer-1b (2.775 Å). The Ru-P bond distances for cis-fac-3b (2.2740(7)Å) are significantly longer as compared to trans-mer-1b 2.2696(15) Å.

Scheme 3. Synthesis of trans-mer-1b from cis-4.
The molecular structure of 4, shown in Figure 2, displays an octahedral geometry around Ru center comprising two $\kappa^{2}-1,3-$ N, S-chelated rings along with two phosphine ligands. Considering the fact that these phosphine ligands are cis to each other, 4 is defined as cis-4. In addition, the phosphine ligands are trans to the N atoms of the $k^{2}-1,3-N, S$ mercaptobenzothiazolyl donor ligands. The torsion angles of both the four-membered (S-C-N-Ru) rings (1.6(6) ${ }^{\circ}$ and $\left.-0.4(6)^{\circ}\right)$
match well with that of trans-mer-1b $\left(0.9(4)^{\circ}\right)$. The Ru-S distances of 2.433(3) \AA and $2.450(3) \AA$ in the chelate rings are comparable with that of trans-mer-1b (2.4741(18) \AA).

(a) cis-4

Figure 2. Molecular structures of cis-4 (a), selected bond lengths (\AA) and angles (${ }^{\circ}$). cis-4: Ru1-P1 2.300(3), Ru1-P2 2.301(3), Ru1-S1 2.433(3), Ru1-S3 2.450(3), Ru1-N42 2.177(10), N42-Ru1-S1 67.3(3) N52-Ru1-S3 67.1(3).

Figure 3. ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR studies for interconversion of trans-mer- $\mathbf{1 b}$ to cis-mer-2b and cis-fac-3b.
cis-trans Orientation of the Hydride. As discussed above, thermolysis of trans-mer-1a-b yielded cis-mer-2a-b and cis-fac-3a-b. Having all these molecules with different phosphines, we are now able to assign the ${ }^{1} \mathrm{H},{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts from their combined NMR spectra. The ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the mixture of $\mathbf{2 b}$ and $\mathbf{3 b}$ shows one broad resonance in the upfield region at $\delta=-4.6 \mathrm{ppm}$. Besides the ${ }^{1} \mathrm{H}$ chemical shifts for mercaptobenzothiazolyl and phosphine ligands, the ${ }^{1} \mathrm{H}$ NMR spectra of them show chemical shifts in the range of $\delta=-16.84$ to -15.12 ppm likely due to the presence of Ru-H-B protons. In cis-mer-2b, the hydride is trans to N , whereas in case of cis-fac-3b, the hydride is trans to S atom. Due to the greater electronegativity of N atom, donation of electrons from the B-H bond to ruthenium is expected to be more as compared to the Ru-H-B proton, which is trans to S atom. As a result, it is reasonable to assume that the metal hydride character for Ru-H-B proton in cis-mer-2b is greater than the cis-fac-3b isomer. Thus, the ${ }^{1} \mathrm{H}$ chemical shift of thehydride in cis-mer-2b appears in the upfield region as compared to cis-fac-3b. Based on the trans effect and DFT studies (Table S1), the peak at $\delta=-16.84 \mathrm{ppm}$ is assigned to Ru-H-B of cis-mer-2b and the chemical shift at $\delta=-15.12 \mathrm{ppm}$ is allocated of cis-fac- $\mathbf{3 b}$ (Figure 3). The ${ }^{31} \mathrm{P}$ chemical shifts at $\delta=$ 55.8 ppm has been assigned to cis-fac-3b and $\delta=59.9 \mathrm{ppm}$ for cis-mer- $\mathbf{2 b}$ (Table S 1). An ESI-MS spectrum shows an isotropic pattern at $\mathrm{m} / \mathrm{z} 874.9563$. In a similar fashion, the chemical shifts for cis-mer-2a and cis-fac-3a have been assigned (Figures S4S17).

Figure 4. Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR spectrum for trans-mer-1b and cis-fac-3b.

The cis-trans nomenclature for molecules trans-mer-1a-b, cis-mer-2a-b, and cis-fac-3a-b, has been established based on the $J(H, P)$ coupling constant values obtained from ${ }^{1} H\left\{{ }^{11} B\right\}$ NMR. In the ${ }^{1} \mathrm{H}$ NMR spectrum for trans-mer $-\mathbf{1 b}$, the broad hydride peak at $\delta=-3.71 \mathrm{ppm}$ appeared as a doublet of doublet when decoupled with ${ }^{11} \mathrm{~B}\left({ }^{2} J_{\mathrm{HP}}=33.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=16.3 \mathrm{~Hz}\right)$ (Figure 4). This indicates that the hydride is trans to phosphine ligand. ${ }^{[21]}$ Similarly, for cis-fac-3b, the broad hydride peak at $\delta=-15.6 \mathrm{ppm}$ appears as a doublet of doublet with coupling constants, ${ }^{2} J_{\mathrm{HP}}=$ 9.1 Hz and ${ }^{2} J_{H H}=16.3 \mathrm{~Hz}$. This may be due to the adjacent cisoriented phosphine group. This looks like a triplet as a consequence of minimal difference in coupling constant values of ${ }^{2} J_{H P}$ and ${ }^{2} J_{H H}$. The ${ }^{1} \mathrm{H}$ NMR spectra for cis-mer- 2 b and cis-fac3b appeared significantly in the upfield region as compared to trans-mer- $\mathbf{1 b}$ ($\delta=-3.4 \mathrm{ppm}$). This is due to the trans effect of the phosphine ligands. The ${ }^{1} \mathrm{H}$ chemical shift of the aromatic protons of $1,3-N, S$-chelated mercaptobenzothizole ligand of cis-fac-3b has been shifted significantly to upfield region as compared to trans-mer- $\mathbf{1 b}$ isomer. This may be due to the cis orientation of the phosphine moeiety. ${ }^{[22]}$

DFT Calculations. To gain some insight into the bonding nature and to understand the differences and similarities of the trans-mer-1a-1b, cis-mer-2a, cis-fac-3a stereoisomers, various computational simulations at the bp86/def2-tzvp ${ }^{[23]}$ level of theory-based in DFT were executed. The HOMOs of the trans isomers are mainly localized on the d-orbital of ruthenium and the p-orbitals of nitrogen and sulfur atoms of the borate ligand, whereas in the case of the cis isomers, the HOMOs involve the p-orbitals of sulfur atoms of the chelated benzothiazole moiety along with the ruthenium d-orbital and p-orbitals nitrogen and sulfur atoms of the borate ligand (Figure S23). The LUMOs are mainly found to be localized over benzothiazole moieties of borate ligand for both the isomers (Figure S23). The HOMOLUMO energy gap increases in the order trans-mer < cis-fac < cis-mer (Table S2). The natural bonding orbital (NBO) analysis shows that charge transfer from phosphorus to ruthenium follows the trend trans-mer<cis-mer<cis-fac, ${ }^{[24]}$ which is further supported by the natural valence population analysis (Table S2).

Figure 5. (a), (b) and (c) represents the Ru-H-B interaction in trans-mer-1a, cis-mer-2a and cis-fac-3a respectively; (d) and (e) shows the Contour-line map of the Laplacian of the electron density in the Ru-SCN plane and Ru-H-B plane of cis-mer-2a. BCPs and RCPs correspond to blue and orange dots and red lines indicate bond paths.

The NBO analysis dictates very strong Ru-H-B bonding interaction (Figure $5 \mathrm{a}-\mathrm{c}$). In addition, the contour plot of the laplacian of the electron density $\left(\nabla^{2} \rho\right)$ shows the presence of a ring-critical point (RCP) in the RuSCN plane of cis-mer-2a (Figure 5d).
Electronic spectra. Conversion of trans-mer-1a-b to cis-mer-2a-b and cis-fac-3a-b has prompted us to explore the photophysical properties of these isomers. The UV-vis spectra of complexes 1a-3a and 1b-3b recorded in dichloromethane shows an intense absorption band in the region of $236-250 \mathrm{~nm}$ that may be assigned to $\pi-\pi^{*}$ transitions of the phosphine and mercaptobenzothiazolyl ligands (Figure 6). Another electronic transition peak in the window of $317-421 \mathrm{~nm}$ is possibly due to the charge transfer transition(MLCT). The results indicate that the ligands orientation around the metal center does not significantly affect the general photo-physical properties of the complexes.

Figure 6. UV-vis spectra of trans-mer-1a-b, cis-mer-2a-b and cis-fac-3a-b.

Cyclic voltammetry. Lahiri, Liobet and coworkers have demonstrated that one may compare the electron density on the central metal atom provided by the ligand that is arranged in trans and cis fashion around the metal centre by using cyclic voltammetry as a tool. ${ }^{[25]}$ These observations encourage us to conduct cyclic voltammetry experiment. The redox behaviour of trans-mer-1b, and mixture of cis-mer-2b, cis-fac-3b species has been studied by cyclic voltammetry (CV). The voltammograms of both compounds are almost similar; the main difference observed is the peak potentials. The cyclic voltammogram for trans-mer-1b in dichloromethane shows reversible waves at $\mathrm{E}_{1 / 2}=0.47 \mathrm{~V}$, ($\mathrm{l}_{\mathrm{pd}} / \mathrm{l}_{\mathrm{pa}}=0.97$) and for cis-fac-3b the reversible peaks appear at $0.59 \mathrm{~V}\left(\mathrm{l}_{\mathrm{pc}} / \mathrm{l}_{\mathrm{pa}}=0.98\right)$, (Figure S 22) respectively. These peaks have been assinged to Ru"I/Ru" redox couple. In addition, the irreversible waves at 0.79 V (trans-mer-1b) and 0.93 V (cis-fac-3b) appears due to oxidation of the N, S-donor mercaptobenzothiazole redox centered couple. With reference to their respective positions, the phosphine and hydride ligands provided a higher electron density on the ruthenium metal enabling the cis-mer-2b, cis-fac-3b anodic peak to arise at a higher potential than the trans-mer-1b anodic peak. This makes trans isomer more capable of oxidising the metal centre than cis isomers. As a result, the oxidation potential emerges at a lower value for the trans isomer.

Conclusion

In summary, we have synthesized some interesting cismeridional and cis-facial isomers of ruthenium borate species which are supported by hemilabile N, S-chelated ruthenacycle. They are exciting stereoisomeric organometallic species, based on a cis-trans isomer they might open a new direction in catalysis. Further, we have studied the kinetic and thermodynamic stability of these stereoisomers of ruthenium borate complexes at different reaction conditions. In addition, we have synthesized cis-trans isomeric mixture of stereoisomers in which the octahedral Ru centre is coordinated with two units of chelate ring through $1,3-N, S$-chelating fahsion along with two phosphine moities. Based on the $J(H, P)$ coupling constant values obtained from boron decoupled proton NMR, the cistrans nomenclature for the molecules trans-mer-1a-b, cis-mer-2a-b, and cis-fac-3a-b has been defined. Comparative study of cis and trans isomer on the basis of diffrent in electron density
on the central metal has been demostrated by cyclic voltammetry. Selective synthesis of these type of complexes open the pathways towards the activation of small molecules and their interesting prospect in catalysis are currently being explored.

Experimental Section

General Procedures and Instrumentation. All operations were done by using glove box techniques and standard Schlenk line under an atmosphere of dry argon. Solvents such as tetrahydrofuran, hexane and toluene were distilled through Na /benzo-phenoneketyl and dichloromethane was dried over calcium hydride prior to use under argon CDCl_{3} dried over calcium hydride for 12 h , and degassed by three freeze-pump-thaw cycles, stored over $4 \AA$ Á molecular sieves in a Young's ampoule under argon. The complexes $\left[\mathrm{R}_{3} \mathrm{P}\left(\mathrm{K}^{2}-\mathrm{N}, \mathrm{S}-\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}_{2}\right) \mathrm{Ru}\left\{\mathrm{K}^{3}\right.\right.\right.$ $\left.\left.\mathrm{H}, \mathrm{S}, \mathrm{S}^{\prime}-\mathrm{H}_{2} \mathrm{~B}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}_{2}\right)_{2}\right\}\right]^{[16 \mathrm{~b}]}(\mathbf{1 a}: \mathrm{R}=\mathrm{Cy} ; \mathbf{1 b}: \mathrm{R}=\mathrm{Ph}),\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}_{2}\right]^{[26]}$ was prepared according to literature. The external reference for the $\left.{ }^{11} \mathrm{~B}_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]^{[27]}$ was synthesized according to the literature method. The ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\},{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ were recorded on Bruker 400 and 500 MHz instruments. The residual solvent protons were used as reference (δ, ppm, Benzene- $d_{6}, 7.16$ $\mathrm{CDCl}_{3}, 7.26$, Toluene- $d_{8}, 7.09 \mathrm{ppm}$), while as an external reference for ${ }^{11} B$ NMR spectra, a sealed tube containing [Bu4N][($\left.\left.\mathrm{B}_{3} \mathrm{H}_{8}\right)\right]$ in Benzene- d_{6} (δ в, ppm, -30.07) was used. To remove the broad ${ }^{11} \mathrm{~B}$ background signa of the NMR tube, ${ }^{1} \mathrm{H}$ decoupled ${ }^{11} \mathrm{~B}$ spectra of all compounds were administered with a backward linear prediction algorithm. Aluminum supported silica gel TLC plates with $250 \mu \mathrm{~m}$ diameter (Merck TLC plates) were utilized in thin layer chromatographic separation of the reaction mixture. High-resolution ESI-MS were recorded with an Agilent 6545A Q TOF mass spectrometer. Infrared spectra were obtained on a Jasco FT/IR-1400 spectrometer.

Please see synthetic procedures and experimental details in Supporting information.

X-ray structure analysis. Suitable X-ray quality crystals of cis-fac-3b and cis- 4 were grown by slow diffusion of a hexane/dichloromethane solution at $-5{ }^{\circ} \mathrm{C}$, respectively. Whereas the crystals of cis-mer-2a were grown by slow diffusion of a chloroform/hexane at $-33^{\circ} \mathrm{C}$. Crystal data of cis-mer-2a, cis-fac-3b and cis-4 were obtained using a D_{8} VENTURE Bruker SC diffractometer with graphite monochromated Mo-Ka ($\lambda=$ $0.71073 \AA$ A) radiation at 150 (2) K. All the structures were solved using SIR97 ${ }^{[28]}$ and refined with SHELXL-2018, SHELXL-2014, and SHELXL 2017. ${ }^{[29]}$ Using Olex ${ }^{[30]}$ all the molecular structures were drawn. The non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogens could be located in the difference Fourier map. However, the hydrogen atoms bonded to carbon and boron atoms were fixed at chemically meaningful positions and were allowed to ride with the parent atom during the refinement. Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no CCDC-2052114 (for cis-mer-2a), CCDC 2052098 (for cis-fac-3b), CCDC-1588903 (for cis-4). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Crystal data for cis-mer-2a: $\mathrm{C}_{41} \mathrm{H}_{49} \mathrm{BN}_{3} \mathrm{PRuS}_{6}, \mathrm{M}_{\mathrm{r}}=1131.74$ triclinic, space group $P-1, a=9.6800(9) ~ A, b=14.8343(15) ~ A, ~ c=17.6279(19) ~ A$, $\alpha=106.423(4)^{\circ}, \beta=90.327(3)^{\circ}, \gamma=96.470(3)^{\circ}, V=2410.7(4) \AA 3, Z=$ 2 , ρ calcd $=1.559 \mathrm{~g} / \mathrm{cm} 3, \mu=0.542 \mathrm{~mm}-1, \mathrm{~F}(000)=1156, \mathrm{R} 1=0.0684$, $w R 2=0.1814,10686$ independent reflections $\left[2 \theta \leq 50.484^{\circ}\right]$ and 551 parameters.

Crystal data for cis-fac-3b: $\mathrm{C}_{39} \mathrm{H}_{29} \mathrm{BN}_{3} \mathrm{PRuS}_{6}, \mathrm{M}_{\mathrm{r}}=874.86$, monoclinic, space group $\mathrm{P} 21 / \mathrm{c}, \mathrm{a}=10.9746(9) \AA, \mathrm{b}=23.0317(17) \AA, \mathrm{c}=$ $14.6758(12) \AA, \alpha=90^{\circ}, \beta=103.997(3)^{\circ}, \gamma=90^{\circ}, V=3599.4(5) \AA 3, Z=4$,
pcalcd $=1.614 \mathrm{~g} / \mathrm{cm} 3, \mu=0.864 \mathrm{~mm}-1, \mathrm{~F}(000)=1776, \mathrm{R} 1=0.0357$, $w R 2=0.0925,8231$ independent reflections $\left[2 \theta \leq 55.038^{\circ}\right]$ and 466 parameters.

Crystal data for cis-4: $\mathrm{C}_{50} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{RuS}_{4}, \mathrm{M}_{\mathrm{r}}=958.07$, monoclinic, space group P21/c, $a=24.831(4) \AA, b=16.766(3) \AA, c=22.551(4) \AA, \alpha=90^{\circ}$, $\beta=95.561(6)^{\circ}, y=90^{\circ}, V=9344(3) \AA 3, Z=8, \rho c a l c d=1.362 \mathrm{~g} / \mathrm{cm} 3, \mu=$ $0.619 \mathrm{~mm}-1, \mathrm{~F}(000)=3920.0, \mathrm{R} 1=0.1595, \mathrm{wR} 2=0.3902,21342$ independent reflections [$2 \theta \leq 54.968^{\circ}$] and 977 parameters. ${ }^{[17]}$

Computational Details. Density functional theory (DFT) calculations employing BP86 ${ }^{[23]}$ functional were performed with the Gaussian $16^{[31]}$ program. Full geometry optimizations were conducted in gaseous state (no solvent effect) without any symmetry constraints using a def2-tzvp basis set from Basis Set Exchange Library. ${ }^{[32]}$ The optimized geometries were characterized as true minima by conducting frequency calculations. We have computed ${ }^{11} \mathrm{~B}$ NMR chemical shifts using gauge-including atomic orbitals (GIAOs) ${ }^{[33]}$ method at the same basis set by B3LYP. The ${ }^{11} \mathrm{~B}$ NMR chemical shifts were calculated relative to $\mathrm{B}_{2} \mathrm{H}_{6}$ and converted to the usual $\left[\mathrm{BF}_{3} . \mathrm{OEt}_{2}\right]$ scale by using experimental $\delta\left({ }^{11} \mathrm{~B}\right)$ value of $\mathrm{B}_{2} \mathrm{H}_{6}$ ($\delta=16.6 \mathrm{ppm}) .{ }^{[34]}$ Natural bonding analyses were carried out with the natural bond orbital (NBO) 6.0 version of program. ${ }^{[35]}$ Wiberg bond indices $(\mathrm{WBI})^{[36]}$ were obtained from natural bond orbital analysis. The electron density and Laplacian electronic distribution plots were generated using Multiwfn package. ${ }^{[37]}$ All the optimized structures and orbital plots were gerenated by using Chemcraft. ${ }^{[38]}$

Acknowledgements

This work was supported by Council of Scientific \& Industrial Research (CSIR) (Scheme No. 01(3055)/21/EMR-II), New Delhi, India. A. A thanks Council of Scientific \& Industrial Research (CSIR) and S. S. thanks INSPIRE for research fellowship. M. Z. thank IIT Madras for research fellowship. IIT Madras is gratefully acknowledged for computational facilities.

Keywords: borate • facial • isomerism • meridional • ruthenium

[1] a) S. Saha, F. Assanar, S. Ghosh, Eur. J. Inorg. Chem. 2022, e202200587; b) K. Saha, D. K. Roy, R. D. Dewhurst, S. Ghosh, H. Braunschweig, Acc. Chem. Res. 2021, 54, 1260-1273; c) U. Kaur, K. Saha, S. Gayen, S. Ghosh, Coord. Chem. Rev. 2021, 446, 214106214130 ; c) I. Kuzu, I. Krummenacher, J. Meyer, F. Armbruster, F. Breher, Dalton Trans. 2008, 5836-5865; d) P. Braunstein, J. Organomet. Chem. 2004, 689, 3953-3967; e) R. H. Crabtree, New J. Chem. 2001, 35, $18-$ 23.
[2] A. Cassen, Y. Gloaguen, L. Vendier, C. Duhayon, A. P. Bahamonde, C. Raynaud, E. Clot, G. Alcaraz, S. Sabo-Etienne, Angew.Chem. Int. Ed. 2014, 53, 7569-757; Angew. Chem. 2014, 126, 7699 -7703.
[3] a) M. Paneque, S. Sirol, M. Trujillo, E. GutieÂrrez-Puebla, M. A. Monge, E. Carmona, Angew.Chem. Int. Ed. 2000, 39, 218-22; Angew. Chem., 2000, 112, 224-227; b) D. K. Roy, B. Mondal, R. S. Anju, S. Ghosh, Chem. Eur. J. 2015, 21, 3640-3648; c) R. S. Anju, D. K. Roy, K. Geetharani, B. Mondal, B. Varghese, S. Ghosh, Dalton Trans. 2013, 42, 12828-12831; d) R. Borthakur, K. Saha, S. Kar, S. Ghosh, Coord. Chem. Rev. 2019, 399, 213021-213037; e) K. Saha, U. Kaur, S. Kar, B. Mondal, B. Joseph, P. K. S. Antharjanam, S. Ghosh, Inorg. Chem. 2019, 58, 2346-2353.
[4] R. Ramalakshmi, K. Saha, D. K. Roy, B. Varghese, A. K. Phukan, S. Ghosh, Chem. Eur. J. 2015, 21, 17191-17195.
[5] K. Saha, R. Ramalakshmi, S. Gomosta, K. Pathak, V. Dorcet, T. Roisnel, J. Halet, S. Ghosh, Chem. Eur. J. 2017, 23, 9812-9820.
[6] A. F. Monerris, K. Magra, M. Darari, C. Cebrián, M. Beley, E. Domenichini, S. Haacke, M. Pastore, X. Assfeld, P. C. Gros, A. Monari, Inorg. Chem. 2018, 57, 10431-10441.
[7] a) M. A. Esteruelas, C. García-Yebra, J. Martín, E. Oñate, Inorg.Chem. 2017, 56, 676-683; b) S. Arroliga-Rocha, D. Escudero, Inorg. Chem.2018, 57, 12106-12112; c) A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau, M. E. Thompson, J. Am. Chem. Soc. 2003, 125, 7377-7387.
[8] C. Gunanathan, D. Milstein, Acc. Chem. Res. 2011, 44,588-602.
[9] a) G. van Koten, Top. Organomet. Chem., 2013, 40,1-20; b) D. MoralesMorales, C. Jensen, The Chemistry of Pincer Compounds, Elsevier, Amsterdam, 2007.
[10] M. Kranenburg, Y.E.M. van der Burgt, P.C.J. Kamer, P.W.N.M. van Leeuwen, K.Goubitz, J. Fraanje, Organometallics 1995, 14, 3081-3089.
[11] R. Venkateswaran, J. T. Mague, M. S. Balakrishna, Inorg. Chem. 2007, 46, 809-817.
$[12]$ a) R. Dallanegra, A. B. Chaplin, A. S. Weller, Organometallics, 2012, 31, 2720-2728; b) M. Nieuwenhuyzen, S. Rainey, N. C. Fletcher, J. Chem. Soc., Dalton Trans. 2001, 2641-2648.
$[13]$ a) L. Salassa, C. Garino, G. Salassa, R. Gobetto, C. Nervi, J. Am. Chem. Soc. 2008, 130, 9590-9597; b) L. Salassa, E. Borfecchia, T. Ruiu, C. Garino, D. Gianolio, R. Gobetto, P. J. Sadler, M. Cammarata, M. Wulff, C. Lamberti, Inorg. Chem. 2010, 49, 11240-11248; c) A. Poater, F. Ragone, A. Correa, A. Szadkowska, M. Barbasiewicz, K. Grela, L. Cavallo, Chem. Eur. J. 2010, 16, 14354 - 1436.
[14] N. C. Fletcher; M. Nieuwenhuyzen; R. Prabaharan; A.Wilson, Chem. Commun. 2002, 1188.
[15] Y Luo.; P. G. Potvin,; Y. Tse; A. B. P Lever, Inorg. Chem. 1996, 35, 5445.
[16] a) M. Zafar, R. Ramalakshmi, A. Ahmad, P. K. S. Antharjanam, S. Bontemps, S. Sabo-Etienne, S. Ghosh, Inorg. Chem. 2021, 60, 11831194; b) M. Zafar, R. Ramalakshmi, K. Pathak, A. Ahmad, T.Roisnel, S. Ghosh, Chem. Eur. J. 2019, 25, 13537-13546.
[17] M. Zafar, A. Ahmad, S. Saha, R. Ramalakshmi, T. Roisnel, S. Ghosh, Chem.Sci. 2022, 13, 8567-8575.
[18] Note that the characterization of cis-4 was solely based on its spectroscopic data. Thus, in an attempt to get the structural details of cis-4, we have carried out X-ray diffraction studies with a very poor crystal. Several attempts to get a good quality crystal for cis-4 were failed.
[19] P. Appelt, F. D. Fagundes, G. Facchin, M. G. Kramer, D. F. Back, M. A. A. Cunha, B. Sandrino, K. Wohnrath, M. P. de Araujo, Inorg. Chim.Acta 2015, 436, 152-158.
[20] A. Sousa-Pedrares, M. Luz Durán, J. Romero, J.A. García-Vázquez, J.C. Monteagudo, A. Sousa, J.R. Dilworth, Inorg. Chim. Acta. 2006, 359, 863876.
[21] a) Y. Gloaguen, G. Alcaraz, A-F. Péharman, E. Clot, L. Vendier, S. Sabo-Etienne, Angew. Chem. Int. Ed. 2009, 48, 2964-2968; Angew. Chem. 2009, 121, 3008-3012; b) G. Alcaraz, L. Vendier, E. Clot, S. Sabo-Etienne, Angew. Chem. Int. Ed. 2010, 49, 918-920; Angew.Chem. 2010, 122, 930-932.
[22] K. D. Spielvogel, J. A. Luna, S. M. Loria, L. P. Weisburn, N. C. Stumme, M. R. Ringenberg, G. Durgaprasad, J. M. Keith, S. K. Shaw, S. R. Daly, Inorg. Chem., 2020, 59, 10845-10853.
[23] A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100; b) J. P. Perdew, Phys. Rev. B. 1986, 33, 8822-8824; c) A. Schä fer; C. Huber; R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829-5235.
[24] W. Drescher, D. Schmitt-Monreal, C. R. Jacob, C. Kleeberg, Organometallics 2020, 39, 538-543.
[25] M. A. Hoque, A. D. Chowdhury, S. Maji, J. Benet-Buchholz, M. Z. Ertem, C. Gimbert-Surinach, G. K. Lahiri, A. Llobet, Inorg.Chem. 2021, 60, 5791-5803.
[26] P.S. Hallman, T.A.Stephenson, G. Wilkinson, Inorg. Synth., R.W. Parry (Ed.)., 1970, pp. 237-240.
[27] G.E. Ryschkewitsch, K.C. Nainan, Inorg. Synth. 1974, 15, 113-114.
[28] (a) G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8. (b) G. M. Sheldrick, SHELXS97 and SHELXL97, University of Gottingen: Germany, 1997.
[29] G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
[30] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
[31] Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheese- man, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J.

Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lip- parini, F. Egidi, J. Goings, B. Peng, A Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Mar- tin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Walling- ford CT, 2016.
[32] Basis Set Exchange Library. https://www.basissetexchange.org/
[33] (a) F. J. London, J. Phys. Radium 1937, 8, 397-409, (b) R. Ditchfield, Mol. Phys. 1974, 27, 789-807, (c) K. Wolinski, J. F.Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251-8260.
[34] T. P. Onak, H. L. Landesman, R. E. Williams, I. Shapiro, J. Phys.Chem. 1959, 63, 1533-1535.
[35] NBO Program 6.0, E. D. Glendening, J. K. A. E. Badenhoop, Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013.
[36] K. Wiberg, Tetrahedron 1968, 24, 1083-1096.
[37] T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-592.
[38] Chemcraft - graphical software for visualization of quantum chemistry computations https://www.chemcraftprog.com.

Entry for the Table of Contents

The cis-mer- and cis-fac-k²- N, S-chelated ruthenium borate complexes have been synthesised from the thermolysis of trans-mer isomers. The hemilability of the flexible borate ligand is one of the key factors for the formation of these isomers.

