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MEAN SQUARE VALUE OF L-FUNCTIONS AT s = 1 FOR NON-PRIMITIVE CHARACTERS, DEDEKIND SUMS AND BOUNDS ON RELATIVE CLASS NUMBERS
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Let d 0 be a given square-free integer. We give an explicit formula M d 0 (p) = A(d 0 )(1+ B d 0 (p)/p) for the quadratic mean value at s = 1 of the Dirichlet L-functions associated with the non-primitive odd Dirichlet characters modulo d 0 p induced by the odd Dirichlet characters modulo an odd prime p. Here d 0 → A(d 0 ) is an explicit multiplicative arithmetic function and B d 0 (f ) is a twisted sum over the divisors d of d 0 of Dedekind sums s(h, df ). To prove that f → B d 0 (f ) is d 0 -periodic, we find a new and closed formula for the Dedekind sums f → s(a + bf, c + df ), for fixed integers a, b, c and d. We deduce explicit upper bounds for relative class numbers of cyclotomic number fields.

Introduction

Let f > 2 be an integer. Let X f be the multiplicative group of the φ(f ) Dirichlet characters modulo f . Let X - f = {χ ∈ X f ; χ(-1) = -1} be the set of the φ(f )/2 odd Dirichlet characters modulo f . Let L(s, χ) be the Dirichlet L-functions associated with χ ∈ X f . We have (see [6, Proposition 1]):

L(1, χ) = π 2f f -1 a=1 χ(a) cot πa f (χ ∈ X - f ). (1) 
According to [START_REF] Qi | A class of mean square formulas for L-functions[END_REF] and [START_REF] Louboutin | Quelques formules exactes pour des moyennes de fonctions L de Dirichlet[END_REF], the mean square value M (f ) of L(1, χ) as χ ranges in X - f is defined by and given by

M (f ) := 1 #X - f χ∈X - f |L(1, χ)| 2 = π 2 6 φ(f ) f      q prime q|f 1 + 1 q - 3 f     
.
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For f = p 3 an odd prime, we recover Walum's formula in [START_REF] Walum | An exact formula for an average of L-series[END_REF]:

M (p) := 2 p -1 χ∈X - p |L(1, χ)| 2 = π 2 6 1 - 1 p 1 - 2 p (p 3).
Let h - p denote the relative class number of the cyclotomic number field of prime conductor p 3 (see [START_REF] Washington | Introduction to Cyclotomic Fields, Second Edition[END_REF] for the definition). Using the arithmetic-geometric mean inequality, we obtain (see also [START_REF] Louboutin | Quelques formules exactes pour des moyennes de fonctions L de Dirichlet[END_REF], [START_REF] Metsänkylä | Class numbers and µ-invariants of cyclotomic fields[END_REF]):

h - p = 2p p 4π 2 p-1 4 χ∈X - p L(1, χ) 2p pM (p) 4π 2 p-1 4 2p p 24 p-1 4 
.

(

) 2 
Now, let d 0 > 1 be a given square-free integer. Assume that p d 0 . For χ ∈ X p , let χ be the non-primitive character modulo d 0 p induced by χ. Then,

L(1, χ) =      q prime q|d 0 1 1 -χ(q) q      L(1, χ ).
Therefore, we obtain

h - p = 2p Π - p (d 0 ) p 4π 2 p-1 4 χ∈X - p L(1, χ ) 2p Π - p (d 0 ) pM d0 (p) 4π 2 p-1 4 , (3) 
where

Π - p (d 0 ) := q prime q|d 0 χ∈X - p 1 - χ(q) q and M d0 (p) := 2 p -1 χ∈X - p |L(1, χ )| 2 . (4) 
In [START_REF] Louboutin | Quelques formules exactes pour des moyennes de fonctions L de Dirichlet[END_REF] and [START_REF] Louboutin | Mean values of L-functions and relative class numbers of cyclotomic fields[END_REF], we explained how using (3) one could get explicit bounds better than (2) of the type h - p 2p(p/C) (p-1)/4 for any given constant C < 4π 2 and p large enough. In the present paper we greatly simplify the approach developed in these previous articles by giving a neat formula for these M d0 (p), see Theorems 3.1 and 4.3. For explicit formulas for d 0 ∈ {2, 6, 30, 210}, see ( 9), [START_REF] Masley | Cyclotomic fields with unique factorization[END_REF], ( 22) and (23). As a consequence of (3) and this formula, we readily obtain improvements on (2) in Theorem 5.2, by using the explicit lower bounds on Π - p (d 0 ) given in Lemma 5.1. We invite the reader to start his reading with a quick look at our Theorems 3.1, 4.3 and 5.2. 

Dedekind sums

The

s(c, d) + s(d, c) = c 2 + d 2 -3cd + 1 12cd , (c 1, d 1, gcd(c, d) = 1) (5) 
(see [START_REF] Apostol | Modular functions and Dirichlet series in number theory[END_REF], [START_REF] Rademacher | Dedekind sums[END_REF] or [START_REF] Louboutin | A twisted quadratic moment for Dirichlet L-functions[END_REF]). In particular,

s(1, d) = d 2 -3d + 2 12d (d 1). (6) 
3. A mean square value formula for non-primitive L-functions Theorem 3.1. Let d 0 > 1 be a square-free integer. Set

φ k (d 0 ) := q prime q|d 0 q k -1 .
Whenever gcd(f, d 0 ) = 1, let H 0 = H d0 (f ) be the kernel of order φ(d 0 ) of the surjective canonical morphism (Z/d 0 f Z) * -→ (Z/f Z) * and set

S d0 (f ) := µ(d 0 ) 1 =h∈H0 d|d0 dµ(d)s(h, df ) (Dedekind sums). (7) 
Let p 3 be a prime that does not divide d 0 . For χ ∈ X - p , let χ be the nonprimitive Dirichlet character modulo d 0 p induced by χ. Then,

M d0 (p) := 2 p -1 χ∈X - p |L(1, χ )| 2 = π 2 6 φ 2 (d 0 ) d 2 0 1 + 12S d0 (p) -3φ 1 (d 0 ) φ 2 (d 0 )p .
Proof. The surjectivity of the canonical morphism (Z/d 0 f Z) * -→ (Z/f Z) * readily follows from Dirichlet theorem that asserts that there are infinitely many prime integers in the arithmetic progressions a

+ f Z for gcd(a, f ) = 1. The canonical morphism (Z/d 0 f Z) * -→ (Z/d 0 Z) * is also surjective. Since gcd(d 0 , f ) = 1, its restriction to H 0 is injective, hence bijective. It follows that whenever d divides d 0 we have S := h∈H0 s(h, d) = h∈(Z/d0Z) * s(h, d) = 0. (8) 
Indeed, whenever d divides d 0 , we have

S := h∈(Z/d0Z) * s(h, d) = d0-1 h=1 gcd(h,d 0 )=1 s(h, d) = d0-1 h=1 gcd(h,d 0 )=1 s(d 0 -h, d) = -S. Now, for gcd(a, d 0 p) = gcd(b, d 0 p) = 1, we have the orthogonality relations ε(a, b) := 2 p -1 χ∈X - p χ (a)χ (b) =      +1 if b ≡ +a (mod p), -1 if b ≡ -a (mod p), 0
otherwise, and using (1) we have

M d0 (p) = π 2 4d 2 0 p 2 d0p-1 a=1 gcd(a,d 0 p)=1 d0p-1 b=1 gcd(b,d 0 p)=1 ε(a, b) cot πa d 0 p cot πb d 0 p .
The imparity of the cotangent function and the change of variables b → ah give 

M d0 (p) = π 2 2d 2 0 p 2 d0p-1 a=1 gcd(a,d 0 p)=1 h∈H0 cot πa d 0 p cot πah d 0 p = 2π 2 d 0 p h∈H0 s(h, d 0 p),
M d0 (p) = 2π 2 d 0 p h∈H0 µ(d 0 p) d 0 p d|d0p dµ(d)s(h, d) = 2π 2 d 0 p µ(d 0 p) d 0 p h∈H0   d|d0 dµ(d)s(h, d) -p d|d0 dµ(d)s(h, dp)   = 2π 2 d 0 p µ(d 0 ) d 0 h∈H0 d|d0 dµ(d)s(h, dp), (by (8)) = 2π 2 d 0 p µ(d 0 ) d 0   µ(d 0 )S d0 (p) + d|d0 dµ(d)s(1, dp)   .
Finally, by [START_REF] Louboutin | Quelques formules exactes pour des moyennes de fonctions L de Dirichlet[END_REF], for d 0 > 1 square-free we have

d|d0 dµ(d)s(1, df ) = d|d0 µ(d) f 2 d 2 -3df + 2 12f = µ(d 0 ) f φ 2 (d 0 ) -3φ 1 (d 0 ) 12 .
The desired formula follows.

Example 1. Take d 0 = 2 and f 3 odd. Then H 0 = {1} and S 2 (f ) = 0. Therefore, in accordance with [6, Théorème 3], for p 3 we have

M 2 (p) = π 2 8 1 - 1 p . ( 9 
)
Example 2. Take d 0 = 2 • 3 = 6 and f 5 coprime with 6. Then H 0 = {1, h 0 }, where h 0 = 1 + 4f if f ≡ 1 (mod 6) and h 0 = 1 + 2f if f ≡ 5 (mod 6), and

M 6 (p) = π 2 9 1 + 2S 6 (p) -1 4p (10) 
Moreover, using ( 5), ( 6) and a tad tedious but easy computation, we obtain:

S 6 (f ) = 6s(h 0 , 6f ) -3s(h 0 , 3f ) -2s(h 0 , 2f ) + s(h 0 , f ) = 2f 2 -13f +1 6f -f 2 -5f +2 12f -2f 2 -3f +1 6f + f 2 -3f +2 12f = -3 2 if f ≡ 1 (mod 6), 2f 2 -5f +1 6f -f 2 -13f +2 12f -2f 2 -3f +1 6f + f 2 -3f +2 12f = 1 2 if f ≡ 5 (mod 6).
For example, for f ≡ 1 (mod 6) we have

s(1 + 4f, 6f ) = - 10f 2 + 5f -1 36f (4f + 1) -s(6f, 4f + 1) = - 10f 2 + 5f -1 36f (4f + 1) -s(2f -1, 4f + 1) = - 2f 2 + 7f + 1 36f (2f -1) + s(4f + 1, 2f -1) = - 2f 2 + 7f + 1 36f (2f -1) + s(3, 2f -1) = 2f 2 -11f + 1 36f -s(2f -1, 3) = 2f 2 -11f + 1 36f -s(1, 3) = 2f 2 -11f + 1 36f - 1 18 = 2f 2 -13f + 1 36f .
Therefore, S 6 (f ) depends only on f modulo 6, and for p 5 we have

M 6 (p) = π 2 9 × 1 -1 p if p ≡ 1 (mod 6) 1 if p ≡ 5 (mod 6) and M 6 (p) π 2 9 , (11) 
in accordance with [6, Théorème 4 (revised in the Addendum)].

4. On the Dedekind sums f → s(a + bf, c + df )

The aim of this section is to prove in Theorem 4.3 that f → S d0 (f ) is d 0 -periodic, which makes our mean square formula in Theorem 3.1 even more interesting and useful. Indeed, we will use it to obtain explicit improvements on (2), see Theorem 5.2. Let d 0 > 1 be a given square-free integer. For f 1 we can rewrite [START_REF] Louboutin | Mean values of L-functions and relative class numbers of cyclotomic fields[END_REF] as

S d0 (f ) := µ(d 0 ) d0-1 k=1 gcd(1+kf,d 0 f )=1 S k,d0 (f ), (12) 
where

S k,d0 (f ) := d|d0 dµ(d)s(1 + kf, df ). (13) 
We prove in Theorem 4. Hence c → s(c, d) is still d-periodic and (5) gives the following generalized reciprocity law that holds true whatever the signs of c, d ∈ Z \ {0}:

s(c, d) = c 2 + d 2 + 1 12cd - sign(cd) 4 -s(d, c). (14) 
Let us now set some notations. Let P 0 (X) = a 0 + b 0 X and

P 1 (X) = a 1 + b 1 X in Z[X] be given, with b 0 > b 1 1 and D 0 = det a 1 a 0 b 1 b 0 = 0. Let b 0 > b 1 > • • • > b l > b l+1
= 0 denote the sequence of remainders in the Euclidean algorithm for calculating gcd(b 0 , b 1 ). For 0 i l -1, define P i (X) = a i + b i X ∈ Z[X] by P i+2 (X) = P i (X) -q i P i+1 (X), where q i = b i /b i+1 1. Clearly, gcd(a i+1 , a i ), gcd(b i+1 , b i ) and gcd(P i+1 (f ), P i (f )) do not depend on the index i ∈ {0, . . . , l}, where f ∈ Z. In particular,

b l = gcd(0, b l ) = gcd(b l+1 , b l ) = gcd(b 1 , b 0 ). ( 15 
)
Moreover,

D i = det a i+1 a i b i+1 b i = (-1) i D 0 = 0. Set r b0,b1 := l-1 i=0 (-1) i b i b i+1 + b i+1 b i ,
(which is related to the Dedekind sum s(b 1 , b 0 ) and l-1 i=0

(-1) i b i b i+1
, where

b i = b i / gcd(b 1 , b 0 ), by [2, Exercise 20, page 73]), T (X) = T a0,b0,a1,b1 (X) := P l (X) = a l + b l X = a l + gcd(b 1 , b 0 )X (16)
and

R(X) = R a0,b0,a1,b1 (X) := r b0,b1 + D0 b0 + b0 D0 P 0 (X) + gcd(b 1 , b 0 ) D 0 T (X). ( 17 
)
We are now in a position to state our new result on Dedekind sums:

Theorem 4.1. Let P 0 (X) = a 0 + b 0 X and P 1 (X) = a 1 + b 1 X in Z[X] be given, with b 0 > b 1 1 and D 0 = det a 1 a 0 b 1 b 0 = 0.
For f 1and gcd(P 1 (f ), P 0 (f )) = 1, we have the Dedekind sums formula

s(P 1 (f ), P 0 (f )) = 1 12 R(f ) - 1 -(-1) l 8 - sign(D 0 ) 4 -s(T (f ), D 0 ), ( 18 
)
where D 0 := D 0 / gcd(b 0 , b 1 ) is a rational integer not equal to 0 and the arithmetic function

f → s(T (f ), D 0 ) is D 0 -periodic.
For example, take P 0 (X) = 6X and P 1 (X) = 1 + 4X. We have

D 0 = 6, l = 2, P 2 (X) = 2X -1 and P 3 (X) = 3, r 6,4 = -1/3, R(X) = 2X 2 -2X+1

3X

. Therefore, for f ≡ 1 (mod 6) we have s(2f -1, 3) = s(1, 3) = 1/18 and we obtain

s(1 + 4f, 6f ) = 2f 2 -11f + 1 36f -s(2f -1, 3) = 2f 2 -13f + 1 36f ,
as in Example 2 of the previous Section.

Proof. We will use some technical results proved in the next Lemma 4.2.

Set Q(X, Y ) = X 2 +Y 2 +1
XY , and Q i (X) = Q(P i+1 (X), P i (X)). We have the easy to check identity

Q i (X) = b i b i+1 + b i+1 b i - Di bi+1 + bi+1 Di P i+1 (X) + Di bi + bi Di P i (X) (0 i l -1), Lemma 4.2. Let P 0 (X) = a 0 + b 0 X and P 1 (X) = a 1 + b 1 X in Z[X] be given, with b 0 > b 1 1, a 0 , a 1 0 and D 0 = det a 1 a 0 b 1 b 0 = 0.
Let f 1 be such that gcd(P 1 (f ), P 0 (f )) = 1. Then P i (f ) = 0 for 0 i l + 1 and ε(f ) defined in (20) does not depend on f and is given by

ε(f ) = 1 -(-1) l 2 + sign(D 0 ).
Proof. Recall that q i 1 for 0 i l. We claim that a i 0 for 0 i i 0 and a i = 0 with sign(a i ) = (-1) i-i0 for i 0 < i l + 1, where

1 i 0 := max{i; 0 i l + 1 and a i 0}.
Indeed, if i 0 l, then a i0 0 and a i0+1 -1. Hence if i 0 l -1 then a i0+2 = a i0 -q i0 a i0+1 1, i.e. a i0+1 -1 and a i0+2 1. Hence if i 0 l -2 then a i0+3 = a i0+1 -q i0+1 a i0+2 -1, i.e. a i0+2 1 and a i0+3 -1. We then proceed inductively. Consequently, (i) if a i+1 -1 for some index i l then a i 0 for the previous index and (ii) the indices in A -:= {i; 0 i l + 1 and a i -1} have all the same parity. Now assume that P i+1 (f ) = 0 for some f 1 and some index i l. Since P l+1 (X) = a l+1 = 0, we have i l-1 and b i > b i+1 b l > b l+1 = 0. Hence, b i 2 and b i+1 1. Therefore, 0 = P i+1 (f ) = a i+1 + b i+1 f a i+1 + 1 gives a i+1 -1. Hence, a i 0, by the assertion above, and P i (f ) = a i + b i f a i + 2 2. However, P i+1 (f ) = 0 and gcd(P i+1 (f ), P i (f )) = gcd(P 1 (f ), P 0 (f )) = 1 give P i (f ) = ±1 and we obtain a contradiction.

Hence, P i (f ) = 0 for f 1 and 0 i l + 1 and the ε i (f ) are well defined. We claim that ε i (f ) = +1 for 0 i i 0 (f ) and ε i (f ) = (-1) i-i0(f ) for i 0 (f ) < i l + 1, where i 0 (f ) := max{i; 0 i l + 1 and P i (f ) 1}.

Indeed, if i 0 (f ) l, then P i0 (f ) 1 and P i0+1 (f ) -1. Hence if i 0 l -1 then P i0+2 (f ) = P i0 (f ) -q i0 P i0+1 (f ) 1, i.e. P i0+1 (f ) -1 and P i0+2 (f ) 1. Hence if i 0 (f ) l -2 then P i0+3 (f ) = P i0+1 (f ) -q i0+1 P i0+2 (f ) -1, i.e. P i0+2 (f ) 1 and P i0+3 (f ) -1. We then proceed inductively.

Hence,

ε i+1 (f )ε i (f ) = +1 for 0 i i 0 (f ) -1 and ε i+1 (f )ε i (f ) = -1 for i 0 (f ) i l. By (20), it follows that ε(f ) := 1-(-1) l 2 -(-1) i0(f ) . Finally, I(f ) := {i; 0 i l + 1 and P i (f ) -1} is included in A -.
Since the i's in A -have all the same parity, the parity of i 0 (f ) = min I(f ) -1 does not depend on f 1. Since b i 1 for 0 i l, for f > large enough we have

ε i (f ) = +1 for 0 i l, i 0 (f ) = l+ 1+sign(a l+1 ) 2 and ε(f ) = 1-(-1) l 2 +sign(D 0 ).
Proof. By [13, Lemma 6 page 72], we have Π p (q) :=

χ∈Xp (1 -χ(q)T ) = (1 -T f ) p-1 f and Π + p (q) := χ∈X + p (1 -χ(q)T ) = (1 -T f+ ) p-1
2f + , where f + is the order of q in the multiplicative group G + := (Z/pZ) * /{±1} of order (p-1)/2 and X + p = {χ ∈ X p ; χ(-1) = +1} is the group of characters of G + . Now, clearly, f + = f if f is odd and f + = f /2 is f is even. Since Π - p (q) = Π p (q)/Π + p (q), the desired first result follows. Now, we have q f p + 1. Hence,

Π - p (q) 1 - 1 p + 1 p-1 2f 1 - 1 p + 1 (p-1) log q 2 log(p+1) = exp log q 2 F (p + 1)
where for x > 1 we set F (x) :=

(x-2) log(1-1 x ) log x
. Therefore,

Π - p (d 0 ) exp log d 0 2 F (p + 1) .
The desired lower bounds easily follow. 

  Dedekind sums s(c, d) which depend only on c mod d are defined by s(c, d) Z, d 1, gcd(c, d) = 1), with the convention s(c, 1) = 0 for c ∈ Z. Since c → s(c, d) is d-periodic, we may consider s(h, d) for h ∈ (Z/dZ) * . Recall the reciprocity law for Dedekind sums

  , d/δ) = µ(d) d δ|d δµ(δ)s(c, δ). Since δ | d 0 p if and only if either δ = d or δ = dp where d | d 0 , we have

  3 that for f large enough f → S k,d0 (f ) is d 0 -periodic.Therefore, S d0 (f ) depends only on f modulo d 0 for f explicitly large enough. To begin with, we extend the definition of Dedekind sums by setting s(c, d) = sign(cd)s(|c|, |d|) = sign(d)s(c, |d|) (c, d ∈ Z \ {0}).

Theorem 5 . 2 . 4 for p 11 . 2 .

 524112 By taking successively d 0 = 2, 6, 30 and 210 in (3) we obtain h - Proof. For d 0 = 2 we use (3), (9) and Lemma 5.1 to get the first bound. For d 0 = 6 we use (3), (11) and Lemma 5.1 to get the second. Take d 0 = 30 and p 7. Then M 30 (p30 (f ) depends only on f modulo 30 for f 1 and gcd(30, f ) = 1, and easy numerical computations that, with : Using (3), (22) and Lemma 5.1, the desired third bound follows. Finally, take d 0 = 210 and p 11. 210 (f ) depends only on f modulo 30 for f 1 and gcd(210, f ) = 1, and easy numerical computations that S210(f )-12 2304 649 576 . Using (3), (23) and Lemma 5.1, the desired fourth bound follows.

and

Noticing that D i = (-1) i D 0 , we obtain

Now, let f 1 be such that gcd(P 1 (f ), P 0 (f )) = 1.

Then gcd(P i+1 (f ), P i (f )) = 1, P i (f ) = 0 for 0 i l, by Lemma 4.2, and P l+1 (f ) = a l+1 = 0. Therefore, we can define ε i (f ) = sign(P i (f )) ∈ {±1} for 0 i l + 1. Using ( 14), P i (f ) = P i+2 (f ) + q i P i+1 (f ) and the d-periodicity of c → s(c, d), we obtain s(P i (f ), P i+1 (f )) = s(P i+2 (f ), P i+1 (f )) and

for 0 i l -1 and

Taking the alternating sums of these l + 1 equalities and using (19) we obtain

where

By Lemma 4.2, we have

, by [START_REF] Washington | Introduction to Cyclotomic Fields, Second Edition[END_REF]. Therefore, (-1) l s(P l (f ),

and the desired result follows.

Let us now prove what we used for proving Theorem 4.1, namely that the P i (f )'s are never equal to 0, which enabled us to deal with their signs, their associated Dedekind sums and the reciprocity law for Dedekind sums: 

Consequently, the rational numbers S d0 (f ) defined in [START_REF] Louboutin | Mean values of L-functions and relative class numbers of cyclotomic fields[END_REF] depend only on f 1 modulo d 0 .

Proof. 16), ( 17) and (18), we do have the first assertion (21). For the second assertion, we use (21) and notice that d|d0 µ(d) = 0 for d 0 > 1 and that the function

Hence, for d 0 square-free, G(d 0 , k) = 0 if and only if d 0 k.

It follows that for d 0 > 1 square-free and k not divisible by d 0 there exists r k,d0 ∈ Q such that for f 1 and gcd(1 + kf, df ) = 1, we have

Hence, the rational numbers S k,d0 (f ) defined in [START_REF] Serre | A course in arithmetic[END_REF] depends only on f modulo d 0 and the last assertion follows from [START_REF] Rademacher | Dedekind sums[END_REF].

We refer the reader to [START_REF] Louboutin | Mean square values of L-functions over subgroups for non primitive characters, Dedekind sums and bounds on relative class numbers[END_REF]Theorem 4.4 and Proposition 4.6] for a different proof of the last assertion of Theorem 4.3.

Explicit upper bounds on relative class numbers

Lemma 5.1. Let q 2 be a given prime integer. Let p 3 be a prime integer, with p = q. Let f be the order of q in the multiplicative group (Z/pZ) * . Then

Moreover, we have p/4 (see [START_REF] Masley | Cyclotomic fields with unique factorization[END_REF]).