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Climate active gases, notably carbon dioxide (CO2), 
methane (CH4) and nitrous oxide (N2O), display 
fundamental absorption bands in the mid-infrared (mid-
IR). The detection and monitoring of those gases could be 
enabled by the development of mid-IR optical sources. 
Broadband mid-IR on-chip light emission from rare earth-
doped chalcogenides photonic integrated circuits could 
provide a compact, efficient and cost effective gas sensing 
solution. Mid-IR photoluminescence of dysprosium-
doped selenide ridge waveguides obtained under optical 
pumping at telecommunication wavelength (~1.3 µm) is 
investigated for Dy3+ ion concentrations in the 2500-
10000 ppmw range. CO2 detection around 4.3 µm is then 
demonstrated based on absorption in this broadband 
mid-IR emission. © 2022 Optica Publishing Group

http://dx.doi.org/10.1364/OL.99.099999

Optical gas sensing systems are receiving increasing attention from 
both academic and industrial actors because these devices would 
benefit to widespread application fields ranging from industrial 
process control to air quality monitoring through greenhouse 
farming. Economic and environmental concerns require dedicated 
CH4 and CO2 sensors to be deployed for real-time monitoring of 
costly leaks of natural gas pipelines or aircraft emissions 
monitoring. To enable compact sensing systems, integrated 
photonics is a promising solution [1]. Leveraging from the 
availability of high-quality wafer scale silicon thin films, mature 
patterning capabilities thanks to fabrication advances of the 
complementary metal-oxide-semiconductor technology and its 
potential to monolithically integrate electronics and photonics, 
silicon platform has emerged as the powerful solution to develop 
integrated gas sensors in the near-infrared (near-IR) notably for on-
chip CH4 detection around a wavelength of 1.65 µm [2-4]. However, 
to improve sensor sensitivity and selectivity, CO2 or CH4 mid-
infrared (mid-IR) fundamental absorptions use, respectively 
around 4.3 and 3.3 µm, is preferable as their cross-section is orders 

of magnitude larger than near-IR overtone vibrations. Si waveguide 
cross-section tailoring and Si suspended membranes fabrication 
were thus proposed to provide efficient mid-IR gas sensing [5, 6]. 

Amorphous chalcogenides (ChG) are commonly selected for a 
myriad of photonic devices and applications [7]. One of their most 
interesting optical property, along with their high optical 
nonlinearity, relies on their wide mid-IR transparency which makes 
them an alternative and ideal solution for mid-IR sensing of climate 
active gases [8-12]. However, to implement compact sensing 
devices, replacement of fibers by integrated waveguides and 
external (off-chip) lasers by mid-IR on-chip light sources is 
required. To develop these on-chip mid-IR sources, in particular in 
the 3-5 µm wavelength range, where fundamental absorption 
bands of several climate active gases are found, different routes 
have emerged including supercontinuum generation [13] or 
interband and quantum cascade lasers [14-15]. Using different rare 
earth ions, notably Tm3+, Ho3+, Nd3+, Er3+, Dy3+ or Pr3+, broadband 
mid-IR emission has also been demonstrated in different materials 
ranging from oxides to fluorides [16]. Thanks to their lower phonon 
energy, amorphous ChG further favor long-wavelength radiative 
transitions from rare earth ions [17]. In particular, lasing up to ~5.4 
µm and emissions up to 8 µm were recently demonstrated in ChG 
fibers notably based on Tb3+, Ce3+, Dy3+ or Sm3+ transitions [18-20].

Development of photonic integrated circuits made of mid-IR 
emitting rare earth-doped ChG may therefore be a key enabler in 
the implementation of climate active gases monitoring devices with 
reduced size, weight, power consumption and cost [21]. 
Praseodymium-doped selenides integrated ridge waveguides have 
been demonstrated to display broadband mid-IR emission in the 2-
5.5 µm wavelength range [22, 23]. Mid-IR luminescence was also 
reported from Dy3+ ions in ChG bulk materials and fibers [18, 24-26] 
but, to our knowledge, no demonstration of mid-IR Dy3+ emission 
from integrated ChG waveguides has been published yet. 

In this Letter, fabrication of integrated ridge waveguides based 
on RF magnetron sputtered Dy3+-doped Ga5Ge20Sb10Se65 
amorphous thin films is presented. Dy3+ mid-IR luminescence in the 
2.2-3 µm and 4-4.8 µm wavelength ranges obtained from integrated 
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ridge waveguides is subsequently investigated with regards to Dy3+ 
ion doping concentrations. Finally, Dy3+ broadband mid-IR 
emission around 4.3 µm is used to demonstrate CO2 sensing 
capability of these devices for CO2 concentrations up to 0.4 %.

The melt and quenching technique was used to prepare two bulk 
glasses from the Ga-Ge-Sb-Se quaternary system with a targeted 
nominal glass composition of Ga5Ge20Sb10Se65. Dysprosium was 
used to dope one of the bulks with a concentration of 10000 ppmw 
(parts per million by weight). Sputtering targets of 50-mm diameter 
were obtained after polishing slices of the bulks. RF magnetron co-
sputtering was then performed, at room temperature under 5×10-3 
mbar Ar pressure, on thermally oxidized (2-µm thick SiO2) 2” silicon 
wafer using a three-cathode co-sputtering cluster exploiting two 
undoped targets and one 10000 ppmw Dy3+-doped Ga5Ge20Sb10Se65 
target.  Different Dy3+ ion doping concentrations in the 2500-10000 
ppmw range in the sputtered thin film were obtained by 
simultaneously applying different powers on the three cathodes 
(Table 1). Composition of co-sputtered thin films which was 
determined via energy-dispersive X-Ray analysis showed a good 
agreement with the glass targets (Table 1).

Table 1. Summary of RF magnetron co-sputtering conditions used 
for GaGeSbSe:Dy3+ thin films deposition

Applied power (W)
 on cathodeDy3+ estimated 

concentration 
(ppmw) #1 Dy3+ 

doped
#2 un-
doped

#3 un-
doped

Thin film 
composition 

(at%)
±1%

Thickness 
(nm)

±10 nm

2500 10 12 12 Ga5Ge19Sb6Se70 1145
5000 15 10 8 Ga6Ge20Sb6Se68 1150
7500 15 8 0 Ga6Ge21Sb6Se67 1110

10000 15 0 0 Ga7Ge21Sb5Se67 1530

To select the optimal excitation wavelength to be used during 
photoluminescence (PL) experiments, the absorption spectrum of a 
Dy3+-doped Ga5Ge20Sb10Se65 (10000 ppmw) glass target was 
recorded using UV/Visible/near-IR spectrophotometer (Fig. 1).

Fig. 1. Absorption spectrum of the Ga5Ge20Sb10Se65:Dy3+ glass target 
(10000 ppmw ion doping concentration). Inset: simplified low energy 
part of the energy level diagram of Dy3+ ions. 

This absorption spectrum displays the characteristic absorption 
bands of the 4f electron configuration of Dy3+ ions [27]. In particular, 
strong absorption is observed around 1.3 µm (represented as a 
green arrow in Fig. 1) corresponding to the transition from the 
ground state (6H15/2) to the thermally coupled 6H9/2 and 6F11/2 energy 
levels. This transition is particularly convenient as it corresponds to 

a wavelength at which many lasers, notably integrated on Si [28], 
have been developed for datacom applications. Transitions from 
the ground state 6H15/2 to the thermally coupled 6H7/2+6F9/2, 6H11/2 
and 6H13/2 manifolds can be seen around 1.1, 1.7 and 2.85 µm 
(respectively represented in blue, yellow and red arrows in Fig. 1). 

Ridge waveguides of different widths (w) were subsequently 
fabricated, following the procedure described in [22], using 
standard i-line photolithographic process and dry etching (Fig. 2a). 

Fig. 2. a) Scanning electron microscope picture of a Dy3+-doped 
GaGeSbSe ridge waveguide. b) Optical set-up enabling CO2 
concentration-dependent PL measurements, 

Photoluminescence (PL) experiments were performed on 5-mm 
long samples using a tunable pump laser emitting an optical power 
of 20 mW around 1.3 µm. All presented PL spectra were recorded 
at room temperature as neither spectral nor intensity significant 
evolution was observed in the studied temperature range (10-
60°C). Light generated on-chip was collected by an aspheric lens 
and detected by an InSb photodiode after passing through a 65-cm 
long tube-shaped vacuum chamber that can be pumped and/or 
filled with various gaseous dilutions of CO2 in N2 and a spectrometer 
equipped with several long-pass filters to avoid the recording of 
unwanted harmonic contributions. To improve signal to noise ratio, 
lock-in technique was used (Fig. 2b). 

Photoluminescence spectra were first recorded between 2.1 and 
3.2 µm for multiple excitation wavelengths separated by 5 nm and 
tuned around 1.3 µm. The resulting photoluminescence excitation 
(PLE) spectroscopy map is displayed in Fig. 3a).

Fig. 3. a) PL excitation spectroscopy map recorded in the 2.1-3.2 µm 
wavelength range ([Dy3+]=7500 ppmw), b) PL spectra (λexc=1320 nm) 
for 8-µm wide ridge waveguides with four Dy3+ ion concentrations.



Fig. 3a) was obtained for a 9-µm wide ridge waveguide and Dy3+ 
ion concentration of 7500 ppmw. However, this result is 
representative of PLE maps recorded for others Dy3+ doping levels 
and waveguide widths. Fig. 3a) confirms the possibility to generate 
mid-IR emission from Dy3+ ions in GaGeSbSe amorphous matrix by 
using a pumping wavelength around 1.3 µm and that excitation 
wavelengths between 1280 and 1320 nm lead to the maximum PL 
signal. From Fig. 3a), one can further observe two broad PL bands 
centered at 2.46 and 2.84 µm, corresponding, respectively, to the 
6F11/2+6H9/26H13/2 and 6H13/26H15/2 transitions. Fig. 3b) displays 
the PL spectra recorded from 8-µm wide waveguides for the 4 
samples with Dy3+ ions concentrations ranging from 2500 to 10000 
ppmw using an excitation wavelength of 1320 nm, represented by 
the white dashed line in Fig. 3a). An almost linear increase of PL 
intensity with Dy3+ concentration can be inferred from Fig. 3b). As 
ridge waveguide of different widths were patterned on each 
sample, this experiment was reproduced for several waveguides of 
widths larger than 5 µm, i.e. operating in the multimode region at 
both pump and signal wavelengths [22], and gave a similar trend of 
PL enhancement with Dy3+ doping level. It should be noted that 
investigation of larger doping concentrations was limited by the 
concentration introduced in the bulk during the synthesis.

Fig. 4 displays PL spectra recorded, with the tube-shaped 
chamber filled with ambient laboratory air, for wavelengths above 
3.8 µm. The PL observed in this spectral domain corresponds to the 
transition between the 6H11/2 and 6H13/2 manifolds. As previously 
observed in the 2.2-3.1 µm wavelength range, an increase of the PL 
intensity with Dy3+ content in GaGeSbSe waveguides is found in this 
spectral domain without any obvious saturation effect suggesting 
that higher Dy3+ concentrations might be beneficial to further 
increase mid-IR emission.

Fig. 4. Mid-IR PL spectra (λexc=1320 nm) for 8-µm wide ridge 
waveguides with four Dy3+ ion concentrations.

The same experiment was reproduced with waveguides of 
varying width. Interestingly, PL emission was observed, for all Dy3+ 
concentrations, for waveguide widths down to 1.5-2 µm that only 
support singlemode propagation above 4 µm [22]. Emission above 
5 µm, originating from the 6F11/2+6H9/26H11/2 transition [18], was 
not clearly observed during the experiments probably due to 
reduced InSb detector sensitivity in this wavelength range. It is well 
established that the absorption attributed to Se-H bonds 
vibrations is located at 4.5 μm [29] and this negatively affects 
emission broadening towards long wavelengths and PL 
signal collection around 4.5 µm. A dip in the PL spectra 

overlapping CO2 absorption around 4.3 µm [30] can be observed in 
all PL spectra resulting from the presence of CO2 at ambient 
atmospheric level concentration (~410 ppm) in the mid-IR beam 
path during the experiments. Due to the waveguide length and low 
evanescent power factor [1], below ~10 % for all waveguides 
dimensions and around 5 % for w=8 µm, evanescent sensing only 
slightly accounts for the observed absorption.  This emphasizes that 
Dy3+ PL could be used to enable CO2 sensing based on absorption 
spectroscopy as previously demonstrated using ChG fibers [9, 10]. 

To avoid undesirable absorption of Dy3+ mid-IR emission by CO2 
molecules along free-space propagation between ridge waveguide 
output facet and detector (through spectrometer), N2 flow was used 
to purge the spectrometer during following experiments. 
Furthermore, using a rotary pump, a primary vacuum of about 10 
Pa was produced in the tube-shaped vacuum chamber.  To monitor 
CO2 concentration along the free-space propagation, a Sensiron 
SCD30 was placed inside the tube (Fig. 2b). During PL 
measurements, vacuum pump was stopped to prevent vibrations 
that hinder efficient light injection in waveguides. The tube was 
progressively filled with a gaseous mixture of N2 and CO2 using mass 
flow controllers. Emission spectra from recorded, in the 3.8-5.0 µm 
wavelength range, for different CO2 concentrations in the beam 
path, i.e. in the tube, are presented in Fig. 5.

Fig. 5. Mid-IR PL spectra (λexc=1320 nm) for different CO2 
concentrations for a 7-µm wide waveguide ([Dy3+]=10000 ppmw).

As CO2 concentration increases, a clear reduction of PL signal is 
observed around 4.3 µm, which overlaps the spectral range where 
light absorption by CO2 molecules is maximal [6, 18, 30]. This 
spectral evolution confirms that vibrational absorption of CO2 
molecules found along the free-space propagation between 
waveguide output facet and spectrometer entrance was 
responsible for the dip observed on mid-IR Dy3+ emission spectra in 
Fig. 4. It can also be noticed that PL spectra were recorded for a 
minimal CO2 concentration of 50 ppm, corresponding to the 
residual CO2 concentration found during the experiments due to 
incomplete purging of the set-up. From Fig. 5, it is clearly observed 
that Dy3+ PL remains unaffected by CO2 build-up for wavelengths 
below 4.15 µm and above 4.45 µm. To emphasize this effect, 
monitoring of Dy3+ PL intensity with CO2 content in the beam path 
was performed at 4.25 and 4.45 µm (Fig. 6). 

The Dy3+ PL intensity recorded at a wavelength corresponding to 
maximum CO2 absorption (4.25 µm) follows a logarithmic 
evolution conforming to Beer-Lambert law whereas, at 4.45 µm, 
light emission from Dy3+ ions is found to be independent of CO2 



concentration encountered along the beam path. Implementation 
of Dy3+-doped GaGeSbSe waveguide-based multimode 
interferometers (MMI) to multiplex mid-IR light [21] could enable 
calibration-free CO2 sensing by simultaneously monitoring Dy3+ 
mid-IR emission at λ~4.25 µm and λ∼4.45 µm corresponding, 
respectively, to spectral bands overlapping and not affected by CO2 
absorption. Pr3+-doped ChG waveguides were demonstrated [22, 
10] to provide PL emission around absorption maxima of CO (4.6 
µm) and CH4 (3.3 µm), Pr3+ co-doping could therefore enhance 
device versatility by allowing multigas sensing.

Fig. 6. Mid-IR PL detected at 4.25 and 4.45 µm (λexc=1320 nm) for a 
7-µm wide ridge waveguide for different CO2 concentrations.

In conclusion, Dy3+-doped Ga5Ge20Sb10Se65 ridge waveguides 
with Dy3+ concentration ranging from 2500 to 10000 ppmw have 
been fabricated. These waveguides enabled the recording of mid-IR 
emission between 3.8 to 5.0 µm under near-IR pumping around 1.3 
µm in waveguides exhibiting singlemode propagation at ~4.4 µm. 
An almost linear increase of mid-IR luminescence with Dy3+ 
concentration was found for multimode waveguides. Based on this 
on-chip emission, CO2 mid-IR sensing demonstration was 
performed confirming the potential of Dy3+-doped ChG waveguides 
for the development of compact optical gas sensors.
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