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Abstract: A manganese (II) complex templated by hexahydro-1,4-diazepinediium as a counter ion
was grown by slow evaporation from an aqueous solution at room temperature. The X-ray diffraction
analysis revealed that the compound (C5H14N2)[MnCl4(H2O)2] crystallizes in the centrosymmetric
space group P2/c of the monoclinic system. The crystal structure of the Mn(II) complex is character-
ized by an alternation of 0-dimensional organic and inorganic stacks linked together by N/O-H . . .
Cl and N-H . . . O hydrogen bonds, which lead to a three-dimensional supramolecular architecture.
In this structure, the inorganic layer is built up by independent anionic moieties combining the
two isomers cis/trans of [MnCl4(H2O)2]2−. The thermal decomposition was studied by TGA-DTA
techniques. The optical band gap and Urbach energy were obtained by Tauc’s equation. The direct
and indirect band gap values are found to be 4.58 and 4.44 eV, respectively. Weak antiferromagnetic
interactions are present in the molecule under study, according to magnetic measurements. An agar
well diffusion technique was used to assess the synthetic compound’s biological activity, and the
results showed that it has potent antibacterial (Gram-positive and Gram-negative) properties. Inter-
estingly, the synthesized compound also displayed antilipase activity. These biological activities have
been confirmed by the bioavailability and pharmacokinetic analyses.

Keywords: manganese (II) complex; thermal analysis; infrared spectroscopy; optical band gap;
magnetic properties; pharmacokinetics; biological activity

1. Introduction

Organic–inorganic hybrid materials have attracted a special attention during the
recent decades. In doing so, they progressively offered the possibility to reach considerable
development across different sectors [1–3]. These components exhibit fascinating properties
in areas such as luminescence, optics, magnetism, and biological activity [4,5]. Previous
works showed that the crystal engineering of supramolecular architectures depends on
different criteria including the type of the metal (alkali earth metal, transition metal, alkali
metal, other), the geometry of coordination around the metal ion, the characteristics of
the organic molecule (aliphatic, aromatic, chain length, etc.), the halide ion (Br, Cl, I),
and the bonding (ionic, covalent, coordination bonds, and van der Waals (vdW) forces) [6].
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Furthermore, hydrogen bonding reveals the structure of coordination complexes, which
link low-dimensional entities into high-dimensional supramolecular networks [7,8]. Mn2+-
included materials have been recently proposed as excellent component classes, which help
in the creation of new materials with excellent physico-chemical properties [9,10]. During
the recent three years, manganese (II) has provided interest in the field of solar cell and
luminescent materials due to its tunable emission, high luminescence efficiency, and light
absorption in the UV–Vis region [11–13]. Most studies about these compounds have shown
that the luminescence of manganese (II) halide hybrids can be ascribed to the 4T1 → 6A1
electronic transition of Mn2+, which can be easily affected by the coordination environment
of Mn(II) center [14,15]. In general, octahedrally and tetrahedrally coordinated manganese
(II) complexes emit red-orange or green light, respectively [16]. In addition, for Mn2+

compounds, two distinct groups of absorption bands are obviously observed in the UV−Vis
region, such as D and G-terms. These electronic transitions may be described based on
Tanabe–Sugano diagrams [17]. In addition, different magnetic behaviors varying from
ferro- to antiferromagnetic interactions of manganese (II) complexes were proven [18,19].
It is shown in the literature that inorganic–organic hybrid complexes play an important
role in medicinal chemistry [20–22]. For instance, these components have wide application
in drugs synthesis. Due to the emergence of antibiotic resistance, it is crucial to discover
novel antibiotic classes [23]. In this regard, great efforts have been conducted with respect
to the development of new hybrid compounds having antiparasitic, antimicrobial, anti-
inflammatory, and anticancer properties [21,22,24].

In this paper, a new manganese (II) hybrid halide, (C5H14N2)[MnCl4(H2O)2], pos-
sessing a zero dimensional structure is reported. The crystal structure, thermal behavior,
spectroscopic characterization, and magnetic properties are presented. In addition, phar-
macokinetic parameters of the compound units were assessed based on the absorption,
distribution, metabolism, elimination, and toxicity (ADMET) attributes together with
assessment of the antibacterial action.

2. Experimental Design
2.1. Materials and Synthesis

Sigma-Aldrich supplied the following commercially available raw ingredients to produce
the desired chemical. Hexahydro-1,4-diazepine (C5H12N2; 98%), Manganese(II) chloride
(MnCl2; 99%), and hydrochloric acid (HCl; 37%) were utilized without further purification.

The slow evaporation process was used to create the complex. By combining MnCl2
(0.125 g, 1 mmol) and (C5H12N2) (0.100 g, 1 mmol) in 10 mL of distilled water, single
crystals of the investigated chemical were produced from an aqueous solution. After that,
1 mL of strong HCl was added to the produced solution to make it acidic. A volume of
10 mL of distilled water was used to dissolve the mixture. The solution was magnetically
agitated for 30 min, and then left to stand at room temperature. Seven days later, colorless
crystals were produced and identified by single crystal X-ray diffraction.

2.2. X-ray Data Collection

A single crystal of the studied compound was glued and mounted at 150 K on a D8
VENTURE Bruker AXS diffractometer. Through the usage of the APEX 3 software, graphite
monochromated Mo K radiation (with a wavelength of 0.71073) was employed. SAINT
was used to process the data, including its collection, reduction, and analysis. The SADABS
software was used to carry out the empirical absorption adjustments of the multi-scan
kind. The crystal structure was determined to be in the monoclinic symmetry and the space
group P2/c by using the automated search for space group offered in Wingx [25]. The
molecular solid state structure was solved by direct methods using the SHELXT software
package [26].

The graphite monochromated Mo Kα radiation (λ = 0.71073 Å) was used through the
program APEX 3. Data collection and reduction as well as their analysis were processed
using SAINT. The SADABS program was used for the empirical absorption corrections
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based on the automated search for space group available in Wingx [23], the crystal structure
was solved in the monoclinic symmetry and the space group P2/c. The molecular solid
state structure was solved by direct methods using the SHELXT software package [26].
On F2 with SHELXL-2015, it was improved using full-matrix least-square methods [27].
All non-hydrogen atoms were anisotropically refined. The hydrogen atoms that were O-
and N-bonded were located using different maps, and they were then treated with Uiso
(H) = 1.5 Uiso (O) and U (H) = 1.2 Uiso (N). Using software called DIAMOND, the drawings
were created. Crystallographic data and the results of the least-squares structure refinement
are given in Table S1.

2.3. Thermal Analysis

Thermal analysis was performed on powders using a TGA/DTA called the “SETSYS
Evolution” under nitrogen flow (100 mL/min) and a heating rate of 5 ◦C min−1 up to
600 ◦C (Pt crucibles, Al2O3 as a reference).

2.4. Spectroscopic Measurements

A Perkin Elmer 1650 FT-IR Spectro-photometer was used to obtain the infrared mea-
surements. Diluted with spectroscopic KBr and pressed into a pellet, scans Samples were
run on the range 500–4000 cm−1.

At room temperature, optical absorption spectra of sample films were obtained using
a typical UV–Vis absorption spectrometer (Hitachi, U-3300). The used wavelength ranged
between 200 and 800 nm.

2.5. Magnetic Measurements

Magnetic data was recorded using a Quantum Design MPMS-XL SQUID magneto-
meter and Pascal’s constants as previously reported [28].

2.6. Pharmacokinetics

The pharmacokinetic characteristics of the synthesized and described chemical units
were examined using previously reported absorption, distribution, metabolism, excre-
tion, and toxicity (ADMET) measures [24,29,30]. The bioavailability, which is primarily
determined by physicochemical features such as flexibility (FLEX), insaturation (INSA),
insolubility (INSO), lipophilicity (LIPO), molecular size (SIZE), and polarity (POLA), was
also estimated [30–32].

2.7. Antimicrobial Activity
2.7.1. Microbial Strains

Six bacteria strains were used to investigate the antibacterial activity of (C5H14N2)
[MnCl4(H2O)2]: three Gram-positive (Listeria monocytogenes, Staphylococcus aureus, and
Micrococcus luteus) and three Gram-negative strains (Salmonella typhi, Escherichia coli, and
Enterococcus feacalis).

2.7.2. Agar Diffusion Assay

Antibacterial activity was assessed using the Vanden Berghe technique [33]. The mi-
croorganisms were spread out on an LB medium at a concentration of 106 colony forming
units (CFU) mL−1 of bacteria cell suspension. After being dissolved in DMSO and added
(20 L) to wells punched in the agarose layer, (C5H14N2)[MnCl4(H2O)2] was allowed to
diffuse in the layer and incubated for 3 h at 4 ◦C in a humid, close container. The examined
microorganisms were cultured at 37 ◦C for 24 h after diffusion. Ampicillin and DMSO were
used as positive and negative controls, respectively, for antibacterial activity. Three sample
replications were used for all assays, and results were averaged.
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2.7.3. Determination of the Minimum Inhibitory Concentration (MIC)

The sample’s antibacterial effectiveness was evaluated against Gram (+) and Gram
(−) bacterial strains. A microwell dilution method, as previously described by [34,35], was
used to determine MIC values using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide. MIC values correspond to the lowest concentration that completely inhibits the
growth of microorganisms (MTT). The suspensions were adjusted to 106 CFU/mL and
the inoculum of each bacteria was created. In a 96-well plate, dilution series of the sample
were created, ranging from 10 mg/mL to 0.02 mg/mL. DMSO was used as a negative
control. Following a 24 h incubation period at 37 ◦C, each well in the plates received 25 µL
of newly produced MTT (0.5 mg/mL). The medium’s transformation to a purple tint after
30 min of incubation showed that the bacteria were physiologically active. All studies were
performed in duplicate, and the MIC was determined as the point at which the MTT color
did not change.

2.8. Anti-Lipase Activity Assay

The possibility of a direct interaction between a lipase and an inhibitor in an aqueous
media and in the absence of a substrate was investigated using the lipase-inhibitor pre-
incubation technique [36].

The lipase that was utilized was Candida rugosa Lipase Type VII (EC 3.1.1.3) from SIGMA.
A pH-Stat (Metrohm, Herisau, Switzerland) was used to titrimetrically evaluate the

lipase activity test at pH 7.2 and 37 ◦C using an olive oil emulsion. One mol of fatty acid is
emitted each minute by one lipase unit.

50 µL of lipase were pre-incubated for 1 h at room temperature with varying concen-
trations of DMSO dissolved (C5H14N2)[MnCl4(H2O)2] to measure the lipase inhibitory
activity. As mentioned above, 50 µL aliquots from the reaction sample were utilized to
measure the remaining lipase activity. In each instance, control studies were conducted
using the same amount of DMSO but without the subject substance. It was highlighted
that the enzyme activity is unaffected by DMSO at final volume concentrations lower than
10%. When compared to the initial activity, which was evaluated without the inhibitor, the
lipase inhibition (in %) was computed. To determine the lipase inhibitory activity, 50 µL of
Lipase was pre-incubated for 1 h at room temperature with different concentrations of the
DMSO dissolved (C5H14N2)[MnCl4(H2O)2]. Aliquots of 50 µL from the reaction sample
were used to assess the residual lipase activity.

3. Results and Discussion
3.1. Crystal Structure of (C5H14N2)[MnCl4(H2O)2]

The title organic–inorganic hybrid compound (C5H14N2)[MnCl4(H2O)2] crystallizes in
the P2/c monoclinic space group. Figure 1 illustrates the asymmetric unit of the structure
drawn with 50% probability thermal ellipsoids. The asymmetric unit of the structure
includes two crystallographically independent isomers cis/trans-[MnCl4(H2O)2] and one
deprotonated hexahydro-1,4-diazepinediium cation. In this structure, the two manganese
cations Mn1 (wyckof site: 2e, 2) and Mn2 (wyckof site: 2f, 2) are situated in special positions
on the twofold rotation axis at x = 1, z = 3/4 and x = 1/2, z = 1/4, respectively. Each
MnII ion is surrounded by four chlorides ions and two water molecules. It is noteworthy
that the manganese octahedra adopt two types of isomers: trans-[MnCl4(H2O)2] and cis-
[MnCl4(H2O)2] (Figure 2). As seen in Figure 3, the atomic arrangement can be described by
alternation of a discrete anionic moiety [MnCl4(H2O)2])2− and organic layers (C5H14N2)2+

which develop along the [101] direction.
The antiperiplanar angle O1—Mn1—O1i value is 171.81 (10)◦ and the synclinal angle

O11—Mn2—O11ii is equal to 85.60 (8)◦. The measured bond lengths and angles are
shown in Table S2. The organic cations, (C5H14N2)2+, are located in general positions. Both
nitrogen centers in the hexahydro-1,4-diazepinediium cations are protonated to compensate
the inorganic part negative charges. The values of C–C and C–N distances vary in the range
of 1.510 (3)–1.520 (3) Å and in the range of 1.494 (3)–1.514 (3) Å while the values of the angles
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C–N–C and N–C–C range from 115.12 (17) to 117.94 (16) and from 111.65 (18) to 114.34 (18)◦

respectively, and the C–C–C angle is equal to 115.40 (18)◦ (Table S2). These values of
bond distances and angles are comparable to those given in other hybrids containing
hexahydro-1,4-diazepinediium as organic matrix [37,38].
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By forming N-H...O, N-H...Cl, and O-H...Cl hydrogen bonds with the organic and
inorganic cations, water molecules and chloride ions contribute significantly to the stability
of the crystal structure. The N...Cl distances inside the intermolecular bonds range between
3.203 (2) and 3.503 (2), whereas the O...Cl distances range from 3.118 (5) to 3.231 (5). The N
. . . O distance is equal to 3.251 (3) (Table 1, Figure 3).



Inorganics 2023, 11, 76 6 of 16Inorganics 2023, 11, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 3. a view of the packing crystal of (C5H14N2)[MnCl4(H2O)2] along the crystallographic b-
axis. 

The antiperiplanar angle O1—Mn1—O1i value is 171.81 (10)° and the synclinal angle 
O11—Mn2—O11ii is equal to 85.60 (8)°. The measured bond lengths and angles are shown 
in Table S2. The organic cations, (C5H14N2)2+, are located in general positions. Both nitro-
gen centers in the hexahydro-1,4-diazepinediium cations are protonated to compensate 
the inorganic part negative charges. The values of C–C and C–N distances vary in the 
range of 1.510 (3)–1.520 (3) Å and in the range of 1.494 (3)–1.514 (3) Å while the values 
of the angles C–N–C and N–C–C range from 115.12 (17) to 117.94 (16) and from 111.65 
(18) to 114.34 (18)° respectively, and the C–C–C angle is equal to 115.40 (18)° (Table S2). 
These values of bond distances and angles are comparable to those given in other hybrids 
containing hexahydro-1,4-diazepinediium as organic matrix [37,38]. 

By forming N-H...O, N-H...Cl, and O-H...Cl hydrogen bonds with the organic and 
inorganic cations, water molecules and chloride ions contribute significantly to the stabil-
ity of the crystal structure. The N...Cl distances inside the intermolecular bonds range be-
tween 3.203 (2) and 3.503 (2), whereas the O...Cl distances range from 3.118 (5) to 3.231 (5). 
The N…O distance is equal to 3.251 (3) (Table 1, Figure 3). 

Table 1. Intermolecular hydrogen bonds (Å, °) in (C5H14N2)[MnCl4(H2O)2]. 

D—H···A D—H H···A D···A D—H···A 
N2—H2A···Cl2 iii 0.81 (3) 2.91 (3) 3.503 (2) 133 (3) 
N2—H2A···Cl2 iv 0.81 (3) 2.71 (3) 3.3534 (19) 138 (3) 
N2—H2A···O1 iii 0.81 (3) 2.64 (3) 3.251 (3) 134 (3) 
N2—H2B···Cl1 0.93 (3) 2.24 (3) 3.130 (2) 160 (3) 

N6—H6A···Cl11 v 0.87 (3) 2.42 (3) 3.203 (2) 150 (2) 
N6—H6B···Cl12 vi 0.89 (3) 2.38 (3) 3.258 (2) 168 (2) 
O1—H1W1···Cl12 0.84 (3) 2.29 (3) 3.1310 (17) 179 (3) 
O1—H1W2···Cl2 iv 0.88 (3) 2.29 (3) 3.1472 (18) 165 (3) 

O11—H11A···Cl12 vii 0.77 (2) 2.55 (3) 3.3032 (17) 165 (3) 
O11—H11B···Cl2 vii 0.81 (2) 2.44 (2) 3.2447 (17) 175 (3) 

Symmetry codes:[(iii) −x + 1, −y + 1, −z + 1; (iv) x, −y + 1, z + 1/2; (v) −x + 1, y, −z + 3/2; (vi) −x + 1, −y, −z 
+ 1; (vii) x−1, −y, z−1/2]. 

3.2. Thermal Decomposition of (C5H14N2)[MnCl4(H2O)2] 
Both thermogravimetric analysis and differential thermal analysis were used simul-

taneously to investigate the title compound’s thermal stability (DTA). It was heated to a 

Figure 3. A view of the packing crystal of (C5H14N2)[MnCl4(H2O)2] along the crystallographic b-axis.

Table 1. Intermolecular hydrogen bonds (Å, ◦) in (C5H14N2)[MnCl4(H2O)2].

D—H···A D—H H···A D···A D—H···A

N2—H2A···Cl2 iii 0.81 (3) 2.91 (3) 3.503 (2) 133 (3)
N2—H2A···Cl2 iv 0.81 (3) 2.71 (3) 3.3534 (19) 138 (3)
N2—H2A···O1 iii 0.81 (3) 2.64 (3) 3.251 (3) 134 (3)
N2—H2B···Cl1 0.93 (3) 2.24 (3) 3.130 (2) 160 (3)

N6—H6A···Cl11 v 0.87 (3) 2.42 (3) 3.203 (2) 150 (2)
N6—H6B···Cl12 vi 0.89 (3) 2.38 (3) 3.258 (2) 168 (2)
O1—H1W1···Cl12 0.84 (3) 2.29 (3) 3.1310 (17) 179 (3)
O1—H1W2···Cl2 iv 0.88 (3) 2.29 (3) 3.1472 (18) 165 (3)

O11—H11A···Cl12 vii 0.77 (2) 2.55 (3) 3.3032 (17) 165 (3)
O11—H11B···Cl2 vii 0.81 (2) 2.44 (2) 3.2447 (17) 175 (3)

Symmetry codes: [(iii) −x + 1, −y + 1, −z + 1; (iv) x, −y + 1, z + 1/2; (v) −x + 1, y, −z + 3/2; (vi) −x + 1, −y, −z + 1;
(vii) x−1, −y, z−1/2].

3.2. Thermal Decomposition of (C5H14N2)[MnCl4(H2O)2]

Both thermogravimetric analysis and differential thermal analysis were used simul-
taneously to investigate the title compound’s thermal stability (DTA). It was heated to a
temperature between 10 and 600 ◦C in a platinum crucible at a rate of 5 ◦C/min. Figure 4
presents the findings. The TG curve suggests that this chemical is stable up to a temperature
of roughly 80 ◦C. The loss of water molecules (theoretical loss, 9.36%) is the cause of the
weight loss seen between 80 and 110 ◦C. Two endothermic peaks at 85 and 100 degrees
Celsius on the DTA curve are present in conjunction with this event. The decomposition
of the amine fragment and the loss of two chloride ions as HCl due to the atmospheric
moisture, which most likely resulted in the formation of MnCl2, are both responsible for the
subsequent mass loss of 51% (theoretical loss, 50%), which occurred right after the complex
was dehydrated and ended at 400 ◦C. On the DTA curve, this phenomenon is accompanied
by two significant endothermic peaks at 210 and 222 ◦C.



Inorganics 2023, 11, 76 7 of 16

Inorganics 2023, 11, x FOR PEER REVIEW 7 of 16 
 

 

temperature between 10 and 600 °C in a platinum crucible at a rate of 5 °C/min. Figure 4 
presents the findings. The TG curve suggests that this chemical is stable up to a tempera-
ture of roughly 80 °C. The loss of water molecules (theoretical loss, 9.36%) is the cause of 
the weight loss seen between 80 and 110 °C. Two endothermic peaks at 85 and 100 degrees 
Celsius on the DTA curve are present in conjunction with this event. The decomposition 
of the amine fragment and the loss of two chloride ions as HCl due to the atmospheric 
moisture, which most likely resulted in the formation of MnCl2, are both responsible for 
the subsequent mass loss of 51% (theoretical loss, 50%), which occurred right after the 
complex was dehydrated and ended at 400 °C. On the DTA curve, this phenomenon is 
accompanied by two significant endothermic peaks at 210 and 222 °C. 

 
Figure 4. Simultaneous thermogravimetric analysis and differential thermal analysis scan for the 
decomposition of the title compound under flowing air with a heating rate of 10 °C/min between 25 
and 500 °C. 

3.3. Infrared Spectroscopy 
Figure S1 exhibits the major selected absorptions in the IR spectra of compounds 

(C5H14N2)[MnCl4(H2O)2] and their correspondent assignments, which associated with the 
hexahydro-1,4-diazepine molecule [37,39]. The results are displayed in Table S3. Indeed, 
NH2 stretching vibrational modes have been situated in the wavenumbers range of 3051–
3118 cm−1. The observed band at 2805 cm−1 is due to the CH2 stretching modes. The band 
at 1647 cm−1 corresponds to NH2 scissoring vibrations and that at 1570 cm−1 corresponds 
to δas (C-N-H) asymmetric bending. Frequencies in the range 1385–1450 cm−1 are associ-
ated to the δ(CH2) scissoring vibrations. The bands which appear from 1103 to 1333 cm−1 
can be assigned to the C–N stretching. The bands observed at 1021 and 1065 cm−1 are iden-
tified as C–C stretching modes. Moreover, the ρ(NH2) rocking modes is located at 976 cm−1 
and the δ(C–C–C) scissoring mode is observed at 880 cm−1. Furthermore, the vibrational 
bands situated at 529 and 780 cm−1 are assigned respectively to δ(C–N–C) and δ(C–C–N). 

3.4. Optical Study 
The optical properties of the material have an important potential to adapt to the 

needs of the technological components. The absorption spectrum can be seen in Figure 5. 
The intense band at 260 is attributed to electron charge transfers from the ligand to the 
metal LMCT. The bands from 300 to 500 nm should be ascribed to the electronic transitions 

Figure 4. Simultaneous thermogravimetric analysis and differential thermal analysis scan for the
decomposition of the title compound under flowing air with a heating rate of 10 ◦C/min between 25
and 500 ◦C.

3.3. Infrared Spectroscopy

Figure S1 exhibits the major selected absorptions in the IR spectra of compounds
(C5H14N2)[MnCl4(H2O)2] and their correspondent assignments, which associated with
the hexahydro-1,4-diazepine molecule [37,39]. The results are displayed in Table S3. In-
deed, NH2 stretching vibrational modes have been situated in the wavenumbers range
of 3051–3118 cm−1. The observed band at 2805 cm−1 is due to the CH2 stretching modes.
The band at 1647 cm−1 corresponds to NH2 scissoring vibrations and that at 1570 cm−1

corresponds to δas (C-N-H) asymmetric bending. Frequencies in the range 1385–1450 cm−1

are associated to the δ(CH2) scissoring vibrations. The bands which appear from 1103
to 1333 cm−1 can be assigned to the C–N stretching. The bands observed at 1021 and
1065 cm−1 are identified as C–C stretching modes. Moreover, the ρ(NH2) rocking modes
is located at 976 cm−1 and the δ(C–C–C) scissoring mode is observed at 880 cm−1. Fur-
thermore, the vibrational bands situated at 529 and 780 cm−1 are assigned respectively to
δ(C–N–C) and δ(C–C–N).

3.4. Optical Study

The optical properties of the material have an important potential to adapt to the
needs of the technological components. The absorption spectrum can be seen in Figure 5.
The intense band at 260 is attributed to electron charge transfers from the ligand to the
metal LMCT. The bands from 300 to 500 nm should be ascribed to the electronic transitions
between the ground and the first Mn2+ ion excited triplet states in the crystal field [40].
In addition, the electron transitions include two large distinct groups of absorption bands
(D-terms and G-terms). Obviously, the bands of the D-terms exhibit stronger intensities
than those of the G-terms. The absorption band at 322 and 364 nm can be assigned to
the transitions from 6A1 ground term to the 4E(D) and 4T2 (D) terms, respectively. The
weak band, located at 430 nm, corresponds to the transition of the G-term 6A1 → 4A1,4E
(G) [17,40,41].
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The optical absorption coefficient (α) (cm−1) can be determined using the relation of
Beer–Lambert law [42]:

α = 2.303A/d (1)

where A and d (cm) are the absorbance and the thickness, respectively.
The energy of the incident photon is calculated using the equation:

hν = 1240/λ (nm) (2)

Generally, α is linked to the photon energy (hυ) by the Tauc formula, which was
expressed by the following equation [43].

αhν = B (hν − Eg) n (3)

in which B is a constant reflecting the disorder degree of the crystal structure, h is Planck’s
constant, Eg represents the optical band gap, and n is the power factor which indicates
the transition mode, n = 2 and 1/2 for indirect and direct transitions, respectively. A plot
of (αhν) 2 and (αhν)1/2 versus hν is shown in Figure 6A,B, respectively. The band gap
determined by linear extrapolation of (αhν)n to the zero absorption coefficient on the
energy axis. The band gap energy for our compound is estimated to be 4.58 and 4.44 eV for
n = 1/2 and n = 2, respectively. These values indicate that the title material can be classified
as semi-conductor material.

The Eu behavior can describe the disorder degree and the defects of the structural
connection of this material [44] according to the Urbach rule in the low photon energy range:

ln(α) = ln(α0) + hν/Eu

where α is a constant and Eu is the Urbach energy that characterizes the exponential
edge slope.

The inverse of the slope of the straight (ln (α)) versus (hν) deduced from the Figure 7
to the calculated value of Eu which estimated to 0.32 eV. This weak value of Eu energy
confirms that this compound is ordered.
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3.5. Magnetic Properties

The magnetization data as a function of field, M (H), at 1.8 K show that the magneti-
zation is a linear relation up to approximately 1 T and then shows downward curvature
up to 5 T nearly reaching saturation (Figure 8). The magnetization reaches a maximum of
~28,000 emu/mol confirmed the expected saturation magnetization of 28,375 emu/mol for
S = 5/2 and g = 2.00.

The temperature dependence of χM measured for (C5H14N2)[MnCl4(H2O)2] over the
temperature range 1.8–295 K and an applied field of 1000 Oe rises monotonically with
decreasing temperature reaching a maximum of 1.03 emu/mol-Oe (Figure 9). Fitting
of the χM

−1 data from 10 K to 295 K to the Curie–Weiss law (Figure 10) gives a Curie
constant = 4.405 (1) emu-K/mol-Oe and a Weiss constant, θ = −2.08 (3) K, typical of an
Mn(II) complex with negligible interactions [39]. θ is proportional to both S and J, [45]
and therefore the small, negative value of θ indicates the presence of vanishingly weak
antiferromagnetic interactions. The χ.T product decreases at low temperatures, approaching
a value 1.8 for our complex as T approaches 1.8 K. Given the very small interactions, it is
unlikely that a unique magnetic lattice could be identified. However, the data were fit to
the 1D-Heisenberg antiferromagnetic model to provide an estimate of the exchange which
resulted in a Curie constant = 4.38 (2) emu-K/mol-Oe and J = −0.15 (1) K, including a fixed
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1% paramagnetic impurity. Our findings paralleled those of Curie–Weiss fit and support
the presence of very weak anti-ferromagnetic exchange between the Mn(II) ions.
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3.6. Biological Activities
3.6.1. Bioavailability and Pharmacokinetic Findings

The pharmacokinetic findings are exhibited by Table 2 and Figure 11. It was found
that the two isomers Cis/Trans of [MnCl4(H2O)2] possessed similar bioavailability and
pharmacokinetics properties.

Table 2. Lipophilicity, druglikeness, pharmacokinetics, and medicinal chemistry of 1 based on
ADMET (for absorption, distribution, metabolism, excretion, and toxicity) properties.

Entry
1

Unit 1
(C5H14N2)

Unit 2
(MnCl4(H2O)2)

Lipophilicity/
Druglikeness

TPSA (Å2) 24.06 40.46

Consensus Log Po/w 0.14 0.14

Lipinski′s Rule Yes Yes

Bioavailability Score 0.55 0.55

Pharmacokinetics/
Medicinal
Chemistry

GI absorption Low Low

BBB permeant No No

P-gp substrate No No

CYP1A2 inhibition No No

CYP2C19 inhibition No No

CYP2C9 inhibition No No

CYP2D6 inhibition No No

CYP3A4 inhibition No No

Log Kp (cm/s) −7.27 −7.27

Leadlikeness No No

Synthetic accessibility 1.43 1.43
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Figure 11. Bioavailability hexagon of the synthesized compound (A) and its boiled-egg model
(B) based on its physico-chemical parameters: Molecular size (SIZE), lipophilicity (LIPO), insolubility
(INSO), insaturation (INSA), polarity (POLA) and flexibility (FLEX). Unit 1 and 2 represent the
C5H14N2 and Cis/Trans of MnCl4(H2O)2 parts of the compound.

Such data are commonly assessed in drug management and design to avoid any drug
failure at advanced stages [24,30,32]. As indicated in the Table 2, the hybrid compound
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units have acceptable bioavailability, which indicates the potential physiological activ-
ity without toxic outcomes as both meet the Lipinski rule [31,32]. The compound units
are associated with low gastro-intestinal (GI) absorption and blood–brain barrier (BBB)
permeation, which was supported by the boiled-egg model. While both units inhibited
none of the major cytochrome P450 (CYP) isoforms (1A2, C19, 2C9, 2D6, and 3A4), it was
expected to not behave as P-glycoprotein (P-gp) substrates. Thus, it could be deduced that
the complex may not disrupt the distribution, metabolism, and elimination of drugs. Log
Kp calculation, as assessed using both lipophilicity and molecular weight, resulted in low
skin permeability [46]. Regarding, synthetic accessibility, it was deduced that the complex
presented average ease to synthesize once compared with other synthesized and/or natural
compounds with significant biological activities [24,30,46].

3.6.2. Antimicrobial Activity

The increase in drug-resistant pathogens is recently raising an urgent need to identify
and isolate new bioactive compounds from different sources through modern, standardized
analytical procedures [47]. In this line, the antibacterial activity of (C5H14N2)[MnCl4(H2O)2]
was checked against Gram-positive (L. monocytogenes, M. luteus, S. aureus) and Gram-
negative (E. coli, E. feacalis, S. typhi) bacteria. Using the agar diffusion method, antibacterial
activity was determined by measuring both the clear zone of growth inhibition diameter and
the MIC values (mg/L). Table 3, the title compound showed various degrees of antibacterial
activity against Gram-positive and Gram-negative strains. MIC values ranged between 6
and 20 mm using 1 and 2 mg/mL of (C5H14N2)[MnCl4(H2O)2], respectively. The micro
well dilution method, used in order to determine with precision the MIC, showed a dose-
dependent antibacterial activity of the studied compound with a MIC 2.5 mg/mL. This
inhibitory effect can be explained by the interaction between (C5H14N2)[MnCl4(H2O)2] and
bacterial membrane compound. In fact, the integrity of the bacterial plasmic membrane is
responsible for osmoregulation, respiration, biosynthesis, and reticulation of peptidoglycan,
as well as lipid biosynthesis. The bacterial plasma membrane disruption can directly or
indirectly cause metabolic dysfunction and finally lead to bacterial death [48].

Table 3. Antibacterial activities of 1. MIC (mg/mL), Inhibition zones: +++: >15 mm; ++: 5–15 mm,
+: <5 mm.

Bacterial Strain Gram
Inhibition Zone Diameter (mm)

MIC (mg/mL)
1 mg/mL 2 mg/mL

Escherichia coli - + + 1
Enterococcus feacalis - + + 1

Salmonella typhi - + + 1.3
Listeria monocytogenes + ++ +++ 2.5
Staphylococcus aureus + ++ +++ 2.5

Micrococcus luteus + ++ +++ 2.5

3.6.3. Anti-Lipase Activity

Lipases are triacylglycerol ester hydrolases (EC 3.1.1.3), which catalyze the hydrolysis
of long-chain triglycerides. These enzymes act at the aqueous–organic interface to catalyze
the hydrolysis of ester bonds present in carboxylases, releasing organic acid glycerides and
glycerol [49]. It has been reported that microbial pathogens produced several lipases, which
play a key role in the development of infectious [35,50] and metabolic diseases [51,52].
Thus, research on novel lipase inhibitors for the treatment of such diseases has gained a
high interest during the last decade. Therefore, we evaluate the inhibitory effect of the
studied compound toward lipase and using Candida rugosa lipase as model.

Candida rugosa lipase was inhibited in a dose dependent manner with (C5H14N2)
[MnCl4(H2O)2] increased concentrations. Figure 12 presents the linear kinetics corre-
sponding to the Free Fatty Acids (µmol) released vs. (C5H14N2)[MnCl4(H2O)2] amount
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(mg). At 3 mg, the sample showed 50% inhibition of the lipase activity, while at 5 mg,
the inhibition effect reached 97%. This inhibition can explained by covalently or non-
covalently interaction between (C5H14N2)[MnCl4(H2O)2] with amino acids of the lipase
active site, as previously reported by several published molecular interactions model-
ing [53–55]. As this compound showed promising biological effects, further investigations
would confirm the current findings and support the potential pharmacological use of
(C5H14N2)[MnCl4(H2O)2] by the pharmaceutical companies.
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Figure 12. Evaluation of the inhibitory effect of the (C5H14N2)[MnCl4(H2O)2] against Candida rugosa
lipase. The enzyme was pre-incubated in the presence of various (C5H14N2)[MnCl4(H2O)2] amounts
for 1 h at 25 ◦C and the inhibition percentage was assessed.

4. Conclusions

In the current study, we synthesized and characterized a new hybrid compound
(C5H14N2)[MnCl4(H2O)2]. The X-ray diffraction analysis shows that the basic unit struc-
ture of this compound consists of one [C5H14N2]2+ cation and two crystallographically
inequivalent isomers Cis/Trans [MnCl4(H2O)2]2−. This hybrid material exhibits a lay-
ered inorganic–organic structure stabilized through N/O–H···Cl and N-H . . . O hydrogen
bonding between the inorganic and organic moieties, causing the formation of a three-
dimensional supramolecular architecture. The thermal decomposition of the crystals pro-
ceeded through two stages, giving rise to manganese (II) dichloride as endpoint compound.
IR spectroscopy was applied to confirm the presence of various functional groups in the
crystal. Optical parameters were obtained using UV–Vis absorption. The band gap energy
demonstrates that the compound can be classified as a semi-conductor material. The low
value of Urbach energy indicates that the material is ordered. The variable temperature mag-
netic susceptibility data indicate very weak antiferromagnetic interactions. Additionally,
the present study emphasized the significant role attributed to (C5H14N2)[MnCl4(H2O)2]
as a promising source of antibacterial and antilipase activities. These potential effects have
been confirmed by both bioavailability and the pharmacokinetic analyses.
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www.mdpi.com/article/10.3390/inorganics11020076/s1, Table S1: Crystal data and structure re-
finement for (C5H14N2)[MnCl4(H2O)2], Table S2: Main distances (Å) and angles (◦) for (C5H14N2)
[MnCl4(H2O)2] atomic arrangement, Table S3: Observed vibration frequencies (cm−1) and band
assignments for (C5H14N2)[MnCl4(H2O)2], Figure S1: Infrared absorption spectra of the stud-
ied compound. CCDC 2214720 contains the supplementary crystallographic data for this pa-
per. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by e-
mailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre,
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