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Abstract 

This paper presents and discusses several methods 
for reasoning from inconsistent knowledge bases. 
A so-called argumentative-consequence relation, 
taking into account the existence of consistent 
arguments in favor of a conclusion and the 
absence of consistent arguments in favor of its 
contrary, is particularly investigated. Flat 
knowledge bases, i.e. without any priority 
between their elements, as well as prioritized ones 
where some elements are considered as m ore 
strongly entrenched than others are studied under 
different  consequence relations. L astly a 
paraconsistent-like treatment of prioritized 
knowledge bases is proposed, where both the level 
of entrenchment and the level of paraconsistency 
attached to a formula are propagated. The priority 
levels are handled in the framework of possibility 
theory. 

1. Introduction 

One of the emerging important problems pertaining to the 
management of knowledge-based systems is inconsistency 
handling. Inconsistency may be present for several 
reasons: the presence of general rules with exceptions, the 
existence of several possibly disagreeing sources feeding 
the knowledge base are among the most common ones. 
There are two attitudes in front of inconsistent knowledge. 
One is to revise the knowledge base and restore 
consistency. The other is to cope with inconsistency. The 
first approach meets two difficulties: there are several 
ways of restoring inconsistency yielding different results, 
and the problem is that part of the information is thrown 
away and we no longer have access to it. Coping with 
inconsistency bypasses these difficulties. However we must 
take a step beyond classical logic, since the presence of 
inconsistency enables anything to be entailed from a set of 
formulas. 

This paper investigates several methods for coping with 
inconsistency by suitable notions of consequence capable 
of inferring non-trivial conclusions from an inconsistent 
knowledge base. These consequence relationships coincide 
with the classical definition when the knowledge base is 
consistent. When the knowledge base is flat, i.e. made of 

equally reliable propositional formulas, the proposal made 
by Rescher and Manor [21] is very commonly used 
nowadays: compute the set of maximal consistent subsets 
of the knowledge base first, then a formula is accepted as 
a consequence when it can be classically inferred from all 
maximal consistent subsets of propositions or from at 
least one maximal consistent subset. 

However the first consequence relation is very 
conservative hence rather unproductive while the latter is 
too permissive may leads to pairs of mutually exclusive 
conclusions. A mild inference approach is proposed in this 
paper, that is more productive than the first consequence 
relation but do not lead to conclusions which are pairwise 
contradictory. It is based on the idea of arguments that 
goes back to Toulmin [25] and is related to previous 
proposals [19], [18], and [24] that were suggested in the 
framework of defeasible reasoning for handling exceptions. 
We suggest that a COtlclusion can be inferred from an 
inconsistent knowledge base if the latter contains an 
argument that supports this conclusion, but no argument 
that supports its negation. 

The paper is organised as follows. Section 2 deals with flat 
knowledge bases and compares several notion s o f  
consequence relations that are inconsistency-tolerant, 
including several ones that come from the non-monotonic 
logic literature. Section 3 contains a thorough analysis of 
our argumentative inference process. Section 4 extends the 
argumentative inference to layered knowledge bases where 
layers express degrees of certainty as in possibilistic logic 
[10]; it refines the flat case by allowing for pieces of 
information of various levels. Section 5 deals with a 
paraconsistent-like treatment of layered inconsistent 
knowledge bases, whereby a formula carries two weights: 
its degree of certainty and the degree of certainty of its 
negation. Lastly a new way of combining knowledge bases 
issued from several sources is suggested, inspired by the 
argumentative inference. Results are given without proofs 
due to space limitations. Proofs appear in the full report. 

2. Arguments in Flat Knowledge bases 

2.1. D efinition o f  an Argumentative 
Consequence Relation 

For the sake of simplicity, we consider in this paper only 
a finite propositional language denoted by;£.,. We denote 
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the set of classical interpretations by n, by t- the 
classical consequence relation. Let I. be a set of 
propositional formulas, possibly inconsistent but not 
deductively closed. OJ:D denotes the deductive closure of I.. 
i.e.en(I.)={<!>e �, I. t- 4>}. W e  also assume that the  
knowledge bases manipulated in this section are flat, which 
means that all formulas in I. have the same reliability. 

Def.l: A sub-base I.i of I. is said to be consistent if it 
is not possible to deduce a contradiction from I.i, and is 
said to be maximally consistent if adding any formula 4> 
from I.-I.i to I.i produces the inconsistency of I.iu{ <1>}. 

We now introduce the notion of argument: 

Def. 2: A sub-base Li of L is said to be an argument 
for a formula 4>, if it satisfies the following conditions: 
(i) I.i¥- .l, (ii) I.it-4>, and (iii) \i'Jfe Li, I.i-{'1'}¥- 4>. 

Notice that this notion of argument is identical to the one 
proposed in [24] and is also very similar to the notion of 
environment used in the terminology of the ATMS [12]. 

Def. 3: A formula 4> is said to be an argumentative 
consequence of I., denoted by L t- �<!>. if and only if: 

(i) there exists an argument for <1> in I., and 
(ii) there is no argument for -,cj> in I.. 

As a consequence of this defmition, if our knowledge base 
contains only the two contradictory statements { <!>.-.<!>} 
then the inference <!>A-.<!>t-bi 'I' does not hold. In other 
words, our approach is in agreement with the idea of 
paraconsistent logics [6], where they reject the principle 
"ex absurdo quodlibet" which allows the deduction of any 
formula from an inconsistent base. 

It is easy to verify that t- bi is non-monotonic. 
Moreover, if I. is consistent then I.t-4> iff I.t-8't.<l>· It 
means that the non-monotonicity only appears in the 
presence of inconsistency, and the argumentative 
consequence resorts to what Satoh [23] calls "lazy non
monotonic reasoning", an idea also proposed in [15]. 

2.2. Comparative Study of  Inconsistency
Tolerant Consequence Relations 

In this sub-section we compare our approach to reasoning 
in the presence of inconsistency to the ones reviewed in 
[3]. We start this comparative study by presenting the 
different approaches from the most conservative ones to 
the most adventurous ones. But first we need some further 
definitions: 

Def. 4: A sub-base I.i of I. is said to be minimal 
inconsistent if and only if it satisfies the two following 
requirements: (i) Lit-.l, and (ii)\i <1> E Li, I.i-{4>}¥- .l. 

From now on, we denote by Inc(I.) the set of 
propositions belonging to at least one minimal 
inconsistent sub-base of I., namely: 

Inc(I.) = { 4>, 3 I.i � I., such that <1> e I.i and I.i is 
minimal inconsistent} 

The set Inc(I.) is somewhat related to the "base of 
nogoods" used in the terminology of the ATMS[12]. 
Once Inc(I.) is computed, we remove from I. all elements 
of Inc(I.), the result base is called the free base of I,, 
denoted by Free(I.) [2]. In other words, Free(I.) contains 
all formulae which are not involved in any inconsistency 
of the knowledge base L. Now, let us introduce the 
notion of the Free consequence, denoted by t-Free: 

Def. 5: A formula <1> is said to be a free consequence (or a 
sound consequence) of I., denoted by I.t-�, iff 4> i s  
logically entailed from Free(L). i.e. LI-Ftre<!> iffFree(I.)t-4> 

The Free-inference relation is very conservative as we will 
see later. Let us now recall the approach first proposed in 
[21]. Let I. be a possibly inconsistent base, MC(I.) be 
the set of all maximal consistent sub-bases of I.. The 
universal (called also the inevitable) consequence relation 
is defined in [21] in this way: 

Def. 6: A formula <1> is said to be a universal 
consequence or Me-consequence of L, denoted by Lt-V$, 
iff <1> is entailed from each element of MC(L), namely: 

I. 1-\i <I> iff \i Li E MC(I.), Li 1- <I> 
As it has been mentioned above, the Free consequence 
relation is more conservative than Me-consequence: 

Proposition 1: Each Free-consequence is also a Me
consequence. The converse is false. 

One way of finding the proof of the previous proposition 
is to notice that: 

Free(I.) = ni.ie MC(I.) Li 
since if a formula <1> does not belong to Free(L) then there 
exists a minimal inconsistent sub-base I.k containing 4>, 
and therefore there exists at least one maximally 
consistent sub-base which contains Lk but not 4>, which 
means that there exists at least one element of MC(L) 
which does not contain 4>, and consequently 4> does not 
belong to the intersection of the elements of Me(L). The 
converse is also true. Indeed, if <!>eo n LiE MC(I,)Li then 
there exists a sub-base Li such that c�>e: Li. and LiU { 4>} is 
inconsistent, therefore 4> is not free. Then from the 
properties of en, we find: 
en(Free(I.))=Cn(ni.ie MC(I.)I.i)�ni.ie MC(I.)Cn(I.i). 

The next propositions compare the Me-consequence to 
the argumentative consequence: 
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Proposition 2: A formula ell is an argumentative 
consequence of I. iff (i) 3 Li E MC(I.), such that Li f-

cj>, and (ii) :ji.j e MC(I.), such that I.j f- --,cp. 

Proposition 3: Each Me-consequence of I. is also an 
argumentative consequence of I.. The converse is false 

One of the main drawbacks of Me-consequence is the 
number of elements in MC(I.) which increases 
exponentially with the the number of conflicts in the 
base and in general, it is not possible to take into account 
all the elements of MC(I.). In [9], it is proposed to select 
a non-empty subset of MC(I.), denoted by Lex(I.), and 
computed in the following manner: 

Li E Lex(I,) iff 'V I.j E MC(I.), I'L.il � I'L.jl 

where II.I is the cardinality of I.. This ordering is called 
the lexicographical ordering, and corresponds to the 
property of parsimony advocated in diagnostic problems 
[20]. A probabilistic justification of Lex(I,) can be found 
in [3]. 
In order to generate the set of plausible inferences based 
on Lex(I,) from an inconsistent knowledge base, we use a 
defmition similar to the Me-consequence: 

Def. 7: A formula cj> is said to be a Lex-consequence of 
L., denoted by Lf-Lex<!>. iff it is entailed from each 
element ofLex(I,), namely: 

I. f-Lex 4> iff 'V Li E Lex(I,), Li f- cj> 

Proposition 4: Each Me-consequence of I. is also a 
Lex -consequence of I.. The converse is false. 

The Lex-consequence and argumentative consequence are 
not comparable as we see in the following example: 
Example Let I.={ A, ...,Bv...,A, B, ...,ev...,A, e, ...,AvD} 

We have Lex('L.)={ {--,Bv--,A, B, --.Cv-,A, C, --,AvD} }. 
Then -,A is a Lex-consequence of I. while it is not an 
argumentative consequence, since A is also present in L.. 
In contrast, D is an argumentative consequence (it 
derives from {A, --,AvD}) while it is not a Lex
consequence. 

The Lex-consequence may appear as an arbitrary selection 
from MC(L.) if we consider a semantic point of view. 
Namely, the following situation may happen: 
LiE Lex(I,), LjE MC(I,)-Lex(I.) and one may define Lk 
logically equivalent to I.j but II.ki>I'L.il. However all 
introduced consequence relations are syntax-sensitive since 
L. is not closed. Yet, the counterexample demonstrates 
that the Lex-consequence may implicitly delete some 
useful pieces of knowledge (here A). It may result in 
destroying some arguments, as well as some rebuttals 
(i.e. formulas whose presence ensure an argument for --,cj> 
that inhibits arguments for cj>). 

Another definition of the consequence relation, called 
existential relation is also proposed in [21], namely: 

Def. 8: A formula 4> is said to be an existential 
consequence of I., denoted by I. f- 3«1>, iff there exists at 
least one element of MC(I.) which entails cj>, namely: 

L f-3 4> iff 3 Li E MC(L.). Li f-3 4> 

It is not hard to see that this approach is the most 
adventurous one, but unfortunately it has an important 
drawback, since this approach may lead to inconsistent set 
of results. Indeed, there may exists Li f- cj> and Ljf--,cj>, 
in which case both cj> and -,cj> will be deduced. 

The following hierarchy summarizes the links existing 
between the different consequence relations studied here, 
the edge means the inclusion-set relation between the set 
of results generated by each inference relation. The top of 
the diagram thus corresponds to the most conservative 
inferences. All inferences reduce to the classical one when 
I. is consistent. 

Figure 1: A comparative study of inference relations 

Argumentative-Consequence 
I-A 

3. Properties of t- 9t,: 

Proposition 5 (failure of AND): We may have L. 1- 9t, 
<j>, I. f- 9t, ljl, and not I. 1- 9t, 4> A 'I'· 

Proposition 5 must not be seen as a major drawback of 
f-9t, since in some cases we do not want to have the 
AND property. The f- 9t, consequence relation captures 
the cases when we believe in two mutually consistent 
properties of some object for conflicting reasons. 

Proposition 6: f- 9t, satisfies the property of Right 
Weakening, i.e.If cj>1-'I' then I. 1- 9t, 4> implies I. 1- 8t, 'I' 
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An important issue when reasoning with an inconsistent 
knowledge base L. is whether it is possible to construct 
some equivalent consistent base such that plausible 
inferences from L. are its logical consequences. In this 
section we try to construct such an equivalent knowledge 
base using the argumentative inference relation. 

Propositions 5 and 6 are very important to characterise the 
set of argumentative consequences of a knowledge base L, 
denoted by Cnc9't(L.); Cnc9't(L.)={c)l, L.1-c9't cjl}. The fact 
that the argumentative consequence is not closed under 
conjunction means that Cnc9't (L) is generally not equal to 
its closure under Cn , namely: Cnc9't(L) "#- Cn(Cnc9't(L)) 
In this section, we assume that we use only the finite set 
of propositional symbols appearing in the base L.. 

Def. 9: A formula q, is said to be a prime implicate of 
L with respect to the argumentative inference relation if 
and only if:(i) Ll-c9't q,, (ii) �q,·, such that cjl\--cjl and  
Ll-c9'tc)l' 

A prime implicate can be inferred from a maximal 
consistent subset of L. However, if LiE MC(L), then the 
conjunction of formulas in Li (also denoted by Li) is not 
a prime implicate since it can be defeated by other 
maximal consistent subsets of L. Indeed, V i"#j, Lii-•Lj. 
The construction of prime implicates can be achieved from 
the semantical point view. Indeed, let [Lil be the set of 
models of the maximal consistent sub-base Li· A given 
model <pL,i of [Lil can be viewed as a formula composed 
of the conjunction of literals it satisfies. Then it can be 
shown that the following expression is a prime implicate: 

<pll V· · .Vq>I,i-l V Li Vq>I.i+l V· · ·Vq>I,n 
Moreover, if each maximal consistent sub-base is 
complete (i.e. Vae :£,, either aE Li or -.aE LV there exists 
exactly one prime implicate, and in this case the 
argumentative consequence and MC-consequence are 
equivalent. But in general, the prime implicates can be 
numerous. 

Let R1, .... Rn be the set of prime implicates of L., then 
Cn�) can be seen as the union of the deductive closure of 
each Ri under Cn, namely: Ch3t(L)=Cn(RI)u ... uCn<Rn) 
And it is easy to check that V i, j = l ,n L ¥ c9't Ri "Rj 
Examples 

(1) let L = {-,A v B, A v C, A, -,A}. 
We have two maximal consistent sub-bases, 

Ll={-,AvB, AvC, A}, L2={--.AvB, AvC, -,A} 
Then: 

[Ll]={AABAC, AABA-,C} 
[L2]= { -,AABAC, -,A/\-,BAC}, 

Therefore we have four prime implicates: 
Rt=BA(CvA), R2=(AAB)v(-,BACA-,A) 
R3=CA(-.AvB), R.t=(-,A/\C)v(-,CAAAB) 

(2) Consider now L as: 

1:, = {-,A v B, A v B, A, -,A, C}. 
We have two maximal consistent sub-bases, 

Lt=hAvB, AvB, A,C}, L2={-.AvB, AvB, -,A, C} 
Then: 

rLI]={AABAC}, [LiJ={-,AABAC} 
The maximal consistent sub-bases are complete, 
therefore we have only one prime implicate: 

R=(AABAC)v(-,AABAC)=BAC 
Then: 

Cnc9't(L) = Cn({B "C}) 

Let us now justify why the previous definition makes 
sense only if we restrict ourselves to the propositional 
symbols appearing in the knowledge base. Indeed, let us 
consider the following example L= { A,-.A}, we have only 
one prime implicate, the tautology T, and therefore it is 
not possible to deduce A v B from Cn(T) which is an 
argumentative consequence of the knowledge base. 

The situation: 'L l-,s4,Ri, 'L 1-c9't Rj and L¥ c9't RiARj 
can correspond to two cases: (i) No argument supporting 
RiARj can be found. In that case the arguments Li and Lj 
supporting Ri and Rj respectively are inconsistent. 
Indeed, if LiULj is consistent then LiULji-RiARj and 
there would exist an argument supporting RiAR j; (ii) 
There is an argument for -.Riv-,Rj-

Anyway the arguments supporting the prime implicates 
can be viewed as a set of scenarii extracted from L, that 
express different points of views on what is the actual 
information contained in L.. These points of view are 
incompatible in the sense that the subsets Li and Lj 
supporting two prime implicates Ri and Rj should not be 
mixed (even if not inconsistent). The fact that Cnc9't (L) 
still reflects conflicts lying in L, can be seen as follows: 
the argumentative inference forbids that two prime 
implicates Ri and Rj be inconsistent. However the set 
{ R 1, . . . , Rn} can be globally inconsistent, namely one 
argumentative consequence of L can be defeated by other 
consequences grouped together. 

Example 
Consider the set L.=[-,A, -.B, A, B, -,Cv-.D, -.AvB} 
The maximal consistent subsets of L are: 

Ll = {-,A, -,B, -,C v -,D, -,A v B} 
L2 ={-.A, B, -,C v -.D, -,A v B} 
L3 = {A, B, -.C v -.D, -.A v B} 
L4 = {-,B, A, -.C v -,D} 

Consider the three formulas: 
c)l}=(-,A/\-,B A (-,Cv-,D)) v (-,CADA(AvB)) 
c)l2=(-,A/\BA(-,Cv-,D))v(CA-,D A (A v -,B)) 
c)l3=(AABA(-,Cv-,D))v(-,CA-,DA(-,A v -,B)) 

It is easy to see that Lll-c)IJ, L21-c)l2 and L31-c)l3, 
but we never have Lil--.cjlj for i#j. Moreover 
c)l }Ac)l2Ac)l31-.l. 
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This result can be viewed as a weakness of the 
argumentative inference which avoids obvious direct 
contradictions, but does not escape hidden ones. It 
confmns the fact that Cn� (I,) is a heterogeneous set of 
properties that pertain to distinct views of the world. This 
means that a question-answering system whereby a 
question "is it true that cj>" is answered by yes or no after 
computing I. f-� ¢1 is not really informative enough. 
The system must also supply the argument for cj>. This 
way of coping with inconsistency looks natural, and the 
arguments for cj> and 'I' should enable the user to decide 
whether these two plausible conclusions can be accepted 
together or not. 

4. Arguments in prioritized knowledge 
bases 

The use of priorities among formulas is very important to 
appropriately revise inconsistent knowledge bases. For 
instance, it is proved in [14] that any revision process 
that satisfies natural requirements is implicitly based on 
such a set of priorities. Similarly a proper treatment of 
default rules also leads to prescribe priority levels, e.g.[16]. 
In these two cases, the handling of priorities has been 
shown to be completely in agreement with possibilistic 
logic [10], [2]. Arguments of different levels are also 
manipulated in [13] in a way completely consistent with 
possibilistic logic. 

In the prioritized case, a knowledge base can be viewed as 
a layered knowledge base 'L=B1 u ... u Bn, such that 
formulas in Bi have the same level of priority or certainty 
and are more reliable than the ones in Bj where j > i. This 
stratification is modelled by attaching a weight a e [0,1] 
to each formula with the convention that (cj> <Xi) e Bi, Vi 
and a1 = 1 > a2 > . . .  > <Xn > 0. 

A sub-base Li= E1 u ... uEn of 'L =  B1 u ... u Bn where 

V j = 1,n, Ej�Bj is said to be consistent if: 'Li¥- l. and is 
said to be maximal consistent if adding any formula from 
(I.-'Li) to Li produces an inconsistent knowledge base. 

Before introducing the notion of argument in prioritized 
knowledge base, let us define the notion of entailment in 
a layered base, named 1t-entailment: 

Def. 10: Let I. =  B1 u ... u Bn be a layered knowledge 
base. A formula cj> is said to be a 1t-consequence of I. 
with weight <Xi, denoted by I. f-1t (4> <Xi). if and only if: 

(i) B 1 u. . . u Bi is consistent, and 

(ii) Btu ... uBif- cj> 

(iii) V j <i, B1 u ... u Bj ¥- cj> 

The definition of f-1t is identical to the one proposed in 
possibilistic logic [7], [8], [ 1 0]. It is clear that in the 
presence of inconsistency the 1t-entailment and the 

classical entailment have not the same behaviour. Indeed 
in classical logic if our base I. is inconsistent then any 
formula can be deduced from I. and the base becomes 
useless. In a stratified base, the situation is better since it 
is possible to use only a consistent subbase of I. (in 
general not maximal), denoted by 1t(L), induced by the 
levels of priority and defined in this way: 

1t(L) = B 1 u ... u Bi, such that 1t(L) is consistent and 
Btu ... u Bi+l is inconsistent 

The remaining sub-base I. - 1t(L) is simply inhibited. It 
is not hard to check that the following result holds: 

I. f-1t c1> iff 1t('L) f- c1> 

However, this way of dealing with inconsistency is not 
entirely satisfactory, since it suffers from a principal 
drawback named "drowning problem" in [3], as we can 
see in the following examples: 

Examples: 
• Let I. be the following stratified knowledge base: 

L = {{-,A v -,B}, {A}, {B}, {C}} 
This notation of the form { B 1 , B2, ... , Bn}, where 
the weights are omitted is used for the sake of 
simplicity. This base is of course inconsistent, and 
only the subset Li = { {-.A v -.B}, {A} } is kept, and 
therefore C cannot be deduced despite the fact that C 
is outside the conflict. 
• A particular case of the drowning effect is called 
"blocking property inheritance" [16]; [2]. This can be 
illustrated by the following set of stratified defaults: 

'L= { {p}, {-,p v b, -.p v -.f}, {-,b v f,-,b v w}} 
where p, b, f and w means respectively penguin, bird, 
fly and wings. From this base it is not possible for a 
penguin to inherit properties of birds (in our example 
to inherit property of having wings), while the only 
undesirable property for a penguin is "flying". 

One way of solving the drowning problem is to recover 
the inhibited free defaults, denoted by IFree(I,), and 
defined in this way: 

IFree('L) = Free(I,) n (L -1t(L)) 

Then once the inhibited free set has been computed, we 
define the new inference relation in this way: 

Def. 11: A formula cj> is said to be a 1t+Free
consequence of I., iff it is logically entailed from 1t('L)u 
IFree(I,), namely: Lf-1t+freecl> iff 1t('L)uiFree('L.)f-cj> 

Proposition 7: Each 1t-consequence of I. is also a 
1t+Free-consequence of I.. 

Brewka [4] (see also [22]) has proposed a more 
adventurous approach to reason with inconsistent and 
layered knowledge bases, the idea is to take advantage of 
the stratification of the base to rank -order the maximal 
consistent sub-bases of I. and keep only the best ones, 
namely the "so-called preferred sub-bases". 
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Let L = B1 u ... u Bn be a layered knowledge base. A 
preferred sub-base Li is constructed by starting with a 
maximal consistent sub-base of B 1, then we add to Li as 
many formulas of Bz as possible (wrt to consistency 
criterion), and so on. Formally, Li is a preferred sub-base 
of I. if it can be con'structed as f ollows: 
Lj=E l uEzu ... uEn.where 'V j = 1,n, E1 u Ez u ... uEj 
is a maximal consistent sub-base of B1 u Bzu ... uBj. 

Preferred subbases have also been independently 
introduced in [9] in the setting of possibilistic logic under 
the name of strongly maximal consistent subbases. They 
are such that Lju{ (cj> a.) }t--n(.l a.), 'V(cj> a.)e L-Li· 

Def. 12: Let Pref(I.) be the set of preferred sub-bases of 
I.. A formula cj> is said to be a preferred consequence of I., 
denoted by Lt--preflll. iff it is entailed from each element 
of Pref(I.), namely: Lt--preflll iff 'VI.i E Pref(I.), Lit--e!> 

Proposition 8: Each 1t+Free-consequence of L is also 
a preferred consequence of I.. The converse is false 

The Lex-consequence relation described in the case of flat 
knowledge bases has also been proposed in the case of 
stratified knowledge bases [9]. The objective is to reduce 
the number of elements of Pref(I.), by selecting the 
elements which satisfy the following requirement: 
Li=E1u ... uEneLex(I.) iff 'V I.j=E'1u ... uE'n ePref(I.), 

li, such that IE'ii>IEil and 'V j<i IE'ji=IEjl 
The definition of Lex-consequence is identical to the one 
presented in the case of a flat knowledge base, namely a 
formula cj> is a Lex-consequence of L if and only if it is 
entailed from each element of Lex(I.). 
Proposition 9: Each preferred-consequence of L is also 
a Lex-consequence of I.. The converse is false. 

Now, we propose to extend the argumentative inference to 
layered knowledge bases, and to compare it with the 
inferences proposed above. 

Def. 13: A sub-base Li of L is said to be an argument 
for a formula cj> with a weight a. if it satisfies the 
following conditions: (i) Li ¥ .l, (ii) Li 1----1t (cj> a.), and 
(iii)'V(Ijl J3) E Li. Li- {('I' f3)} ¥ 1t (cj> a.) 

Def. 14: A formula cj> is said to be an argumentative 
consequence of I.. denoted by L 1---- J4, ( cj> a.), iff: 

(i) there exists an argument for (cj> a.) in L ,  and 
(ii) for each argument of (---,cj> J3) in I.. we have a.>f3. 

We now sketch the procedure which determines if cj> is an 
argumentative consequence of a stratified knowledge base 
I.=B 1 u ... uBn. The procedure presupposes the existence 
of an algorithm which checks if there exists an argument 
for a given formula in some flat base. This can be achieved 
by using the variant of a refutation method proposed for 
example in [15]. 

The procedure is based on a construction of the maximal 
argument of cj> and its contradiction. First we start with 
the sub-base B 1. and we check if there is a consistent sub
base of B1 which entails cj> or --.cj>. If the response is 
respectively Yes-No then cj> is an argumentative 
consequence of L with a weight a.1 = 1, by symmetry if 
the response is No-Yes then ---,cj> is in this case the 
argumentative consequence of I.. Now if the response is 
Yes-Yes then neither cj> nor ---,cj> are argumentative 
consequences. If the response corresponds to one of the 
answers given above then the algorithm stops. If the 
response is No-No we repeat the same cycle described 
above with B 1 uBz. The algorithm stops when we have 
used all the knowledge base I.. 

As discussed in the case of a flat knowledge base, the 
inference relation 1---- � is non-monotonic, and if our 
knowledge base is consistent then the set of formulas 
generated by 1----� is identical to the one generated by the 
"possibilistic" inference rule 1----1t. 
The next proposition shows that 1---- J4, is a faithful 
extension of the inference 1t-entailment 

Proposition 10: If L 1----1t (cj> a.) then L 1---- J4, (cj> a.). 
The converse is false. 

Proposition 11: Each 1t+Free-consequence of I. is also 
an argumentative consequence of I.. The converse is false 

The argumentative consequence is not comparable to the 
Pref-consequence nor the Lex-consequence, as we see in 
the following example: 

Example 
• Let L = {{A, --.Bv--.A, B, C}. {---,Cv--.A}. {---,AvD}} 
We have: 
- Pref(I.) ={ {{A, --.Bv---,A, C}. {---,AvD}}. {{A, B, C}, 
{--.AvD}}. {{--.Bv--.A,B,C}. {---,Cv-.A}. {--.AvD}}) 
- Lex(I.) = {{ {--.Bv--.A, B, C}, {---,Cv---,A}, {--.AvD}} }. 
Then -,A is a Lex-consequence of I. while it is not an 

argumentative consequence, since A is also present in 
I.. Note that one may object to the deletion of A from 
Lex(I.), given its high priority. Hence the Lex
consequence looks debatable. In contrast, D is an 
argumentative consequence (it derives from {A, -,A v 
D} while it is not a Pref-consequence nor a Lex
consequence. Again the Pref-consequence forgets the 
argument, because A and -.AvD do not belong to all 
preferred subbases. 
• Let L = {{A}. {--.A}. {-,A v --.D, A v D}}. we have 
Pref(I.)={ {A}, {--.Av---,D, AvD) }. In this case ---,D is a 
Pref-consequence, while it is not an argumentative 
consequence of I.. Again, the argument for D is killed 
by Pref(I.). 

As we have done in the non-stratified case, we summarize 
the relationships between the different consequence 
relations: 
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Figure 2: A comparative study of inference relations in 
stratified knowledge 

1t-Consequence 

l-1t 

Argumentative-Consequenc 
1-.14 

5. Paraconsistent-Like Reasoning in 
Layered Knowledge Bases 

In the preceding sections we have seen how in the case of 
flat and prioritized knowledge bases it is possible to use 
consistent subparts of it in order to define different types 
of consequences which are still meaningful. Levels of 
priority or of certainty attached to formulas have also 
been used to distinguish between strong and less strong 
arguments in favor of a proposition or of its contrary. 
However it is possible to go one step further in the use of 
the certainty or priority levels by i) attaching to a 
proposition cjl not only the (greatest) weight a attached to 
a logical proof of <jl (in the sense of section 4) from a 
consistent subbase, but also the weight � attached to the 
strongest argument in favor of -,cp if any, and ii) by 
continuing to infer from premises such ( cjl, a ,  � )  
propagating the weights a and � .  It will enable us to 
distinguish between consequences obtained only from 
"free" propositions in the knowledge base I. for which 
�=0 (i.e. propositions for which there is no argument in 
I. in favor of their negation), and consequences obtained 
using also propositions which are not free (for which 
there exist both a weighted argument in their favor and a 
weighted argument in favor of their negation). 

More formally, the idea is first to attach to any 
proposition in the considered stratified knowledge base I. 
two numbers reflecting the extent to which we have some 
certainty that the proposition is true and to what extent we 
have sopte certainty that the proposition is false, and then 
to provide some extended resolution rule enabling us to 
infer from such propositions. For each cjl, such that (cj> a) is 
in I., we compute the largest weight a' associated with 
an argument for <jl and the largest weight W associated 
with an argument for -,cp in the sense of Section 4. If 
there exists no argument in favor of -,cp, we will take 

P'=O; it means in this case that (cjl a) is among the free 
elements of I. since cjl is not involved in the 
inconsistency of I. (otherwise there would exist an 
argument in favor of --.cjl). 

In the general case, we shall say that c1> has a level of 
"paraconsistency" equal to min(a',W). Classically and 
roughly speaking, the idea of paraconsistency, first 
introduced in [6], is to say that we have a paraconsistent 
knowledge about c1> if we both want to state cjl and to state 
-,cj>. It corresponds to the situation where we have 
conflicting information about cj>. In a paraconsistent logic 
we do no want to have every formula 'I' deducible as soon 
as the knowledge base contains cjl and -,cj> (as it is the case 
in classical logic). The idea of paraconsistency is "local" 
by constrast with the usual view of inconsistency which 
considers the knowledge base in a global way. It is why 
we speak here of paraconsistent information when 
min(a',P') > 0. Note that in this process we may improve 
the lower bound a into a larger one a' if 3 Li �I., Li 
consistent and Li1-7t(cj>a') (similarly for W if (-,cj> �) is 
already present in I.). Then I. is changed into a new 
knowledge base I.' where each formula (cj> a) of I. is 
replaced by (cjl a' W). Moreover if a'< W. i.e. the 
certainty in favor of --.cj> is greater than the one in favor of 
cj>, we replace (cjl a' W) by (--.cj> W a'). If c1> is under a 
clausal form, -.</)is a conjunction q>IA ... Aq>n ; in this 
case we will replace (--.cj> P' a') by the clauses (q>i P' a'), 
i=l,n in order to keep I.' under a clausal form if I. was 
under a clausal form. Let us consider an example 

.I.={(-,AvB a), (A �) (--.B 0) (B o), (-,BvC e), (-,C p)}. 
Then: 

I.' = {(-,A v B max(a,o) min(�,0)), (A� min(a,0 )), 
(-,B max(0, min(p,e)), max(o, min(a.�))), 
(B max(o, min( a.�)), max(0 , min(p,e))), 
(-,B v c e min(p,o)), (-,C p min(e,o)) }. 

Depending on the ordering between the weights we will 
keep either (-,B x y) or (By x) depending if x > y or y > 
x. If x = y we will keep both of them in I.'. 

In a second step an extended resolution rule can be 
proposed in order to infer from propositions in I.'. This 
rule expressed in clausal form is (see the full report for a 
proof, see [8] also): 

(A v B a' pt) 
(--.B v c o' o') 

(A v C e' p') 
with e' = min(max(0',P'). max(a',B')) 

p' = max(W,o'). 
When W=o'=O, i.e. the premises are not paraconsistent, 
we obtain e'=min(a',0 '), p'=O. Clearly we have e'�p·, i.e. 
the inference preserves the inequality between the 
weights. We also observe that the degree of 
paraconsistency of  the conclusion namely 
min(e',p')=max(W,B') is equal to the maximum of the 
degrees of paraconsistency of the two premises namely 
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min(a ',W)=W and min(� ',o')=o'. Thus the inference rule 
extends the standard possibilistic resolution [7, 10] and in 
case of paraconsistent premise(s), propagates this 
paraconsistency to the conclusion. In the case where one 
of the premises is not paraconsistent, i.e. �' = 0 for 
instance, the degree of certainty e' = min(0 ', max(a',o')) 
of the conclusion is greater than its degree of 
paraconsistency p' 

= o' only if the degree of certainty a' 
of the non-paraconsistent premise is greater than o' and 
�·>o' (i.e. � ':t:o'). Otherwise the conclusion which is 
obtained is SUCh that E' = p' = 0', i.e. nothing emerges 
from inconsistency. 

Let us consider an example 
I.= {(A 1), (-,AvB 0.8), (-,B 0.6), (-.Ave 0.5), (-,0 
0.3), (-,AvO 0.4), (-,AvE 0.7), (-,FvG 0.5), (F 1), (-,F 
0.2), (--.Hvl 0.3), (I 0.4) } . 
Observe that I. 1-1t (..L 0.6), i.e. the global level of 
inconsistency of the base is 0.6. Then we have 
I.'= {(A 1 0.6), (--.AvB 0,8 0,6), (-,Ave 0.5 0), (0 
0.4 0.3), (-.AvO 0.4 0.3), (-,AvE 0.7 0), (-,FvG 0.5 
0), (F 1 0.2), (-.Hvl 0.3 0), (I 0.4 0) }. 

Applying the "paraconsistent" resolution rule yields 
(e 0.6 0.6), (E 0.7 0.6), (G 0.5 0.2), (I 0.3 0). 

This shows that 
-non-paraconsistent premises such as (-,Ave 0.5 0) with 
a rather low degree of certainty resolved with another 
premise (here (A 1 0.6)) whose level of paraconsistency is 
larger than this degree of certainty, lead to fully blurred 
paraconsistent conclusions, here (e 0.6 0.6). By 
contrast 1-Free+1t would enable to get (e 0.5), while the 
refutation procedure used in 1-1t yields (e 0.6), reflecting 
the global inconsistency of the base 
-if the non-paraconsistent premise is sufficiently certain 
with respect to the paraconsistency of the other premise, 
e.g. (-.AvE 0.7 0), and (A 1 0.6), the conclusion, here 
(E 0. 7 0.6) is not completely blurred. This is true even 
if this certainty is less than the global level of 
inconsistency of the base (e.g. (G 0.5 0.2) obtained from 
(-.FvG 0.5 0), (F 1 0.2)) 
-if the premises are not paraconsistent, (e.g. (-,H v I  0.3 
0), (H 0.4 0)), we obtain a non-paraconsistent conclusion, 
as with t-Free+1t• since we do not use refutation. 

Generally speaking, if a clause Av B is more 
paraconsistent than the clause -,BvC is certain, then AvC 
will be completely blurred by paraconsistency. Indeed 
from a logical point of view, being more certain that 
-.AA-,B is true than we are certain that -,BvC is true, 
the entailment AvB, -,A/1.-,Bt-AvC applies with a greater 
level of certainty than AvB, -,Bve 1- AvC. 

We can observe that using the "paraconsistent" resolution 
rule locally in a knowledge base I.', may yield the same 
proposition with different weights, namely (<I> a' W), (<I> 
a"�"). In this case, a more certain and less paraconsistent 
conclusion should be preferred; this is less obvious when 

we have to choose between a highly certain but highly 
paraconsistent conclusion and a conclusion with low 
certainty and low paraconsistency. Lastly observe that,for 

the formulae appearing explicitly in .L, the paraconsistent 
approach gives the same results as t- c54, • They differ for 
other conclusions since the paraconsistent approach 
propagates the effects of local inconsistency. 

6. Combining knowledge bases 

In [1] several approaches are proposed to combine 
knowledge bases, and one of them is very similar to what 
[4] calls "preferred sub-theories". The idea is to assume a 
total ordering between different bases Lt>L2> ... >Ln. 
such that Li is more reliable than Lj for j>i. A resulting 
base is constructed from I. 1 by adding as many formulas 
as possible fromi.2 (wrt consistency criterion), then as 
many formulas as possible from L 3, and so on. The 
principal problem is that the resulting base is not unique. 

Two approaches are proposed in [5] to merge bases 
according to suspicious attitude or to trusting attitude. 
The suspicious attitude is very conservative since for 
example the result of merging two knowledge bases 
L l>L 2 is equal to the union of the two bases if they are 
not conflictual, and is equal to I. 1 in other cases. In the 
trusting attitude, the approach is very similar to [1] and 
produces always one resulting base, but unfortunately the 
approach is very restrictive since the knowledges bases to 
be merged must be sets of literals. 

In the context of possibilistic logic, an approach has been 
proposed in [11] for the fusion of n knowledge bases 
L l, ... ,Ln· One way of defining the resulting base is to 
consider the intersection of the deductively closed bases 
en(I.i) •... , en(I.n) (by t-1t). It is clear that this approach 
is very cautious. In the same paper, another approach has 
been proposed considering now the union of the 
deductively closed bases Cn(Li), ... ,Cn(I.n). However 
when the resulting base is inconsistent, then some 
formulas will be inhibited by the drowning effect [3] 

We suggest a new approach to merge n knowledge bases 
l: t. ... , l:n. For this aim we use of a variation of the 
argumentative consequence relation, denoted by t- J4, Jvt, 
Jvt, for the multi-sources, and which is defined in the 
following way: 

l:1 •... , l:n t-.,sfUI{,(<I> a) iff: 
3I.i. such that Li 1- (<I> a), and 
�I.j. such that I.j t- ( -.q, �) such that � > a. 

Then the resulting knowledge base is: I.result = {(<I> a) I 

Ll •... , In t-3tJI{, (<I> a) }. B ecause Lresult c an b e  
inconsistent, this approach should be used for question
answering purposes only, and each response should be 
accompanied with its argument. 
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7. Conclusion 

The proposed notion of argumentative inference is 
appealing for several reasons. First it is an extension of 
classical inference (in the flat case) and possibilistic 
inference (in the layered case) that copes with 
inconsistency in a very "ecological" way. Namely it is 
very faithful to the actual contents of the knowledge base, 
and does not do away with information contained in it, as 
opposed to the approaches based on preferred and 
lexicographically preferred subbases. It avoids the 
drowning effect of standard possibilistic logic by 
salvaging sentences whose level of entrenchment is low 
but are not involved in any contradiction set. Another 
advantage is that it is amenable to efficient standard 
implementation methods based on classical resolution. 

Also it avoids outright contradictory responses (such that 
<!> and -,cj>), although several deduced sentences can be 
globally inconsistent. But as pointed out earlier, the 
arguments supporting a set of more than two globally 
contradictory sentences are distinct, so that the reality of 
this contradiction is debatable, and only reflects the 
presence of different points of view. Anyway it seems 
that it is the price to pay in order to remain faithful to an 
inconsistent knowledge base. Another result of the paper is 
the use of local contradictions as a specific weight 
attached to sentences. This approach only partially avoids 
the drowning effect, but leads to more informative 
responses than possibilistic logic since not only the 
certainty of the formula is evaluated, but also its level of 
conflict. In the future, the paraconsistent inference should 
be positioned with respect to the other inference modes in 
order to assess the benefits of carrying local weights of 
conflict. 

Lastly it would be interesting to apply the above result to 
default reasoning and compare in such a framework the 
argumentative inference and the one proposed by [24]. 
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