
HAL Id: hal-04057355
https://hal.science/hal-04057355v1

Submitted on 7 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fuzzy functional dependencies - An overview and a
critical discussion

Patrick Bosc, Didier Dubois, Henri Prade

To cite this version:
Patrick Bosc, Didier Dubois, Henri Prade. Fuzzy functional dependencies - An overview and a critical
discussion. 3rd International Fuzzy Systems Conference (1994), IEEE, Jun 1994, Orlando, Floride,
United States. pp.325–330, �10.1109/FUZZY.1994.343753�. �hal-04057355�

https://hal.science/hal-04057355v1
https://hal.archives-ouvertes.fr

FUZZY FUNCTIONAL DEPENDENCIES
—AN OVERVIEW AND A CRITICAL DISCUSSION—

Patrick BOSC* – Didier DUBOIS** – Henri PRADE**
* I.R.I.S.A./E.N.S.S.A.T., B.P. 447, 22305 Lannion Cedex, France, Email: bosc@enssat.fr
** I.R.I.T., Univ. P. Sabatier, 31062 Toulouse Cedex, France, Email: {dubois, prade}@irit.fr

Abstract
In the context of regular relational databases,

functional dependencies have received a lot of
attention, since they capture some semantics about
the data related to redundancy. Functional
dependencies lead to an appropriate design of a
database in terms of a set of relations and can make
the checking process significantly easier. For about
ten years, several proposals to deal with ill-known or
weighted data in database management systems have
been made and extensions of the relational data model
have been proposed accordingly. In this context, the
concept of fuzzy functional dependency has emerged,
and several definitions have been given. In this paper,
a critical overview of different proposals is provided,
and the intended semantics and use of fuzzy functional
dependencies are particularly discussed.

I . Introduction
An important feature of a database management

system (DBMS) is to handle properties that data
should fulfil, known as integrity constraints (IC's).
These constraints are not invented for technical
reasons, but in fact they are reflecting properties of
the real world. For instance, if a database contains
information about customers, orders and stock,
properties such as: "the quantity ordered for a given
item is smaller than the quantity of this item
appearing in the stock", "to order, a customer must be
known (described)", "the delivery address is always the
same for a given customer" may hold. One solution
to maintain these properties is to rely on ad hoc
programs written by database users in order to ensure
that no update violates the IC's valid in the base. This
approach has several drawbacks, in particular its non
declarative aspect. That is why, DBMS's are evolving
in order to free users from an explicit programming of
the IC's, at least for some types of IC's which could
be given in a declarative form.

Among all the possible IC's that can be imagined,
a particular type came out very early, along with the
relational model of data [7]: functional dependencies
(FD's) [2], and to a lesser extent other dependencies
(multi-valued [10] and join dependencies [13][16]). In
fact, dependencies are IC's with a special status. For a
number of reasons, (mainly the risk for inconsistency
when updates are performed), redundancy is not

convenient in a database and dependencies have
emerged since they are capable of capturing some
semantics of the data strongly connected with the
occurrence of redundancy in a database. Informally, a
FD is a property valid on a relation, stating that
tuples with the same value on a set A of attributes
have the same value on a set B of attributes.

Let us introduce this phenomenon with a database
dealing with sales through the relation
ORDERS(customer, city, product, price) where the
following property (P) holds: "a given customer is
located in a unique city". Clearly P is an FD between
the attribute customer on the one hand and city on the
other hand. If the customer Smith from Boston has
ordered the products p1, p2 and p7, the relation will
involve the three tuples: <Smith, Boston, p1, $4>,
<Smith, Boston, p2, $9>, <Smith, Boston, p7, $6>
and it is obvious that the information tied to Smith's
city is replicated, thus generating redundancy. This
situation illustrates the connection between the
existence of an FD and the presence of redundancy in
a relation.

Fortunately, it is possible to significantly reduce
(and even to totally remove) redundancy from a
database if its schema is chosen (or designed)
appropriately. In our previous example, let us now
assume that we represent our data using two distinct
relations: CUST(customer, city) describing the
customers and their related city and
ORDERS(customer, product, price) dealing with the
products ordered by the customers. The information
concerning Smith will here be stored as four tuples,
one in CUST: <Smith, Boston> and three in
ORDERS: <Smith, p1, $4>, <Smith, p2, $9>,
<Smith, p7, $6>. Using this representation, no
redundancy occurs although the same information is
recorded in the database. This example shows the link
between redundancy, functional dependencies and
database design (through relation splitting).

The removal of redundancy does not change the
fact that FD's are valid whatever the schema chosen to
model the data. It is then interesting to compare what
has to be done to check the validity of FD's depending
on the schema. In the previous example, with the
first schema involving a single relation, the
satisfaction of the property P requires a program
checking that, all tuples referring to a given
customer, have the same value for the attribute 'city'.

If the second schema is retained, it is worth noticing
that the satisfaction of the property P reduces to
making sure that the attribute customer remains the
key of the CUST relation when this relation is
updated. This verification is very easy to implement
(since any file system supporting a DBMS provides
the uniqueness of declared keys) and, above all, this
does not require any explicit program to be written.

Since the beginning of the eighties, several
groups of researchers have been working on the
application, to database management, of methods
based on fuzzy sets and possibility theory for the
treatment of imprecision and uncertainty and the
handling of properties whose satisfaction is a matter
of degree. This objective is very wide and covers
several issues such as the extension of the data
models to support ill-known data [5][14][19][22], the
expression of flexible queries directed to regular or
fuzzy databases [18][4][14] and the description of soft
constraints bearing on the data. This last direction has
mainly been concerned with the extension of
functional dependencies (FD's) to fuzzy functional
dependencies (FFD's) for which different propositions
have been made [15][6][8]. In each proposal, a
particular definition for extending the concept of FD
is suggested and its justification often seems to reside
more on the validity of "good" mathematical
properties (analogous to those valid for FD's) than on
their intended semantics and their intended use. In
particular, it is not made clear what FFD's bring from
the point of view of redundancy (and schema design).
In this paper we rather consider FFD's as IC's
(redundancy and database design issues are left out)
and propose a general framework for extending the
notion of FD using a typology of fuzzy rules.

The structure of the paper is the following. In
Section 2, the main results concerning classical
functional dependencies are recalled. Section 3
provides the necessary background on fuzzy databases
for discussing FFD's and their intended meanings.
Section 4 reviews previous proposals for FFD's and
discusses them with respect to regular databases or
databases with weighted tuples. Some considerations
regarding database design and relation splitting will be
pointed out. Section 5 discusses FD's in databases
where tuples include fuzzily known values. Section 6
distinguishes two kinds of FFD's and suggests their
possible uses for extrapolating values.

II. Principal Results Concerning
Functional Dependencies

Functional dependencies have been defined in the
context of data modelled as relations. A relation R
over a set of domains D1, ... , Dn is any subset of
the Cartesian product of these domains. In the
following, U will represent the universe over which a
relation R is defined. The functional dependency X !
Y holds over R(U) iff:

"t1, t2 # R, t1.X = t2.X $ t1.Y = t2.Y (1)
with X, Y % U and where t.X denotes the restriction
of the tuple t to the attributes belonging to X.

FD's fulfil a number of properties such as
reflexivity, augmentation (if X ! Y then X & Z !
Y), and transitivity (which are formalized by
Armstrong's axioms). It is possible to focus on a
family known as elementary functional dependencies
(EFD's) which are of special interest since they
represent "atomic" dependencies and they allow for the
removal of trivial FD's (due to the property of
reflexivity: " X, Y % U, X % Y $ Y ! X). X ! Y
is an EFD iff: i) X ! Y is an FD, ii) Y is a single
attribute, iii) Y is not included in X and iv) there is
no proper subset X' of X such that X' ! Y. The
notion of key of a relation is also connected to that of
FD. C % U is a key of R(U) iff: i) C ! U and ii)
there is no proper subset C' of C such that C' ! U.

Given these definitions, let us consider a relation
R where the EFD: X ! Y holds. If X is a key of R,
there is no redundancy in R (with respect to this FD)
and the satisfaction of the constraint represented by
this FD reduces to that of the uniqueness of the
values of the set X of attributes. If X is not a key, the
FD causes some redundancy in R and the satisfaction
of the FD will require a program to check it. The
work called "normalization" in the relational database
theory is exploiting this idea, i.e., one tries to have
all EFD's captured by keys of relations since these
FD's do not generate redundancy. Moreover, in this
case, FD checking reduces to maintaining the
uniqueness of key values in the relations.

Another point worthy of attention concerns the
expression of FD's in a schema. Let us assume a
universe where X ! Y holds and consider a schema
where this FD is lost, i.e., no relation possesses the
attributes X and Y together. In this case, the
maintenance of the property X ! Y will be difficult
and will require a specific program to be written to
this aim. Let us illustrate this situation with the
schema involving the two relations: R1(C,V) and
R2(C,R) assuming that the FD's: C ! V and
{V,R} ! C are valid on the universe {C,V,R}. With
this representation, the first FD is represented in R1
but the second is lost.

Normal forms of relations have been defined to
constrain the type of FD's that are allowed in the
relations of a schema. Third normal form (3NF) states
that the only EFD's X ! Y allowed in a relation are
such that X is a key or Y belongs to a key, whereas
Boyce-Codd-Kent normal form (BCNF) imposes that
the only EFD's present in a relation have a key in the
left-hand side. Clearly, BCNF relations correspond to
our objective in terms of redundancy, but it has been
shown that it is not always possible to model a
universe as a set of BCNF relations where all the
initial FD's are preserved, while it is possible for
3NF relations. This result tells us that, in general, it

is necessary to write programs to check an FD X !
Y either because X is not a key of a relation (a 3NF
schema has been chosen) or because this FD has been
lost in the adopted representation (a BCNF schema
has been chosen).

The transformation of a schema is based on the
following decomposition theorem: the relation
R(X,Y,Z) with the FD X ! Y can be replaced by its
two projections R[X,Y] and R[X,Z]. This theorem
guarantees that the data represented in the two
schemas are identical, because R can be reconstructed
from its projections using a natural join. This is the
notion known as lossless join property of relations.

Example. Let us consider the universe {C,V,R}
with two EFD's: C ! V and {V,R} ! C. The
representation of this universe as a single relation
S(V,C,R) leads to a 3NF schema but the FD: C ! V
is such that C is not a key of S (which has two keys
{V,R} and {C,R}) and some redundancy can take
place. This schema may be transformed according to
the theorem into a schema involving two relations:
S1 = S[C,V] and S2 = S[C,R]. In this lattter schema,
S1 and S2 are clearly BCNF, but the FD {V,R} ! C
is lost.

From a computational point of view, algorithms
have been designed in order to generate 3NF and
BCNF schemas [3]. They need to compute keys,
which in turn require the knowledge of a minimal
cover of the valid FD's. A minimal cover can be
found using Armstrong's axioms [1] which proved to
be a complete and valid set of rules, i.e., any valid
FD is found and any FD which is found does hold.
We will see later that some extensions of FD's into
fuzzy FD's are interested in the preservation of such a
deduction system over dependencies (FFD's).

III. Fuzzy Databases and Fuzzy Functional
Dependencies

In the following we only consider two kinds of
fuzzy relational databases. For the sake of brevity, we
do not discuss Buckles and Petry's approach [5] where
fuzzy similarity relations are attached to attribute
domains to model interchangeability between values.
Namely we consider databases where tuples are
"ordinary" tuples associated with a weight (usually
belonging to [0,1]) and those where the tuples may
include any (fuzzy) subset of values of the attribute
domains rather than precise and unique attribute
values as in ordinary tuples. For instance, consider a
relation made of the attributes Name, Age, Salary
(Peter, 25, 20000; 0.8) is a weighted tuple, and (Paul,
YOUNG, [20000,22000]) is a tuple with a fuzzy
value (YOUNG) and an imprecise value ([20000,
22000]). In order to define meaningful operations, it
is important to explain the intended meanings of the
weight in the first case, and of the subsets in the
second case. There are mainly two types of
interpretations for the fuzzy weight: it is either a

global confidence level in the information stored in
the tuple, or it may be the degree to which the tuple
belongs to the relation which is then supposed to
have a fuzzy meaning. In the above example this
second interpretation seems difficult; however
consider the relation LIKES with attributes Person's
name, Movie's name, then the weight associated with
a tuple may in this case either mean the confidence in
the information as said above (then LIKE is
interpreted in a binary way), or estimate the extent to
which the person likes the movie (then LIKE is
interpreted as a gradual property). Note that it is
usually assumed that identical tuples with different
weights are not allowed whatever the interpretation of
the weight (viewing the weight as a special attribute,
there is a FD <Attributes of the tuple> !
<Weight>!). A collection of weighted tuples over a
given set of attributes defines a fuzzy relation (i.e., a
fuzzy subset of a Cartesian product).

In the case of tuples with imprecise or fuzzy
components, the subsets, fuzzy or not, are restricting
the more or less possible values of a single-valued
attribute. In other words, the membership function of
the (fuzzy) subset is interpreted as a possibility
distribution. In the above example, µYOUNG(a)
estimates the degree of possibility that age(Paul) = a.
This interpretation of subsets completely departs from
the case of a multiple-valued attribute like Spoken
languages, as in the example (Paul{English,French})
where the tuple would mean that Paul speaks both
English and French (while in case of a single-valued
attribute like "Native language", {English,French}
would mean "either English or French". It is also
worth noticing that a tuple of (fuzzy) subsets can be
viewed to some extent as equivalent to a collection of
a special kind of (weighted) tuples. This is
particularly true in the case of multiple-valued
attributes, for instance in the relation Spoken
languages (Paul,{English,French}) is equivalent to
the two tuples {(Paul,English),(Paul,French)}. In the
case of imprecisely known single-valued attributes,
the same remark applies except that the tuples will be
mutually exclusive. In the fuzzy case weighted tuples
are obtained, whose semantics differs for multiple-
valued attributes and single-valued attributes; in the
latter case, the weight is a possibility degree.
Moreover a relation made of tuples having fuzzy
components modelling imprecise values will be
turned into a more complex relational structure made
of a collection of disjunctive subsets of weighted
tuples. This remark indicates that tuples with fuzzy
components is a compact representation of an
otherwise complex relational structure. Moreover it is
a faithful representation provided that the attributes be
non-interactive.

The idea of representing not only regular integrity
constraints but also soft ones in order to take
advantage of all the available information (even if it

is incomplete or imprecise) is clearly independent of
the notion(s) of fuzzy datbases. In other words, it may
be fruitful to distinguish between the use of fuzzy
functional dependencies in the case of a regular
database, and the problems raised by the application
of regular functional dependencies to a fuzzy database.
Obviously, once these two questions are clarified, we
can consider the general case of a fuzzy functional
dependency applying to a fuzzy database.

IV. Previous Approaches to Fuzzy
Functional Dependencies

We will briefly present a few proposals for
extending FD's into FFD's. Basically, the idea is to
start with the definition (1) of an FD and to transform
it in order to take into account situations where the
strict equality does not apply. Consequently,
resemblance relations (reflexive and symmetric) over
data domains are introduced (RESX(t1.X, t2.X) will
denote the resemblance degree between t1.X and
t2.X). Resemblance between tuples are computed by a
conjunctive aggregation of the resemblances between
attribute values; usually the minimum operation is
used, although we might think of other operations.

Raju and Majumdar [15] have proposed the
following extension of FD, X ~> Y is valid on
R(U) ' "t1, t2 # R,

RESX(t1.X, t2.X) $RG RESY(t1.Y, t2.Y) (2)
where $RG stands for Rescher-Gaines' implication
(($RG) = 1 if (*), 0 otherwise). It applies both
to classical databases and to fuzzy relations made of
weighted tuples. Note that FFD's obeying (2) are
stronger than (1) (i.e., FD's) iff restricted relations are
used (i.e. relations such that RESD(a,a') = 1 ' a = a')
since (2) also reads RESX(t1.X, t2.X) * RESY(t1.Y,
t2.Y); otherwise (2) is not comparable with (1). Note
that except for the 1-cut (in case of a restricted
resemblance), the (-cut of a FFD, i.e., RESX(t1.X,
t2.X) + ($ RESY(t1.Y, t2.Y) + (is not a FD, but
a more general IC. It can be shown that [15][12]: i)
Armstrong's axioms apply to this type of FFD and
define a valid and complete deduction system for
FFD's, ii) if restricted resemblance relations are used,
then the following decomposition theorem holds:
R(X,Y,Z) with the restricted FFD X ~> Y can be
replaced by the projections R[X,Y] and R[X,Z]. (3)

G. Chen et al. [6] have considered a slightly
different definition, also in the scope of fuzzy
relations:
X ~>, Y (, #]0,1]) is valid on R(U)
' "t1, t2 # R, t1.X = t2.X $ t1.Y = t2.Y and
[RESX(t1.X, t2.X) $G RESY(t1.Y, t2.Y)] + , (4)

where $G denotes Gödel's implication (($G) = 1
if (*),) otherwise). This proposal strenghens
definition (1) in adding a constraint when values are

no longer equal, but only similar according to
resemblance relations. Chen et al. have established
the following results: i) it is possible to build an
extended set of Armstrong's axioms defining a valid
and complete set of deduction rules for this kind of
FFD's, ii) the decomposition theorem (3) holds
without any constraint over resemblance relations and
iii) fuzzy normal forms have been designed, whose
definition is the usual one where the term FD has
been replaced by FFD. It can be noticed that this
definition allows some discontinuity since t1.X =
t2.X $ t1.Y = t2.Y, but if t1.X and t2.X are very
close, it is sufficient that t1.Y and t2.Y resemble each
other at degree ,, which does not mean that they are
very close. Note that in these two proposals the new
property expressed by the FFD remains a Boolean one
and is fully satisfied or unsatisfied. This is also true
with Cubero et al.'s proposal [8] where X ~>((,)) Y
is defined by RESX(t1.X, t2.X) + ($ RESY(t1.X,
t2.X) +). Kiss [11] also works with weighted tuples,
using strict equality, but takes into account the
weights by defining the degree to which the FFD
holds, as
1 – supt1,t2:t1.X=t2.X min(weight(t1),weight(t2)).
 and t1.Y-t2.Y (5)
Let us also mention that Shenoi et al. [17] have
proposed a definition of FFD's in Buckles and Petry's
framework, in the spirit of [15].

In fact, in each of these extensions, a specific
choice is made, but this choice is not generally
governed by semantic considerations, but rather by
the fact that a parallel can be made between properties
valid for FD's and for the considered FFD's. There is
no reason for choosing one and not the other as far as
these definitions correspond to actual constraints
bearing on the database. The motivation for
introducing FFD's such as (2), (4) or (5) seems to be
the preservation of properties of classical FD's rather
than an attempt to model some real-world constraint
relating the components in tuples. We will have the
same difficulty to explain the meaning for definition
(4), especially with the appearance of the threshold ,.
We believe that it is important to have a clear
meaning of these properties if we want people to
express them in the context of a given real world
modelling. Let us for instance consider the FD
Volume, Matter ! Weight. In such a case, it is clear
that not only two items in the same matter with the
same volume have the same weight, but also that if
they are in the same matter, their weights should be
close when their volumes are close. In such an
example, it is certainly possible to define the fuzzy
resemblance relations in such a way that the FFD
agrees with the physical reality.

Another question concerns the interest of the
decomposition of a relation where the FFD X ~> Y
holds. When the FD X ! Y holds on a relation, the
decomposition is envisaged as a way to remove

redundancy and to facilitate the checking process of
the FD. With a FFD, this objective is no longer
achievable since, even in the schema issued from the
decomposition, the satisfaction of the FFD will
remain a matter of resemblance, and thus, will require
pairwise comparisons of tuples. The conclusion here
is that FFD's, as defined above, are interesting in
terms of data properties, i.e., integrity constraints,
but, unlike FD's, they do not seem to be connected
with the schema design of a database (except if their
definition is stronger than a regular FD). Indeed, the
decomposition theorem (3) holds in the cases above
when the definitions are stronger than classical FD's.
It is easy to show that a fuzzy relation R(X,Y,Z) with
the classical FD X ! Y is equivalent to R[X,Y] and
R[X,Z]. Then, any property on R which implies this
FD will make R decomposable.

V . (F)FDs in Fuzzy Databases
Let us consider the case of a regular FD in a fuzzy

database where tuples include subsets of attribute
values interpreted as possibility distributions.
Observe first that if two quantities x and y are known
to be equal, the possibility distributions .x and .y
which restrict their possible values in case of
incomplete information should be equal, i.e., x =
y $.x = .y, but the converse is false. Knowing
that .x = .y it is only possible that x = y (when .x
and .y are not membership functions of singletons).
Thus if imprecise fuzzy attribute values are allowed,
it is necessary to understand the meaning of the
expression RESD(A1,A2) where .t.X1 = µA1 and
.t.X2 = µA2. In [15], it is suggested to define the
resemblance between A1 and A2, as: IA1/A2 =
max(card(A1 0 A2) / card(A1),card(A1 0 A2) /
card(A2)). Unfortunately, this way of doing is
adequate to compare two fuzzy sets, but not for
possibility distributions representing imprecise
values. An illustration is when A1 and A2 are
completely unknown (any value of the universe is
totally possible). In that case card(A1 0 A2) =
card(A1) = card(A2), which would mean that these
two values are fully similar. The only true
information is that the resemblance is totally possible
(but not certain). In fact we have to distinguish
between the possibility of resemblance, defined by
1(t1.X /X t2.X) =

supu#DX,u'#DX min(.t1.X(u),.t2.X(u'),RESX(u,u'))

and the certainty of resemblance by
N(t1.X /X t2.X) = 1 – 1(t1.X(not /X)t2.X)

where not /X is defined by 1 – RESX. Then the
monotonicity of 1 and N applied to a FFD obeying
(2) leads to the constraints (not acknowledged in [8])

1(t1.X /X t2.X) * 1(t1.Y /Y t2.Y)

N(t1.X /X t2.X) * N(t1.Y /Y t2.Y)
Now, consider the example

Name Age Salary
Paul
Peter

YOUNG
YOUNG

MEDIUM
RATHER-SMALL

This database may be perfectly in agreement with
the regular FD Age ! Salary (assumed to hold)
provided that there is a value completely compatible
with both MEDIUM and RATHER-SMALL, i.e., the
consistency of MEDIUM and RATHER-SMALL is
equal to 1. Then the possibility is 1 that there exists
an instantiation compatible with the fuzzy
information and which does not violate the FD. It
shows that although t1.Age = t2.Age $ t1.Salary =
t2.Salary holds in this example, the FD does not
apply to fuzzy values (the equality of fuzzy values for
Age does not entail equality for Salary). Furthermore
the relation is no longer decomposable except if we
accept to lose information by keeping only the tuple
(YOUNG, MEDIUM & RATHER-SMALL) in the
relation Age × Salary. In fact, if we decompose, the
situation is still worse, since this tuple would mean
that for any age restricted by YOUNG the salary is
restricted by the other fuzzy set in the tuple. It
disagrees with the database where this is only known
for two particular Age values: Peter's age and Paul's
age. This means that strictly speaking the key Age of
the relation (according to the FD) is not allowed to
have fuzzy values; it is still more striking if we
consider the above example where YOUNG is
replaced by UNKNOWN.

VI. Two Kinds of Fuzzy Dependencies
In the scope of modeling real-world constraints

that relate the components of tuples, there exists
several kinds of fuzzy rules, especially certainty rules
(of the form "the more X is A, the more certain
<something>"), and gradual rules (of the form "the
more X is A, the more Y is B") [9]. This leads to
imagine two ways of relating resemblance degrees in
generalized functional dependencies. If R and S model
resemblance relations, a first kind of dependency
expresses that the more similar (in the sense of R)
t1.X and t2.X are, i.e., the closer to 1 µR(t1.X,
t2.X), the more certain the similarity (as described by
S) of t1.Y and t2.Y is. It is expressed by the
following constraint on the conditional possibility
distribution .(t1.Y,t2.Y)|(t1.X,t2.X) (denoted by
.y,y'|x,x' for simplicity) representing the dependency:
.y,y'|x,x'(v,v',u,u') * max(µS(v,v'),1 – µR(u,u')) (6)

where u, u', v, v' respectively denote the current value
of the variables x = t1.X, x' = t2.X, y = t1.Y and y' =
t2.Y. Indeed when µR(u,u') is close to 1, the values v
and v' which are not similar in the sense of S should
have a low degree of possibility .y,y'|x,x'(v,v',u,u').
In the particular case where R is a strict equality

relation, we see that (6) expresses that if t1.X = t2.X
then t1.Y should resemble t2.Y in the sense of S.

A second kind of dependency is gradual and relates
the resemblance of t1.X and t2.X, to the resemblance
of t1.Y and t2.Y in the following way

µS(v,v') + min(.y,y'|x,x'(v,v',u,u'), µR(u,u')) (7)
i.e., the closer to 1 µR(u,u') and the more possible
the values v and v', the closer to 1 µS(v,v') should be.
In the particular case where .y,y'|x,x' is a crisp
possibility distribution, we recover the definition (2)
of a fuzzy functional dependency, namely

µR(t1.X, t2.X) * µS(t1.Y, t2.Y).
We examine now what can be deduced on t2.Y

with these dependencies when some (fuzzy)
information are available on t1.X, t2.X and t1.Y.
• Certainty rule dependency: Let us suppose that we
know that .x = µA; .x' = µA' and .y = µB which
express that the possible values of x, x' and y are
restricted by A, A' and B respectively. Then applying
Zadeh combination/projection principle of possibility
theory, i.e.
.y'(v') = supu,u',v min(.x(u),.x'(u'),.y(v),

.y,y'|x,x'(v,v',u,u')) (8)
we get,with A, A', B normalized, and using (6)

.y'(v') = max(µB S(v'), 1 – N(R; A × A')) (9)
where N(R; A × A') is the necessity measure of the
(fuzzy) event "(x,x') satisfies R" given the
information that (x,x') is restricted by the Cartesian
product A × A'. (9) expresses that we are certain at
the degree N(R; A × A') that y' is restricted by B S
(i.e., the set of values restricted by B or similar in the
sense of S to an element in B).
• Gradual rule dependency: if we know that .x = µA;
.x' = µA'; .y = µB, we get from (7) and (8)
.y'(v') = supu,u',v min(µA(u), µA'(u), µB(v),

µR(u,u') ! µS(v,v'))
where ! is Gödel implication.

Thus fuzzy functional dependencies might be
useful for tasks such as integrity checking, or the
extrapolation of missing values, as well as for
analogical reasoning and cooperative answering.
Dependencies modeled by gradual rules look
particularly adapted to interpolation purposes.

References
[1] W.W. Armstrong, Dependency structures of data

base relationships. Inf. Proces., 1974, 580-583.
[2] P.A. Bernstein, J.R. Swenson, D.C. Tsichritzis, A

unified approach to functional dependencies and
relations. Proc. ACM SIGMOD Conf., San José,
1975, 237-245.

[3] P.A. Bernstein, Synthesizing third normal form
relations from functional dependencies. A C M
Trans. on Database Systems, 1(4), 1976, 277-298.

[4] P. Bosc, O. Pivert, Some approaches for relational

databases flexible querying. J. of Intell.
Information Systems, 1, 1992, 323-354.

[5] B.P. Buckles, F.E. Petry, A fuzzy representation of
data for relational databases. Fuzzy Sets &
Systems, 5, 1982, 213-226.

[6] G.Q. Chen, J. Vandenbulcke, A step towards the
theory of fuzzy relational database design. Proc.
Inter. Fuzzy Systems Association (IFSA'91)
Congress , Brussels, Belgium, Vol.: Computer,
Management & Systems Science (R. Lowen,
M. Roubens, eds.), 1991, 44-47.

[7] E.F. Codd, A relational model of data for large
shared data banks. Communications of the ACM,
13(6), 1970, 377-387.

[8] J.C. Cubero, J.M. Medina, M.A. Vila, Influence of
granularity level in fuzzy functional dependencies.
In: Symbolic and Quantitative Approaches to
Reasoning and Uncertainty (Proc. ECSQARU'93),
LNCS, Vol. 747, Springer Verlag, 1993, 73-78.

[9] D. Dubois, H. Prade, The semantics of fuzzy "if…
then…" rules. In: Fuzzy Approach to Reasoning
and Decision Making (V. Novák, J. Ramík,
M. Cerny, Nekola J., eds.), Kluwer, 1992, 3-16.

[10] R. Fagin, Multivalued dependencies and a new
normal form for relational databases. ACM Trans.
on Database Systems, 2(3), 1977, 262-278.

[11] A. Kiss, , -decomposition of fuzzy relational
databases. Annales Univ. Sci. Budapest., Sect.
Comp., 12, 1991, 133-142.

[12] Liu, The reduction of the fuzzy data domain and
fuzzy consistent join. Fuzzy Sets Syst., 50, 89-96.

[13] J-M. Nicolas, Mutual dependencies and some
results on undecomposable relations. Proc. VLDB
Conf., Berlin, 1978, 360-367.

[14] H. Prade, C. Testemale, Generalizing database
relational algebra for the treatment of incomplete/
uncertain information and vague queries.
Information Sciences, 34, 1984, 115-143.

[15] K.V.S.V.N. Raju, A.K. Majumdar, Fuzzy functional
dependencies and lossless join decomposition of
fuzzy relational database systems. ACM Trans. on
Database Systems, 13(2), 1988, 129-166.

[16] J. Rissanen, Theory of Relations for Databases —
A Tutorial Survey. LNCS, Vol. 64, Springer Verlag,
Berlin, 1978, 537-551.

[17] S. Shenoi, A. Melton, L.T. Fan, Functional
dependencies and normal norms in the fuzzy rela-
tional database model. Infor. Sci., 60, 1992, 1-28.

[18] V. Tahani, A conceptual framework for fuzzy query
processing: A step toward very intelligent database
systems. Information Processing Management, 13,
1977, 289-303.

[19] M. Umano, FREEDOM-0: A fuzzy database system.
In: Fuzzy Information and Decision Processes
(M.M. Gupta, E. Sanchez, eds.), North-Holland,
Amsterdam, 1982, 339-347.

[20] L.A. Zadeh, Fuzzy sets as a basis for a theory of
possibility. Fuzzy Sets & Systems, 1, 1978, 3-28

[21] C. Zaniolo, A new normal form for the design of
relational database schemata. ACM Trans. on
Database Systems, 7(3), 1982, 489-492.

[22] M. Zemankova, A. Kandel, Fuzzy Relation Data
Bases — A Key to Expert Systems. Verlag TÜV
Rheinland, Köln, 1984.

