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A B S T R A C T

Ductile failure reveals to be an anisotropic phenomenon, for which the proper mechanism has not 
been clearly addressed yet in the literature. In this paper, the effects of some key anisotropy 
factors on ductile failure initiation, detected by void coalescence and plastic strain localization, 
are investigated using unit-cell computations based on crystal plasticity finite element method. 
The studied anisotropic effects are induced by the combination of initial crystallographic orien-
tations and void shapes. Therefore, single crystals with three different initial orientations and 
polycrystalline aggregates with three different initial crystallographic textures are respectively 
considered. A single void with either spherical, prolate or oblate shape is assumed to be preex-
isting at the center of each unit cell. By contrast to previous analyses in the literature, plastic 
strain localization is predicted in the present study on the basis of bifurcation theory. To cover a 
wide range of stress states, the simulations are performed under two macroscopic loading con-
figurations: proportional triaxial stressing, characterized by constant stress triaxiality and Lode 
parameter, and proportional in-plane straining, specified by constant strain-path ratio. The ob-
tained results show that the combined anisotropic effects play an important role in the occurrence 
of void coalescence and plastic strain localization, as well as in the competition between them.   

1. Introduction

Over the past few decades, ductile failure of polycrystalline materials has been the object of great interest to both metal forming
industry and community of plasticity mechanics. The initiation of ductile failure is often marked by two phenomena [1]: void coa-
lescence and plastic strain localization. The former is caused by the evolution of ductile damage (which usually manifests itself in the 
form of microvoids), while the latter is a plastic instability phenomenon characterized by the occurrence of localized necking. These 
two phenomena are generally separate and their competition leads to final failure [1,2]. The progress in the fundamental under-
standing of the mechanisms related to these two phenomena has enabled safe design for engineering materials and structures. In this 
field, one can quote the recent advances in material characterization techniques, such as in-situ X-ray computed tomography, which 
allow direct visualization of damage evolution until failure initiation [3,4]. Despite the modern improvement in experimental tech-
niques, it is still time-consuming, tedious and expensive to conduct experimental parametric studies of some relevant microstructural 
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effects on failure initiation. Therefore, to achieve profound knowledge of these effects, theoretical and numerical tools are still 
indispensable. 

Unit-Cell (UC) computation within finite element framework revealed to be an effective numerical tool for a comprehensive 
analysis of ductile failure [5]. In the context of UC computation, the mechanical response of the bulk material is assumed to be 
reproduced by a single UC subjected to relevant boundary conditions. This UC is viewed as representative of a heterogeneous medium 
made of two main phases: a void surrounded by a dense metal matrix (which may be itself made of several metallurgical phases). The 
mechanical behavior of the dense metal matrix can be described by either phenomenological constitutive models (see, e.g., Refs. 
[2,6–10]) or crystal plasticity frameworks (see, e.g., Refs. [11–18]). Using phenomenological constitutive models, researchers have 
developed various criteria to predict the onset of plastic strain localization and void coalescence within the UC. For instance, Wong and 
Guo [8] have established an energy-based criterion to predict the onset of void coalescence and final failure. Based on this criterion, 
Guo and Wong [7] have proposed an approach involving a macroscopic reaction force of UC to conduct strain localization analysis in 
voided metal sheets. Luo and Gao [19] have presented a sandwiched UC model consisting of three void-containing material units to 
analyze the occurrence of the two above-mentioned phenomena. Recently, Zhu et al. [2] have adopted the periodic homogenization 
scheme to investigate the competition between void coalescence and plastic strain localization, whose occurrences are respectively 
predicted by the energy-based criterion of Wong and Guo [8] and the Rice bifurcation analysis [20]. Although these investigations 
have provided reliable computational models and enriched our understanding of ductile failure by void coalescence and plastic strain 
localization, they cannot account for some relevant microstructural effects, such as crystallographic orientation and matrix hetero-
geneity, due to some conceptual limitations of phenomenological models. By contrast, crystal plasticity (CP) models naturally consider 
these effects and hence have been adopted in UC computations to study ductile failure initiation. UC strategies based on CP models 
have mainly been focused on void growth and coalescence in single crystals [11–16,21]. It has been demonstrated that the void 
behavior is strongly dependent on several factors, such as the stress state [11,12,15], the crystal orientation [15,16], the initial void 
volume fraction [13], among others. For polycrystals, in addition to the effects observed in single crystals, some features induced by 
the polycrystalline characteristics, such as matrix heterogeneity, orientation distribution, and grain size, also play significant roles in 
ductile failure initiation. These features complicate the mechanism of ductile failure in polycrystalline aggregates. Moreover, few 
number of investigations on polycrystalline aggregates have been devoted to the void growth stage [17,18,22]. It has been revealed 
that the matrix heterogeneity tends to retard the void growth, as compared to the case of homogeneous matrix [17]. In fact, the void 
growth rate in polycrystals is slower than in single crystals with the same void-containing grain orientation [18]. Furthermore, the void 
behavior and ductility of materials are grain-size dependent; for instance, the deformation heterogeneity and scatter of void growth 
tend to increase with grain size [22]. Overall, ductile failure initiation triggered by void coalescence and plastic strain localization in 
polycrystalline aggregates has not been sufficiently investigated yet. 

In order to gain more insight into ductile failure initiation, both voided single crystals and polycrystalline aggregates are considered 
in the present study. The single crystal behavior follows a rate-independent formulation, where the plastic flow is governed by the 
Schmid law. The polycrystalline aggregates are generated by the Voronoi tessellation technique to accurately describe the grain 
morphology. The overall mechanical behavior of UC is determined by the crystal plasticity finite element (CPFE) based periodic 
homogenization framework. Void coalescence is predicted by the strain-based criterion developed in [23]. On the other hand, plastic 
strain localization is predicted by the Rice bifurcation criterion [20]. The single crystal results are presented for comparison purposes 
with polycrystalline cases. Both the single crystals and polycrystalline aggregates in the present work exhibit strong anisotropic 
behavior due to the individual or combined effects of initial void shape and crystallographic orientation, and their evolutions during 
plastic deformation. Plastic anisotropy induced by crystallographic orientation [9,24,25] or by void shape [26] has been demonstrated 
to significantly affect the void growth, but those investigations have been conducted using phenomenological models for the 
description of the mechanical behavior of the dense matrix. In the present paper, the combined anisotropic effects on plastic strain 
localization and void coalescence using the CPFE-based strategy are specifically analyzed. 

The remainder of this paper is organized as follows: Section 2 gives some details on the computational modeling, including crystal 
plasticity constitutive equations, unit-cell formulation, mechanical loadings, boundary conditions, and the criteria adopted to predict 
plastic strain localization and void coalescence; Section 3 presents the results and corresponding discussion; Section 4 ends the paper 
with some conclusions. 

2. Computational modeling

2.1. Crystal plasticity constitutive equations 

In the present study, a rate-independent crystal plasticity formulation is adopted. The main constitutive equations at the single 
crystal scale are outlined in this section (further details about this formulation are provided in [27,28]). As a starting point, the velocity 
gradient g is additively split into its symmetric and skew-symmetric parts, denoted as d and w, respectively. In addition, the strain rate 
tensor d and the spin rate tensor w are decomposed into their elastic and plastic parts, respectively: 

d =
1
2
(
g + gT) ; w =

1
2
(
g − gT) ; d = de + dp ; w = we + wp (1) 

Within the present crystal plasticity framework, the slip on crystallographic planes is considered as the only source of plastic flow, 
which writes: 



dp =
∑Ns

α=1
γ̇αRα ; wp =

∑Ns

α=1
γ̇αSα (2)  

where:  

• γ̇α refers to the slip rate on the α-th slip system.
• Ns is the total number of slip systems (equal to twelve, as FCC single crystals with {111} 〈110〉 slip systems are considered in the

present investigation).
• Rα (resp. Sα) is the symmetric part (resp. skew-symmetric part) of the Schmid tensor Mα, which is equal to the tensor product of the

slip direction vector m→α and the vector normal to the slip plane n→α:

∀α = 1, ...,Ns : Mα = m→α
⊗ n→α (3) 

The elastic behavior of the single crystal is assumed to be isotropic1, and described by a hypoelastic law, which relates the lattice co- 
rotational rate σ∇ of the Cauchy stress tensor σ to the elastic strain rate de, using the fourth-order elasticity tensor Ce: 

σ∇ = σ̇ − we ⋅ σ + σ ⋅ we = Ce : de (4) 

For rate-independent behavior, the plastic flow rule is governed by the Schmid law, which states that a slip system is activated only 
if the absolute value of the resolved shear stress τα reaches a critical value τα

c : 

∀α = 1, ...,Ns : |τα|⩽τα
c ;

( ⃒
⃒τα|− τα

c

)
γ̇α = 0 (5)  

where τα is defined in terms of σ and Rα as: 

∀α = 1, ...,Ns : τα = σ : Rα (6) 

The critical shear stress τα
c evolves with the slip accumulation on the crystallographic slip systems as follows: 

∀α = 1, ...,Ns : τ̇α
c =

∑Ns

β=1
Hαβ

⃒
⃒γ̇β

⃒
⃒ (7)  

where Hαβ is the αβ component of the hardening matrix H, which is dependent on the accumulated slip of different slip systems. 
Following the formulation adopted in [29], isotropic hardening is assumed and the components of hardening matrix Hαβ are given by 
the following expression: 

∀α, β = 1, ...,Ns : Hαβ = h0

(

1 +
h0 Γ
τ0 n

)n− 1

; Γ =
∑Ns

α=1
|γα| (8)  

where h0 and n are hardening parameters, and Γ is the accumulated slip on all of the crystallographic slip systems. The material 
parameters, typically representative of aluminum alloys, used in the simulations are listed in Table 1. 

2.2. Unit-cell formulation 

Considering the spatial quasi-periodicity of the microstructure in polycrystalline metals, a unit-cell (UC) model subjected to pe-
riodic boundary conditions is selected to represent the bulk polycrystalline metals (for more details about the application of these 
boundary conditions, see Section 2.4). Furthermore, we assume the preexistence of microvoids, which are periodically distributed 
within the material. Thus, a cubic UC containing a single void at its center is considered. The initial void volume fraction f0 is set to 4 %. 
The UC geometry is discretized, within ABAQUS 6.14 environment, by 5336 twenty-node hexahedral finite elements (C3D20 in 
ABAQUS terminology). 

To highlight the influence of plastic anisotropy on ductile failure initiation, both single crystals and textured polycrystals are 
considered. Based on grain number sensitivity study (see Appendix A), each polycrystal contains 200 grains and is generated by the 

Table 1 
Elasticity and hardening parameters used in the simulations.  

E (GPa) ν τ 0 (MPa) h0 (MPa/s) n 

65  0.3 40 390  0.184  

1 It is generally more suitable to use orthotropic elastic behavior considering the crystallographic symmetries inside the single crystals; however, 
the effect of elasticity on failure initiation is negligible, as the level of the limit strains is very high compared to the amount of elastic strain (see 
Ref. [39] for details). Thus, the elastic anisotropy effects can be disregarded in this study. 



Voronoi tessellation technique. The plastic anisotropy in this study is mainly due to the combined effects of initial void shape and 
crystallographic orientation. Thus, three initial void shapes are investigated: spherical (w0 = 1), oblate (w0 = 0.3, i.e., r20/r10 = r30/

r10 = 0.3) and prolate (w0 = 3, r20/r10 = r20/r30 = 3), where ri0 is defined as the i-th axial length of the void in the initial configu-
ration. Fig. 1 displays the UCs of single crystals (Fig. 1a-c) and polycrystalline aggregates (Fig. 1d-f) containing voids with three 
different shapes. The three different crystallographic orientations and corresponding Euler angles used for single crystals are shown in 
Table 2. Also, three different crystallographic textures are used for polycrystalline aggregates: random (Ran.), cube (Cub.) component 
and copper (Cop.) component, as defined in Ref. [30]. The (111) pole figures corresponding to these textures are plotted in Fig. 2 using 
ATEX software [31]. 

2.3. Macroscopic loading 

Two macroscopic loading configurations are considered in the UC computations: proportional triaxial stressing and proportional 
in-plane straining. The former is often used to investigate the effect of the stress triaxiality ratio and Lode parameter on the magnitude 

Fig. 1. Unit cells of single crystals containing (a) spherical (w0 = 1), (b) oblate (w0 = 0.3), and (c) prolate (w0 = 3) voids; unit cells of poly-
crystalline aggregates containing (d) spherical (w0 = 1), (e) oblate (w0 = 0.3), and (f) prolate (w0 = 3) voids. 

Table 2 
Crystallographic orientations and corresponding Euler angles.  

orientation φ1 (deg) Φ (deg) φ2 (deg) 

[001] 0 0 0 
[011] − 45 0 0 
[123] 53 90 297  

)c()b()a(
Fig. 2. Initial crystallographic textures in the form of (111) pole figures: (a) random; (b) cube; (c) copper.  



of the ductility limit strain. The latter configuration is classically applied in the prediction of forming limit curves of metal sheets. In 
this section, these two loading configurations are introduced by adopting the first Piola–Kirchhoff stress tensor P (Pij representing the 
ij-th component) and the deformation gradient F (Fij denoting the ij-th component) as work-conjugate stress and strain measures, 
respectively. 

2.3.1. Proportional triaxial stressing 
In this loading configuration, the UC undergoes a diagonal triaxial macroscopic stress state (see Fig. 3), i.e., only the diagonal 

components P11, P22, and P33 of the macroscopic stress tensor P are nonzero (macroscopic shear stresses being neglected). Proportional 
triaxial stressing requires that the Cauchy stress ratios β1 = Σ11/Σ33 and β2 = Σ22/Σ33 are kept constant during the loading, where Σ11, 
Σ22 and Σ33 refer to the diagonal components of the macroscopic Cauchy stress tensor Σ. 

The mean stress Σm and the von Mises equivalent stress Σeq of the UC can be expressed as functions of β1 and β2 as: 

Σm =
β1 + β2 + 1

3
Σ33;Σeq =

1̅
̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(β1 − β2)
2
+ (β1 − 1)2

+ (β2 − 1)2
√

|Σ33| (9) 

Following the formulations adopted in [2] and [6], the macroscopic stress triaxiality T and Lode parameter L can be expressed in 
terms of the stress ratios β1 and β2 (assuming Σ11 ≥ Σ22 ≥ Σ33) as follows: 

Fig. 3. Illustration of the triaxial macroscopic stress state.  

Fig. 4. Illustration of the macroscopic plane-stress state.  



⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T =
Σm

Σeq
=

̅̅̅
2

√
(1 + β1 + β2)

3
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − β1)
2
+ (1 − β2)

2
+ (β1 − β2)

2
√ sgn(Σ33)

L =
(2β2 − β1 − 1)

β1 − 1
, − 1 ≤ L ≤ 1

(10) 

Constant stress ratios β1 and β2 during the deformation history result in a combination of constant T and L, which characterize the 
spherical and deviatoric parts of the macroscopic Cauchy stress tensor Σ, respectively. The numerical implementation of constant stress 
ratios is ensured by controlling the non-linear relations between the macroscopic strain components along the three loading directions. 

2.3.2. Proportional in-plane straining 
In this loading configuration, the UC undergoes a macroscopic plane-stress state (see Fig. 4), where the macroscopic fields are 

characterized as: 

F =

⎛

⎝
F11 0 □
0 F22 □
□ □ □

⎞

⎠ ; P =

⎛

⎝
□ □ 0
□ □ 0
0 0 0

⎞

⎠ (11)  

with the components F11 and F22 of the deformation gradient related to the strain components E11 and E22 by: 

F11 = eE11 ; F22 = eE22 (12) 

Components ‘□’ in Eq. (11) are unknown and should be determined by FE computations. Then, the macroscopic loading is pre-
scribed on the faces normal to the first (x01 = ± l0/2) and second (x02 = ± l0/2) spatial directions. On the other hand, faces normal to 
the third spatial direction are kept stress free (i.e., P33 = 0). 

Proportional in-plane straining requires that the strain-path ratio ρ = E22/E11 is kept constant during plastic deformation. This 
strain-path ratio is varied between − 1/2 and 1 to span a complete forming limit diagram (FLD). 

2.4. Periodic boundary conditions 

Fully periodic boundary conditions (PBCs) are applied to the unit cells via node-to-node constraints. Here, we detail the constraints 
on the pair of homologous nodes in the first spatial direction (direction 1). Extension to other spatial directions can be done in a very 
similar manner. A pair of nodes belonging to faces B−

1 and B+
1 , which have identical coordinates in directions 2 and 3, is considered as 

illustrated in Fig. 5. The current positions of these two nodes are related to their initial positions by: 

xM− = F ⋅ x0M− + uper
M− ; xM+ = F ⋅ x0M+ + uper

M+ (13)  

where x and x0 denote the current and initial positions of the considered node pair, respectively, F is the deformation gradient, and uper 

is a periodic displacement field. 
The PBCs imply that uper takes the same value for node pair (M− , M+), i.e., uper

M− = uper
M+ . Consequently, Eq. (13) can be recast in a 

more compact form: 

xM+ − xM− = F ⋅ (x0M+ − x0M− ) (14) 

This equation can be easily rewritten as: 

Fig. 5. Illustration of a node pair (M− , M + ) constrained by PBCs.  



uM+ − uM− = (F − I) ⋅ (x0M+ − x0M− ) (15)  

where (uM− , uM+ ) are the displacements of the nodes (M− , M + ), respectively. 
Eq. (15) is imposed on the node pairs belonging to faces {B−

1 ,B
+
1 } and {B−

2 ,B
+
2 } in the loading configuration of proportional in-plane 

straining; while it is imposed on faces 
{
B−

1 ,B
+
1
}
, {B−

2 ,B
+
2 } and {B−

3 ,B
+
3 } in the loading configuration of proportional triaxial stressing. 

Numerical implementation of Eq. (15) is managed by the set of Python scripts Homtools [32]. More details about the practical aspects of 
implementation can be found in [2,33]. 

2.5. Ductile failure initiation criteria 

In the present study, ductile failure initiation is marked by the occurrence of two events: plastic strain localization and void 
coalescence. The Rice bifurcation theory is used to predict the occurrence of plastic strain localization, while a strain-based criterion is 
employed to predict the onset of void coalescence. The formulations of these two criteria are briefly recalled in this section. 

2.5.1. Plastic strain localization criterion 
Following the Rice approach [20], the onset of plastic strain localization is triggered by a bifurcation associated with admissible 

jumps for strain and stress rates through a localization band (see Fig. 6). In a Lagrangian framework, the kinematic condition for the 
strain rate jump reads: 

[[
Ḟ
] ]

= ḞO
− ḞI

=
˙
ℭ
→˙

⊗ 𝒩
̅→

(16)  

where:  

• [[*]]denotes the jump of field * across the localization band, and superscripts ‘O’ and ‘I’ represent quantity outside the band and its
counterpart inside the band,

•
˙
ℭ
→˙

is the jump vector,

• 𝒩
̅→

is the unit vector normal to the localization band, equal to(sinθ2 cosθ1, sinθ2 sinθ1, cosθ2), where 0⩽θ1⩽2π and 0⩽θ2⩽π. 

The forces outside and inside the band satisfy the equilibrium condition, which can be expressed in a rate form as: 

EṖF ⋅ 𝒩
̅→

= 0→ (17) 

On the other hand, the constitutive equation at the macroscopic scale is formulated in a rate form as: 

Ṗ = B : Ḟ (18)  

where B is the macroscopic elasto-plastic tangent modulus. 
Combination of Eqs. (16), (17) and (18) leads to a jump kinematic condition as follows: 

(
B :

( ˙
ℭ
→˙

⊗ 𝒩
̅→))

⋅ 𝒩
̅→

= 0→ (19) 

which can be rewritten as: 
(
N iBjiklN l

)
ℭ̇k = 0 (20) 

By introducing a fourth-order tensor L, which is obtained by permutation of the first and the second index of tensor B (i.e., ∀i, j,k,
l : 1,2,3 : Lijkl = Bjikl), Eq. (20) becomes: 

Fig. 6. Illustration of jump of mechanical fields across the discontinuity band.  



(
𝒩
̅→

⋅ L ⋅ 𝒩
̅→)

⋅
˙
ℭ
→˙

= 0→ (21) 

Consequently, the occurrence of plastic strain localization corresponds to the singularity of the macroscopic acoustic tensor 

𝒩
̅→

⋅ L ⋅ 𝒩
̅→

: 

det
(
𝒩
̅→

⋅ L ⋅ 𝒩
̅→)

= 0 (22) 

The numerical detection of Eq. (22) can be treated as a minimization problem: 

minimize det
(
𝒩
̅→

⋅ L ⋅ 𝒩
̅→)

for 0⩽θ1⩽2π and 0⩽θ2⩽π (23) 

which is straightforwardly interpreted as: there is no plastic strain localization when the minimum of det
(
𝒩
̅→

⋅ L ⋅ 𝒩
̅→)

over all the 

band orientations (θ1, θ2) is strictly positive; by contrast, plastic strain localization occurs when the minimum of det
(
𝒩
̅→

⋅ L ⋅ 𝒩
̅→)

vanishes for the first time. 
In order to check whether Eq. (22) is verified, tensor L (defined as the analogous of the macroscopic elasto-plastic tangent modulus 

B) should be provided at each increment of the FE computation. In the present work, the macroscopic tangent modulus B is computed
using the condensation technique originally proposed by Miehe [34]. The practical details regarding the implementation of this 
technique, in connection with the FE computation, can be found in Ref. [35]. 

It should be noted that the formulation presented in this subsection is directly applicable to triaxial macroscopic stress states. This 
formulation can be easily adapted to macroscopic in-plane stress states. The corresponding details can be found in Ref. [33], which are 
not repeated here for brevity. 

2.5.2. Void coalescence criterion 
In the present study, the strain-based criterion developed by Koplik and Needleman [23] and commonly used in the literature (see, 

e.g., Ref. [15] by Guo et al., and Ref. [16] by Ling et al.) is adopted to predict the onset of void coalescence. As stated by Koplik and
Needleman [23], void coalescence arises at the moment when the strain state shifts from a general triaxial state to a uniaxial strain 
mode. With the convention adopted here, this condition is met when the strain rate components in the second and third spatial di-
rections become zero: 

Ė22 = Ė33 = 0 (24) 

This criterion is only relevant for triaxial macroscopic stress states, since void coalescence is not possible for in-plane stress states, 
when using the UC model adopted in the present work (see Ref. [2]). 

3. Results and discussions

In this section, the combined effects of initial crystallographic orientation and void shape on strain localization and void

Fig. 7. Effect of crystallographic orientation on the evolution of: (a) E33; (b) Min
𝒩
→[det( 𝒩

̅→
⋅ L ⋅ 𝒩

̅→
)]

1/3 for single crystals with spherical void.  



coalescence as well as on their competition are thoroughly discussed. Under proportional triaxial stressing, these combined effects are 
studied for both single crystals and polycrystalline aggregates. Under proportional in-plane straining, only forming limit diagrams 
(FLDs) corresponding to polycrystalline aggregates are analyzed, since FLDs of single crystals are not a common topic in plastic 
forming of metal sheets. 

3.1. Voided single crystals under proportional triaxial stressing 

The effect of crystallographic orientation on void coalescence in single crystals has been widely investigated in the literature 
[11,12,16,36]. The void shape effect on void coalescence in anisotropic solids using phenomenological models (rather than single 
crystal frameworks) has also been studied in [24]. However, the effects of crystallographic orientation and void shape on strain 
localization as well as their combined effects on void coalescence and strain localization in single crystals have not been sufficiently 
investigated yet, which represent the main focus of this section. 
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3.1.1. Effect of crystallographic orientation 
In this subsection, the effect of crystallographic orientation on failure initiation in single crystals with spherical void is examined. 

To this end, the three crystallographic orientations defined in Table 2 are considered. The stress triaxiality ratio T and the Lode 
parameter L are set to 1 and − 1, respectively. 

Fig. 7a and b show the two indicators predicting the occurrence of void coalescence and plastic strain localization, respectively. The 
transition from void growth to coalescence stage is characterized by the transition of the deformation mode of the UC from triaxial to 
uniaxial, as marked by open circles in Fig. 7a. On the other hand, the incipience of strain localization is indicated by the vanishing of 

the minimum of determinant of the acoustic tensor 𝒩
̅→

⋅ L ⋅ 𝒩
̅→

over all of the band orientations, as marked by full circles in Fig. 7b. 
The critical strains at the onset of void coalescence and strain localization are respectively denoted as EC

eq and EB
eq (where Eeq is the von 

Mises equivalent strain equal to 
̅̅
2

√

3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[(E11 − E22)
2
+ (E22 − E33)

2
+ (E33 − E11)

2
]

√

, as the off-diagonal strain components are equal to 
zero), which are used as measures of the ductility limit throughout the following sections of this paper. 

It can also be seen from Fig. 7 that the ductility limit strain for orientation [011] is the highest, followed by [123] and then [001] 
orientation. The dependence of the ductility limit strain to the initial crystallographic orientation is obvious. Indeed, even if the applied 
loading is the same, the difference in the initial crystallographic orientation induces a difference in the activity of crystallographic slip 
systems and then a significant difference in the plastic deformation and mechanical response. This result confirms the strong 

Fig. 9. Combined effect of crystallographic orientation and initial void shape on the: (a) equivalent overall stress Σeq; (b) normalized void volume 
fraction f/f0; (c) void aspect ratio w2, in single crystals. 



anisotropy of the ductile failure of single crystals. 
The stage of ductile failure initiation is accompanied by several remarkable phenomena: a rapid drop in the stress carrying capacity 

of the UC, as revealed by Fig. 8a (where the evolution of the von Mises equivalent stress Σeq is plotted versus the equivalent strain Eeq), 
an acceleration of the void growth, as shown in Fig. 8b (where the evolution of the void volume fraction f , normalized by its initial 
value f0, is plotted against Eeq), and a significant change in the void aspect ratio, as highlighted in Fig. 8c. As can be seen in Fig. 8a, 
[001]-oriented UC presents the earliest loss of stress carrying capacity (softening), followed by [123] and then [011]-oriented UC. 
This result can be explained by the fact that the [001]-orientation yields the fastest void growth, followed by [123] and then [011] 
orientation, as revealed by Fig. 8b. Fig. 8c shows the evolution of the void aspect ratios w2 = r2/r1 (with ri being the i-th axial length of 
the deformed void) and w3 = r3/r1. As can be seen in Fig. 8c, the evolutions of w2 and w3 for UC with [001]-orientation are coincident 
with each other (see the red curves). This is quite expected due to the fact that for orientation [001], the mechanical responses along 
the three principal directions are the same. By contrast, for [011]-orientation (plotted by green curves), the evolution of w2 and w3 are 
distinct from each other, thus indicating the strong plastic anisotropy along the second and third spatial directions of the UC. Spe-
cifically, the void expands more intensely along the second spatial direction as compared to the third one. The evolutions of w2 and w3 
for orientation [123] are intersected with each other (see blue curves), thus suggesting a significant void rotation during plastic 
deformation. Based on Fig. 8a and b, it is also observed that EC

eq is larger than EB
eq for all three orientations, and their difference is 

dependent on the initial crystallographic orientation. This dependency will be further discussed in Section 3.1.3. 
In fact, the orientation effect in single crystals can be interpreted as the effect of the loading direction with respect to the crys-

tallographic axes, which would be referred to in terms of the crystallographic direction of the maximum principal stress component 
[15]. In our case, the maximum principal stress component is assumed to be parallel to the first UC spatial direction (i.e., x1, see Section 
2.3.1). It is noted that different crystallographic directions of the maximum principal stress can lead to different mechanical responses 
for the same non-cubic orientation, such as [123]-orientation. 

3.1.2. Combined effect of crystallographic orientation and void shape 
Focus is confined in this subsection on the combined influence of initial void shape and crystallographic orientation on ductile 

failure initiation. The combined influence on the evolution of the equivalent overall stress Σeq, the void growth f, and the void aspect 
ratio w2 is respectively depicted in Fig. 9a, b, and c. In each figure, curves of 9 cases are plotted against the equivalent strain Eeq: three 
crystallographic orientations {[001], [011], and [123]} × three initial void shapes {w0 = 0.3, 1, and 3}. For these simulations, the 
stress triaxiality ratio T and the Lode parameter L are set to 1 and − 1, respectively. As can be seen from Fig. 9a, whatever the crys-
tallographic orientation, void shapes w0= 0.3 and w0= 3 yield respectively the highest and the lowest resistance to material softening. 
This is due to the fact that aspect ratio w0= 0.3 leads to the slowest void growth rate, and aspect ratio w0= 3 yields the fastest void 
growth rate, as shown in Fig. 9b. This trend can also be validated by Fig. 9c, where the aspect ratio w2 for the case w0= 3 decreases 
significantly with increasing the applied strain, thus leading to a significant change in the void shape and volume. By contrast, for the 
case w0 = 0.3, w2 exhibits only a slight change during plastic deformation, thus suggesting a relatively small change in the void shape 
and volume. On the other hand, Fig. 9b shows that, for w0 = 0.3, the orientation [001] leads to the fastest void growth, followed by 
[123] and then [011]. This trend is the same as that observed for w0 = 1, but different from that revealed for w0 = 3. In the case of w0 =

3, the [123]-oriented UC has the fastest void growth. This means that the orientation effect on the void growth is dependent on the 
void shape. Thus, the void growth rate is determined by the combined effect of crystallographic orientation and void shape. The void 

Fig. 10. Combined effect of initial void shape and crystallographic orientation on the evolution of: (a) E33; and (b)Min
𝒩
→[det( 𝒩

̅→
⋅ L ⋅ 𝒩

̅→
)]

1/3, in 

single crystals. 



growth induced ductile failure initiation is also expected to be affected by this combined effect. 
The combined influence of initial void shape and crystallographic orientation on the two above-discussed ductility indicators 

(namely the strain component E33 and the minimum of the determinant of the acoustic tensor 𝒩
̅→

⋅ L ⋅ 𝒩
̅→

) is respectively depicted in 
Fig. 10a and b. As can be seen from Fig. 10, the void shape effect on the limit strain is preserved for a given orientation2. However, the 
orientation effect is not always maintained for a given void shape. These observations are already reflected in the plots of the 
equivalent stress–strain responses shown in Fig. 9a as well as in the plots of the void growth rate shown in Fig. 9b. The comparison 
between Fig. 10a and Fig. 10b reveals that the trends obtained for the onset of void coalescence are generally consistent with those 
observed for the incipience of strain localization. The detailed quantitative competition between these two events will be discussed in 
the next subsection. 

3.1.3. Competition between strain localization and void coalescence 
To further analyze the competition between void coalescence and plastic strain localization over a wide range of triaxiality ratios, 

Fig. 11. Evolution of the limit strains EC
eq and EB

eq for the void shape: (a) w0 = 0.3; (b) w0 = 1; (c) w0 = 3, in single crystals.  

2 Note that, for void shapew0 = 0.3, the limit strains in the case of orientation [0 1 1] are not obtained by the UC computation, due to some 
convergence problems caused by too large plastic deformation. This issue may be solved by some numerical techniques, such as adaptive remeshing, 
but which is not pursued here since the presented trends are already clear. 



the evolutions of the corresponding limit strains EC
eq and EB

eq against T are plotted in Fig. 11. As revealed by Fig. 11a, for w0 = 0.3, 
orientation [011] yields the largest limit strains when T < 1.75, while orientation [123] yields the highest limit strains when 
T > 1.75. Similar trends are found for w0 = 1, as shown in Fig. 11b: orientation [011] yields the largest limit strains when T < 1, while 
orientation [123] yields the highest limit strains when T > 1. These trends are different from those observed for w0= 3 (see Fig. 11c), 
where it was found that the [001]-orientated crystal has the highest limit strains. Globally, the level of limit strains for a given 
orientation in the case w0= 0.3 is very sensitive to the change in the triaxiality ratio T, especially for orientation [011]. This sensitivity 
becomes weaker as w0 increases. This observation can be attributed to the fact that the void shape w0= 0.3 (oblate) and the low stress 
triaxiality ratio are inherently unfavorable to void growth. Therefore, w0= 0.3 under low stress triaxiality yields a very slow void 
growth rate and accordingly high limit strains. 

It is clearly shown from Fig. 11a-c that EC
eq is always larger than EB

eq, and the difference between them generally increases as T 
increases. The sensitivity of this difference to the stress triaxiality ratio is dependent on both the crystallographic orientation and the 
void shape. For example, in the case of w0 = 3, the difference between EC

eq and EB
eq for orientation [011] is the smallest, and it can be 

neglected when T < 1. However, the difference between EC
eq and EB

eq for orientation [123] is the largest, so that the loci of EC
eq and EB

eq 

are absolutely separate over the whole range of T. Compared to the situation when w0 = 3, the difference between EC
eq and EB

eq for 
orientation [011] in the case of w0= 0.3 is the largest among the three orientations. This means that the difference between EC

eq and EB
eq 

for a given orientation is significantly influenced by the void shape. 
Based on the observations in Fig. 11, some statements can be made for voided single crystals. The orientation effect on void 

coalescence and strain localization is affected by the initial void shape and, conversely, the effect of initial void shape on void coa-
lescence and strain localization is influenced by the crystallographic orientation. This observation is evident as the initial void shape 
affects the orientation evolution, which in turn affects the void evolution. Thus, the combined effect induced by the void shape and 
crystallographic orientation dictates the loci of the two limit strains predicted by void coalescence and strain localization. In general, 
strain localization takes place earlier than void coalescence. The difference between the two limit strains generally increases with 
increasing the stress triaxiality ratio T. The sensitivity of this difference to the magnitude of T is highly dependent on the combined 
effect of crystallographic orientation and void shape. In fact, the combined effect can be interpreted as the combined contribution to 
plastic anisotropy resulting from the initial void shape and crystallographic orientation. 

3.2. Voided polycrystalline aggregates under proportional triaxial stressing 

Crystallographic texture, often observed in rolled metal sheets, is an important feature of anisotropic plastic behavior, and has been 
demonstrated to play a major role in ductile failure initiation [37]. In this subsection, the effects of crystallographic texture and void 
shape on void coalescence and strain localization are investigated for polycrystalline aggregates. 

3.2.1. Effect of crystallographic texture 
The texture effect is firstly examined in polycrystalline aggregates with spherical void. To this end, the three textures introduced in 

Section 2.2 (namely, Ran., Cub. and Cop.) are considered. The stress triaxiality ratio and Lode parameter are set to 0.7 and − 1, 

respectively. Fig. 12 shows the evolution of the strain component E33 and Min
𝒩
→[det( 𝒩

̅→
⋅ L ⋅ 𝒩

̅→
)]

1/3 for the three textures, which are 

the indicators of the onset of void coalescence and strain localization. It can clearly be seen from Fig. 12a that Cub. texture leads to the 

Fig. 12. Effect of crystallographic texture on the evolution of: (a) E33; (b) Min
𝒩
→[det( 𝒩

̅→
⋅ L ⋅ 𝒩

̅→
)]

1/3 for polycrystals with spherical void.  



highest EC
eq followed by Ran. and then Cop. This texture effect is consistently reproduced for EB

eq, as revealed by Fig. 12b. Meanwhile, 
Cub. (resp. Cop.) texture yields the slowest (resp. fastest) softening of the overall stress–strain response due to the slowest (resp. fastest) 
void growth, as clearly shown in Fig. 13a and b. These predictions are consistent with the results obtained by Bryhni Dæhli et al. [25], 
and clearly explain the trends on the limit strain levels in Fig. 12. The onsets of void coalescence and strain localization are also marked 
and compared in Fig. 13a and b, which suggest that the difference between the corresponding limit strains EC

eq and EB
eq is evidently 

dependent on the crystallographic texture (this aspect will be further discussed in Section 3.2.3). Fig. 13c shows the evolution of the 
void aspect ratios wi for the three textures. As can be clearly seen, the evolutions of w2 and w3 for Ran. texture present only a slight 
difference, thus indicating that the UC with Ran. texture does not exhibit apparent plastic anisotropy. Based on the evolutions of wi for 
Cub. and Cop. texture, it can be readily observed that the matrix anisotropy has a pronounced effect on the resulting void shape 
evolution. 

3.2.2. Combined effect of crystallographic texture and void shape 
The combined influence of initial void shape and crystallographic texture on the evolution of the equivalent stress Σeq, void growth 
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Fig. 13. Effect of crystallographic texture on the evolution of the: (a) equivalent overall stress Σeq; (b) normalized void volume fraction f/f0; (c) void 
aspect ratios wi, for polycrystals with spherical void. 



f , and void aspect ratio w2 is respectively depicted in Fig. 14a, b, and c, where the curves of 9 cases are plotted at {T = 0.7, L = − 1}: 
three crystallographic textures {Ran., Cub., and Cop.} × three void shapes {w0 = 0.3, 1, and 3}. As can clearly be seen in Fig. 14a and b, 
for a given crystallographic texture, void shape w0= 0.3 (resp. w0 = 3) always leads to the strongest (resp. weakest) resistance to 
material softening and slowest (resp. fastest) void growth rate. The void shape effect is similar to that observed in single crystals. For a 
given void shape, Cub. texture (resp. Cop. texture) always leads to the strongest (resp. weakest) resistance to material softening and 
slowest (resp. fastest) void growth rate. In other words, the texture effect is maintained regardless of the void shape. This is not similar 
to what has been observed for single crystals, where the orientation effect can be reversed depending on the void shape. In addition, 
compared to the other two void shapes, the texture effect for void shape w0= 0.3 seems to be more pronounced than for the other void 
shapes. As shown in Fig. 14c, unlike the orientation effect on void shape evolution in single crystals, the texture effect on void shape 
evolution in polycrystals for a given initial void shape is relatively moderate, especially whenEeq< 0.25. This can be well understood 
since the different oriented grains in polycrystalline aggregates accommodate and coordinate the applied loading. However, as plastic 
deformation increases, the different matrix heterogeneity induced strain concentration will be accumulated in certain places of the 
void surface, thus leading to significantly different void shape evolution. 
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The influences of initial void shape and crystallographic texture on the evolution of E33 and Min
𝒩
→[det( 𝒩

̅→
⋅ L ⋅ 𝒩

̅→
)]

1/3 are 

respectively depicted in Fig. 15a and b. As can clearly be seen from Fig. 15, the texture effect on the limit strain of a polycrystal is 
preserved regardless of the void shape and, conversely, the void shape effect is maintained regardless of the texture. These observed 
trends are already reflected in the equivalent stress–strain responses shown in Fig. 14a and in the void growth rate shown in Fig. 14b. 

3.2.3. Competition between strain localization and void coalescence 
To quantitatively study the combined effect of void shape and initial texture over a wide range of triaxiality ratios, we plot in Fig. 16 

the evolutions of the two limit strains EB
eq and EC

eq against T, corresponding to the three crystallographic textures and three void shapes. 
Based on the trends revealed by Fig. 16a-c, the following conclusions can be drawn for voided polycrystals:  

• For relatively low stress triaxiality, the two limit strains are almost equal to each other, thus indicating that void coalescence and
strain localization occur simultaneously. However, for relatively high stress triaxiality, EC

eq is larger than EB
eq, thus suggesting that

strain localization acts as precursor to void coalescence. These trends are independent of the initial void shape and crystallographic
texture. Nonetheless, the stress triaxiality level at which the two limit strains become distinct is indeed dependent on the initial void
shape and crystallographic texture. For example, in the case of w0 = 0.3, the two limit strains become distinct at T= 1.2 for Cub.
texture, T= 1 for Ran. texture, and T= 0.8 for Cop. texture. This result further confirms that the stress triaxiality effect on the
difference between the two limit strains is closely associated with plastic anisotropy, which has not been observed by other authors
studying the competition between these two mechanisms (see, e.g., Ref. [1] by Tekoğlu et al., and Ref. [2] by Zhu et al.).

• It is clear that, for a given texture, the limit strains are most sensitive to the change in stress triaxiality T (ranging from 0.7 to 3)
when w0 = 0.3, followed by w0 = 1, and thenw0 = 3. This trend is similar to that observed for single crystals, and is dominated by the
void shape. On the other hand, the difference between the limit strains induced by the texture effect is more significant at low stress
triaxiality when w0 = 0.3. This implies that the texture effect may be more important at low stress triaxiality for w0= 0.3 than for
the other two void shapes. The void shape is an important factor, which contributes to plastic anisotropy in addition to the impact of
crystallographic texture.

3.3. Voided polycrystalline aggregates under proportional in-plane straining 

The formability of metal sheets is influenced by some key factors, such as material hardening parameters and plastic anisotropic 
behavior. It has been demonstrated in the literature that the hardening parameters mainly affect the left-hand side of the forming limit 
diagrams (FLDs) [33], while the anisotropic behavior strongly affects the right-hand side of the FLDs [38]. In this subsection, focus is 
restricted to the combined anisotropic effects, which are due to crystallographic texture and void shape, on material formability. The 
UCs are undergoing proportional in-plane straining loadings (as introduced in Section 2.3.2). 

In this macroscopic loading configuration, the strain components E11 and E22 are kept proportional for a prescribed strain-path ratio 
ρ = E22/E11, while E33 is determined by the plane-stress condition (Σ33 = 0). This stress state can also be characterized by a couple of T 
and L (defined by Eq. (10)). For instance, the stress state corresponding to ρ= −  0.5 is near uniaxial tension, for which the average 
values of {T, L} are around {0.3, −  1}, as shown in Fig. 17a. Such a low stress triaxiality level does not lead to significant void growth, as 

Fig. 15. Combined effect of initial void shape and crystallographic texture on the evolution of: (a) E33 and (b) Min
𝒩
→[det( 𝒩

̅→
⋅ L ⋅ 𝒩

̅→
)]

1/3 for 

polycrystals. 



revealed by Fig. 17b. Moreover, Fig. 17b suggests that ductile failure initiation in the considered loading configuration cannot be 
detected by void coalescence, since ρ> 0 leads to relatively larger void growth than ρ= 0, while ρ> 0 generally yields relatively higher 
limit strain than ρ= 0 (which will be validated by Fig. 18). In fact, the deformation mode transition does not occur owing to the nature 
of applied macroscopic loading, i.e., E11 and E22 are prescribed to evolve monotonically, while E33 consequently decreases. Whether 
void coalescence can be reached is dependent on the stress state inside the UC and also on the mechanical behavior of regions sur-
rounding this UC. It has been demonstrated in Ref. [2] that the deformation mode transition can be obtained in this loading config-
uration by adopting a dense sheet with a narrow voided band (see Ref. [2] for more details). Thus, void coalescence in the state of 
proportional in-plane straining is not predicted by the proposed strain-based criterion. Consequently, ductile failure initiation (rep-
resented in the form of FLD) in this subsection is predicted only by plastic strain localization. 

The effect of the combined anisotropy sources on the FLD predictions is depicted in Fig. 18. It is revealed that, for a given void 
shape, the texture effect on formability is relatively small for ρ< 0, almost negligible for ρ= 0, and much more significant for ρ> 0. 
These trends are consistent with those observed in Refs. [37] and [29]. It is also observed that, for a given initial texture, the initial void 
shape affects the level of forming limits for all the strain paths. This is in some variance with the results presented in Ref. [2], where the 
void shape was found to only affect the right-hand side of the FLDs, mainly due to the use of an isotropic phenomenological model. In 
the current investigation, however, the interaction between texture and void shape evolution results in perceptible differences in the 
macroscopic hardening behavior of the different UCs studied in Fig. 18 (even if their microscopic hardening parameters are the same). 

Fig. 16. Evolution of the limit strains EC
eq and EB

eq against T for the three void shapes in polycrystalline aggregates: (a) w0 = 0.3; (b) w0 = 1; (c) 
w0 = 3. 



These induced differences impact in turn the predicted limit strains in the range of negative strain-path ratios. Such effects have not 
been taken into account in Ref. [2], where the behavior of the metal matrix was assumed to be isotropic. More interestingly, in the 
range of positive strain-path ratios, the ductility limit increases as the void aspect ratio w0 decreases. This result is due to the fact that 
the void with aspect ratio w0= 3 grows faster than the two others, as shown in Fig. 10a and Fig. 15a. Consequently, the ductility of the 
corresponding UC is negatively affected by this more significant void growth. 

4. Conclusions

In the present paper, the anisotropic effects, induced by both grain orientation and void shape, on plastic strain localization and
void coalescence have been investigated using UC computations based on CPFEM. The investigations are conducted for both single 
crystals and textured polycrystals. Specifically, strain localization in this study is predicted by the bifurcation analysis within a 
multiscale periodic homogenization scheme. To cover a wide range of stress states, the simulations are performed under two 
macroscopic loading configurations: proportional triaxial stressing, characterized by constant stress triaxiality and Lode parameter, 
and proportional in-plane straining, specified by constant strain-path ratios. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
T

L

0.0 0.1 0.2 0.3 0.4
0

1

2

3

4

Ran.   0.5 Cub.   0.3
Ran.   0 Cop.   0.5
Ran.   0.3 Cop.   0
Cub.   0.5 Cop.   0.3
Cub.   0

E
11

f / f
0

Fig. 17. Study of strain-path ratios ρ = − 0.5,0, 0.3: (a) T-L maps; (b) normalized void volume fraction f/f0 for polycrystals with spherical void.  

-0.2 -0.1 0.0 0.1 0.2
0.0

0.1

0.2

0.3

0.4

w0=3   Ran.

w0=3   Cub.

w0=3   Cop.

w0=0.3 Ran.

w0=0.3 Cub.

w0=0.3 Cop.

w0=1    Ran.

w0=1    Cub.

w0=1    Cop.

E11

E22

Fig. 18. Combined effect of initial void shape and crystallographic texture on the FLDs.  



void coalescence is influenced by void shape, while void shape effect is maintained for a given crystallographic orientation. For 
polycrystalline aggregates, the texture effect is preserved for a given void shape and, conversely, the void shape effect is maintained for 
a given texture. On the other hand, the sensitivities of the two limit strains (EC

eq and EB
eq) and of their difference to the stress triaxiality 

are significantly dependent on the combined effects of crystallographic orientation and void shape. These findings are validated for 
both single crystals and polycrystalline aggregates. 

Under proportional in-plane straining, only plastic strain localization in textured polycrystals containing different void shapes is 
predicted, since this plastic instability phenomenon is usually associated with forming limits of sheet metals. It is found that the initial 
void shape affects the level of forming limits for all the strain paths for a given initial texture. This enlarges the previous results 
presented in the literature, where the void shape was found to only affect the right-hand side of the FLDs when isotropic phenome-
nological models are adopted. This suggests that the use of crystal plasticity constitutive modeling allows accounting for the inter-
action between texture and void shape, which affects the macroscopic hardening behavior of the different UCs, thus resulting in 
perceptible influence on the left-hand side of the FLDs. 
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Fig. A1. Cross section view of voided unit cell containing: (a) 50, (b) 100, (c) 200, and (d) 300 grains. (e) Equivalent stress–strain responses 
corresponding to these four unit cells. 
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Appendix 

Appendix A. Grain number sensitivity study 

Regarding the representativeness of grain number, we have conducted a grain number sensitivity study. For this purpose, we 
compared the homogenized stress–strain responses of four spherically voided unit cells containing 50, 100, 200, 300 grains, as shown 
in Fig. A1.a, b, c, and d, respectively. A random texture is generated to define the crystallographic orientations of the grains consti-
tuting each of these four polycrystalline aggregates. Each unit cell is discretized by 5336 twenty-node finite elements (the same number 
of finite elements adopted in the simulations reported in the previous sections of the paper). As can be seen from Fig. A1.e, the grain 
number does not affect the stress–strain response as soon as more than 100 grains are used. In other words, unit cells containing 200 
grains are indeed representative for the studied polycrystalline materials. 
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