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Abstract. We prove that the number of fractions h1/h2 of integers h1, h2 a subset
A ⊂ H∩[1, X ] is at least αX/(log X)3/2, whereH is the set p−1, p being a prime such
that p+1 is a sum of two coprime squares. So, this number of fractions is �ε α1+ε|A|2,
where ε is any positive real number. We take this opportunity to describe a geometrical
view of the sieve and its usage to study integer sequences.

Keywords. Quotient sets; Selberg sieve; Brun–Titchmarsh theorem; multiplication
table problem.
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1. Introduction

In [1], we proved that a subset A of [1, X ], of cardinality at least αX , produces more than
constant times α2+εX2 distinct fractions a/a′, with a and a′ from A. Here ε > 0 is a
given real number, the constant may depend on ε (and we prove that this dependance is
indeed heavy) and X is large enough. The question appeared as Problem 22 in [17], though
in a different form, and a first result was obtained in [16]. From a generic viewpoint, we
considered thinner sets in [2] (see also its addendum in [18]) and noted that multiplicativity
plays a large role in the behaviour of |A/A|. Our two fields of experiments were the set
of primes minus 1 and the set of sums of two squares minus 1, as the random case shows
a change of regime around density 1/

√
log X .

We consider here a similar problem, but with dense subsets of sufficiently sifted
sequences, in the sense of [15]. The angle we take is different and may be resumed by
saying that such sets are close to subsets of intersections of arithmetic progressions, hence
may be expected to behave like subsets of density of the integers.

We will be more precise in subsection 1.2 but in this Introduction, it is enough to say
that a sufficiently sifted sequence is a sequence H which can be upper-sifted by a sieve of
dimension κ ≥ 0 and such that there exists three positive constants c1, c2 and X0(H) such
that, when X ≥ X0(H), we have
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sc1
X

(log X)κ
≤ #{h ≤ X, h ∈ H} ≤ c2

X

(log X)κ
. (1)

The upper bound comes from an upper sieve, say from Selberg’s sieve, while the lower
bound has to be obtained in some manner. Here are some examples of sufficiently sifted
sequences:

(i) The set of primes of dimension κ = 1,
(ii) The set of sums of two coprime squares, of dimension κ = 1/2,

(iii) The set of sums n of two coprime squares such that n + 1 is also such a sum, see [7],
(iv) The set of primes p such that p + 1 is a sum of two coprime squares, see [10], [8]

and [19],
(v) The set of sums of two coprime squares that are also of the form x2 + xy + y2, with

x and y coprime, see [5],
(vi) The set of natural integers, of dimension κ = 0.

Given any such set H and some integer c, the set H− c is also sufficiently sifted and of the
same dimension. It is expected that the intersection of any two such sequences, if infinite,
is also sufficiently sifted, but we are still light-years away from proving that.

We consider in what follows the sufficiently sifted sequence H to be fixed, the bound
X to be larger than X0(H) and subsets, say A of H ∩ [1, X ] such that

|A| � α
c1X

(log X)κ
(2)

for some positive α. We are concerned with the dependence in α in subsequent estimates,
so we shorten the above in |A| �H αX/(log X)κ and say that A is relatively dense with
respect to H. Here is our main result.

Theorem 1. Let ε > 0. Let H be a given sufficiently sifted set of strict dimension κ as
described above. Let α be a real number in (0, 1] and X be a real number≥ X0(H). When
A is a subset ofH ∩ [1, X ] with |A| �H αX/(log X)κ , we have |A/A| �ε,H α1+ε|A|2.

An optimal result would have αε rather than α1+ε. To explain what we mean by strict
dimension, see (4) and the paragraph that follows, the concept of sieve dimension being
rather well-known. When H = N, the paper [1, Theorem 1.1] proves that the lower bound
α2+εX2 is available, but we have not been able to adapt the proof to this case. Getting the
lower bound α4+εX2/(log X)2κ is rather straightforward, the main work here is to get α3

rather than α4.
We have restricted our attention to the quotient A/A, as it is believed to be more regular

than the product setA·Awhen we encounter themultiplication table problem. The readers
interested in such questions can refer [11], [4] and [2].

A part of our work is to handle such general sequences and then to prove the above
theorem. Let us mention a corollary of Theorem 1 that may be used to measure future
progress on this question.

COROLLARY 2

Let ε > 0. There exists a positive constant C(ε)with the following property: Let η ∈ (0, 1)

be a parameter. Let P(η, X) be the sequence of primes p ≤ X such that ‖pπ‖ ≤ η. We
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have more than C(ε)η3+εX2/(log X)2 fractions of the form (p1 − 1)/(p2 − 1), where p1
and p2 belong to P(η, X), provided X ≥ X0(η).

Let us now turn our attention to a precise definition of sufficiently sifted sequences.

1.1 Geometric sieve context

We start by selecting, for every prime p, a large subset Kp of Z/pZ. Let us review this
choice in our examples:

(i) For the set of primes, Kp = Z/pZ \ {0}.
(ii) For the set of sums of two coprime squares, Kp = Z/pZ \ {0} when p ≡ 3[4] and

Kp = Z/pZ otherwise.
(iii) For the set of sums n of two coprime squares such that n + 1 is also such a sum,

Kp = Z/pZ \ {0,−1} when p ≡ 3[4] and Kp = Z/pZ otherwise.
(iv) For the set of primes p such that p + 1 is a sum of to coprime squares, Kp =

Z/pZ \ {0,−1} when p ≡ 3[4] and Kp = Z/pZ \ {0} otherwise.
(v) For the set of sums of two coprime squares that are also of the form x2 +xy+ y2, with

x and y coprime, Kp = Z/pZ \ {0} when p ∈ {5, 7, 11} mod12 and Kp = Z/pZ,
see [5, Proposition 6.2].

(vi) For the set of natural integers, Kp = Z/pZ.
(vii) And finally, for the set of primes minus 1, Kp = Z/pZ \ {1}.

For every square-free integer d, we also consider the subset Kd ⊂ Z/dZ that corresponds
by the Chinese Remainder theorem to

∏
p|d Kp. We define K = (Kd). In the vocabulary of

[13, Chapter 2] or of [15], K is a square-free multiplicatively split compact set. This comes
from the fact that K may be viewed as a subset of Ẑ = ∏

p Ẑp, the product of the p-adic
integers, which is also the inverse limit of (Z/qZ), with the obvious choice of morphisms.
We will not use this viewpoint here. A particular property of K is to be underlined

∀d|q,∀a ∈ Kd ,
∑

b∈Kq
b≡a[d]

1 = |Kq |
|Kd | . (3)

Let us pick a subcompact set K′ ⊂ K. This one does not need to be multiplicatively split.
This is equivalent to the choice of a coherent sequence of subsets K′

d ⊂ Z/dZ, where
coherent means that the canonical surjection from Z/qZ to Z/dZ indeed sends K′

q onto
K′

d , whenever d and q are chosen so that d|q.
It is time to turn to quantification. We assumed that our sieve is of strict dimension κ and

this corresponds to two facts: first K is non-empty, i.e. none of the subsets Kp is empty,
and second, that we have

∑

p≤Q

(p − κ − |Kp|)2

p
log p = O(1) (4)

when Q goes to infinity. The readers will swiftly check that the sieve dimensions we have
announced earlier for our examples are correct. The dimension is usually defined by

∑

p≤Q

p − |Kp|
p

log p = κ log Q + O(1)
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which is a clear consequence of (4). Technical assumptions are then added on |Kp|. As it
turns out, in our case, hypothesis (4) is easy to state and avoids all the technical assump-
tions. So we added the qualification strict in front of ’dimension’ to handle this situation.
Concerning K′, we only assume it is small in the sense that

|K′
r | ≤ d(r)m (5)

for some m, and where d(r) is the number of divisors of r .

1.2 Sufficiently sifted sequences

Now that we have the notion of compact sets, we may turn to sequences of integers, and
see how both are related. Let us first consider our examples. We know that a prime in
[√X , X ] has no prime factors below

√
X . We know that sums of two coprime squares do

not have any prime factors congruent to 3 modulo 4. Two points are to be inspected with
attention:

(a) We detect primes in this manner, but only the ones in given intervals. This is enough for
us since we only consider fixed X . Furthermore, the primes below

√
X are negligible

in numbers.
(b) A point that is clear with sums of two squares: when we consider integers without any

prime factors ≤ √
X , that is, ≡ 3[4], this includes also primes in (

√
X , X ] that are

congruent to 3 modulo 4! Again, such numbers are less numerous than sums of two
squares.

These two points underline the fact that the fit between the easily-defined sequences and
the sieve setting is imperfect, and that some tweaking is required. A convenient tool to
connect these two universes is the next notion.

DEFINITION 3

A sequence (un)n≤N of complex numbers is said to be carried by K whenever

∀n ≤ N ,
[
un = 0 �⇒ ∀q ≤ √

X , n ∈ Kq
]
. (6)

Here is how we define sufficiently sifted sequences.

DEFINITION 4

Let K be a square-free multiplicative compact set. An infinite sufficiently sifted sequence
H carried by K is a sequence such that there exists c1 and X0 such that, for every X ≥ X0
large enough,

(a) the characteristic function of H ∩ [√X , X ] is carried by K,
(b) |H ∩ [√X , X ]| ≥ c1X/(log X)κ .

We deduce from our hypotheses that we also have |H ∩ [√X , X ]| ≥ c2X/(log X)κ as
stated earlier. Note that this defines the dimension κ uniquely, whether one starts from the
sequence H or from the compact set K. In a more general setting, we would not specify
q ≤ √

X either in Definition 3 or in Definition 4, but keep q ≤ Q for some parameter Q;
such a precision is not required here and our wish of simplicity asks for the simple choice
Q = √

X .
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1.3 Some distribution results on sufficiently sifted sequences

We finally reach the point where we can prove results on sequences through sieve tools.
Here is our general theorem.

Theorem 5. Let ε > 0 and m ≥ 0. Let K be a multiplicatively split compact set, with
a small subset K′ that verifies (5). Let (un)n≤N be a a sequence carried by K. We have,
when R <

√
N ,

∑

r≤R

|Kr |
∣
∣
∣
∣

∑

n∈K′
r

un

∣
∣
∣
∣

2

�ε,K Rε
∑

n

|un|2 N

(log N )κ
.

The corollary we use for the proof of Theorem 1 is the following.

COROLLARY 6

Let ε > 0. Let K be a multiplicatively split compact set. Let (un)n≤N be a sequence
carried by K. We have, when R <

√
N ,

∑

r≤R

|Kr |
∣
∣
∣
∣

∑

n≡0[r ]
un

∣
∣
∣
∣

2

�ε,K Rε
∑

n

|un|2 N

(log N )κ
.

Elliott [3] has proven a similar inequality, regarding it as dual to the Turan–Kubilius
inequality, but restricting the moduli to the prime powers. He was, however, able to extend
in this case, the summation to all moduli ≤ N and to dispense with the term Rε. See for
instance, [3, Theorem 3.1], where the letter q is used throughout the book to denote a
prime power (related to the prime q0).

2. Aritheoremetical auxiliaries on multiplicative compact sets

Given a square-free multiplicative compact set K, we would like to be able to handle the
quantity |Kd |. Hypothesis (4) tells us that |Kp| is on average equal to p − κ .

Lemma 7. There exists a positive constant c3 such that, for every integer r , we have

c3
r

(log log 3r)κ
≤ |Kr | ≤ r.

Proof. We assume r to be square-free. By (4), we have

|Kp| − p + κ � √
p/ log p.

In particular, when p ≥ κ + A for some A, we have |Kp| − p + κ ≤ |p − κ|/2. We then
consider
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log
∏

p|d,
p>κ+A

|Kp|
p − κ

=
∑

p|r,
p>κ+A

log

(

1 + |Kp| − p + κ

p − κ

)

=
∑

p|r,
p>κ+A

|Kp| − p + κ

p − κ
+ O

( ∑

p|r,
p>κ+A

( |Kp| − p + κ

p − κ

)2)

= O
(( ∑

p|r,
p>κ+A

(|Kp| − p + κ)2

p

)1/2)

+ O(1) = O(1).

The lemma then follows in a classical manner. Rapidly, we check that, with D = log r ,
for r ≥ 2(κ + A),

− log
∏

p|d,
p>κ+A

(1 − κ/p) = −
∑

p|r,
p>κ+A

log

(

1 − κ

p

)

=
∑

p|r,
κ+A<p≤D

κ

p
+

∑

p|r,
p≥D

κ

p
+ O(1)

≥ κ log log D + O
(

log r

D log D

)

+ O(1),

hence the result. �

We end this section by the classical “sub-multiplicativity” property of the divisor func-
tions, and a proof is given, for instance, in [14, Lemma 12].

Lemma 8. We have dk(rs) ≤ dk(r)dk(s).

3. On sequences supported by compact sets

We consider the vector spaceFq of functions fromZ/qZ toZ that vanish out ofKq , which
we endow with the hermitian product

[ f |g]Kq = 1

|Kq |
∑

a∈Kq

f (a)g(a). (7)

A definition is required here to clarify our subsequent steps.

DEFINITION 9

A sequence (Kq)q≤Q is said to be an orthonormal system on K if

(a) For all q ∈ Q, Kq ⊂ Fq .
(b) Let � and q be both in Q with �|q and let χ be an element of K�. Then χ̃ defined by

χ̃(x) = χ(x + �Z) if x ∈ Kq and χ̃ (x) = 0 otherwise, is in Kq .
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(c) For all (χ1, χ2) ∈ K 2
q , we have

[χ1|χ2]Kq =
{

0 if χ1 = χ2,

1 if χ1 = χ2
(8)

(d) |Kq | = |Kq |.
(e) If χ comes (according to (c)) from K�1 and from K�2 , then χ comes from K(�1,�2),

where (�1, �2) is the gcd of �1 and �2.

By [12, Theorem 2], there exists an orthonormal system for K, since this set is supposed
to be multiplicatively split.

We shall call characters the elements of Kq , even though they are usually not linked
with any group structure. The notion of induced character is natural from (3), while the one
of conductor is simply established from (e). Let K ∗

q be the set of characters of conductor
q.

We consider the non-negative multiplicative function h defined by (see [13, (2.5)])

h(d) = μ2(d)
∏

p‖d

( p

|Kp| − 1
)
. (9)

This definition is valid because we have assumed our compact set K to be square-free. We
further define (see [13, (2.7)])

Gd(Q) =
∑

δ≤Q,
[d,δ]≤Q

h(δ), (10)

where [d, δ] = lcm(d, δ) is the least common multiple of d and δ. The readers who are used
to the Selberg sieve may be surprised by this definition (see Section 4). This sequence of
summatory functions is controlled in a two step process: First, and since δ ≤ [d, δ] ≤ dδ,
we obviously have

Gd(Q/d) ≤ Gd(Q) ≤ G1(Q). (11)

And secondly, as a consequence of (4), we have

G1(Q) = C(K)(log Q)κ(1 + o(1)) (12)

for some positive constant C(K). This is a consequence of any decent theorem on averages
of multiplicative functions, as can be found in [21] or in [9].

We define

S(α) =
∑

n≤N

une(nα), (α ∈ R/Z) (13)

and

S(χ) =
∑

n≤N

unχ(n), (χ ∈ Kq , q ∈ Q), (14)

distinction between (13) and (14) being clear from the context. Let us note that (6) ensures
the fundamental equality S(χ) = S(χ ′) whenever χ and χ ′ are induced by a same char-
acter.

We have, by [12, (14)], case K = 1,
∑

a mod ∗q
|S(a/q)|2 =

∑

f |q

( ∑

d|q/ f

μ
( q

d f

) d f

|Kd f |
) ∑

χ∈K ∗
f

|S(χ)|2. (15)

This is a local version of [13, Theorem 2.1], which we recall in this context.



   62 Page 8 of 13 Proc. Indian Acad. Sci. (Math. Sci.)          (2022) 132:62 

Lemma 10. Let (un) being a sequence of complex numbers carried by K. We have

∑

d≤Q

Gd(Q)
∑

χ∈K ∗
f

|S(χ)|2 =
∑

q≤Q

∑

a mod ∗q
|S(a/q)|2.

This leads us to a theorem analogous to [13, Theorem 5.2].

Theorem 11. Let (un) being a sequence of complex numbers carried by K. For any R ≤√
N , we have

∑

r≤R

∑

χ∈K ∗
r

|S(χ)|2 ≤ 2N

G1(
√
N/R)

∑

n

|un|2.

Proof. We simply find that

∑

r≤R

∑

χ∈K ∗
r

|S(χ)|2 ≤ min
r≤R

1

Gr (
√
N )

∑

d≤√
N

Gd(
√
N )

∑

χ∈K ∗
f

|S(χ)|2

≤ 1

G1(
√
N/R)

∑

d≤Q

Gd(
√
N )

∑

χ∈K ∗
f

|S(χ)|2

= 1

G1(
√
N/R)

∑

q≤Q

∑

a mod ∗q
|S(a/q)|2

and the classical large sieve inequality concludes. �

We also derive from Lemma 10 a kind of Brun–Titchmarsh theorem.

Lemma 12. Let (un) being a sequence of complex numbers carried byK with un ∈ [0, 1].
We have

∣
∣
∣
∑

n≤N

1n∈K′
r
un

∣
∣
∣ ≤ |K′

r |
2N

|Kr |G1(
√
N/r)

. (16)

Proof. By orthogonality, we write

∑

n≤N

1n∈K′
r
un =

∑

χ∈Kr

[1K′
r
|χ ]Kr S(χ)

and thus

∣
∣
∣
∑

n≤N

1n∈K′
r
un

∣
∣
∣
2 ≤

∑

χ∈Kr

∣
∣[1K′

r
|χ ]Kr

∣
∣2 ∑

χ∈Kr

|S(χ)|2 = ∥
∥1K′

r

∥
∥2
Kr

∑

χ∈Kr

|S(χ)|2

≤ |K′
r |

∑

χ∈Kr

|S(χ)|2/|Kr |.
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By Lemma 10, the sum over χ is not more than

∑

q≤√
N

∑

a mod ∗q
|S(a/q)|2/Gr (

√
N ),

which the large sieve inequality bounds above by

∑

n

|un|2 2N

|Kr |Gr (
√
N )

.

We gather our estimates and get

∣
∣
∣
∑

n≤N

1n∈K′
r
un

∣
∣
∣
2 ≤ |K′

r |
∑

n

|un|2 2N

|Kr |Gr (
√
N )

≤ |K′
r |

2N
∑

n |un|2
|Kr |G1(

√
N/r)

,

on using (11). Since un ∈ [0, 1], we have

∑

n

|un|2 ≤
∑

n

un

and the lemma follows readily. �

4. A divertimento: Comparing two definitions

This section is not required for the final proof. We defined the family of functions (Gd)

in (10) while the usual definition is, for instance, given in [6, Chapter 3, (1.3)], the function g
therein being our function h, when one sets ω(p) = p−|Kp|. Let us bridge the gap between
these two sets of definitions. In the summation over δ such that [d, δ] ≤ Q, we may write
δ = md ′, where m is prime to d, and d ′ in fact divides d, as we may assume δ to be
square-free. The condition [d, δ] ≤ Q reduces to dm ≤ Q, and we may sum freely on d ′.
We readily check that

∑

d ′|d
h(d ′) = d

|Kd |

which implies that

Gd(Q) = d

|Kd |
∑

m≤Q/d,
(m,d)=1

h(m). (17)

This expression links clearly the two sets of functions: dGd(Q)/|Kd | is the function that
is denoted by Gd(Q/d) in [6]. The inequalities (11) which are obvious in our setting were
discovered and proven are in [20].

When the sieve is not square-free, our definition still holds while the one used more
classically does not.
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5. Proof of Theorem 5

5.1 A general version of the Ramanujan sums

We conclude this part with a generalization of the Ramanujan sums. We define

cq(K,K′, n) = |Kq |
∑

χ∈K ∗
q

[1K′
q
|χ ]Kqχ(n) (18)

so that cq(Ẑ, {0}, n) is the usual Ramanujan sum1. Note that (21) below may serve as a
definition as well. We find that, by definition,

|Kq | [1K′
q
|χ ]Kq =

∑

k∈K′
q

χ(k).

We reach at this level our first main inequality (on using Parseval for 1K′
q
):

∣
∣
∣
∑

n

uncq(K,K′, n)

∣
∣
∣
2 ≤ |K ∗

q ||K′
q |

∑

χ∈K ∗
r

|S(χ)|2. (19)

These generalized Ramanujan sums give us a decomposition of 1K′
q

that will be of the first
step in the proof of Theorem 5:

1K′
q

=
∑

χ∈Kq

[1K′
q
|χ ]Kqχ = 1

|Kq |
∑

f |q
c f (K,K′, ·) (20)

which leads to

cq(K,K′, ·) =
∑

f |q
μ(q/ f )|K f |1K′

f
. (21)

Proof of Theorem 5. We use the decomposition (20) to write

∑

n

un1n∈K′
r

= 1

|Kr |
∑

f |r

∑

n

unc f (K,K′, n).

Let us denote our sum by S, i.e.,

S =
∑

r≤R

d(r)m |Kr |
∣
∣
∣
∑

n

un1n∈K′
r

∣
∣
∣
2
. (22)

By employing the above decomposition, we find that

S ≤
∑

r≤R

d(r)md(r)

|Kr |
∑

f |r

∣
∣
∣
∑

n

unc f (K,K′, n)

∣
∣
∣
2

≤
∑

f ≤R

∑

f |r≤R

d(r)m+1

|Kr |
∣
∣
∣
∑

n

unc f (K,K′, n)

∣
∣
∣
2
.

1A priori, associated to the orthonomal system (e(·a/q))a,q ). We show in (21) below that this
definition does not depend on the chosen orthonormal system since this is indeed the orthonormal
projection of 1K′

q
on the space generated by K ∗

q .
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We continue with

S ≤
∑

f ≤R

|K′
f ||K f |

∑

f |r≤R

d(r)m+1

|Kr |
∣
∣
∣
∑

n

unc f (K,K′, n)

∣
∣
∣
2
/(|K f ||K′

f |)

≤
∑

f ≤R

|K′
f ||K f |

∑

f |r≤R

d(r)m+1

|Kr |
∑

χ∈K ∗
f

|S(χ)|2

by using equation (19). We are in a position to use Theorem 11. We appeal to Lemma 8
and then to Lemma 7 to replace |Kr | by c3r/(log log 3r)κ and majorize |K f | by f . The
theorem follows swiftly.

6. Proof of Theorem 1

Let us specify that a sufficiently sifted sequence H is fixed throughout this part. We start
with a subset A ∈ [1, X ] ∩ H such that |A| ≥ αc1X/(log X)κ . By maybe removing
elements in A, we further assume that

αc1 ≤ |A| (log X)κ

X
≤ 2c1α. (23)

We proceed as in the beginning of the main proof in [1] and define

M(A, r) = #{(a, b) ∈ A2, gcd(a, b) = r}. (24)

We shall find one r for which |M(A, r)| and use the inequality

m(A) = max
r≥1

|M(A, r)| ≥ |A/A|. (25)

The proof starts by the following inequality, valid when X ≥ X0:

|A|2 ≤ #{(a, b) ∈ A2} ≤
∑

r≥1

M(A, r). (26)

Let us shorten the sum on the RHS.

6.1 Using a rough upper bound

For r larger than R1 = (log X)2κ+1, we bound above M(A, r) by X2/r2 and thus
∑

r≥R1

M(A, r) ≤ X2
∑

r≥R1

r−2 ≤ 2X2/R1.

We take X large enough that this upper bound be ≤ 1
4 (2αc1X/ logκ X)2, which is also

≤ 1
4 |A|2.

6.2 Using a Brun–Titchmarsh like upper bound

For r between R2 = C2α
−2 for a large enough constant C2, we use (16) with (un) the

characteristic function of A, K′ = {0} and Q = √
X :

∑

R2<r≤R1

M(A, r) ≤ X + Q2

G1(Q/R1)2

∑

R2≤r≤R1

1

|Kr |2 � X2

(log X)2κ R2
.
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We select C2 so that this upper bound be ≤ 1
4 (2αc1X/ logκ X)2. We have thus reached

1
2 |A|2 ≤

∑

r≤R2

M(A, r).

Thus at least one M(A, r) is larger than 1
4 (αX/ logκ X)2/R2 and this already proves that

|A/A| ≥ C−1
2 α2|A|2.

6.3 Using a large sieve extension of a Brun–Titchmarsh like upper bound

We further lower the exponent of α by shortening the sum over r some more. On using
Theorem 5 with R = R2 and m = 0, we reach, for R ∈ [R3, R2],

∑

R<r≤2R

M(A, r) ≤ 1

R
max

R<r≤2R

r

|Kr |
∑

R<r≤2R

|Kr |
∣
∣
∣
∣

∑

a∈A,
a≡0[r ]

1

∣
∣
∣
∣

2

�ε,K log(1/α)κ
α1+εX2

R(log X)2κ
�ε,K

α1−εX2

R(log X)2κ
.

We sum over R = R2, R2/21, R2/22, . . . until we reach below

R3 = C3α
−1−ε, (27)

where C3 is large enough that the above bound is ≤ 1
4 (αc1X/ logκ X)2. We have reached

|A/A| �ε,K α3+ε(X/ logκ X)2 (28)

and this concludes the proof of Theorem 1.
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