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We prove that the number of fractions

, where H is the set p -1, p being a prime such that p +1 is a sum of two coprime squares. So, this number of fractions is ε α 1+ε |A| 2 , where ε is any positive real number. We take this opportunity to describe a geometrical view of the sieve and its usage to study integer sequences.

Introduction

In [START_REF] Cilleruelo | The number of rational numbers determined by large sets of integers[END_REF], we proved that a subset A of [1, X ], of cardinality at least α X , produces more than constant times α 2+ε X 2 distinct fractions a/a , with a and a from A. Here ε > 0 is a given real number, the constant may depend on ε (and we prove that this dependance is indeed heavy) and X is large enough. The question appeared as Problem 22 in [START_REF] Sárközy | Unsolved problems in number theory[END_REF], though in a different form, and a first result was obtained in [START_REF] Sándor | On the minimal gaps between products of members of a sequence of positive density[END_REF]. From a generic viewpoint, we considered thinner sets in [START_REF] Cilleruelo | Quotients and products of zero-density subsets of the set of positive integers[END_REF] (see also its addendum in [START_REF] Yu | Quotients and products of zero-density subsets of the set of positive integers [MR3640773[END_REF]) and noted that multiplicativity plays a large role in the behaviour of |A/A|. Our two fields of experiments were the set of primes minus 1 and the set of sums of two squares minus 1, as the random case shows a change of regime around density 1/ √ log X . We consider here a similar problem, but with dense subsets of sufficiently sifted sequences, in the sense of [START_REF] Ramaré | Additive properties of dense subsets of sifted sequences[END_REF]. The angle we take is different and may be resumed by saying that such sets are close to subsets of intersections of arithmetic progressions, hence may be expected to behave like subsets of density of the integers.

We will be more precise in subsection 1.2 but in this Introduction, it is enough to say that a sufficiently sifted sequence is a sequence H which can be upper-sifted by a sieve of dimension κ ≥ 0 and such that there exists three positive constants c 1 , c 2 and X 0 (H) such that, when X ≥ X 0 (H), we have 0123456789().: V,-vol

sc 1 X (log X ) κ ≤ #{h ≤ X, h ∈ H} ≤ c 2 X (log X ) κ .
(

The upper bound comes from an upper sieve, say from Selberg's sieve, while the lower bound has to be obtained in some manner. Here are some examples of sufficiently sifted sequences:

(i) The set of primes of dimension κ = 1, (ii) The set of sums of two coprime squares, of dimension κ = 1/2, (iii) The set of sums n of two coprime squares such that n + 1 is also such a sum, see [START_REF] Indlekofer | Scharfe Abschätchung für die Anzahlfunction der b-Zwillinge[END_REF], (iv) The set of primes p such that p + 1 is a sum of two coprime squares, see [START_REF] Ju | An asymptotic formula in an additive problem of Hardy-Littlewood[END_REF], [START_REF] Iwaniec | Primes of the type ϕ(x, y) + a, where ϕ is a quadratic form[END_REF] and [START_REF] Teräväinen | The Goldbach problem for primes that are sums of two squares plus one[END_REF], (v) The set of sums of two coprime squares that are also of the form x 2 + x y + y 2 , with

x and y coprime, see [START_REF] Fouvry | Representation of integers by cyclotomic binary forms[END_REF], (vi) The set of natural integers, of dimension κ = 0.

Given any such set H and some integer c, the set Hc is also sufficiently sifted and of the same dimension. It is expected that the intersection of any two such sequences, if infinite, is also sufficiently sifted, but we are still light-years away from proving that.

We consider in what follows the sufficiently sifted sequence H to be fixed, the bound X to be larger than X 0 (H) and subsets, say

A of H ∩ [1, X ] such that |A| α c 1 X (log X ) κ (2)
for some positive α. We are concerned with the dependence in α in subsequent estimates, so we shorten the above in |A| H α X/(log X ) κ and say that A is relatively dense with respect to H. Here is our main result.

Theorem 1. Let ε > 0. Let H be a given sufficiently sifted set of strict dimension κ as described above. Let α be a real number in (0, 1] and X be a real number

≥ X 0 (H). When A is a subset of H ∩ [1, X ] with |A| H α X/(log X ) κ , we have |A/A| ε,H α 1+ε |A| 2 .
An optimal result would have α ε rather than α 1+ε . To explain what we mean by strict dimension, see (4) and the paragraph that follows, the concept of sieve dimension being rather well-known. When H = N, the paper [1, Theorem 1.1] proves that the lower bound α 2+ε X 2 is available, but we have not been able to adapt the proof to this case. Getting the lower bound α 4+ε X 2 /(log X ) 2κ is rather straightforward, the main work here is to get α 3 rather than α 4 .

We have restricted our attention to the quotient A/A, as it is believed to be more regular than the product set A•A when we encounter the multiplication table problem. The readers interested in such questions can refer [START_REF] Mangerel | The Multiplication Table and its Generalizations[END_REF], [START_REF] Ford | Extremal properties of product sets[END_REF] and [START_REF] Cilleruelo | Quotients and products of zero-density subsets of the set of positive integers[END_REF].

A part of our work is to handle such general sequences and then to prove the above theorem. Let us mention a corollary of Theorem 1 that may be used to measure future progress on this question.

COROLLARY 2

Let ε > 0. There exists a positive constant C(ε) with the following property: Let η ∈ (0, 1) be a parameter. Let P(η, X ) be the sequence of primes p ≤ X such that pπ ≤ η. We have more than C(ε)η 3+ε X 2 /(log X ) 2 fractions of the form ( p 1 -1)/( p 2 -1), where p 1 and p 2 belong to P(η, X ), provided X ≥ X 0 (η).

Let us now turn our attention to a precise definition of sufficiently sifted sequences.

Geometric sieve context

We start by selecting, for every prime p, a large subset K p of Z/ pZ. Let us review this choice in our examples:

(i) For the set of primes, K p = Z/ pZ \ {0}. (ii) For the set of sums of two coprime squares, K p = Z/ pZ \ {0} when p ≡ 3 [START_REF] Ford | Extremal properties of product sets[END_REF] and K p = Z/ pZ otherwise. (iii) For the set of sums n of two coprime squares such that n + 1 is also such a sum, K p = Z/ pZ \ {0, -1} when p ≡ 3 [START_REF] Ford | Extremal properties of product sets[END_REF] and K p = Z/ pZ otherwise. (iv) For the set of primes p such that p + 1 is a sum of to coprime squares, K p = Z/ pZ \ {0, -1} when p ≡ 3 [START_REF] Ford | Extremal properties of product sets[END_REF] and K p = Z/ pZ \ {0} otherwise. (v) For the set of sums of two coprime squares that are also of the form x 2 + x y + y 2 , with

x and y coprime, K p = Z/ pZ \ {0} when p ∈ {5, 7, 11} mod12 and K p = Z/ pZ, see [5, Proposition 6.2]. (vi) For the set of natural integers, K p = Z/ pZ. (vii) And finally, for the set of primes minus 1, K p = Z/ pZ \ {1}.

For every square-free integer d, we also consider the subset K d ⊂ Z/dZ that corresponds by the Chinese Remainder theorem to p|d K p . We define K = (K d ). In the vocabulary of [START_REF] Ramaré | Arithmetical aspects of the large sieve inequality[END_REF]Chapter 2] or of [START_REF] Ramaré | Additive properties of dense subsets of sifted sequences[END_REF], K is a square-free multiplicatively split compact set. This comes from the fact that K may be viewed as a subset of Ẑ = p Ẑp , the product of the p-adic integers, which is also the inverse limit of (Z/qZ), with the obvious choice of morphisms. We will not use this viewpoint here. A particular property of K is to be underlined

∀d|q, ∀a ∈ K d , b∈K q b≡a[d] 1 = |K q | |K d | . ( 3 
)
Let us pick a subcompact set K ⊂ K. This one does not need to be multiplicatively split. This is equivalent to the choice of a coherent sequence of subsets K d ⊂ Z/dZ, where coherent means that the canonical surjection from Z/qZ to Z/dZ indeed sends K q onto K d , whenever d and q are chosen so that d|q.

It is time to turn to quantification. We assumed that our sieve is of strict dimension κ and this corresponds to two facts: first K is non-empty, i.e. none of the subsets K p is empty, and second, that we have

p≤Q ( p -κ -|K p |) 2 p log p = O(1) (4) 
when Q goes to infinity. The readers will swiftly check that the sieve dimensions we have announced earlier for our examples are correct. The dimension is usually defined by

p≤Q p -|K p | p log p = κ log Q + O(1)
which is a clear consequence of (4). Technical assumptions are then added on |K p |. As it turns out, in our case, hypothesis ( 4) is easy to state and avoids all the technical assumptions. So we added the qualification strict in front of 'dimension' to handle this situation.

Concerning K , we only assume it is small in the sense that |K r | ≤ d(r ) m (5) for some m, and where d(r ) is the number of divisors of r .

Sufficiently sifted sequences

Now that we have the notion of compact sets, we may turn to sequences of integers, and see how both are related. Let us first consider our examples. We know that a prime in [ √ X , X ] has no prime factors below √ X . We know that sums of two coprime squares do not have any prime factors congruent to 3 modulo 4. Two points are to be inspected with attention: (a) We detect primes in this manner, but only the ones in given intervals. This is enough for us since we only consider fixed X . Furthermore, the primes below √ X are negligible in numbers. (b) A point that is clear with sums of two squares: when we consider integers without any prime factors ≤ √ X , that is, ≡ 3 [START_REF] Ford | Extremal properties of product sets[END_REF], this includes also primes in ( √ X , X ] that are congruent to 3 modulo 4! Again, such numbers are less numerous than sums of two squares. These two points underline the fact that the fit between the easily-defined sequences and the sieve setting is imperfect, and that some tweaking is required. A convenient tool to connect these two universes is the next notion.

DEFINITION 3

A sequence (u n ) n≤N of complex numbers is said to be carried by K whenever

∀n ≤ N , u n = 0 ⇒ ∀q ≤ √ X , n ∈ K q . ( 6 
)
Here is how we define sufficiently sifted sequences.

DEFINITION 4

Let K be a square-free multiplicative compact set. An infinite sufficiently sifted sequence H carried by K is a sequence such that there exists c 1 and X 0 such that, for every X ≥ X 0 large enough, (a) the characteristic function of

H ∩ [ √ X , X ] is carried by K, (b) |H ∩ [ √ X , X ]| ≥ c 1 X/(log X ) κ .
We deduce from our hypotheses that we also have |H ∩ [ √ X , X ]| ≥ c 2 X/(log X ) κ as stated earlier. Note that this defines the dimension κ uniquely, whether one starts from the sequence H or from the compact set K. In a more general setting, we would not specify q ≤ √ X either in Definition 3 or in Definition 4, but keep q ≤ Q for some parameter Q; such a precision is not required here and our wish of simplicity asks for the simple choice Q = √ X . 62

Some distribution results on sufficiently sifted sequences

We finally reach the point where we can prove results on sequences through sieve tools.

Here is our general theorem.

Theorem 5. Let ε > 0 and m ≥ 0. Let K be a multiplicatively split compact set, with a small subset K that verifies [START_REF] Fouvry | Representation of integers by cyclotomic binary forms[END_REF]. Let (u n ) n≤N be a a sequence carried by K. We have, when R < √ N ,

r ≤R |K r | n∈K r u n 2 ε,K R ε n |u n | 2 N (log N ) κ .
The corollary we use for the proof of Theorem 1 is the following.

COROLLARY 6

Let ε > 0. Let K be a multiplicatively split compact set. Let (u n ) n≤N be a sequence carried by K. We have, when R <

√ N , r ≤R |K r | n≡0[r ] u n 2 ε,K R ε n |u n | 2 N (log N ) κ .
Elliott [START_REF] Elliott | Duality in analytic number theory[END_REF] has proven a similar inequality, regarding it as dual to the Turan-Kubilius inequality, but restricting the moduli to the prime powers. He was, however, able to extend in this case, the summation to all moduli ≤ N and to dispense with the term R ε . See for instance, [3, Theorem 3.1], where the letter q is used throughout the book to denote a prime power (related to the prime q 0 ).

Aritheoremetical auxiliaries on multiplicative compact sets

Given a square-free multiplicative compact set K, we would like to be able to handle the quantity |K d |. Hypothesis (4) tells us that |K p | is on average equal to p -κ. Lemma 7. There exists a positive constant c 3 such that, for every integer r , we have

c 3 r (log log 3r ) κ ≤ |K r | ≤ r.
Proof. We assume r to be square-free. By (4), we have

|K p | -p + κ p/ log p.
In particular, when p ≥ κ + A for some A, we have |K p |p + κ ≤ |p -κ|/2. We then consider log p|d, p>κ+A

|K p | p -κ = p|r, p>κ+A log 1 + |K p | -p + κ p -κ = p|r, p>κ+A |K p | -p + κ p -κ + O p|r, p>κ+A |K p | -p + κ p -κ 2 = O p|r, p>κ+A (|K p | -p + κ) 2 p 1/2 + O(1) = O(1).
The lemma then follows in a classical manner. Rapidly, we check that, with D = log r , for r ≥ 2(κ + A),

-log p|d, p>κ+A (1 -κ/ p) = - p|r, p>κ+A log 1 - κ p = p|r, κ+A< p≤D κ p + p|r, p≥D κ p + O(1) ≥ κ log log D + O log r D log D + O(1),
hence the result.

We end this section by the classical "sub-multiplicativity" property of the divisor functions, and a proof is given, for instance, in [14, Lemma 12].

Lemma 8. We have d k (rs) ≤ d k (r )d k (s).

On sequences supported by compact sets

We consider the vector space F q of functions from Z/qZ to Z that vanish out of K q , which we endow with the hermitian product

[ f |g] K q = 1 |K q | a∈K q f (a)g(a). ( 7 
)
A definition is required here to clarify our subsequent steps.

DEFINITION 9

A sequence (K q ) q≤Q is said to be an orthonormal system on K if (a) For all q ∈ Q, K q ⊂ F q . (b) Let and q be both in Q with |q and let χ be an element of K . Then χ defined by χ(x) = χ(x + Z) if x ∈ K q and χ(x) = 0 otherwise, is in K q .

(c) For all (χ 1 , χ 2 ) ∈ K 2 q , we have

[χ 1 |χ 2 ] K q = 0 if χ 1 = χ 2 , 1 if χ 1 = χ 2 (8) (d) |K q | = |K q |.
(e) If χ comes (according to (c)) from K 1 and from K 2 , then χ comes from K ( 1 , 2 ) , where ( 1 , 2 ) is the gcd of 1 and 2 .

By [START_REF] Ramaré | An explicit result of the sum of seven cubes[END_REF]Theorem 2], there exists an orthonormal system for K, since this set is supposed to be multiplicatively split. We shall call characters the elements of K q , even though they are usually not linked with any group structure. The notion of induced character is natural from (3), while the one of conductor is simply established from (e). Let K * q be the set of characters of conductor q.

We consider the non-negative multiplicative function h defined by (see [13, (2.5)])

h(d) = μ 2 (d) p d p |K p | -1 . ( 9 
)
This definition is valid because we have assumed our compact set K to be square-free. We further define (see [13, (2.7)])

G d (Q) = δ≤Q, [d,δ]≤Q h(δ), ( 10 
)
where [d, δ] = lcm(d, δ) is the least common multiple of d and δ. The readers who are used to the Selberg sieve may be surprised by this definition (see Section 4). This sequence of summatory functions is controlled in a two step process: First, and since δ ≤ [d, δ] ≤ dδ, we obviously have

G d (Q/d) ≤ G d (Q) ≤ G 1 (Q). ( 11 
)
And secondly, as a consequence of (4), we have

G 1 (Q) = C(K)(log Q) κ (1 + o(1)) (12) 
for some positive constant C(K). This is a consequence of any decent theorem on averages of multiplicative functions, as can be found in [START_REF] Wirsing | Das asymptotische Verhalten von Summen über multiplikative Funktionen[END_REF] or in [START_REF] Levin | Application of some integral equations to problems of number theory[END_REF]. We define

S(α) = n≤N u n e(nα), (α ∈ R/Z) (13) 
and

S(χ ) = n≤N u n χ(n), (χ ∈ K q , q ∈ Q), (14) 
distinction between ( 13) and ( 14) being clear from the context. Let us note that (6) ensures the fundamental equality S(χ ) = S(χ ) whenever χ and χ are induced by a same character.

We have, by [12, (14)], case K = 1,

a mod * q |S(a/q)| 2 = f |q d|q/ f μ q d f d f |K d f | χ ∈K * f |S(χ )| 2 . ( 15 
)
This is a local version of [13, Theorem 2.1], which we recall in this context. (2022) 132:62

Lemma 10. Let (u n ) being a sequence of complex numbers carried by K. We have

d≤Q G d (Q) χ ∈K * f |S(χ )| 2 = q≤Q a mod * q |S(a/q)| 2 .
This leads us to a theorem analogous to [START_REF] Ramaré | Arithmetical aspects of the large sieve inequality[END_REF]Theorem 5.2].

Theorem 11. Let (u n ) being a sequence of complex numbers carried by K. For any R ≤ √ N , we have

r ≤R χ ∈K * r |S(χ )| 2 ≤ 2N G 1 ( √ N /R) n |u n | 2 .
Proof. We simply find that

r ≤R χ ∈K * r |S(χ )| 2 ≤ min r ≤R 1 G r ( √ N ) d≤ √ N G d ( √ N ) χ ∈K * f |S(χ )| 2 ≤ 1 G 1 ( √ N /R) d≤Q G d ( √ N ) χ ∈K * f |S(χ )| 2 = 1 G 1 ( √ N /R) q≤Q a mod * q |S(a/q)| 2
and the classical large sieve inequality concludes.

We also derive from Lemma 10 a kind of Brun-Titchmarsh theorem.

Lemma 12. Let (u n ) being a sequence of complex numbers carried by K with u n ∈ [0, 1].

We have n≤N

1 n∈K r u n ≤ |K r | 2N |K r |G 1 ( √ N /r ) . ( 16 
)
Proof. By orthogonality, we write n≤N

1 n∈K r u n = χ ∈K r [1 K r |χ ] K r S(χ )
and thus

n≤N 1 n∈K r u n 2 ≤ χ ∈K r [1 K r |χ ] K r 2 χ ∈K r |S(χ )| 2 = 1 K r 2 K r χ ∈K r |S(χ )| 2 ≤ |K r | χ ∈K r |S(χ )| 2 /|K r |.
By Lemma 10, the sum over χ is not more than

q≤ √ N a mod * q |S(a/q)| 2 /G r ( √ N ),
which the large sieve inequality bounds above by

n |u n | 2 2N |K r |G r ( √ N ) .
We gather our estimates and get

n≤N 1 n∈K r u n 2 ≤ |K r | n |u n | 2 2N |K r |G r ( √ N ) ≤ |K r | 2N n |u n | 2 |K r |G 1 ( √ N /r ) ,
on using [START_REF] Mangerel | The Multiplication Table and its Generalizations[END_REF]. Since u n ∈ [0, 1], we have

n |u n | 2 ≤ n u n
and the lemma follows readily.

A divertimento: Comparing two definitions

This section is not required for the final proof. We defined the family of functions (G d ) in [START_REF] Ju | An asymptotic formula in an additive problem of Hardy-Littlewood[END_REF] while the usual definition is, for instance, given in [6, Chapter 3, (1.

3)], the function g therein being our function h, when one sets ω( p) = p-|K p |. Let us bridge the gap between these two sets of definitions. In the summation over δ such that [d, δ] ≤ Q, we may write δ = md , where m is prime to d, and d in fact divides d, as we may assume δ to be square-free. The condition [d, δ] ≤ Q reduces to dm ≤ Q, and we may sum freely on d . We readily check that

d |d h(d ) = d |K d | which implies that G d (Q) = d |K d | m≤Q/d, (m,d)=1 h(m). ( 17 
)
This expression links clearly the two sets of functions: [START_REF] Halberstam | Sieve methods[END_REF]. The inequalities [START_REF] Mangerel | The Multiplication Table and its Generalizations[END_REF] which are obvious in our setting were discovered and proven are in [START_REF] Van Lint | On primes in arithmetic progressions[END_REF]. When the sieve is not square-free, our definition still holds while the one used more classically does not.

dG d (Q)/|K d | is the function that is denoted by G d (Q/d) in

Proof of Theorem 5

A general version of the Ramanujan sums

We conclude this part with a generalization of the Ramanujan sums. We define

c q (K, K , n) = |K q | χ ∈K * q [1 K q |χ ] K q χ(n) (18)
so that c q ( Ẑ, {0}, n) is the usual Ramanujan sum 1 . Note that (21) below may serve as a definition as well. We find that, by definition,

|K q | [1 K q |χ ] K q = k∈K q χ(k).
We reach at this level our first main inequality (on using Parseval for 1 K q ):

n u n c q (K, K , n) 2 ≤ |K * q ||K q | χ ∈K * r |S(χ )| 2 . ( 19 
)
These generalized Ramanujan sums give us a decomposition of 1 K q that will be of the first step in the proof of Theorem 5:

1 K q = χ ∈K q [1 K q |χ ] K q χ = 1 |K q | f |q c f (K, K , •) (20) 
which leads to

c q (K, K , •) = f |q μ(q/ f )|K f |1 K f . ( 21 
)
Proof of Theorem 5. We use the decomposition [START_REF] Van Lint | On primes in arithmetic progressions[END_REF] to write

n u n 1 n∈K r = 1 |K r | f |r n u n c f (K, K , n).
Let us denote our sum by S, i.e.,

S = r ≤R d(r ) m |K r | n u n 1 n∈K r 2 . ( 22 
)
By employing the above decomposition, we find that

S ≤ r ≤R d(r ) m d(r ) |K r | f |r n u n c f (K, K , n) 2 ≤ f ≤R f |r ≤R d(r ) m+1 |K r | n u n c f (K, K , n) 2 .
1 A priori, associated to the orthonomal system (e(•a/q)) a,q ). We show in [START_REF] Wirsing | Das asymptotische Verhalten von Summen über multiplikative Funktionen[END_REF] below that this definition does not depend on the chosen orthonormal system since this is indeed the orthonormal projection of 1 K q on the space generated by K * q .
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We continue with

S ≤ f ≤R |K f ||K f | f |r ≤R d(r ) m+1 |K r | n u n c f (K, K , n) 2 /(|K f ||K f |) ≤ f ≤R |K f ||K f | f |r ≤R d(r ) m+1 |K r | χ ∈K * f |S(χ )| 2
by using equation [START_REF] Teräväinen | The Goldbach problem for primes that are sums of two squares plus one[END_REF]. We are in a position to use Theorem 11. We appeal to Lemma 8 and then to Lemma 7 to replace |K r | by c 3 r/(log log 3r ) κ and majorize |K f | by f . The theorem follows swiftly.

Proof of Theorem 1

Let us specify that a sufficiently sifted sequence H is fixed throughout this part. We start with a subset A ∈ [1, X ] ∩ H such that |A| ≥ αc 1 X/(log X ) κ . By maybe removing elements in A, we further assume that

αc 1 ≤ |A| (log X ) κ X ≤ 2c 1 α. ( 23 
)
We proceed as in the beginning of the main proof in [START_REF] Cilleruelo | The number of rational numbers determined by large sets of integers[END_REF] and define

M(A, r ) = #{(a, b) ∈ A 2 , gcd(a, b) = r }. (24) 
We shall find one r for which |M(A, r )| and use the inequality 

The proof starts by the following inequality, valid when X ≥ X 0 :

|A| 2 ≤ #{(a, b) ∈ A 2 } ≤ r ≥1 M(A, r ). ( 26 
)
Let us shorten the sum on the RHS.

Using a rough upper bound

For r larger than R 1 = (log X ) 2κ+1 , we bound above M(A, r ) by X 2 /r 2 and thus

r ≥R 1 M(A, r ) ≤ X 2 r ≥R 1 r -2 ≤ 2X 2 /R 1 .
We take X large enough that this upper bound be ≤ 1 4 (2αc 1 X/ log κ X ) 2 , which is also ≤ 1 4 |A| 2 .

Using a Brun-Titchmarsh like upper bound

For r between R 2 = C 2 α -2 for a large enough constant C 2 , we use ( 16) with (u n ) the characteristic function of A, K = {0} and Q = √ X :

R 2 <r ≤R 1 M(A, r ) ≤ X + Q 2 G 1 (Q/R 1 ) 2 R 2 ≤r ≤R 1 1 |K r | 2 X 2 (log X ) 2κ R 2 .

  r )| ≥ |A/A|.
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We select C 2 so that this upper bound be ≤ 1 4 (2αc 1 X/ log κ X ) 2 . We have thus reached

Thus at least one M(A, r ) is larger than 1 4 (α X/ log κ X ) 2 /R 2 and this already proves that |A/A| ≥ C -1 2 α 2 |A| 2 .

Using a large sieve extension of a Brun-Titchmarsh like upper bound

We further lower the exponent of α by shortening the sum over r some more. On using Theorem 5 with R = R 2 and m = 0, we reach, for R

where C 3 is large enough that the above bound is ≤ 1 4 (αc 1 X/ log κ X ) 2 . We have reached |A/A| ε,K α 3+ε (X/ log κ X ) 2 (28) and this concludes the proof of Theorem 1.