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Weakly Supervised Temporal Convolutional
Networks for Fine-grained Surgical Activity

Recognition
Sanat Ramesh, Diego Dall’Alba, Cristians Gonzalez, Tong Yu, Pietro Mascagni, Didier Mutter, Jacques

Marescaux, Paolo Fiorini, and Nicolas Padoy

Abstract— Automatic recognition of fine-grained surgi-
cal activities, called steps, is a challenging but crucial task
for intelligent intra-operative computer assistance. The
development of current vision-based activity recognition
methods relies heavily on a high volume of manually anno-
tated data. This data is difficult and time-consuming to gen-
erate and requires domain-specific knowledge. In this work,
we propose to use coarser and easier-to-annotate activity
labels, namely phases, as weak supervision to learn step
recognition with fewer step annotated videos. We introduce
a step-phase dependency loss to exploit the weak supervi-
sion signal. We then employ a Single-Stage Temporal Con-
volutional Network (SS-TCN) with a ResNet-50 backbone,
trained in an end-to-end fashion from weakly annotated
videos, for temporal activity segmentation and recognition.
We extensively evaluate and show the effectiveness of the
proposed method on a large video dataset consisting of
40 laparoscopic gastric bypass procedures and the public
benchmark CATARACTS containing 50 cataract surgeries.

Index Terms— Endoscopic videos, Surgical step recogni-
tion, Temporal convolutional networks, Weak supervision,
Gastric bypass procedures, Cataracts procedures.

I. INTRODUCTION

RESEARCH in developing advanced clinical decision
support systems in computer-assisted interventions (CAI)

and robot-assisted surgeries (RAS) for the demanding situa-
tions of a modern Operating Room (OR) [1]–[3] has seen
significant progress in the last decade. One of the primary
functions of these advanced systems is automatic surgical
workflow analysis, i.e., reliable recognition of the current
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surgical activities. Surgical activity recognition could play a
key role in assisting clinical decisions, report generation, and
data annotation by providing valuable semantic information.

Depending on the level of granularity, a surgical procedure
can be decomposed into activities, such as the whole pro-
cedure, phases, stages, steps, and actions [4], [5]. Surgical
phases are defined as a set of fundamental surgical aims
to accomplish in order to successfully complete the surgical
procedure. Similarly, steps are defined as a set of surgical
actions to perform in order to accomplish a surgical phase.
These definitions help clinicians define an ontology for each
procedure, e.g. [6], [7] define ontologies for cataract and
gastric bypass procedures. Although the ontologies are well
defined, automatically recognizing these activities from avail-
able endoscopic videos is a topic of high interest.

Phase recognition has received a lot of attention and is a
very active area of research in the medical computer vision
community [8]–[12]. Alongside phases, there has been sub-
stantial research focusing on fine-grained activities such as
robotic gestures [13]–[19], action triplets [20], and instrument
detection and tracking [11], [21], [22]. Recently, there has been
a aof research works focusing particularly on step recognition
[6], [7], [23].

While steps define a surgical workflow at a more fine-
grained level than phases, the time required to annotate a
dataset with steps is significantly higher than with phase
annotations. For example, in Laparoscopic Roux-en-Y gastric
bypass (LRYGB) procedures, the workflow consists of 44
steps and 11 phases (Table II). Precisely defining and annotat-
ing all the steps requires a considerably higher time of experts
due to the number of steps and more importantly lower inter-
class variances between steps. Since recent works in surgical
phase/step recognition employ deep learning models, they rely
on the availability of large-scale annotated datasets. Curation
of these annotated datasets is difficult and time-consuming as
these tasks require domain-specific medical knowledge.

To address this issue, a few works [24]–[27] have proposed
methods based on semi-supervision. These approaches involve
either pre-training the model on proxy tasks or training on
synthetic labels generated by a teacher model trained on
a small subset for phase recognition. Unlike these works,
inspired by [22] and [28], we address the annotation scarcity
issue by proposing a weakly supervised learning approach
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Fig. 1: Sample images from Bypass40 and CATARACTS datasets. Each column of Bypass40 images present similar steps.

utilizing relatively economical annotations.
The main contributions of our work are summarized as

follows:
1) We propose a weakly supervised learning method for

surgical workflow analysis to tackle the problem of
fine-grained surgical activity (step) recognition. We ex-
ploit the hierarchical step-phase relationships and utilize
easier-to-annotate weak phase annotations on videos
with missing step annotations.

2) We introduce a novel dependency loss to enforce the
weak supervision and encode the step-phase hierarchical
relationship as a matrix. By optimizing for this loss, it
encourages the model to learn possible step sequences
and transitions from videos with only phase annotations.

3) We present an end-to-end model consisting of ResNet-
50 and Single-Stage Temporal Convolutional Network
(SS-TCN) to learn both visual and temporal cues jointly.

4) We extend the CATARACTS1 dataset (containing step
annotations) with phase annotations. These annotations

1https://cataracts2020.grand-challenge.org/

will be released upon acceptance of this manuscript.
5) We extensively evaluate our approach on two surgical

video datasets, namely Bypass40 [7] and CATARACTS
[29], demonstrating the effectiveness and generalizabil-
ity of our method.

II. RELATED WORK

A. Surgical Activity Recognition
Research on developing deep learning methods for surgical

phase recognition has seen significant progress with initial
works of EndoNet [8] and DeepPhase [9] on cholecystectomy
and cataract surgeries, respectively. EndoNet proposed a Con-
volutional Neural Network (CNN) followed by a hierarchical
Hidden Markov Model (HMM) to perform both phase and
tool detection. Similarly, DeepPhase introduced an architecture
with ResNet [30] and Recurrent Neural Network (RNN),
instead of HMMs, for temporal modeling, for both phase
recognition and tool detection. EndoLSTM [31], [32] extended
EndoNet by utilizing a Long Short-Term Memory (LSTM)
for temporal refinement of spatial features. Similarly, SV-
RCNet [10] trained a ResNet and LSTM model end-to-end
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and proposed a prior knowledge inference scheme for surgical
phase recognition. MTRCNet-CL [11] presented a multi-task
model to detect tool presence and perform phase recognition
along with a novel correlation loss to capture the relationship
between tool presence and phase identification. Recently,
TeCNO [12] adapted the multi-stage Temporal Convolutional
Network (MS-TCN) [33] architecture for online surgical phase
prediction by implementing causal convolutions [34].

On the other hand, step recognition has seen a spark in
research with the initial work of [23]. A Content-Based Video
Retrieval (CBVR) system, for real-time step recognition, was
proposed utilizing a novel pupil center and scale tracking
method as pre-processing of motion features. In [6], the CBVR
system along with surgical tool presence information was used
as input to statistical models consisting of Bayesian Network
and HMMs for multi-level online recognition of step and
phase. Recently, MTMS-TCN [7] adapted TeCNO utilizing
TCNs for multi-level online recognition of step and phase.
In this work, we build upon the architectures of TeCNO and
MTMS-TCN by utilizing a variant of MS-TCN in an end-to-
end fashion for online step recognition.

B. Weak Supervision

Weak supervision has seen a great interest in the medical
computer vision community to tackle the need for high-
volume annotated datasets that are difficult to generate. Some
of the interesting applications of weak supervision are seen
in surgical tool localization [22], tool segmentation [28],
cancerous tissue segmentation [35], and detection of the region
of interest in chest X-rays and mammograms [36]. To reduce
the number of labeled videos, most of the recent research
works in phase recognition have proposed approaches based on
semi-supervised learning. These approaches follow a similar
strategy of pre-training the models on different proxy tasks of
frame-sorting [24], predicting the temporal distance between
multiple frames [25], and predicting the remaining surgery
duration [26]. The most closely related work to this paper in
terms of objectives is [27], which proposed a teacher/student
approach for phase recognition in scenarios of extreme manual
annotation scarcity (≤ 25% of the training set). The teacher
model (trained on a small set) generated synthetic phase
annotations for a large number of videos on which the student
model was then trained.

Weakly supervised coarse-to-fine methods have received
considerable interest in the computer vision community [37]–
[39] for image classification. [37] proposed an image-based
weakly supervised end-to-end model for object classification
consisting of a CNN followed by two self-expressive lay-
ers. One self-expressive layer captures the global structures
through coarse labels and the other captures the local structures
for fine-grained classification. [38] tackled the problem of
learning finer representations from coarser labels without any
fine-grained labels. Their proposed method consists of CNN
based trunk-target network that learns coarse representations
from labels and finer representations with nearest-neighbor
classifier objective. Recently, [39] tackled the problem of
Coarse-to-Fine Few-Shot (C2FS) and proposed a novel ‘angu-

lar normalization’ module that effectively combines supervised
and self-supervised contrastive pre-training for C2FS.

Although these previous works in the vision community
propose weakly supervised learning methods exploiting hier-
archical structures, the focus solely lies on object recognition
in natural images containing a single object in each image. In
this work, we focus on weakly supervised learning from videos
instead of images. We aim to recognize fine-grained activity, as
opposed to object, exploiting the temporal information avail-
able in videos. In particular, we target fine-grained surgical
activity recognition on videos from endoscopic procedures
on two different types of surgeries, i.e., gastric bypass and
cataract.

III. METHODOLOGY

The overview of our proposed method is presented in Fig. 2.
In this section, we first present our end-to-end Spatio-temporal
(ResNet-50 + SS-TCN) model for the task of fine-grained
activity, i.e, step, recognition. Then we introduce the phase-
step dependency loss for weak supervision of step recognition
using phase annotation.

A. Spatio-temporal Model

Our weakly supervised step recognition network consists of
a ResNet-50 model for visual feature extraction followed by
an SS-TCN for modeling the recognition problem temporally.
The complete model is trained in an end-to-end fashion. The
overview of the model setup is depicted in Fig. 2.

For phase segmentation, ResNet-50 [40] has been success-
fully employed as the backbone in many previous works [10]–
[12], [27]. In this work, we utilize the same architecture for
visual feature extraction. We use a single-stage TCN (SS-
TCN), a single-stage variant of MS-TCN, to learn the spatial
coherence across video frames. The choice of SS-TCN was
motivated by the work of [7] where MS-TCN did not provide
a significant improvement over SS-TCN for both the step
and phase recognition. Following the design of MS-TCN, the
SS-TCN contains neither pooling layers nor fully connected
layers and is constructed with only temporal convolutional
layers, specifically dilated residual layers performing dilated
convolutions. With the aim of online activity segmentation, we
perform at each layer causal convolutions [7], [12], [34] that
depend only on the current frame and n previous frames.

The complete model takes an input video consisting of T
frames x1:T . The ResNet-50 maps 224×224×3 RGB images
to a feature space of size Nf = 2048. These frame-wise
features are collected over time and are inputs to the TCN
model that predicts ŷs1:T where ŷst is the class label for the
current timestamp t, t ∈ [1, T ]. Since step recognition is a
multi-class classification problem that exhibits an imbalance
in the class distribution, softmax activation and class-weighted
cross-entropy loss are utilized. Additionally, the dependency
loss used when step labels are not available also relies on
softmax activation and weighted cross-entropy loss, utilizing
phase labels instead. The class weights for both steps and
phases are calculated using the median frequency balancing
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Fig. 2: Overview of our end-to-end Spatio-temporal model setup: ResNet50 + SS-TCN (Single-Stage Temporal Convolutional
Networks). When step labels are available, the model is trained through the supervised pathway (red) and weakly supervised
pathway (purple) utilizing phase labels. The model is trained end-to-end in a single learning stage.

[41] on the training set. The total loss is given by:

Ltotal = δstep · Lstep + (1− δstep) · Ldep, (1)

where Lstep represents weighted cross-entropy loss for steps,
Ldep is the step-phase dependency loss (subsection III-B), and
δstep is a binary variable that indicates if the video contains
step labels.

B. Weak Supervision: Step-Phase dependency loss
Steps and phases are two types of activities describing the

surgical workflow that are defined at different levels of granu-
larity and possess an inherent hierarchical relationship [4], [7].
Steps are defined at a higher level of detail compared to phases.
This brings about lower inter-class variances between steps,
compared to phases, making it a more complex task to clearly
define and distinguish between them. The challenges can be
seen in the sample images presented in Fig. 1. For instance,
in the Bypass40 dataset, similar actions are performed across
different steps belonging to different phases. Dissection is
performed in at least 7 steps spread across 3 different phases.
Similarly, Stapling is performed in 5 steps across 4 different
phases. Designing and training a deep learning model to
distinguish between these similar steps poses a great challenge.
Even the state-of-the-art method, MTMS-TCN [7], trained on
a fully annotated dataset achieves an accuracy of ∼76% with a
precision of ∼56%, accentuating the difficulty of the problem.
The class imbalance further creates a challenge for training
deep learning models that require large datasets with plenty
of samples for each class.

In the scenario presented in this paper where the number
of annotations is scarce, the recognition difficulties increase

drastically. To overcome some of the challenges, this work
proposes a weakly supervised approach that utilizes labels of
less granular activities, i.e., phases. Phase information alone
could help the model in two ways. Firstly, phase information
could help the model reduce errors related to recognizing
similar looking steps, e.g., ‘S6: horizontal stapling’ and ‘S18:
gastrojejunal stapling’, belonging to two different phases.
Secondly, we can gather a smaller subset of probable steps that
could occur in a given phase eliminating the rest. For example,
given the phase to be ‘Phacoemulsification’ of cataract surgery,
only 5 out of 19 steps are likely to occur (Table I). Similarly, a
phase such as ‘P5: anastomosis test’ in the Bypass40 dataset,
reduces the possible steps to 7 out of 44 (Table II). Here,
the phase information provides cues to the model to learn
to distinguish between steps belonging to the subset rather
than the whole set. Thus we hypothesize that the additional
available weak phase information could be very beneficial for
step recognition in the low data regime.

We propose to represent the relationship as a step-phase
mapping matrix Ms→p, where the elements mij of the matrix
are binary indicator variables which are 1 if step si occurs
in phase pj . The matrix encodes the weak information about
which steps can occur in a particular phase and does not
provide details of their occurrence, duration, and/or order. To
enforce this weak link between steps and phases, the step
predictions ŷst of our Spatio-temporal model (as described
earlier) are linearly transformed by Ms→p into the phase
space. Then a weighted cross-entropy loss (LCE) captures the
similarity between the phase labels (ypt ) and the transformed
predictions (Ms→p × ŷst ) of the model. The dependency loss
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(Ldep) is given by:

Ldep = LCE(y
p
t ,Ms→p × ŷst ). (2)

IV. EXPERIMENTAL SETUP

In this section, we discuss the experimental setup of our
method. First, we present the datasets used for evaluation.
Next, we discuss the experimental study followed by the
training setup and evaluation metrics.

A. Datasets

1) Bypass40: The Bypass40 dataset [7] consists of 40
videos of LRYGB procedures with resolution 854 × 480 or
1920×1080 pixels recorded at 25 fps. Each frame is manually
assigned to one of the 11 phases and one of the 44 steps
[7]. For example, steps such as gastric opening, gastric tube
placement, horizontal stapling, and vertical stapling occur in
gastric pouch creation phase. A detailed list of phases and
steps along with their hierarchical relationship is presented in
Table II. For more information, we ask the readers to refer
to [7]. We split the 40 videos into 24, 6, and 10 videos
for training, validation, and test sets, respectively, and sub-
sampled them at 1 frame-per-second (fps). This amounts to
150k, 40k, and 65k images in each set. The images are resized
to ResNet-50’s input dimension of 224×224, and the training
dataset is augmented by applying horizontal flip, saturation,
and rotation.

2) CATARACTS: The CATARACTS dataset, proposed in
[29], contains 50 videos of cataract surgery. With the recent
CATARACTS2020 challenge, the dataset has been released
with step annotations. Similar to [6], we define a phase
ontology for available step labels. Cataract surgery consists
of 5 phases and 19 steps that are summarized in Table I.
The dataset is extended with phase labels that is automatically
generated using the available step annotations and the ontology
presented in Table I. For each frame in a video, the phase label
is obtained by a simple lookup of the step label in Table I. The
only constraint while generating phase labels is when there
are steps that can occur in several phases. In this case, the
phase of the immediately preceding frame is assigned to the
current frame. Since the only steps that occur in more than
one phase are Idle, Incision, and Viscodilatation, and they
do not occur at the beginning or at the end of a phase, it
is therefore always possible to identify the correct phase by
checking the phase of the previous step. Since very few steps
occur in multiple phases, the automatically generated phase
labels by table lookup are accurate and do not require expert
knowledge or verification from a clinical expert.

We split the 50 videos (following the challenge2) into
25, 5, and 20 videos for training, validation, and test sets,
respectively. Each set consists of 66k, 3.5k, and 11.8k frames
extracted at 1 fps from the videos. The frames are resized from
1920× 1080 to 224× 224, and the training set is augmented
with horizontal flip, saturation, and rotation.

2https://www.synapse.org/#!Synapse:syn21680292/wiki/601563

B. Study
To demonstrate the effectiveness of our approach, we train

and evaluate different configurations of the model. Given n
videos, of which k are annotated with steps and the rest
(n−k) are weakly annotated with phases, the Spatio-temporal
model is trained in the proposed weakly supervised setting
utilizing the dependency loss, presented as ‘DEP’. To analyze
the efficacy of ‘DEP’, we compare it against the Spatio-
temporal model trained only on k videos in a fully-supervised
approach for the task of step recognition, which we refer to as
‘FSA’. Additionally, we add a state-of-the-art semi-supervised
learning method proposed by Yu et al. [42] to our results.
Yu et al. [42], proposed a teacher/student semi-supervised
learning method where both the teacher and student models
consisted of spatial and temporal components, CNN-biLSTM-
CRF and CNN-LSTM respectively. As noted in Section II-B,
[42] is a closely related work in the literature to the work
presented in this paper. Hence, we have implemented and
adapted the method of Yu et al. [42] for the task of step
recognition. We repeat all the experiments for different values
of k ∈ {3, 6, 12, 18}.

Furthermore, to analyze the influence of the number of
additional videos with phase labels on the model performance,
we conduct experiments where we fix k videos with step anno-
tations and vary the number of videos with phase annotations
from 0 to n− k (i.e., 3, 6, 12, etc.).

C. Training
The ResNet-50 model is initialized with weights pre-trained

on ImageNet. The complete ResNet-50 + SS-TCN model is
then trained end-to-end for the task of step recognition. Since
SS-TCN models the temporal information in an online setup,
features from all the past frames in the video needs to be
cached. To achieve this, a feature buffer is maintained to store
features from the spatial model of the past frames. The feature
buffer is reset at the end of the video. In all the experiments,
the model is trained for 50 epochs with a learning rate of 1e-5,
weight regularization of 5e-4, and a batch size of 64. The test
results presented are from the best performing model on the
validation set. The models were implemented in PyTorch and
trained on NVIDIA RTX 2080 Ti.

D. Evaluation Metrics
To effectively analyze our models, we observe the accuracy

(ACC), precision (PR), recall (RE), and F1 score (F1) metrics
used in related publications [10]–[12]. Accuracy quantifies the
total correct classification of activity in the whole video. PR,
RE, and F1 are computed class-wise, defined as:

PR =
|GT ∩ P |

|P |
, RE =

|GT ∩ P |
|GT |

, F1 =
2

1
PR + 1

RE

, (3)

where GT and P represent the ground truth and prediction for
one class, respectively. These values are averaged across all
the classes to obtain PR, RE, and F1 for each video in the test
set. All four metrics, computed per video, are averaged across
all the videos in the test set. Furthermore, where applicable,
standard deviations are also computed across all the videos in
the test set.

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2023.3262847

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2021

TABLE I: Phases and steps for the cataract procedure

Phases Idle Opening Phacoemulsification Implantation Closure

Steps
Idle Idle Idle Idle Idle

Toric Marking Nucleus Breaking Incision Suturing
Implant Ejection Phacoemulsification Viscodilatation Sealing Control

Incision Vitrectomy Preparing Implant Wound Hydration
Viscodilatation Irrigation/Aspiration Manual Aspiration
Capsulorhexis Implantation

Hydrodissection Positioning
OVD Aspiration

TABLE II: Phases and steps for the laparoscopic Rue-en-Y gastric bypass procedure

Phases Steps

P1: preparation S0: null step, S1: cavity exploration, S2: trocar placement, S3: retractor placement, S14: adhesiolysis, S22:
gastric tube placement

P2: gastric pouch creation
S0: null step, S4: crura dissection, S5: his angle dissection, S6: horizontal stapling, S7: retrogastric dissection,
S8: vertical stapling, S9: gastric remnant reinforcement, S10: gastric pouch reinforcement, S11: gastric opening,
S22: gastric tube placement, S43: calibration

P3: omentum division S0: null step, S12: omental lifting, S13: omental section, S14: adhesiolysis

P4: gastrojejunal anastomosis
S0: null step, S15: treitz angle identification, S16: biliary limb measurement, S17: jejunum opening, S18:
gastrojejunal stapling, S19: gastrojejunal defect closing, S26: gastrojejunal anastomosis reinforcement, S30:
alimentary limb measurement

P5: anastomosis test S0: null step, S22: gastric tube placement, S23: clamping, S24: ink injection, S25: visual assessment, S26:
gastrojejunal anastomosis reinforcement, S39: coagulation

P6: jejunal separation S0: null step, S20: mesenteric opening, S21: jejunal section
P7: closure petersen space S0: null step, S27: petersen space exposure, S28: petersen space closing

P8: jejunojejunal anastomosis
S0: null step, S29: biliary limb opening, S30: alimentary limb measurement, S31: alimentary limb opening,
S32: jejunojejunal stapling, S33: jejunojejunal defect closing, S34: jejunojejunal anastomosis reinforcement,
S35: staple line reinforcement

P9: closure mesenteric defect S0: null step, S36: mesenteric defect exposure, S37: mesenteric defect closing, S38: anastomosis fixation,
P10: cleaning coagulation S0: null step, S39: coagulation, S40: irrigation aspiration
P11: disassembling S0: null step, S40: irrigation aspiration, S41: parietal closure, S42: trocar removal

V. RESULTS AND DISCUSSIONS

A. Bypass40

1) Effect of weak supervision: To quantitatively evaluate our
method, the results of step recognition on the test set are
presented in Table III. The table contains the results of our
model with a varying number of videos in the training set
labeled with steps (3, 6, 12, and 18) along with the rest of
the training set containing phase annotations. The introduction
of dependency loss ‘DEP’ for weak supervision significantly
improves the performance over the model (FSA) trained only
on the step labeled subset of the dataset. We notice a 10-13%
improvement of the model trained with ‘DEP’ loss containing
only 3 videos annotated with steps. Similarly, we see a 10-
13% and 5-7% increase in performance in all the metrics of
the ‘DEP’ model in experiments corresponding to 6 and 12
step annotated videos, respectively. Interestingly, our ‘DEP’
model, trained on a dataset with 50% of step and 50% of
phase annotated videos, achieves performance close to the
upper baseline ‘FSA’ model trained on the whole fully labeled
dataset.

Moreover, the results of Yu et al. [42] semi-supervised
method are also presented in Table III for different step
annotated videos (3, 6, 12, and 18) used to train both teacher
and student model. The student model’s performance increases
by 3-8% over ‘FSA’ in all the metrics for 6 videos with step

annotations. Furthermore, an increase of 6% and 2% is noticed
in recall and F1-score above ‘FSA’ with 12 step annotated
videos. However, the method falls short of our proposed ‘DEP’
method. We notice a 10-15%, 2-6%, and 1-6% increase in
performance in all the metrics of the ‘DEP’ model over Yu
et al. with 3, 6 and 12 step annotated videos, respectively.
Although both methods use 100% of the training videos for
the task of step recognition, Yu et al. aim at exploiting the
knowledge learned by an offline teacher model to generate
pseudo labels for additional videos without step annotations
while ‘DEP’ aims to use weak supervision through phase
annotations. Hence, the method of Yu et al. is limited by the
knowledge learned by the teacher model which uses only k
step annotated videos although it learns from both current and
future frames. On the other hand, the superior performance
of the ‘DEP’ model indicates the additional cues present in
phase annotated videos, although weak, is advantageous and
that the proposed method effectively utilizes this information
in the lower data settings.

2) Effect of the amount of phase annotated videos: In Table
IV, we present the results of our model with a varying number
of phase annotated videos. Utilizing 6 videos containing step
annotations, the addition of phase labeled videos as weak
supervision improves all metrics: accuracy, F1, precision,
and recall. With 6 videos annotated with phases, the model
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TABLE III: Bypass40: Effect of weak supervision on varying amount of step labeled videos. Accuracy (ACC), precision (PR),
recall (RE), and F1-score (F1) (%) are reported. ‘FSA’ denotes the model trained for step recognition without any phase
annotations. ‘DEP’ denotes the dependency loss added for weak supervision using phase labels on the remaining videos.

# Videos
Model Step Phase ACC PR RE F1

FSA 3 (12%) - 45.02± 9.96 26.62± 5.32 21.87± 4.70 19.44± 5.31
Yu et al. [42] 3 (12%) - 43.27± 11.8 23.63± 4.41 23.91± 5.71 19.77± 4.89

DEP 3 (12%) 21 57.20 ± 8.31 33.44 ± 6.04 33.16 ± 6.37 29.38 ± 6.11

FSA 6 (25%) - 59.80± 10.17 37.19± 8.52 35.93± 7.31 32.15± 8.03
Yu et al. [42] 6 (25%) - 62.55± 10.09 40.63± 7.85 43.71± 8.35 37.68± 8.54

DEP 6 (25%) 18 68.03 ± 9.04 50.05 ± 6.82 45.86 ± 6.46 42.05 ± 7.44

FSA 12 (50%) - 68.26± 8.31 47.57± 7.84 44.74± 7.59 41.30± 8.44
Yu et al. [42] 12 (50%) - 67.89± 11.04 46.26± 9.97 50.11± 8.20 43.41± 10.33

DEP 12 (50%) 12 73.43 ± 8.43 53.40 ± 7.43 51.19 ± 8.20 48.34 ± 8.85

FSA 18 (75%) - 72.82± 6.76 50.60± 7.90 48.98± 8.33 46.08± 8.61
Yu et al. [42] 18 (75%) - 73.33± 10.15 54.78 ± 11.05 57.21 ± 8.51 51.72 ± 10.59

DEP 18 (75%) 6 73.88 ± 8.11 54.33± 6.38 51.79± 7.10 48.62± 7.49

FSA 24 (100%) - 76.12± 7.39 54.23± 8.24 50.94± 7.53 48.17± 8.02

TABLE IV: Bypass40: Effect of the number of phase anno-
tated videos for step recognition using ‘DEP’ loss for weak
supervision. Accuracy (ACC), precision (PR), recall (RE), and
F1-score (F1) (%) are reported for setups with 6, 12, and 24
videos fully annotated with steps.

# Videos
Model Step Phase ACC PR RE F1

FSA 6 - 59.80 37.19 35.93 32.15
DEP 6 3 62.15 40.48 37.15 33.48
DEP 6 6 67.94 46.17 42.61 39.67
DEP 6 12 68.07 47.18 43.18 40.42
DEP 6 18 68.03 50.05 45.86 42.05

FSA 12 - 68.26 47.57 44.74 41.30
DEP 12 3 72.79 50.10 48.39 45.06
DEP 12 6 72.43 53.02 51.20 47.26
DEP 12 12 73.43 53.40 51.19 48.34

FSA 24 - 76.12 54.23 50.94 48.17

performance increases by 7-8% in all metrics over the baseline
‘FSA’ model. The addition of more videos does not affect
the accuracy but further improves both precision and recall
by 4%. This is due to our weakly-supervised method, which
only provides supervision information if a step can occur in
the given phase. This information helps to distinguish steps
belonging to different phases, as opposed to steps belonging
to the same phase. Therefore, the precision and recall of
the model improve with more phase annotated videos, and
no significant improvement in accuracy is seen. We see a
similar trend when using 12 videos annotated with steps and
increasing the number of videos annotated with phase labels.
Thus, ultimately it is beneficial to train our method utilizing
all additional videos in the dataset with phase annotations for
weak supervision.

B. Cataracts
1) Effect of weak supervision: We quantitatively evaluate

our method and present the results of step recognition in

Table V. The table contains the results of our model, on
a similar set of experiments as with Bypass40, by varying
the number of videos in the training set labeled with steps
(3, 6, 12, and 18) along with the rest of the training set
containing phase annotations. We see a similar trend as with
bypass where the ‘DEP’ model outperforms ‘FSA’. We notice
a 13-22% improvement ‘DEP’ model considering only 3 step
annotated videos. Furthermore, we see a 6-13% and 1-3%
increase in performance in all the metrics of the ‘DEP’ model
in experiments corresponding to 6 and 12 step annotated
videos, respectively. We see that our method achieves a sim-
ilar performance improvement on a relatively easier surgical
workflow, such as cataracts, consistently surpassing the FSA
in all labeled ratios. The semi-supervised method of Yu et
al. achieves performance improvement of 16%, 8%, and 1.5%
over ‘FSA’ in F1-score for experiments corresponding to 3,
6, and 12 videos, respectively. However, as seen earlier, it
falls short of ‘DEP’ by 5%, 0.5%, and 0.5% in the F1-
score for experiments corresponding to 3, 6, and 12 videos.
Interestingly, Yu et al. achieves high recall on both datasets
(Table III & V). On CATARACTS, it even outperforms the
‘DEP’ model in recall in all the experiments but falls short
significantly in precision. This could be credited to the student
model which learns from imperfect pseudo labels generated
by the teacher model. Since our proposed ‘DEP’ model learns
from true phase labels on additional videos its performance
increases in both precision and recall. This validates the
applicability of our approach to different surgical workflows.

2) Effect of the amount of phase annotated videos: We
present the results of our experiments, with a varying number
of phase annotated videos, on CATARACTS in Table VI. We
notice that utilizing 6 step annotated videos with additional
phase labeled videos improves all the metrics by 6-13%. In
particular, with 6 videos annotated with phases, we see a
performance increase of 5% in accuracy and F1-score and 8%
in recall of the ‘DEP’ model over the baseline ‘FSA’. The
addition of more videos provides a fractional improvement in
accuracy but further improves both recall and F1-score by 1-
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TABLE V: CATARACTS: Effect of weak supervision on varying amount of step labeled videos. Accuracy (ACC), precision
(PR), recall (RE), and F1-score (F1) (%) are reported. ‘FSA’ denotes the model trained for step recognition without any phase
annotations. ‘DEP’ denotes the dependency loss added for weak supervision using phase labels on the remaining videos.

# Videos
Model Step Phase ACC PR RE F1

FSA 3 (12%) - 48.47± 10.62 51.32± 11.91 37.44± 9.85 37.12± 10.15
Yu et al. [42] 3 (12%) - 59.61± 10.67 56.02± 14.31 61.82 ± 14.45 53.26± 13.61

DEP 3 (12%) 22 66.78 ± 12.21 64.29 ± 12.50 59.73± 11.93 58.31 ± 12.73

FSA 6 (25%) - 69.51± 11.16 71.05± 14.13 56.70± 12.67 59.28± 13.50
Yu et al. [42] 6 (25%) - 74.62± 8.22 67.71± 11.48 75.93 ± 12.48 67.67± 12.46

DEP 6 (25%) 19 75.28 ± 11.50 71.84 ± 14.30 69.19± 12.72 68.09 ± 13.97

FSA 12 (50%) - 78.02± 9.05 79.02± 13.20 69.55± 12.04 71.18± 13.04
Yu et al. [42] 12 (50%) - 77.84± 12.55 71.48± 13.41 79.92 ± 15.28 72.96± 14.46

DEP 12 (50%) 13 79.94 ± 9.17 80.52 ± 12.93 72.62± 11.91 73.52 ± 13.29

FSA 18 (75%) - 82.5± 8.07 82.58 ± 11.91 76.05± 11.62 77.39± 12.12
Yu et al. [42] 18 (75%) - 78.59± 10.71 74.55± 14.17 78.16 ± 12.64 73.55± 13.67

DEP 18 (75%) 7 82.64 ± 9.72 82.20± 13.70 77.32± 12.70 77.67 ± 13.56

FSA 25 (100%) - 83.37± 9.50 85.29± 12.05 78.96± 11.93 80.09± 13.34

TABLE VI: CATARACTS: Effect of the number of phase
annotated videos for step recognition using ‘DEP’ loss for
weak supervision. Accuracy (ACC), precision (PR), recall
(RE), and F1-score (F1) (%) are reported for setups with 6,
12, and 25 videos fully annotated with steps.

# Videos
Model Step Phase ACC PR RE F1

FSA 6 - 69.51 71.05 56.70 59.28
DEP 6 3 71.34 67.84 62.27 62.01
DEP 6 6 74.30 71.70 64.18 64.96
DEP 6 12 73.57 70.88 65.68 66.03
DEP 6 19 75.28 71.84 69.19 68.09

FSA 12 - 78.02 79.02 69.55 71.18
DEP 12 3 77.60 78.26 68.60 69.87
DEP 12 6 80.11 81.60 72.46 73.98
DEP 12 13 79.94 80.52 72.62 73.52

FSA 25 - 83.37 85.29 78.96 80.09

4%. We see a similar trend when using 12 videos with step
annotations reaffirming our hypothesis that it is beneficial to
train our method utilizing all additional videos in the dataset
with phase annotations for weak supervision.

C. Weak supervision on step predictions
To visualize the effectiveness of our method, we visualize

the step predictions of our method on the CATARACTS
dataset which contains fewer phases and steps thereby enabling
us to render a simple and clearer graphical diagram. We
compare the step predictions of our ‘DEP’ model against
‘FSA’ for 2 best and 2 worst videos in CATARACTS in
Fig. 3 for different labeled ratios (3, 6, and 12 videos with
step annotations). Along with the step predictions we present
the errors in the phase predictions for both models. The
phase prediction error plot is computed as the errors in phase
predictions derived from step predictions, using the step-phase
mapping matrix, against ground truth phase predictions. Fig.
3 clearly depicts the effectiveness of our method for different

labeled ratios. By correcting for the phase labels through
dependency loss, our ‘DEP’ model is able to correct for
corresponding step labels without explicit supervision for step
recognition (e.g. S10, S15, S18). The top row of Fig. 3a shows
this effect where we see a marked improvement in recognition
of steps S18 (first video) and S10 (second video) by correcting
for phase errors.

D. Limitations

In some cases, for example, S16 (Fig. 3a, 3b, 3c), correcting
for phase errors does not improve step recognition. The step is
misrecognized with another step that occurs in the same phase.
This is an expected outcome due to the intrinsic limitations
of our weakly supervised method using coarser phase labels.
Given the phase to be ‘P2: gastric pouch creation’ (Table II),
it is impossible for a model to differentiate between ‘crura
dissection’ and ‘his angle dissection’ or between ‘horizontal
stapling’ and ‘vertical stapling’. As can be seen in Fig.
1, the steps are quite similar in appearance and perform
similar actions on the same anatomy (i.e., stomach or small
intestine). This makes it challenging for a model to learn even
when all the annotations are available. Furthermore, the phase
information is too weak and does not provide any cues to
better distinguish between the steps because both are valid
steps in the current phase. Another limitation of our method is
that adding more videos with phase annotations is not always
beneficial. This limitation also stems from weak phase signals.
If the fully supervised ‘FSA’ model learns to separate steps
belonging to different phases, i.e., it has no or few phase-step
correspondence errors, then additional videos with phase labels
add no significant value as the model, during training, makes
no/few errors in phase-step correspondence that helps improve
feature learning. The significant errors by the model would be
the inter-class separation of steps belonging to the same phase.
Learning good representations to reduce these errors without
supervision is a challenging task that needs to be tackled in
future works.
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(a) FSA vs DEP: 3 videos with step annotations.

(b) FSA vs DEP: 6 videos with step annotations.

(c) FSA vs DEP: 12 videos with step annotations.

Fig. 3: Step predictions on two best and two worst videos on the CATARACTS dataset for different labeled ratios. For each
video, we visualize the step prediction of ground truth, DEP model predictions, DEP model phase prediction errors, FSA model
predictions, and phase prediction errors of FSA model.
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Meanwhile, the effect of utilizing more phase annotated
videos as weak supervision for improving the model per-
formance on step recognition is presented in Tables IV &
VI. As observed in Sections V-A.2 & V-B.2, it is beneficial
to train the ‘DEP’ model utilizing all the additional phase
annotated videos in the dataset for weak supervision. We
also observe that in the lower data setting (6 videos with
step annotations) model performance improves even when the
phase annotated videos are increased from 12 to 18 (19 for
cataracts). However, our study doesn’t provide insights as to
how many phase annotated videos are truly required to achieve
the best performance by our proposed ‘DEP’ model. This is
another limitation of our study, irrespective of the complexity
of the procedure, that is hindered by the size of the available
labeled datasets (24 in Bypass40 & 25 in CATARACTS).
Understanding the extent of the ‘DEP’ model would require
extending these datasets which is an important direction that
needs to be pursued in future studies.

VI. CONCLUSION

In this paper, we introduce a weakly-supervised learning
method for surgical step recognition utilizing less demanding
phase annotations. To model the weak supervision between
steps and phases, we introduce a step-phase dependency loss
and train a ResNet-50 + SS-TCN model end-to-end. The
proposed method is extensively evaluated on a Bypass40
dataset consisting of 40 LRYGB procedures and on the
CATARACTS dataset containing 50 cataracts surgeries.
The proposed ‘DEP’ model significantly improves the step
recognition metrics over the baseline ‘FSA’ model for all the
amounts of step annotations available. We hope that this work
will inspire and foster future research in weak supervision for
surgical workflow analysis utilizing multi-level descriptions
of the workflow.

Ethical approval The surgical videos were recorded
and anonymized following the informed consent of patients in
compliance with the local Institutional Review Board (IRB)
requirements.

Informed Consent The patients consented to data recording.
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