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ABSTRACT
Image sensors used in real camera systems are equipped with
colour filter arrays which sample the light rays in different
spectral bands. Each colour channel can thus be obtained sep-
arately by considering the corresponding colour filter. While
existing compression solutions mostly assume that the cap-
tured raw data has been demosaicked prior to compression, in
this paper, we describe an end-to-end trainable neural network
for joint compression and demosaicking of satellite images.
We first introduce a training loss combining a perceptual loss
with the classical mean square error, which is shown to bet-
ter preserve the high-frequency details present in satellite im-
ages. We then present a multi-loss balancing strategy which
significantly improves the performance of the proposed joint
demosaicking-compression solution.

Index Terms— Deep Image Compression, Neural Net-
works, Demosaicking

1. INTRODUCTION

With the new generation of on-board satellite cameras, im-
ages with increased spatial and spectral resolution can be ac-
quired, leading to huge amount of data that needs to be trans-
mitted on ground. Therefore, efficient algorithms need to be
designed to compress these remote-sensing images.

Designing efficient compression algorithms for satellite
images must take into account several constraints. First, (i) it
must be well adapted to the raw data format. In particular,
we consider in this work, the cameras for the Lion satellite
constellation with ultra-high spatial resolution at the price of
a lower spectral resolution. More precisely, the three spectral
bands (RGB) are acquired with a single sensor with an in-
built filter array. Second, (ii) it should be adapted to the image
statistics. Indeed, satellite mages contain very high-frequency
details with small objects spread over very few pixels only.
Finally, (iii) the compression must be quasi-lossless to allow
accurate on-ground interpretation. In this work, we propose
a compression algorithm that can efficiently deal with these
three constraints.

Regarding adaptation to raw data format (i), each pixel
only measures the intensity of one colour band, according
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to the Bayer pattern. The usual image acquisition pipeline
consists of two steps [1]. First, the three colour channels
for each pixel of the colour images are reconstructed, us-
ing demosaicking algorithms [2]. Then, the colour image is
compressed. In this paper instead, we propose to perform
the two steps (demosaicking and compression) jointly. The
potential gain is twofold. The processing is more efficient.
Indeed, the joint processing avoids adding redundancy (de-
mosaicking) first and removing it in the compression step.
Moreover, learning-based demosaicking algorithms tend to
add high-frequency details [3], which may increase the data
rate. The joint processing will instead add these details when
reconstructing the data, which will not impact the data rate.
Such joint processing already applies to compression and de-
noising operations with combined results superior to sequen-
tial results [4, 5, 6].

Another key challenge is to be able to adapt to the statis-
tics of satellite images, which differ from natural images ac-
quired with a handheld perspective camera. This adaptation
can be made thanks to variational auto-encoders VAE. Indeed,
VAE have first been introduced to learn end-to-end compres-
sion algorithms for natural images [7, 8, 9, 10] and eventually
outperform traditional codecs [11, 12]. Adaptation to the high
frequency details of image satellite images has been proposed
in [13] based on attention module. Here, we further improve
our results, by designing a new loss based on perceptual met-
rics. We then present a multi-loss balancing strategy, which
improves the overall performance. Note that the use of AEs
for satellite image compression has also been explored in [14]
to reduce the complexity of AE based architectures such as
[9]. Finally, to meet the last constraint (iii) of quasi-lossless
compression, we perform the learning at rather high bit rate.

2. RAW DATA COMPRESSION

In this section, we present our global architecture that per-
forms joint compression and demosaicking to be able to adapt
to the raw data format. We first review the state-of-the-art
compression algorithm also called hyper-prior architecture
[9]. We finally describe our proposed loss.

The hyper-prior architecture [9] is composed of two AE
networks as shown in Figure 1. The first AE produces a latent
representation y of the input data x. Standard compression



Fig. 1. Joint compression-demosaicking architecture with raw data as input [13]

operations such as quantization and entropy coding are per-
formed on this latent representation to produce a bit-stream,
which is then decoded by the entropy decoder as ŷ. The de-
coder reconstructs the signal x̂ with inverse transforms. The
other AE (the hyper-prior) models the parameters of the la-
tent representation distribution to enhance the entropy model.
This shared entropy model is adapted to the characteristics of
this input data as the entropy parameters are re-estimated at
each input.

We employ the learning capabilities of neural networks to
exploit correlation in raw data since joint processing already
yields better results than separate demosaicking and denois-
ing [3, 15]. The training is performed with a pair of ground-
truth and Bayer filter images (GRBG pattern) with the ground
truth as a reference for loss computation.

This model is designed to target high bit rate due to high
quality reconstruction requirements. To not have performance
drops when increasing the bit rate with very detailed images,
the number of filters is set to 448 in the bottleneck layer. The
resulting number of features in the latent representation is of
the same order of magnitude as in the input image to preserve
details and keep necessary information for demosaicking.

We apply a scaling [16] before quantization which acts as
a quality parameter at run time so that the model can perform
well within a small bit rate range around the target bit rate.
It allows for more flexibility as trained models are no longer
blocked to a fixed rate-distortion point as it is the case with
most [9, 10, 11].

3. SATELLITE CHARACTERISTICS AWARE
COMPRESSION

3.1. Loss to preserve high frequency details

The classic rate-distortion trade-off for compression opti-
mization problems is used to create a loss function from

which a gradient descent algorithm is derived. As the deriva-
tive of the quantization function is zero or undefined we
replace it with uniform noise for training.

The main source of error in our reconstructed images
comes from high-frequency stripped patterns [13]. They have
a spatial frequency at the pixel size and disappear due to
the blur generated by the distortion metric, the l2 Euclidean
norm. To better fit the data characteristics and better preserve
high-frequency details during compression we have incor-
porated perceptual metrics in the loss function. This metric
differs from pixel-based metrics as it aims at minimizing an
error over some extracted features. This perceptual loss is
used in a wide range of applications [17, 18] to generate
more realistic textures and sharper edges in image processing
problems.

We define a loss function based on VGG [19] to extract
structures inside our features and guide the learning towards
better high-frequency reconstruction.

P (x, x̂) =
1

nm
(V GG0:2(x, x̂)

2 + V GG0:4(x, x̂)
2) (1)

We decide to use early layers of VGG as they oversee the
learning of low-level spatial features [18] while deeper layers
focus on more abstract features. Since our problem is more
detail-oriented we use the first four layers of VGG to extract
two sets of features. We compute the l2 norm between the
ground truth and reconstructed features.

L = λaD(x, x̂) + λbP (x, x̂) + αR(ŷ) (2)

α is set to target a bit rate and controls the rate-distortion
trade-off.

3.2. Multi-loss balancing

Learning for multiple tasks, with their respective loss func-
tions, can lead to a better result for all tasks than learning for



each task individually as shown in [20] where semantic clas-
sification and depth estimation induce better performances to-
gether than separately. However it implies adding more bal-
ancing terms in the loss function and since hyper-parameters
are troublesome to tune, it becomes harder to optimise the
network.

A solution to set the different loss parameters is to jointly
tune all parameters inside the loss function [21] with an auto-
matically controlled scheme. It removes the need for manual
tuning and ensures an optimal trade-off between all loss terms
[22]. The loss function becomes:

L = λ1D
′(x, x̂) + λ2P

′(x, x̂) + αR(ŷ) (3)

with D′ = λa.D;P ′ = λb.P
To automatically evaluate the λk we are following the dy-

namic weight average approach [23] to compute at each epoch
a new λk based on previous loss measures for the distortion
and perceptual metric:

λk = K.
exp(wk(t−1)

T )∑
i exp(

wi(t−1)
T )

, wk =
Lk(t− 1)

Lk(t− 2)
(4)

Each Loss Lk is linked to its corresponding λk. T measures
the softness of the process with the analogy with the annealing
temperature, and controls how close can the different values
λk.

4. EXPERIMENTS

4.1. Training details

The data set used includes 300 12-bits RGB satellite images
(2000x2000) with 50cm geometric resolution as in [13], 5%
are used for testing, the rest for training. Raw data are ob-
tained with the Bayer filter applied to ground-truth images
to form the necessary training pair for supervised learning.
Every batch of images is cropped into patches and randomly
augmented with rotation to provide rotational invariance.
The networks have been designed using the CompressAI
[24] Python library, a PyTorch overlay for neural network
compression models.

We use reference methods close to the performance of on-
board satellites. For compression, we consider JPEG 2000 as
it is similar to the standard used for RGB images [25] us-
ing DCT transforms. For demosaicking, we use the linear
filter proposed by Malvar [26] which gives good results while
being simple. It gives the highest PSNR compared to other
traditional demosaicking algorithms [2] while being visually
sharp, which diminishes the amount of blur added to the pro-
cessed image.

For the joint compression-demosaicking scheme with
both the MSE distortion and the VGG perceptual loss, both
λa and λb are set to have the distortion and perceptual metrics
at the same order of magnitude.

λa = 2.6 ∗ 106;λb = 104

The relationship between α and the target bit rate is em-
pirical. α is set to 0.6 for all experiments to target 2bpp for
the reconstruction to be of sufficient quality for satellite appli-
cations. Experiments were conducted on NVIDIA A40 GPUs
for 200 epochs. Inference time is around 1s for the encoder
and 1.5s for the decoder.

4.2. Qualitative results

Figure 2 shows visual results obtained with different methods
in comparison with the ground truth, for a 50cm geometric
resolution satellite image of a city landscape. The ground
truth image is compressed at 2bpp with the reference baseline
JPEG 2000 with Malvar demosaicking, the joint compres-
sion/demosaicking network with multi-loss balancing and the
joint compression/demosaicking network without the VGG
perceptual loss. All images are well reconstructed since we
target a high bit rate. Nevertheless, high-frequency details
such as the stripped patterns on this rooftop’s building have
disappeared for models (b) and (c). Model (d) with the per-
ceptual loss balanced with MSE is close to recovering all
those details as early layers of VGG brought more weight to
the structure reconstruction. When zooming and analyzing
the pixel value difference to the ground truth, we see the im-
pact of a higher SNR for learned models on the image quality.
The pixel difference to the ground truth is much lower even if
this is hard to perceive at that bit rate.

(a) Ground truth (b) JPEG 2000 SNR=64

(c) MSE model SNR=85 (d) Multi-Loss model SNR=105

Fig. 2. Visual comparison of compressed images at 2 bpp
with the ground truth. An error map shows the relative differ-
ence with the ground truth at a pixel level (range [0;32]).



4.3. Quantitative results

We first evaluate the efficiency of the joint processing model
with sequential models in Figure 3. The sequential processing
used is close to satellite imaging standards with JPEG 2000
as codec [25]. The joint model achieves huge bit rate gain
at a constant quality and outperforms both sequential mod-
els. Those data-driven models excel at extracting information
from irregular data. The joint model can also reach recon-
struction quality not feasible for any sequential models.

Fig. 3. Effect of the joint processing of compression and
demosaicking compared to sequential processing. The joint
model does not use perceptual loss and multi-loss balancing.

We then assess the performance gain that perceptual loss
and multi-loss balancing bring to the joint model in Figure
4. We compare our model for different loss functions based
on MSE, VGG or both losses and with multi-loss balancing
when performed during training. VGG alone still performs
decently with the SNR metric even though it is not tailored
to the MSE distortion. When trained only with MSE, the net-
work has unsurprisingly better results when evaluated using
the SNR metric. Both metrics combined lead to even better
performances, particularly at high bit rates. This combina-
tion between an optimized metric on MSE and a metric fo-
cused on extracting structure reduces the blurring effects in-
duced by the compression scheme. The multi-loss balancing
scheme brings the previous model to a better rate-distortion
trade-off over the whole bit rate range. During training, the
parameters λk adapt to the relative importance given to their

respective task in previous epochs. This enables the network
to escape some local minima as the main λk leading the gra-
dient changes over time.

Fig. 4. Effect of the loss functions and multi-loss balancing
on the joint compression/demosaicking model performances.

5. CONCLUSION

In this work, we have proposed a joint compression and de-
mosaicking model designed for raw RGB satellite images
with increased rate-distortion performance compared to tra-
ditional sequential processing. The reconstruction is further
improved with the addition of a perceptual metric to extract
high-frequency structures, and the multi-loss strategy to tune
each loss function parameter. The next step is to adapt this
type of joint processing to other colour filter arrays than the
standard Bayer filter and to add other processing tasks such
as denoising for an extended processing pipeline.
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