Bartosz Bednarczyk
email: bartosz.bednarczyk@cs.uni.wroc.pl

Raul Fervari
email: rfervari@unc.edu.ar

Stéphane Demri
email: demri@lsv.fr

On Composing Finite Forests with Modal Logics

Keywords: CCS Concepts:, Theory of computation → Modal and temporal logics modal logic on trees, separation logic, static ambient logic, graded modal logic, expressive power, complexity

We study the expressivity and complexity of two modal logics interpreted on finite forests and equipped with standard modalities to reason on submodels. The logic ML() extends the modal logic K with the composition operator from ambient logic, whereas ML(*) features the separating conjunction * from separation logic. Both operators are second-order in nature. We show that ML() is as expressive as the graded modal logic GML (on trees) whereas ML(*) is strictly less expressive than GML. Moreover, we establish that the satisfiability problem is Tower-complete for ML(*), whereas it is (only) AExp Pol -complete for ML(), a result which is surprising given their relative expressivity. As by-products, we solve open problems related to sister logics such as static ambient logic and modal separation logic.

INTRODUCTION

The ability to quantify over substructures to express properties of a model is often instrumental to perform modular and local reasoning. Two well-known examples are provided by separation logics [START_REF] Ishtiaq | BI as an assertion language for mutable data structures[END_REF][START_REF] O'hearn | Local Reasoning about Programs that Alter Data Structures[END_REF][START_REF] Reynolds | Separation logic: a logic for shared mutable data structures[END_REF], dedicated to reasoning on pointer programs, and ambient (or more generally, spatial) logics [START_REF] Boneva | Expressiveness of a Spatial Logic for Trees[END_REF][START_REF] Calcagno | Deciding validity in a spatial logic for trees[END_REF][START_REF] Calcagno | Context logic and tree update[END_REF][START_REF] Dawar | Expressiveness and complexity of graph logic[END_REF], dedicated to reasoning on disjoint data structures. In the realm of modal logics dedicated to knowledge representation, submodel reasoning remains a key ingredient to express the dynamics of knowledge and belief, as done in the logics of public announcement [START_REF] Ph | Knowable' as 'known after an announcement[END_REF][START_REF] Lutz | Complexity and succinctness of public announcement logic[END_REF][START_REF] Plaza | Logics of public communication[END_REF], sabotage modal logics [START_REF] Aucher | Modal logics of sabotage revisited[END_REF], refinement modal logics [START_REF] Bozzelli | The complexity of one-agent refinement modal logic[END_REF] and relation-changing logics [START_REF] Areces | Moving Arrows and Four Model Checking Results[END_REF][START_REF] Areces | Relation-changing modal operators[END_REF][START_REF] Aucher | Global and Local Graph Modifiers[END_REF]. Though the models may be of different nature (e.g. memory states for separation logics, epistemic models for logics of public announcement or finite edge-labelled trees for ambient logics), all those logics feature operators that enable to compose or decompose substructures in a very natural way.

From a technical point of view, reasoning about submodels requires a global analysis, unlike the local approach for classical modal and temporal logics (typically based on automata techniques [START_REF] Vardi | Automata-theoretic techniques for modal logics of programs[END_REF][START_REF] Vardi | Reasoning about Infinite Computations[END_REF]). This makes the comparison between those formalisms quite challenging and often limited to a superficial analysis on the different classes of models and composition operators. For instance, the composition operator in ambient logics decomposes a tree into two disjoint pieces such that once a node has been assigned to one submodel, all its descendants belong to the same submodel. Instead, the separating conjunction * from separation logic decomposes the memory states into two disjoint memory states. Obviously, these and other well-known operators are closely related but no uniform framework investigates exhaustively their relationships in terms of expressive power.

Most of these logics can be easily encoded in monadic second-order logic MSO (or in secondorder modal logics [START_REF] Fine | Propositional quantifiers in modal logic[END_REF][START_REF] Laroussinie | Quantified CTL: Expressiveness and Complexity[END_REF]). Complexity-wise, if models are tree-like structures, we can then infer decidability thanks to the celebrated Rabin's theorem [START_REF] Rabin | Decidability of second-order theories and automata on infinite trees[END_REF]. However, most likely, this does not produce the best decision procedures when it comes to solving simple reasoning tasks (e.g. the satisfiability problem of MSO is Tower-complete [START_REF] Schmitz | Complexity Hierarchies beyond Elementary[END_REF]). Thus, relying on MSO as a common umbrella to understand the differences between those logical formalisms is often not satisfactory.

Our motivations. Our intention in this work is to provide an in-depth comparison between the composition operator from static ambient logic [START_REF] Calcagno | Deciding validity in a spatial logic for trees[END_REF] and the separating conjunction * from separation logics [START_REF] Reynolds | Separation logic: a logic for shared mutable data structures[END_REF] by identifying common ground in terms of logical languages and models. As a consequence, we are able to study the effects of having these operators as far as expressivity and complexity are concerned. We aim at defining two logics whose only differences rest on their use of and * syntactically and semantically (by considering the adequate composition operation). To do so, we pick as our common class of models, the Kripke-style finite trees (actually finite forests, so that the class is closed under taking submodels), which provides a ubiquitous class of structures, intensively studied in computer science. For the underlying logical language (i.e. apart from or *), we advocate the use of the standard modal logic K (i.e. to have Boolean connectives and the modality 3) so that the main operations on the models amount to quantifying over submodels or to moving along the edges. The generality of this framework enables us to take advantage of model theoretical tools from modal logics [START_REF] Barnaba | Graded Modalities[END_REF][START_REF] Blackburn | Modal Logic[END_REF][START_REF] De Rijke | A Note on Graded Modal Logic[END_REF]. The benefits of settling common ground for comparison may lead to further comparisons with other logics and to new results.

Our contributions. We introduce ML() and ML(*), two logics interpreted on Kripke-style forest models. The logic ML() features the standard modality 3 and the composition operator from static ambient logic [START_REF] Calcagno | Deciding validity in a spatial logic for trees[END_REF]; whereas ML(*) puts together the modality 3 with the separating conjunction * from separation logic [START_REF] Reynolds | Separation logic: a logic for shared mutable data structures[END_REF]. Both logical formalisms can state non-trivial properties about submodels, but the binary modalities and * operate differently: whereas * is able to decompose the models at any depth, is much less permissive as the decomposition is completely determined by what happens at the level of the children of the current node. We study their expressive power and complexity, obtaining surprising results. We show that ML() is as expressive as the graded modal logic GML [START_REF] Barnaba | Graded Modalities[END_REF][START_REF] Tobies | PSPACE Reasoning for Graded Modal Logics[END_REF] (Theorem 3.7) whereas ML(*) is strictly less expressive than GML (Theorem 5.6). Interestingly, this latter development partially reuses the result for ML(), hence showing how our framework allows us to transpose results between the two logics. To show that GML is strictly more expressive than ML(*), we define Ehrenfeucht-Fraïssé games for ML(*). In terms of complexity, the satisfiability problem for ML() is shown AExp Pol -complete1 (Corollary 3.12), interestingly the same complexity as for the refinement modal logic RML [START_REF] Bozzelli | The complexity of one-agent refinement modal logic[END_REF] handling a quantifier over refinements (generalising the submodel construction). The AExp Pol upper bound follows from an exponentialsize model property (Lemma 3.9), whereas the lower bound is by reducing the satisfiability problem for an AExp Pol -complete team logic [START_REF] Hannula | Complexity of Propositional Logics in Team Semantic[END_REF]. Much more surprisingly, although ML(*) is strictly less expressive than ML(), its complexity is much higher (not even elementary). Precisely, we show that the satisfiability problem for ML(*) is Tower-complete (Theorem 4.34). The Tower upper bound is a consequence of [START_REF] Rabin | Decidability of second-order theories and automata on infinite trees[END_REF], as ML(*) is a fragment of MSO. Hardness is shown by reduction from a Tower-complete tiling problem, adapting substantially the Tower-hardness proof from [START_REF] Bednarczyk | Why Propositional Quantification Makes Modal Logics on Trees Robustly Hard?[END_REF] for second-order modal logic K on finite trees, see also a similar method used in [START_REF] Pratt-Hartmann | The fluted fragment revisited[END_REF]. To conclude, we get the best of our results on ML() and ML(*) to solve several open problems. We relate ML() with an intensional fragment of static ambient logic SAL() from [START_REF] Calcagno | Deciding validity in a spatial logic for trees[END_REF] by providing polynomial-time reductions between their satisfiability problems. Consequently, we establish AExp Pol -completeness of SAL() (Corollary 6.6), refuting hints from [START_REF] Calcagno | Deciding validity in a spatial logic for trees[END_REF]Section 6]. Similarly, we show that the modal separation logic MSL(3 -1 , *) from [START_REF] Demri | The power of modal separation logics[END_REF] is Tower-complete (Corollary 7.3).

The following table states the main results of the paper, illustrating the relations in terms of expressivity and complexity between the logics for composing forests.

The finite forest 𝔐 decomposed with + 𝑤 is understood as a disjoint union between 𝔐 1 and 𝔐 2 except that, as soon as 𝑤 ′ ∈ 𝑅 𝑖 (𝑤), the whole subtree of 𝑤 ′ in 𝑅 belongs to 𝔐 𝑖 , like the composition in ambient logic [START_REF] Calcagno | Deciding validity in a spatial logic for trees[END_REF]. Below, we illustrate a finite forest decomposed with + 𝑤 .

𝑤 = 𝑤 + 𝑤

𝑤

Modal logics on trees. The logic ML() enriches the basic modal logic ML with a binary connective , called composition operator, that admits submodel reasoning via the operator + 𝑤 . Similarly, ML(*) enriches ML with the connective * , called separating conjunction (or star) that admits submodel reasoning via the operator +. Both connectives and * are understood as binary modalities. As we show throughout the paper, ML() and ML(*) are strongly related to the graded modal logic GML [START_REF] De Rijke | A Note on Graded Modal Logic[END_REF]. For conciseness, let us define all these logics by considering formulae that contain all of their ingredients. These formulae are built from the grammar below:

𝜑 := ⊤ | 𝑝 | 𝜑 ∧ 𝜑 | ¬𝜑 | 3𝜑 | 3 ≥𝑘 𝜑 | 𝜑 * 𝜑 | 𝜑 𝜑,
where 𝑝 ∈ AP and 𝑘 ∈ N (encoded in unary). A pointed forest (𝔐, 𝑤) is a finite forest 𝔐 = (𝑊 , 𝑅, 𝑉) together with a world 𝑤 ∈ 𝑊 . The satisfaction relation |= is defined as follows (standard clauses for ∧, ¬ and ⊤ are omitted): The formulae 𝜑 ⇒ 𝜓 , 𝜑 ∨𝜓 and ⊥ are defined as usual. We use the following standard abbreviations: 2𝜑 def = ¬3¬𝜑, 3 ≤𝑘 𝜑 def = ¬3 ≥𝑘+1 𝜑 and 3 =𝑘 𝜑 def = 3 ≥𝑘 𝜑 ∧3 ≤𝑘 𝜑. Notice that both and * are associative operators (we will use this fact implicitely in the rest of the paper). We write size(𝜑) to denote the size of 𝜑 with a tree representation of formulae and with a reasonably succinct encoding of atomic formulae. Besides, we write md(𝜑) to denote the modal degree of 𝜑 understood as the maximal number of nested unary modalities (i.e. 3 or 3 ≥𝑘) in 𝜑. Similarly, the graded rank gr(𝜑) of 𝜑 is defined as max({𝑘 | 3 ≥𝑘 𝜓 ∈ subf (𝜑)} ∪ {0}), where subf(𝜑) is the set of all the subformulae of 𝜑.

Given the formulae 𝜑 and 𝜓 , 𝜑 ≡ 𝜓 denotes that 𝜑 and 𝜓 are logically equivalent; i.e., for every pointed forest (𝔐, 𝑤), 𝔐, 𝑤 |= 𝜑 if and only if 𝔐, 𝑤 |= 𝜓 . For instance (𝑘 ≥ 1 and 𝑝 ∈ AP):

(1). 3𝜑 ≡ 3 ≥1 𝜑;

(2). (22⊥ 22⊥) (22⊥ * 22⊥);

(3).

3 ≥𝑘 𝑝 ≡ 3𝑝 * • • • * 3𝑝 𝑘 times ; (4). 3 ≥𝑘 𝜑 ≡ 3𝜑 • • • 3𝜑 𝑘 times .
The modal logic ML is the logic restricted to formulae with the unique modality 3 [START_REF] Blackburn | Modal Logic[END_REF]. Similarly, the graded modal logic GML is restricted to the graded modalities 3 ≥𝑘 [START_REF] De Rijke | A Note on Graded Modal Logic[END_REF]. We introduce the modal logics ML() and ML(*), which are restricted to the suites of modalities (3,) and (3, *), respectively. The two equivalences (3) and (4) already shed some light on ML() and ML(*): the two logics are similar when it comes to their formulae of modal degree one (as [START_REF] Aucher | Global and Local Graph Modifiers[END_REF] does not generalise to arbitrary formulae). The proof of Lemma 2.1 can be found in Appendix A. However, as shown by the non-equivalence (2) above, it is unclear how the two logics compare when it comes to formulae of modal degree greater than one. Indeed, since 𝔐 = 𝔐 1 + 𝑤 𝔐 2 implies 𝔐 = 𝔐 1 + 𝔐 2 (in formula, 𝜑 𝜓 ⇒ 𝜑 * 𝜓 is valid) but not vice-versa, the separating conjunction * is more permissive than the operator . However, further connections between the two operators can be easily established. Let us introduce the auxiliary operator defined as 𝜑 def = 𝜑 * 2⊥. Formally, (𝑊 , 𝑅, 𝑉), 𝑤 |= 𝜑 ⇔ there is 𝑅 ′ ⊆ 𝑅 such that 𝑅 ′ (𝑤) = 𝑅(𝑤) and (𝑊 , 𝑅 ′ , 𝑉), 𝑤 |= 𝜑.

Similar operators are studied in [START_REF] Areces | Relation-changing modal operators[END_REF][START_REF] Aucher | Modal logics of sabotage revisited[END_REF][START_REF] Bozzelli | The complexity of one-agent refinement modal logic[END_REF]. We show that and are sufficient to capture * (essential property for Section 5). Lemma 2.2. Let 𝜑,𝜓 ∈ GML. We have 𝜑 * 𝜓 ≡ (𝜑 𝜓).

The proof of Lemma 2.2 can be found in Appendix B. Unlike , when * splits a finite forest 𝔐 into 𝔐 1 and 𝔐 2 , it may disconnect in both submodels worlds that are otherwise reachable, from the current world, in 𝔐. Applying before allows us to imitate this behaviour. Indeed, even though preserves reachability in either 𝔐 1 or 𝔐 2 , deletes part of 𝔐, making some world inaccessible. This way of expressing the separating conjunction allows us to reuse some methods developed for ML() in order to study ML(*).

The logic QK 𝑡 . Both ML() and ML(*) can be seen as fragments of the logic QK 𝑡 , which in turn is known to be a fragment of monadic second-order logic on trees [START_REF] Bednarczyk | Why Propositional Quantification Makes Modal Logics on Trees Robustly Hard?[END_REF]. The logic QK 𝑡 extends ML with second-order quantification and is interpreted on finite trees. Its formulae are defined according to the following grammar: 𝜑 := 𝑝 | 3𝜑 | 𝜑 ∧ 𝜑 | ¬𝜑 | ∃𝑝 𝜑. Given 𝔐 = (𝑊 , 𝑅, 𝑉) and 𝑤 ∈ 𝑊 , the satisfaction relation |= of ML is extended as follows:

𝔐, 𝑤 |= ∃𝑝 𝜑 ⇔ there is ∃𝑊 ′ ⊆ 𝑊 such that (𝑊 , 𝑅, 𝑉 [𝑝 ← 𝑊 ′]), 𝑤 |= 𝜑.

One can show logspace reductions from ML() and ML(*) to QK 𝑡 , by simply reinterpreting the operators * and as restrictive forms of second-order quantification, and by relativising 3 to appropriate propositional symbols in order to capture the notion of submodel (details are omitted). Consequently, Tower-hardness of the satisfiability problem for ML(*) proved in Section 4 entails the Tower-hardness of QK 𝑡 , refining the proof for QK 𝑡 in [START_REF] Bednarczyk | Why Propositional Quantification Makes Modal Logics on Trees Robustly Hard?[END_REF].

Expressive power. Given two logics 𝔏 1 and 𝔏 2 , we say that 𝔏 2 is at least as expressive as 𝔏 1 (written 𝔏 1 ⪯ 𝔏 2) whenever for every formula 𝜑 of 𝔏 1 , there is a formula 𝜓 of 𝔏 2 such that 𝜑 ≡ 𝜓 . 𝔏 1 ≈ 𝔏 2 denotes that 𝔏 1 and 𝔏 2 are equally expressive, i.e. 𝔏 1 ⪯ 𝔏 2 and 𝔏 2 ⪯ 𝔏 1 . Lastly, 𝔏 1 ≺ 𝔏 2 denotes that 𝔏 2 is strictly more expressive than 𝔏 1 , i.e. 𝔏 1 ⪯ 𝔏 2 and 𝔏 1 𝔏 2 . The equivalence [START_REF] Areces | Moving Arrows and Four Model Checking Results[END_REF] recalls us that ML ≺ GML [START_REF] De Rijke | A Note on Graded Modal Logic[END_REF]. From the equivalence (4), we get GML ⪯ ML().

Satisfiability problem. The satisfiability problem for a logic 𝔏, written Sat(𝔏), takes as input a formula 𝜑 in 𝔏 and checks whether there is a pointed forest (𝔐, 𝑤) such that 𝔐, 𝑤 |= 𝜑.

Note that any 𝔏 among ML, GML, ML() or ML(*) has the tree model property, i.e. any satisfiable formula is also satisfied in some tree structure. The problems Sat(ML) and Sat(GML) are known to be PSpace-complete, see e.g. [START_REF] Blackburn | Modal Logic[END_REF][START_REF] Demri | Complexity of Modal Logics with Presburger Constraints[END_REF][START_REF] Ladner | The computational complexity of provability in systems of modal propositional logic[END_REF][START_REF] Schröder | PSPACE bounds for rank-1 modal logics[END_REF][START_REF] Tobies | PSPACE Reasoning for Graded Modal Logics[END_REF], and therefore Sat(ML()) and Sat(ML(*)) are PSpace-hard. Note that Sat(GML) is PSpace-complete even when the numbers 𝑘 appearing in graded modalities 3 ≥𝑘 are encoded in binary. However, we stress the fact that in this paper we consider 𝑘 to be encoded in unary, as it better matches the definition of 3 ≥𝑘 in ML() given in [START_REF] Aucher | Modal logics of sabotage revisited[END_REF]. As an upper bound, by Rabin's theorem [START_REF] Rabin | Decidability of second-order theories and automata on infinite trees[END_REF], the satisfiability problem for QK 𝑡 is decidable in Tower, which transfers directly to Sat(ML()) and Sat(ML(*)).

ML(): EXPRESSIVENESS AND COMPLEXITY

In this section, we study the expressive power of ML() and the complexity of its satisfiability problem. We start by constructively showing that ML() ⪯ GML, hence proving ML() ≈ GML. Then, we study its computational complexity for which we establish that Sat(ML()) is AExp Polcomplete. We recall that AExp Pol denotes the complexity class of those problems decided by exponential-time bounded alternating Turing Machines using a polynomially bounded number of alternations. A problem 𝑃 is AExp Pol -complete if it is in AExp Pol and every problem in AExp Pol can be reduced to 𝑃 under polynomial-time reductions.

The AExp Pol upper bound for ML() follows from an exponential-size model property. The lower bound is by reduction from the satisfiability problem for propositional team logic [START_REF] Hannula | Complexity of Propositional Logics in Team Semantic[END_REF]Thm. 4.9].

A disjoint form for graded modal logic

The method for establishing ML() ⪯ GML relies on the fact that GML is closed under the operator . We show that given two formulae 𝜑 1 and 𝜑 2 in GML, one can construct a formula 𝜓 in GML such that 𝜑 1 𝜑 2 ≡ 𝜓 . For instance, a simple case analysis yields (𝑝 ∨ 3 ≥3 𝑟) (𝑞 ∨ 3 ≤5 𝑞) ≡ (𝑝 ∨ 3 ≥3 𝑟). With this closure property at hand, the general algorithm consists in iteratively replacing innermost subformulae of the form 𝜑 1 𝜑 2 by a counterpart in GML, allowing us to eliminate all the occurrences of and obtain an equivalent formula in GML. In order to establish the closure property, we first put the GML formulae 𝜑 1 and 𝜑 2 in a disjoint form, a normal form that is introduced in this section alongside other useful definitions.

Let 𝜑 be a formula in GML. We write max PC (𝜑) for the set of atomic propositions of 𝜑 that appear at least once outside the scope of a graded modality. Similarly, max GM (𝜑) denotes the set of subformulae 𝜓 of 𝜑 such that 𝜓 is of the form 3 ≥𝑘 𝜓 ′ and one of its occurrences in 𝜑 is not in the scope of any graded modality. For instance, given 𝜑 = (𝑝 ∨ 3 ≥3 𝑟) ∧ (𝑞 ∨ 3 ≥5 3 ≥2 𝑞), max PC (𝜑) = {𝑝, 𝑞} max GM (𝜑) = {3 ≥3 𝑟, 3 ≥5 3 ≥2 𝑞}. Clearly, every formula 𝜑 in GML is a Boolean combination of formulae from max PC (𝜑) ∪ max GM (𝜑). Given a natural number 𝑑 ∈ N, we extend the notion of max GM (𝜑) and write gm(𝑑, 𝜑) to denote the set of subformulae of 𝜑 of the form 3 ≥𝑘 𝜓 occurring under the scope of exactly 𝑑 nested graded modalities. Formally, gm(0, 𝜑) def = max GM (𝜑), gm(𝑑 + 1, 𝜑) def = 3 ≥𝑘 𝜓 ∈max GM (𝜑) gm(𝑑,𝜓). For simplicity, we also write C ∧ (𝜑 1 , . . . , 𝜑 𝑛) = {𝛾 1 ∧ • • • ∧ 𝛾 𝑛 | for all 𝑖 ∈ [1, 𝑛], 𝛾 𝑖 ∈ {𝜑 𝑖 , ¬𝜑 𝑖 }} for the set of all complete conjunctions of (possibly negated) formulae 𝜑 1 , . . . , 𝜑 𝑛 . The disjoint form for formulae in GML is defined as follows.

Definition 3.1. A formula 𝜑 in GML is said to be in disjoint form if for every 𝑑 ∈ [0, md(𝜑)] and all 3 ≥𝑘 𝜓, 3 ≥𝑘 ′ 𝜓 ′ ∈ gm(𝑑, 𝜑), either 𝜓 ≡ 𝜓 ′ or the conjunction 𝜓 ∧ 𝜓 ′ is unsatisfiable.

The lemma below leads to an inductive procedure to put every GML formula into disjoint form. Lemma 3.2. Let 𝜑 be a formula in GML and max GM (𝜑) ⊆ {3 ≥𝑘 1 𝜓 1 , . . . , 3 ≥𝑘 𝑛 𝜓 𝑛 } such that 𝜓 1 ∧ • • • ∧ 𝜓 𝑛 is in disjoint form. Let 𝑘 = max{𝑘 1 , . . . , 𝑘 𝑛 }. There is a GML formula 𝜑 ′ in disjoint form logically equivalent to 𝜑 and such that max GM (𝜑 ′) ⊆ {3 ≥𝑘 𝜒 | 𝑘 ∈ [0, 𝑘] and 𝜒 ∈ C ∧ (𝜓 1 , . . . ,𝜓 𝑛)} and max PC (𝜑 ′) ⊆ max PC (𝜑).

Proof. The assumption that 𝜓 1 ∧ • • • ∧𝜓 𝑛 is in disjoint form implies that for every 𝑑 ∈ [1, md(𝜑)] and every 3 ≥𝑘 𝜓, 3 ≥𝑘 ′ 𝜓 ′ ∈ gm(𝑑, 𝜑), either 𝜓 ≡ 𝜓 ′ or the conjunction 𝜓 ∧ 𝜓 ′ is unsatisfiable. Therefore, to construct 𝜑 ′ it is sufficient to manipulate the formulae of gm(0, 𝜑) = max GM (𝜑), without modifying the set gm(1, 𝜑). We do so by using axioms from GML [START_REF] Barnaba | Graded Modalities[END_REF] as well as the equivalences: (guess) 3 ≥𝑘 𝜑 ≡ 3 ≥𝑘 (𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬𝜓) ,

(3 ≥𝑘 distr) if 𝜑 ∧𝜓 is unsatisfiable, 3 ≥𝑘 (𝜑∨𝜓) ≡ 𝑘=𝑘 1 +𝑘 2 (3 ≥𝑘 1 𝜑 ∧ 3 ≥𝑘 2 𝜓).
Notice that the two disjuncts 𝜑 ∧ 𝜓 and 𝜑 ∧ ¬𝜓 in the right-hand side of (guess) are such that their conjunction is unsatisfiable, enabling us to use (3 ≥𝑘 distr).

We manipulate each 3 ≥𝑘 𝑗 𝜓 𝑗 ∈ max GM (𝜑) separately. Let 𝑗 ∈ [1, 𝑛]. Consider the set of formulae G = C ∧ (𝜓 1 , . . . ,𝜓 𝑗 -1 ,𝜓 𝑗+1 , . . . ,𝜓 𝑛). By propositional reasoning and by applying (guess) 𝑛 -1 times:

3 ≥𝑘 𝑗 𝜓 𝑗 ≡ 3 ≥𝑘 𝑗 (𝜒 1 ∧•••∧𝜒 𝑗 -1 ∧𝜒 𝑗 +1 ∧•••∧𝜒 𝑛) ∈ G 𝜒 1 ∧ • • • ∧ 𝜒 𝑗 -1 ∧ 𝜓 𝑗 ∧ 𝜒 𝑗+1 ∧ • • • ∧ 𝜒 𝑛 .
Let D be the set of functions 𝑑 : G → [0, 𝑘 𝑗] assigning to each formula of G a number in [0, 𝑘 𝑗], such that 𝑘 𝑗 = 𝛾 ∈ G 𝑑 (𝛾). By relying on (3 ≥𝑘 distr), we obtain 3 ≥𝑘 𝑗 𝜓 𝑗 ≡ 𝜓 ′ 𝑗 where

𝜓 ′ 𝑗 def = 𝑑 ∈ D (𝜒 1 ∧•••∧𝜒 𝑗 -1 ∧𝜒 𝑗 +1 ∧•••∧𝜒 𝑛)=𝛾 ∈ G 3 ≥𝑑 (𝛾) 𝜒 1 ∧ . . . 𝜒 𝑗 -1 ∧ 𝜓 𝑗 ∧ 𝜒 𝑗+1 ∧ • • • ∧ 𝜒 𝑛 .
Let 𝜑 ′ be the formula obtained from 𝜑 by replacing with 𝜓 ′ 𝑗 every occurrence of 3 ≥𝑘 𝑗 𝜓 𝑗 not appearing under the scope of graded modalities. By definition of G and D, the formula 𝜑 ′ satisfies all the expected properties. □ Lemma 3.3. Let 𝜑 in GML. There is a GML formula 𝜑 ′ in disjoint form such that 𝜑 ′ ≡ 𝜑.

Proof. Use Lemma 3.2 bottom-up, from formulae in gm(md(𝜑) -1, 𝜑) to formulae in gm(0, 𝜑). □

When discussing the exponential-size model property for ML(), we are interested in the size of the smallest pointed forest satisfying a GML formula already given in disjoint form. To this end, we need to introduce one last notion: the branching degree of a formula. Let 𝜑 be a formula GML, with max GM (𝜑) = {3 ≥𝑘 1 𝜓 1 , . . . , 3 ≥𝑘 𝑛 𝜓 𝑛 }. We define bd(0, 𝜑) def = 𝑘 1 + • • • + 𝑘 𝑛 and, for all 𝑚 ≥ 0, bd(𝑚 + 1, 𝜑) def = max{bd(𝑚,𝜓) | 3 ≥𝑘 𝜓 ∈ max GM (𝜑)}. Hence, bd(𝑚, 𝜑) can be understood as the maximal bd(0,𝜓) for some subformula 𝜓 occurring at the modal depth 𝑚 within 𝜑. We write max bd (𝜑) def = max{bd(𝑚, 𝜑) | 𝑚 ∈ [0, md(𝜑)]} for the branching degree of 𝜑. Lemma 3.4. Every satisfiable GML formula 𝜑 in disjoint form is satisfied by a pointed forest with at most (max bd (𝜑) + 1) md(𝜑) worlds.

Proof. The proof follows with a straightforward induction on the modal degree of 𝜑. base case: md(𝜑) = 0. In this case, 𝜑 is a Boolean combination of atomic propositions, and thus the satisfaction of 𝜑 can be witnessed on a pointed forest with one single world (i.e. the satisfaction of 𝜑 only depends on the atomic propositions satisfied by the current world). induction step: md(𝜑) = 𝑑 + 1. By propositional reasoning, there is a GML formula 𝜑 ′ in disjoint form such that 𝜑 ≡ 𝜑 ′ and 𝜑 ′ is a disjunction of conjunctions of possibly negated formulae from max GM (𝜑) ∪ max PC (𝜑). Since 𝜑 is satisfiable and 𝜑 ≡ 𝜑 ′ , one of the disjuncts of 𝜑 ′ must be satisfiable. Let 𝜒 be such a disjunct, which is a conjunction of the form:

𝜒 = 3 ≥𝑘 1 𝜓 1 ∧ . . . ∧ 3 ≥𝑘 𝑛 𝜓 𝑛 ∧ ¬3 ≥ 𝑗 1 𝜓 ′ 1 ∧ . . . ∧ ¬3 ≥ 𝑗 𝑚 𝜓 ′ 𝑚 ∧ 𝐿 1 ∧ • • • ∧ 𝐿 𝑟 , where {3 ≥𝑘 𝑖 𝜓 𝑖 | 𝑖 ∈ [1, 𝑛]} ∪ {3 ≥ 𝑗 𝑖 𝜓 ′ 𝑖 | 𝑖 ∈ [1, 𝑚]} ⊆ max GM (𝜑)
and 𝐿 1 , . . . , 𝐿 𝑟 are literals built upon max PC (𝜑). Since max GM (𝜒) ⊆ max GM (𝜑) we have max bd (𝜒) ≤ max bd (𝜑), md(𝜒) ≤ md(𝜑) and 𝜒 is in disjoint form. Without loss of generality, we can assume each 𝑘 𝑖 , with 𝑖 ∈ [1, 𝑛], to be at least 1. Indeed, formulae of the form 3 ≥0 𝜓 are valid and can be replaced with ⊤. From the satisfiability of 𝜒, we conclude that for all 𝑖 ∈ [1, 𝑛] and 𝑟 ∈ disjoint form and satisfiable and each 𝑘 𝑖 (𝑖 ∈ [1, 𝑛]) is assumed to be at least 1, we conclude that every formula in R is satisfiable, and for all 𝑖 ≠ 𝑗 ∈ [1, 𝑞], 𝛾 𝑖 ∧ 𝛾 𝑗 is unsatisfiable. Then, constructing a model for 𝜒 becomes straightforward: by induction hypothesis, for every 𝑖 ∈ [1, 𝑞] there is a pointed forest (𝔐 𝑖 , 𝑤 𝑖) with at most (max bd (𝛾 𝑖) +1) md(𝛾 𝑖) worlds that satisfy 𝛾 𝑖 . Let us pick 𝑘 𝑖 copies (𝔐 1,𝑖 , 𝑤 1,𝑖), . . . , (𝔐 𝑘 𝑖 ,𝑖 , 𝑤 𝑘 𝑖 ,𝑖) of the pointed forest (𝔐 𝑖 , 𝑤 𝑖), constructed over distinct sets of worlds. For all 𝑖 ∈ [1, 𝑚] and 𝑐 ∈ [1, 𝑘 𝑖], let 𝔐 𝑐,𝑖 = (𝑊 𝑐,𝑖 , 𝑅 𝑐,𝑖 , 𝑉 𝑐,𝑖). Let us consider the finite forest 𝔐 = (𝑊 , 𝑅, 𝑉) defined as

[1, 𝑚] if 𝜓 𝑖 ≡ 𝜓 ′ 𝑟 then 𝑘 𝑖 < 𝑗 𝑟 . We consider a set R = {3 ≥ 𝑘 1 𝛾 1 , . . . , 3 ≥ 𝑘 𝑞 𝛾 𝑞 } of representative formulae for {3 ≥𝑘 1 𝜓 1 , . . . , 3 ≥𝑘 𝑛 𝜓 𝑛 }, i.e. R is a subset of {3 ≥𝑘 1 𝜓 1 , .
• 𝑊 def = {𝑤 } ∪ 𝑖 ∈ [1,𝑞] 𝑐 ∈ [1, 𝑘 𝑖] 𝑊 𝑐,𝑖
, where 𝑤 is a fresh world not appearing in any 𝑊 𝑐,𝑖 ,

• 𝑅 = {(𝑤, 𝑤 𝑐,𝑖) | 𝑖 ∈ [1, 𝑚], 𝑐 ∈ [1, 𝑘 𝑖]} ∪ 𝑖 ∈ [1,𝑞] 𝑐 ∈ [1, 𝑘 𝑖] 𝑅 𝑐,𝑖 ,
• for every atomic proposition 𝑝 appearing in 𝜑, for every 𝑖 ∈ [

|𝑊 | = 1 + 𝑞 𝑖=1 𝑘 𝑞 • |𝑊 𝑖 | ≤ 1 + 𝑞 𝑖=1 𝑘 𝑖 • (max bd (𝛾 𝑖) + 1) md(𝜒 𝑖) ≤ 1 + (max bd (𝜑) + 1) md(𝜑) -1 • 𝑞 𝑖=1 𝑘 𝑖 ≤ 1 + (max bd (𝜑) + 1) md(𝜑) -1 • max bd (𝜑) ≤ (max bd (𝜑) + 1) md(𝜑) □

ML() is as expressive as GML

Let 𝜑 1 , 𝜑 2 be GML formulae such that 𝜑 1 ∧ 𝜑 2 is in disjoint form. We show that there is a GML formula 𝜓 such that 𝜑 1 𝜑 2 ≡ 𝜓 . To do so, we take a slight detour through Presburger arithmetic interpreted on the set of natural numbers N, see e.g., [START_REF] Ch | A survival guide to Presburger arithmetic[END_REF][START_REF] Presburger | Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt[END_REF] for details. We characterise the formula 𝜑 1 𝜑 2 by using linear arithmetic constraints for the number of successors. Then, we take advantage of basic properties of Presburger arithmetic to eliminate quantifiers, and obtain a GML formula. Below, the variables x, y, z, . . ., possibly decorated and occurring in formulae, are from Presburger arithmetic and therefore they are interpreted by natural numbers. We write 𝜒 (x 1 , . . . , x 𝑛) for a formula in Presburger arithmetic 𝜒 with free variables x 1 , . . . , x 𝑛 . Let 𝜑 be in GML such that max PC (𝜑) ⊆ {𝑝 1 , . . . , 𝑝 𝑚 } and {𝜓 | 3 ≥𝑘 𝜓 ∈ max GM (𝜑)} ⊆ {𝜓 1 , . . . ,𝜓 𝑛 }. We define formulae in Presburger arithmetic that state constraints about the number of children satisfying a formula 𝜓 𝑗 (𝑗 ∈ [1, 𝑛]), as well as the polarity of the atomic propositions 𝑝 𝑗 (𝑗 ∈ [1, 𝑚]) not appearing under the scope of graded modalities. In this respect, the variable x 𝑗 is intended to be interpreted as the number of children satisfying 𝜓 𝑗 , whereas with some abuse of notation we see 𝑝 𝑗 directly as a variable. Whenever non-zero, the variable 𝑝 𝑗 shall encode the fact that the homonymous atomic proposition is satisfied. We write 𝜑 PA (x 1 , . . . , x 𝑛 , 𝑝 1 , . . . , 𝑝 𝑚) to denote the quantifier-free formula of Presburger arithmetic obtained from 𝜑 by replacing with x 𝑗 ≥ 𝑘 (resp. 𝑝 𝑗 ≥ 1) every occurrence of 3 ≥𝑘 𝜓 𝑗 (resp. 𝑝 𝑗) that it is not in the scope of a graded modality. For instance, assuming that 𝜑 = ¬𝑝 ∧ (3 ≥5 (𝑝 ∧ 𝑞) ∨ ¬3 ≥4 ¬𝑝), the expression 𝜑 PA (x 1 , x 2) denotes the formula ¬𝑝 ≥ 1 ∧ (x 1 ≥ 5 ∨ ¬(x 2 ≥ 4)).

Consider now formulae 𝜑 1 and 𝜑 2 in GML, such that the conjunction). This formula states that there is a way to divide the children in two distinct sets and each set allows to satisfy 𝜑 PA 1 or 𝜑 PA 2 , respectively. As Presburger arithmetic admits quantifier elimination [START_REF] Cooper | Theorem proving in arithmetic without multiplication[END_REF][START_REF] Presburger | Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt[END_REF][START_REF] Reddy | Presburger arithmetic with bounded quantifier alternation[END_REF], there is a quantifier-free formula 𝜒 (x 1 , . . . , x 𝑛 , 𝑝 1 , . . . , 𝑝 𝑚) equivalent to the formula [𝜑 1 , 𝜑 2] PA . In the next lemma, we show that thanks to the shape of the formula [𝜑 1 , 𝜑 2] PA , the atomic formulae appearing in 𝜒 are of the form x 𝑗 ≥ 𝑘 and 𝑝 𝑗 ≥ 1, i.e. the quantifier elimination step does not introduce 'modulo constraints' or constraints of the form 𝑎 𝑗 y 𝑗 ≥ 𝑘. Using propositional reasoning and the fact that disjunction distributes over existential first-order quantification and that the variables 𝑝 𝑗 are free, the formula [𝜑 1 , 𝜑 2] PA (x 1 , . . . , x 𝑛) is therefore logically equivalent to a formula of the form

𝜑 1 ∧ 𝜑 2 is in disjoint form, max PC (𝜑 1 ∧ 𝜑 2) ⊆ {𝑝 1 , . . . , 𝑝 𝑚 } and {𝜓 | 3 ≥𝑘 𝜓 ∈ max GM (𝜑 1 ∧ 𝜑 2)} ⊆ {𝜓
Lemma 3.5. Let 𝜑 1 , 𝜑 2 ∈ GML s.t. 𝜑 1 ∧𝜑 2 is in disjoint form. Then [𝜑 1 , 𝜑 2] PA (x 1 , . . . , x 𝑛 , 𝑝
𝛼,𝛽 𝑃 1 𝛼 ∧ 𝑃 2 𝛽 ∧ ∃ y 1 1 , y 2 1 , . . . , y 1 𝑛 , y 2 𝑛 𝐶 1 𝛼 ∧ 𝐶 2 𝛽 ∧ 𝑛 𝑗=1 x 𝑗 = y 1 𝑗 + y 2 𝑗 where 𝑃 1 𝛼 ∧ 𝐶 1 𝛼 (resp. 𝑃 2 𝛼 ∧ 𝐶 2 𝛽) is a conjunction from 𝜑 ′ 1 (resp. from 𝜑 ′ 2)
and, for 𝑖 ∈ 1, 2, 𝑃 𝑖 𝛼 is written with variables from {𝑝 1 , . . . , 𝑝 𝑚 } whereas 𝐶 𝑖 𝛼 is written with variables from {y 𝑖 1 , . . . , y 𝑖 𝑛 }. In order to build 𝜒 (x 1 , . . . , x 𝑛 , 𝑝 1 , . . . , 𝑝 𝑚) from [𝜑 1 , 𝜑 2] PA (x 1 , . . . , x 𝑛 , 𝑝 1 , . . . , 𝑝 𝑚), we take advantage of quantifier elimination in PA and we explain below how this can be done. It is sufficient to explain how to eliminate quantifiers for subformulae of the form

Ψ = ∃ y 1 1 , y 2 1 , . . . , y 1 𝑛 , y 2 𝑛 (𝑛 𝑗=1 x 𝑗 = y 1 𝑗 + y 2 𝑗) ∧ 𝐶 1 𝛼 ∧ 𝐶 2 𝛽 .
Inductively, let 𝑗 ∈ [1, 𝑛] and suppose that by performing quantifier elimination on the quantifier prefix ∃ y 1 𝑗+1 , y 2 𝑗+1 , . . . ,

y 1 𝑛 , y 2 𝑛 , the formula Ψ is shown equivalent to ∃ y 1 1 , y 2 1 , . . . , y 1 𝑗 , y 2 𝑗 Ψ 𝑗+1 , with Ψ 𝑛+1 = (𝑛 𝑗=1 x 𝑗 = y 1 𝑗 + y 2 𝑗) ∧ 𝐶 1 𝛼 ∧ 𝐶 2
𝛽 , and the following properties hold: (1) Ψ 𝑗+1 is quantifier-free with no occurrences of the variables y 1 𝑗+1 , y 2 𝑗+1 , . . . ,

y 1 𝑛 , y 2 𝑛 , (2) Ψ 𝑗+1 is of the form (𝑎∈ [1,𝑗] x 𝑎 = y 1 𝑎 + y 2 𝑎) ∧ 𝐷 ∧ 𝐶 ′ 1 ∧ 𝐶 ′ 2
, where (a) 𝐷 is a conjunction of literals built from constraints of the form x 𝑗 ′ ≥ 𝑘 with 𝑗 ′ ∈ [𝑗, 𝑛], (b) for each 𝑖 ∈ {1, 2}, 𝐶 ′ 𝑖 a conjunction such that for each 𝑗 ′ ∈ [1, 𝑗], y 𝑖 𝑗 ′ is in at most two literals with the following three options:

(𝑗 -1 𝑎=1 x 𝑎 = y 1 𝑎 + y 2 𝑎) ∧ 𝐷 ∧ 𝐶 ′′ 1 ∧ 𝐶 ′′ 2 ∧ ∃ y 1 𝑗 ∃ y 2 𝑗 (x 𝑗 = y 1 𝑗 + y 2 𝑗 ∧ 𝐷 1 ∧ 𝐷 2),
where

𝐶 ′ 1 = 𝐶 ′′ 1 ∧ 𝐷 1 (assuming abusively that 𝐴 ∧ ⊤ = 𝐴), 𝐶 ′ 2 = 𝐶 ′′ 2 ∧
(x 𝑗 = y 1 𝑗 + y 2 𝑗) ∧ 𝐷 1 ∧ 𝐷 2 .
Below we treat all the cases, depending on the value for 𝐷 1 ∧ 𝐷 2 leading to the formula 𝐷 12 (we omit the symmetrical cases):

case ⊤ ∧ ⊤ or ¬(y 1 𝑗 ≥ 𝑘) ∧ ⊤: 𝐷 12 def = ⊤, case (y 1 𝑗 ≥ 𝑘) ∧ ⊤ or ((y 1 𝑗 ≥ 𝑘) ∧ ¬(y 1 𝑗 ≥ 𝑘 ′)) ∧ ⊤: 𝐷 12 def = (x 𝑗 ≥ 𝑘), case ¬(y 1 𝑗 ≥ 𝑘) ∧ (y 2 𝑗 ≥ 𝑘 ′′): 𝐷 12 def = (x 𝑗 ≥ 𝑘 ′′), case (y 1 𝑗 ≥ 𝑘) ∧ (y 2 𝑗 ≥ 𝑘 ′′) or ((y 1 𝑗 ≥ 𝑘) ∧ ¬(y 1 𝑗 ≥ 𝑘 ′)) ∧ (y 2 𝑗 ≥ 𝑘 ′′): 𝐷 12 def = (x 𝑗 ≥ 𝑘 + 𝑘 ′′), case ((y 1 𝑗 ≥ 𝑘) ∧ ¬(y 1 𝑗 ≥ 𝑘 ′)) ∧ ((y 2 𝑗 ≥ 𝑘 ′′) ∧ ¬(y 2 𝑗 ≥ 𝑘 ′′′)): 𝐷 12 def = (x 𝑗 ≥ 𝑘 +𝑘 ′′)∧¬(x 𝑗 ≥ 𝑘 ′ +𝑘 ′′′). It is now easy to check that the formula ∃ y 1 1 , y 2 1 , . . . , y 1 𝑗 -1 , y 2 𝑗 -1 (𝑗 -1 𝑎=1 x 𝑎 = y 1 𝑎 + y 2 𝑎) ∧ (𝐷 ∧ 𝐷 12) ∧ 𝐶 ′′ 1 ∧ 𝐶 ′′ 2 ,
satisfies the conditions for Ψ 𝑗 . By iterating the process of quantifier elimination, we get the desired formula 𝜒 (x 1 , . . . , x 𝑛 , 𝑝 1 , . . . , 𝑝 𝑚). From the case analysis above, notice that all the atomic formulae of the form x 𝑗 ≥ 𝑘 appearing in 𝜒 (x 1 , . . . , x 𝑛) are such that 𝑘 ≤ gr(𝜑 1) + gr(𝜑 2). □

From the formula 𝜒 (x 1 , . . . , x 𝑛 , 𝑝 1 , . . . , 𝑝 𝑚), we derive the GML formula 𝜒 GML by replacing every occurrence of x 𝑗 ≥ 𝑘 by 3 ≥𝑘 𝜓 𝑗 , and every occurrence of 𝑝 𝑗 ≥ 1 by 𝑝 𝑗 . We show that 𝜑 1 𝜑 2 ≡ 𝜒 GML . Lemma 3.6. Given 𝜑 1 and 𝜑 2 GML formulae in disjoint form, there is a GML formula 𝜒 GML in disjoint form such that

𝜒 GML ≡ 𝜑 1 𝜑 2 , gr(𝜒 GML) ≤ gr(𝜑 1) + gr(𝜑 2), max PC (𝜒 GML) ⊆ max PC (𝜑 1 ∧ 𝜑 2) and {𝜓 | 3 ≥𝑘 𝜓 ∈ max GM (𝜒 GML)} ⊆ {𝜓 | 3 ≥𝑘 𝜓 ∈ max GM (𝜑 1 ∧ 𝜑 2)}. The assumption that 𝜑 1 ∧ 𝜑 2 is in disjoint form is essential to obtain 𝜑 1 𝜑 2 ≡ 𝜒 GML . Here is a simple counter-example. The formula [𝜑 1 , 𝜑 2] PA (x 1 , x 2) obtained from 3 ≥1 𝑝 3 ≥1 𝑞 is defined as ∃ y 1 1 , y 2 1 , y 1 2 , y 2 2 (x 1 = y 1 1 + y 2 1) ∧ (x 2 = y 1 2 + y 2 2) ∧ (y 1 1 ≥ 1) ∧ (y 2 2 ≥ 1). Obviously, [𝜑 1 , 𝜑 2] PA (x 1 , x 2) is arithmetically equivalent to (x 1 ≥ 1) ∧ (x 2 ≥ 1) but 3 ≥1 𝑝 3 ≥1 𝑞 3 ≥1 𝑝 ∧ 3 ≥1 𝑞. Indeed, when 𝔐, 𝑤 |= 3 ≥1 𝑝 ∧ 3 ≥1 𝑞 and 𝑤 has a unique child satisfying 𝑝 ∧ 𝑞, 𝔐, 𝑤 ̸ |= 3 ≥1 𝑝 3 ≥1 𝑞. Proof. Let max PC (𝜑 1 ∧ 𝜑 2) = {𝑝 1 , . . . , 𝑝 𝑚 } and {𝜓 1 , . . . ,𝜓 𝑛 } = {𝜓 | 3 ≥𝑘 𝜓 ∈ max GM (𝜑 1 ∧ 𝜑 2)}.
Consider the formula 𝜒 (x 1 , . . . , x 𝑛 , 𝑝 1 , . . . , 𝑝 𝑚), equivalent to [𝜑 1 , 𝜑 2] PA (x 1 , . . . , x 𝑛 , 𝑝 1 , . . . , 𝑝 𝑚), from Lemma 3.5. Let 𝜒 GML be the formula obtained from 𝜒 (x 1 , . . . , x 𝑛 , 𝑝 1 , . . . , 𝑝 𝑚) by replacing every occurrence of x 𝑗 ≥ 𝑘 with 3 ≥𝑘 𝜓 𝑗 , and every occurrence of 𝑝 𝑗 ≥ 1 with 𝑝 𝑗 . The formula 𝜒 GML enjoys the following properties: gr(𝜒 GML) ≤ gr(𝜑 1) + gr(𝜑 2), max PC (𝜒 GML) ⊆ max PC (𝜑 1 ∧ 𝜑 2) and

{𝜓 | 3 ≥𝑘 𝜓 ∈ max GM (𝜒 GML)} ⊆ {𝜓 | 3 ≥𝑘 𝜓 ∈ max GM (𝜑 1 ∧ 𝜑 2)}. As 𝜑 1 ∧ 𝜑 2 is in disjoint form, the last inclusion implies that 𝜒 GML is in disjoint form.
To grasp the relationship between 𝜑 𝑖 and its arithmetical counterpart 𝜑 To do so, the main ingredient is to show that given a formula 𝜑 in ML(), we build 𝜑 ′ in GML such that 𝜑 ′ ≡ 𝜑 and the models for 𝜑 ′ (if any) do not require a number of children per node more than exponential in size(𝜑). The proof of Theorem 3.7 needs to be refined to improve the way 𝜑 ′ is computed. In particular, this requires a more "global" strategy that does not require to put subformulae in disjoint form multiple times. Aiming for an inductive argument on the line of Lemmata 3.2 and 3.3, we first consider the logic L, which is a variant of ML() given by the grammar below:

𝜑 := 3 ≥𝑘 𝜓 | 𝑝 | 𝜑 𝜑 | 𝜑 ∧ 𝜑 | ¬𝜑,
where 𝑝 ∈ AP and 3 ≥𝑘 𝜓 is a formula in GML (abusively assumed to be in ML() but we know GML ⪯ ML()). Given 𝜑 in ML() or in L, we write cd(𝜑) to denote its composition degree, i.e. the number of appearing in 𝜑. We extend the notion of max GM (.) to formulae in L, so that max GM (𝜑 Let 𝜓 be the formula obtained from 𝜑 by replacing every occurrence of 𝜑 1 𝜑 2 not appearing under the scope of a modality with the equivalent formula 𝜒, for every formula 𝜑 1 𝜑 2 in Φ. The formula 𝜓 satisfies the required properties. Indeed, by definition it is equivalent to 𝜑, and since every 𝜒 is in disjoint form, so is 𝜓 . Clearly, max PC (𝜓) ⊆ max PC (𝜑). Lastly, the satisfaction of max GM (𝜓) ⊆ {3 ≥ 𝑗 𝜓 𝑖 | 𝑗 ≤ [0, (cd(𝜑) + 1) • 𝑘] and 𝑖 ∈ [1, 𝑛]} stems from the fact that all the formulae 𝜒 equivalent to some formula in Φ satisfy this same property. □

) def = max GM (𝜑 [← ∧]),
Applying adequately the transformation from Lemma 3.8 to a formula in ML(), i.e. by considering maximal subformulae of the fragment L, allows us to get a logically equivalent GML formula having exponential size models by Lemma 3.4. We extend the notion of branching degree to formulae in L, so that bd(𝑚, 𝜑) def = bd(𝑚, 𝜑 [← ∧]). Lemma 3.9. Every satisfiable 𝜑 in ML() is satisfied by a pointed forest of size in 2 𝑂 (size(𝜑)) .

Proof. Let 𝜑 be a formula in ML(). During the proof, we see 3 as 3 ≥1 and assume that every subformula of 𝜑 without occurrences of the graded modalities is a Boolean combination of atomic propositions. This assumption is without loss of generality. Indeed, a formula 𝜓 of ML() without graded modalities (thus without 3) is a formula built upon Boolean connectives, the composition operator and atomic propositions, and is thus equivalent to 𝜓 [← ∧].

Let 𝑚 = md(𝜑), 𝑘 = gr(𝜑), 𝑐 = cd(𝜑) and 𝑛 = max{|gm(𝑗, 𝜑)| | 𝑗 ∈ [0, md(𝜑)]}. We reason inductively, building a chain of equivalent formulae 𝜑 0 , . . . , 𝜑 𝑚 where 𝜑 0 = 𝜑 and, for 𝑖 ∈ [0, 𝑚],

(1) md(𝜑 𝑖) ≤ 𝑚, cd(𝜑 𝑖) ≤ 𝑐, all the atomic propositions in 𝜑 𝑖 are from 𝜑, and all subformulae of 𝜑 𝑖 appearing under the scope of 𝑚 -𝑖 graded modalities belong to GML, (2) for all 𝑗 ∈ [0, 𝑖] and 3 ≥𝑘 𝜓, 3 ≥𝑘 ′ 𝜓 ′ ∈ gm(𝑚 -𝑗, 𝜑 𝑖), either 𝜓 ≡ 𝜓 ′ or the formula 𝜓 ∧ 𝜓 ′ is unsatisfiable (equivalently, the conjunction of all formulae in gm(𝑚 -𝑖, 𝜑 𝑖) is in disjoint form), [START_REF] Aucher | Global and Local Graph Modifiers[END_REF]

for all 𝑗 ∈ [𝑖 + 1, 𝑚], |gm(𝑚 -𝑗, 𝜑 𝑖)| ≤ |gm(𝑚 -𝑗, 𝜑)| and bd(𝑚 -𝑗, 𝜑 𝑖) ≤ bd(𝑚 -𝑗, 𝜑), (4) for every 𝑗 ∈ [0, 𝑖], |gm(𝑚 -𝑗, 𝜑 𝑖)| ≤ 2 𝑛 • ((𝑐 + 1) • 𝑘 + 1) and bd(𝑚 -𝑗, 𝜑 𝑖) ≤ 2 𝑛 • ((𝑐 + 1) • 𝑘) 2 .
Properties (1) and (2) above guarantee that each step on the chain of equivalences are in the proper shape, i.e., without violating any syntactic condition. On the other hand, properties (3) and (4) ensure that on each step the bounds in the formula obtained grow in a way that lead us to the lemma's statement, via the application of Lemma 3.4.

Precisely, the numbers 𝑚, 𝑘, 𝑐 and 𝑛 are all bounded by size(𝜑) (recall that we consider the numbers appearing in graded modalities to be encoded in unary). Based on the properties above, the formula 𝜑 𝑚 that we obtain at the end is a GML formula in disjoint form such that max bd (𝜑 𝑚) ≤ 2 size(𝜑) • ((size(𝜑) + 1) • size(𝜑)) 2 , md(𝜑 𝑚) ≤ size(𝜑), and therefore max bd (𝜑 𝑚) is in 2 𝑂 (size(𝜑)) . As 𝜑 ≡ 𝜑 𝑚 , the fact that 𝜑 is satisfied by a pointed forest of size in 2 𝑂 (size(𝜑)) then follows directly from Lemma 3.4. Moreover, since GML is a fragment of ML(), the construction of 𝜑 𝑚 actually reproves Lemma 3.3, but this time with precise bounds on the size of the equivalent GML formula in disjoint form.

Clearly, for 𝑖 = 0, the formula 𝜑 0 = 𝜑 satisfies all the expected properties (note that gm(𝑚, 𝜑) = ∅ and that bd(𝜑) ≤ size(𝜑)). So, below suppose 𝑖 ≥ 1 and assume that we are provided with the formula 𝜑 𝑖 -1 ≡ 𝜑, satisfying (1 𝑖 -1) md(𝜑 𝑖 -1) ≤ 𝑚, cd(𝜑 𝑖 -1) ≤ 𝑐, all atomic propositions in 𝜑 𝑖 -1 are from 𝜑, and all subformulae of 𝜑 𝑖 -1 appearing under the scope of 𝑚 -(𝑖 -1) graded modalities belong to GML, (2 𝑖 -1) for all 𝑗 ∈ [0, 𝑖-1] and 3 ≥𝑘 𝜓, 3 ≥𝑘 ′ 𝜓 ′ ∈ gm(𝑚-𝑗, 𝜑 𝑖 -1), either𝜓 ∧𝜓 ′ is unsatisfiable or𝜓 ≡ 𝜓 ′ , (3 𝑖 -1) for all 𝑗 ∈ [𝑖, 𝑚], |gm(𝑚 -𝑗, 𝜑 𝑖 -1)| ≤ |gm(𝑚 -𝑗, 𝜑)| and bd(𝑚 -𝑗, 𝜑 𝑖 -1) ≤ bd(𝑚 -𝑗, 𝜑),

(4 𝑖 -1) for every 𝑗 ∈ [0, 𝑖-1], |gm(𝑚-𝑗, 𝜑 𝑖 -1)| ≤ 2 𝑛 •((𝑐+1)•𝑘 +1) and bd(𝑚-𝑗, 𝜑 𝑖 -1) ≤ 2 𝑛 •((𝑐+1)•𝑘) 2 .
Let us explain how we define 𝜑 𝑖 . Consider the set Φ = {𝜒 1 , . . . , 𝜒 𝑝 } of maximal subformulae of 𝜑 𝑖 -1 appearing under the scope of exactly 𝑚 -𝑖 graded modalities. Note that if 𝑚 -𝑖 = 0 then Φ = {𝜑 𝑖 -1 }, and otherwise we have gm(𝑚 -(𝑖 + 1), 𝜑 𝑖 -1) = {3 ≥ 𝑗 1 𝜒 1 , . . . , 3 ≥ 𝑗 𝑝 𝜒 𝑝 }. From the property (1 𝑖 -1), all the formulae in Φ belong to the fragment L of ML(). Notice that max GM (𝜒

1 ∧ • • • ∧ 𝜒 𝑝) = gm(𝑚 -𝑖, 𝜑 𝑖 -1). Let gm(𝑚 -𝑖, 𝜑 𝑖 -1) = {3 ≥𝑘 1 𝜓 1 , . . . , 3 ≥𝑘 𝑛 𝜓 𝑛 }. From property (2 𝑖 -1), 𝜓 1 ∧ • • • ∧ 𝜓 𝑛 is in disjoint form. From property (3 𝑖 -1), 𝑛 ≤ |gm(𝑚 -𝑖, 𝜑)| ≤ 𝑛 and bd(𝑚 -𝑖, 𝜑 𝑖 -1) ≤ bd(𝑚 -𝑖, 𝜑). Let us consider each 3 ≥𝑘 𝑗 𝜓 𝑗 separately. Let 𝑗 ∈ [1, 𝑛]. Since 𝜓 1 ∧ • • • ∧ 𝜓 𝑛 is in disjoint form,
) = max GM (𝜒 ′′ 1 ∧ • • • ∧ 𝜒 ′′ 𝑝) ⊆ {3 ≥ 𝑗 𝛾 | 𝑗 ∈ [0, (𝑐 + 1) • 𝑘] and 𝛾 ∈ C ∧ (𝜓 1 , . . . ,𝜓 𝑛)}. (†) As 𝜓 1 ∧• • •∧𝜓 𝑛 is in disjoint form, (†) implies that 𝜒 ′′ 1 ∧• • •∧ 𝜒 ′′ 𝑝 is in disjoint form.
Hence, property (2) holds. Lastly, let us look at property [START_REF] Aucher | Modal logics of sabotage revisited[END_REF]. From (†), together with property (4 𝑖 -1), we conclude that for every 𝑗 ∈ [0, 𝑖 -1], |gm(𝑚 -𝑗, 𝜑 𝑖 -1)| ≤ 2 𝑛 • ((𝑐 + 1) • 𝑘 + 1) and bd(𝑚 -𝑗, 𝜑 𝑖 -1) ≤ 2 𝑛 • ((𝑐 + 1) • 𝑘) 2 . So, to establish (4), it is sufficient to treat the case 𝑗 = 𝑖. Again by (†),

|gm(𝑚 -𝑖, 𝜑 𝑖)| ≤ |C ∧ (𝜓 1 , . . . ,𝜓 𝑛)| • ((𝑐 + 1) • 𝑘 + 1) ≤ 2 𝑛 • ((𝑐 + 1) • 𝑘 + 1) bd(𝑚 -𝑖, 𝜑 𝑖) ≤ |C ∧ (𝜓 1 , . . . ,𝜓 𝑛)| • (𝑐+1) •𝑘 𝑗=0 𝑗 ≤ 2 𝑛 • ((𝑐 + 1) • 𝑘) 2 .
□

The exponential-size model property derived in Lemma 3.9 directly leads to an AExp Pol upper bound for Sat(ML()). The proof of the theorem is rather standard and sketched below. Theorem 3.10. Sat(ML()) is in AExp Pol .

Proof. (sketch) Let 𝜑 be in ML(). Here we present an algorithm running in exponential-time on size(𝜑) with an alternating Turing machine using only polynomially many alternations to decide the satisfiability status of 𝜑.

(1) Guess a pointed forest 𝔐 = (𝑊 , 𝑅, 𝑉) with root 𝑤 ∈ 𝑊 , whose depth is bounded by md(𝜑) and of exponential size thanks to Lemma 3.9. (2) Return the result of checking 𝔐, 𝑤 |= 𝜑. This can be done in exponential-time using an alternating Turing machine with a linear amount of alternations (between universal states and existential states). To do so, one can use a standard model-checking algorithm by viewing ML() as a fragment of MSO. Recall that the standard model-checking algorithm for MSO runs in alternating polynomial time in the size of the structure (which, in our case, has size exponential in size(𝜑)), and uses a number of alternations that is linear in the number of negations appearing in 𝜑. □

It remains to establish AExp Pol -hardness. We provide a logspace reduction from the satisfiability problem for the team logic PL [~] shown AExp Pol -complete in [START_REF] Hannula | Complexity of Propositional Logics in Team Semantic[END_REF]Thm. 4.9].

PL [~] formulae are defined by the following grammar: in 𝔗 and the propositional valuations of the children of 𝑤. This would work fine if there were no mismatch between the semantics for (disjointness of the children) and the one for ∨ (disjointness not required). To handle this issue, when checking the satisfaction of 𝜑 in PL [~] with 𝑛 occurrences of ∨, we impose that if a propositional valuation occurs among the children of 𝑤, then it occurs in least 𝑛 + 1 children. This property must be maintained after applying ∨ several times, always with respect to the number of occurrences of ∨ in the subformula of 𝜑 that is evaluated. Non-disjointness of the teams is encoded by carefully separating the children of 𝑤 having identical valuations.

𝜑 := 𝑝 | ¬𝑝 | 𝜑 ∧ 𝜑 | ~𝜑 | 𝜑
We now formalise the reduction. Assume that we wish to translate 𝜑 from PL[~], written with atomic propositions in P = {𝑝 1 , . . . , 𝑝 𝑚 } and containing at most 𝑛 occurrences of the operator ∨. We introduce a set Q = {𝑞 1 , . . . , 𝑞 𝑛+1 } of auxiliary propositions disjoint from P. The elements of Q are used to distinguish different copies of the same propositional valuation of a team. Thus, with respect to a pointed forest (𝔐, 𝑤), we require each child of 𝑤 to satisfy exactly one element of Q. This can be done with the formula

uni(Q) def = 2 𝑛+1 𝑖=1 𝑞 𝑖 ∧ 𝑖 -1 𝑗=1 ¬𝑞 𝑗 ∧ 𝑛+1 𝑗=𝑖+1 ¬𝑞 𝑗 .
We require that if a child of 𝑤 satisfies a propositional valuation over (elements in) P, then there are 𝑛 + 1 children satisfying that valuation over P, each of them satisfying a distinct symbol in Q. So, every valuation over P occurring in some child of 𝑤, occurs at least in 𝑛 + 1 children of 𝑤. However, as the translation of the operator ∨ modifies the set of copies of a propositional valuation, this property must be extended to arbitrary subsets of Q. Given ∅ ≠ 𝑋 ⊆ [1, 𝑛 + 1], we require that for all 𝑘 ≠ 𝑘 ′ ∈ 𝑋 , if a children of 𝑤 satisfies 𝑞 𝑘 , then there is a child satisfying 𝑞 𝑘 ′ with the same valuation over P. The formula cp(𝑋) below does the job:

cp(𝑋) def = 𝑘≠𝑘 ′ ∈𝑋 ¬ 2𝑞 𝑘 (3 =1 𝑞 𝑘 ∧ ¬(⊤ 3 =1 𝑞 𝑘 ∧ 3 =1 𝑞 𝑘 ′ ∧ 𝑚 𝑗=1 (3𝑝 𝑗 ⇒ 2𝑝 𝑗))) .
Lastly, before defining the translation map 𝜏, we describe how different copies of the same propositional valuation are split. We introduce two auxiliary choice functions 𝔠 1 and 𝔠 2 that take as arguments 𝑋 ⊆ [1, 𝑛 + 1], and

𝑛 1 , 𝑛 2 ∈ N with |𝑋 | ≥ 𝑛 1 + 𝑛 2 such that for each 𝑖 ∈ {1, 2}, we have 𝔠 𝑖 (𝑋, 𝑛 1 , 𝑛 2) ⊆ 𝑋 , |𝔠 𝑖 (𝑋, 𝑛 1 , 𝑛 2)| ≥ 𝑛 𝑖 . Moreover 𝔠 1 (𝑋, 𝑛 1 , 𝑛 2) ⊎ 𝔠 2 (𝑋, 𝑛 1 , 𝑛 2) = 𝑋 .
The maps 𝔠 1 and 𝔠 2 are instrumental to decide how to split 𝑋 into two disjoint subsets respecting basic cardinality constraints. The translation map 𝜏 is designed as follows

(∅ ≠ 𝑋 ⊆ [1, 𝑛 + 1]): 𝜏 (𝑝, 𝑋) def = 2((𝑗 ∈𝑋 𝑞 𝑗) ⇒ 𝑝); 𝜏 (¬𝑝, 𝑋) def = 2((𝑗 ∈𝑋 𝑞 𝑗) ⇒ ¬𝑝); 𝜏 (~𝜑, 𝑋) def = ¬𝜏 (𝜑, 𝑋); 𝜏 (𝜑 1 ∧ 𝜑 2 , 𝑋) def = 𝜏 (𝜑 1 , 𝑋) ∧ 𝜏 (𝜑 2 , 𝑋); 𝜏 (𝜑 1 ∨𝜑 2 , 𝑋) def = (𝜏 (𝜑 1 , 𝑋 1) ∧ cp(𝑋 1)) (𝜏 (𝜑 2 , 𝑋 2) ∧ cp(𝑋 2)), where (i) |𝑋 | is greater or equal to the number of occurrences of ∨ in 𝜑 1 ∨𝜑 2 plus one; (ii) given 𝑛 1 , 𝑛 2 such that 𝑛 1 (resp. 𝑛 2) is the number of occurrences of ∨ in 𝜑 1 (resp. 𝜑 2) plus one, for each 𝑖 ∈ {1, 2}, we have 𝔠 𝑖 (𝑋, 𝑛 1 , 𝑛 2) = 𝑋 𝑖 .
Lemma 3.11 below guarantees that starting with a linear number of children with the same propositional valuation is sufficient to encode ∨ within ML(), hence solving the mismatch between the two operators ∨ and . Lemma 3.11. Let 𝜑 be in PL [~] with 𝑛 occurrences of ∨ and built upon 𝑝 1 , . . ., 𝑝 𝑚 . Then, 𝜑 is satisfiable if and only if so is uni(𝑞

1 , . . . , 𝑞 𝑛+1) ∧ cp([1, 𝑛 + 1]) ∧ 𝜏 (𝜑, [1, 𝑛 + 1]).
The proof of Lemma 3.11 can be found in Appendix C. The ML() formula involved in Lemma 3.11 has modal depth one and can be computed in logspace in the size of 𝜑. Hence, Sat(ML()) is already AExp Pol -hard when restricted to formulae of modal depth at most one. Together with Theorem 3.10, this concludes the complexity analysis of Sat(ML()). Theorem 3.12. Sat(ML()) is AExp Pol -complete.

As we show in the next section, the complexity of ML(*) does not collapse to modal depth one: Sat(ML(*)) restricted to formulae of modal depth 𝑘 is exponentially easier than Sat(ML(*)) restricted to formulae of modal depth 𝑘 + 1.

ML(*) IS TOWER-COMPLETE

This section is devoted to show that Sat(ML(*)) is Tower-complete; i.e., it is complete for the class of all problems of time complexity bounded by a tower of exponentials whose height is an elementary function [START_REF] Schmitz | Complexity Hierarchies beyond Elementary[END_REF]. Given 𝑘, 𝑛 ≥ 0, we inductively define the tetration function 𝔱 as 𝔱(0, 𝑛) def = 𝑛 and 𝔱(𝑘 + 1, 𝑛) = 2 𝔱 (𝑘,𝑛) . Intuitively, 𝔱(𝑘, 𝑛) defines a tower of exponentials of height 𝑘. By 𝑘-NExpTime, we denote the class of all problems decidable with a nondeterministic Turing machine (NTM) of working time 𝑂 (𝔱(𝑘, 𝑝 (𝑛))) for some polynomial 𝑝 (.), on each input of length 𝑛. To show Towerhardness, we design a uniform elementary reduction allowing us to get 𝑘-NExpTime-hardness for all 𝑘 greater than a certain (fixed) integer. In our case, we achieve an exponential-space reduction from the 𝑘-NExpTime variant of the tiling problem, for all 𝑘 ≥ 2.

The tiling problem Tile 𝑘 takes as input a triple T T = (T , H, V) where T is a finite set of tile types and H ⊆ T × T (resp. V ⊆ T × T) represents the horizontal (resp. vertical) matching relation, and an initial tile type c ∈ T . A solution for the instance (T T , 𝑐) of the problem Tile 𝑘 is a mapping 𝜏 : [0, 𝔱(𝑘, 𝑛) -1] × [0, 𝔱(𝑘, 𝑛) -1] → T such that (first) 𝜏 (0, 0) = c, and (hor&vert) for all 𝑖 ∈ [0, 𝔱(𝑘, 𝑛) -1] and 𝑗 ∈ [0, 𝔱(𝑘, 𝑛) -2],

(𝜏 (𝑗, 𝑖), 𝜏 (𝑗 + 1, 𝑖)) ∈ H and (𝜏 (𝑖, 𝑗), 𝜏 (𝑖, 𝑗 + 1)) ∈ V.

The problem of checking whether an instance of Tile 𝑘 has a solution is known to be 𝑘-NExpTimecomplete (see [START_REF] Schwarzentruber | The Complexity of Tiling Problems[END_REF][START_REF] Van Emde | The convenience of tilings[END_REF]). The reduction below from Tile 𝑘 to Sat(ML(*)) recycles ideas from [START_REF] Bednarczyk | Why Propositional Quantification Makes Modal Logics on Trees Robustly Hard?[END_REF], where Tile 𝑘 is reduced to Sat(QK 𝑡) (see also a similar construction in [START_REF] Pratt-Hartmann | The fluted fragment revisited[END_REF]). Actually, in [START_REF] Bednarczyk | Why Propositional Quantification Makes Modal Logics on Trees Robustly Hard?[END_REF] the presentation uses mainly quantified CTL over trees restricted to the next-time modality EX. To provide the adequate adaptation for ML(*), we need to solve two major issues. First, QK 𝑡 admits second-order quantification, whereas in ML(*), the second-order features are limited to the separating conjunction * . Second, the second-order quantification of QK 𝑡 essentially colours the nodes in the tree-like Kripke-style structures without changing the frame (𝑊 , 𝑅). By contrast, the operator * modifies the accessibility relation, possibly making worlds that were reachable from the current world, completely unreachable in submodels. The Tower-hardness proof for Sat(ML(*)) becomes then much more challenging. We would like to characterise the position on the grid encoded by a world 𝑤 by exploiting some properties of its descendants (as done for QK 𝑡). At the same time, we need to be careful and only consider submodels where the world 𝑤 keeps encoding the same position. In a sense, our encoding is robust: when the operator * is used to reason on submodels, we can enforce that no world changes the position of the grid that it encodes.

Principles for enforcing 𝔱(𝑗, 𝑛) children

In what follows, let 𝔐 = (𝑊 , 𝑅, 𝑉) be a finite forest. We consider two disjoint sets of atomic propositions P = {𝑝 1 , . . . , 𝑝 𝑛 , val} and Aux = {x, y, l, s, r} (whose respective role is later defined). Elements from Aux are understood as auxiliary propositions. We call ax-node (resp. Aux-node) a world satisfying the proposition ax ∈ Aux (resp. satisfying some proposition in Aux). We call t-node a world that satisfies the formula t def = ax∈Aux ¬ax. Every world of 𝔐 is either a t-node or an Aux-node. We say that 𝑤 ′ is a t-child of 𝑤 ∈𝑊 if 𝑤 ′ ∈ 𝑅(𝑤) and 𝑤 ′ is a t-node. We define the concepts of Aux-child and ax-child analogously. The set of t-nodes is intended to form a tree with large numbers of children per node and to be well-balanced admitting some regularity properties on its structure. As expected, Aux-nodes are auxiliary nodes for which removing incoming edges simulates propositional quantification.

The key development of our reduction is given by the definition of a formula, of exponential size in 𝑗 ≥ 1 and polynomial size in 𝑛 ≥ 1, that when satisfied by (𝔐, 𝑤) forces every t-node in 𝑅 𝑖 (𝑤), where 0 ≤ 𝑖 < 𝑗, to have exactly 𝔱(𝑗 -𝑖, 𝑛) t-children, each of them encoding a different number in [0, 𝔱(𝑗 -𝑖, 𝑛) -1]. As we impose that 𝑤 is a t-node, it must have 𝔱(𝑗, 𝑛) t-children. We assume 𝑛 to be fixed throughout the section and denote this formula by type(𝑗). From the property above, if 𝔐, 𝑤 |= type(𝑗) then for all 𝑖 ∈ [1, 𝑗-1] and all t-nodes 𝑤 ′ ∈ 𝑅 𝑖 (𝑤) we have 𝔐, 𝑤 ′ |= type(𝑗-𝑖).

First, let us informally describe how numbers are encoded in the model (𝔐, 𝑤) satisfying type(𝑗). Let 𝑖 ∈ [1, 𝑗]. Given a t-node 𝑤 ′ ∈ 𝑅 𝑖 (𝑤), 𝐧 𝑖 (𝑤 ′) denotes the number encoded by 𝑤 ′ . We omit the subscript 𝑖 when it is clear from the context. When 𝑖 = 𝑗, we represent 𝐧(𝑤 ′) by using the truth values of the atomic propositions 𝑝 1 , . . . , 𝑝 𝑛 . The proposition 𝑝 𝑏 is responsible for the 𝑏-th bit of the number, with the least significant bit being encoded by 𝑝 1 . For example, for 𝑛 = 3, we have 𝔐, 𝑤 ′ |= 𝑝 3 ∧ 𝑝 2 ∧ ¬𝑝 1 whenever 𝐧(𝑤 ′) = 6 (in binary, 110). The formula type(1) forces the parent of 𝑤 ′ (i.e. is a t-node in 𝑅 𝑗 -1 (𝑤)) to have exactly 2 𝑛 t-children by requiring one t-child for each possible valuation upon 𝑝 1 , . . . , 𝑝 𝑛 . Otherwise, for 𝑖 < 𝑗 (and therefore 𝑗 ≥ 2), the number 𝐧 𝑖 (𝑤 ′) is represented by the binary encoding of the truth values of val on the t-children of 𝑤 ′ which, since (𝔐, 𝑤 ′) |= type(𝑗 -𝑖), are 𝔱(𝑗 -𝑖, 𝑛) children implicitly ordered by the number they, in turn, encode. The essential property of type(𝑗) is therefore the following: the numbers encoded by the t-children of a t-node 𝑤 ′′ ∈ 𝑅 𝑖 (𝑤), represent positions in the binary representation of the number 𝐧 𝑖 (𝑤 ′′). Thanks to this property, the formula type(𝑗) forces 𝑤 to have exactly 𝔱(𝑗, 𝑛) children, all encoding different numbers in [0, 𝔱(𝑗, 𝑛) -1]. This is roughly represented in Figure 1, where "1" stands for val being true whereas "0" stands for val being false. To characterise these trees in ML(*), we simulate second-order quantification by using Aux-nodes. Informally, we require a pointed forest (𝔐, 𝑤) satisfying type(𝑗) to be such that (i) every t-node 𝑤 ′ ∈ 𝑅(𝑤) has exactly one x-child, and one (different) y-child. These nodes do not satisfy any other auxiliary proposition; (ii) for every 𝑖 ≥ 2, every t-node 𝑤 ′ ∈ 𝑅 𝑖 (𝑤) has exactly five Aux-children, one for each ax ∈ Aux.

We can simulate second-order existential quantification on t-nodes with respect to the symbol ax ∈ Aux by using the operator * in order to remove edges leading to ax-nodes. Then, we evaluate whether a property holds on the resulting model where a t-node "satisfies" ax ∈ Aux if it has a child satisfying ax. To better emphasise the need to move along t-nodes, given a formula 𝜑, we write ⟨t⟩𝜑 for the formula 3(t ∧ 𝜑). This formula is a relativised version of 3 that only considers t-nodes. Dually, [t]𝜑 def = 2(t ⇒ 𝜑). ⟨t⟩ 𝑖 and [t] 𝑖 are also defined as expected.

Let us start to formalise this encoding. Let 𝑗 ≥ 1. First, we restrict ourselves to models where every t-node reachable in at most 𝑗 steps does not have two Aux-children satisfying the same proposition. Moreover, these Aux-nodes have no children and only satisfy exactly one ax ∈ Aux. We express this condition with the formula init(𝑗) below:

init(𝑗) def = ⊞ 𝑗 ax∈Aux t ⇒ ¬(3ax * 3ax) ∧ 2 ax ⇒ 2⊥ ∧ bx∈Aux\{ax} ¬bx , where ⊞ 0 𝜑 def = 𝜑 and ⊞ 𝑚+1 𝜑 def = 𝜑 ∧ 2 ⊞ 𝑚 (𝜑).
In the following statements and proofs, let 𝔐 = (𝑊 , 𝑅, 𝑉) be a finite forest, 𝑤 ∈ 𝑊 and 𝑗 ≥ 1.

Lemma

′ ⊑ 𝔐, 𝔐 ′ , 𝑤 |= init(𝑗).
Proof. The proof is straightforward (and hence here only sketched). Indeed, the statement "for every 0 ≤ 𝑖 ≤ 𝑗, every 𝑤 ′ ∈ 𝑅 𝑖 (𝑤) and every ax ∈ Aux" is captured by the prefix ⊞ 𝑗 ax∈Aux of init(𝑗). Then, (1) corresponds to the conjunct t ⇒ ¬(3ax * 3ax) whereas (2) corresponds to the conjunct 2 ax ⇒ 2⊥ ∧ bx∈Aux\{ax} ¬bx . □ Among the models ((𝑊 , 𝑅, 𝑉), 𝑤) satisfying init(𝑗), we define the ones satisfying type(𝑗) described below (see similar conditions in [7, Section IV]): (sub 𝑗) every t-node in 𝑅(𝑤) satisfies type(𝑗 -1); (zero 𝑗) there is a t-node w ∈ 𝑅(𝑤) such that 𝐧(w) = 0;

(uniq 𝑗) distinct t-nodes in 𝑅(𝑤) encode different numbers; (compl 𝑗) for every t-node 𝑤 1 ∈ 𝑅(𝑤) with 𝐧(𝑤 1) < 𝔱(𝑗, 𝑛) -1, there is a t-node 𝑤 2 ∈ 𝑅(𝑤) such that 𝐧(𝑤 2) = 𝐧(𝑤 1) + 1;
(aux) 𝑤 is a t-node, every t-node in 𝑅(𝑤) has one x-child and one y-child, and every t-node in 𝑅 2 (𝑤) has three children satisfying l, r and s, respectively. We define type(0) def = ⊤, and for 𝑗 ≥ 1, type(𝑗) is defined as

type(𝑗) def = sub(𝑗) ∧ zero(𝑗) ∧ uniq(𝑗) ∧ compl(𝑗) ∧ aux,
where each conjunct expresses its homonymous property. The formulae sub(𝑗), aux and zero(𝑗) are defined as sub(𝑗) def = [t]type(𝑗 -1);

aux def = t ∧ [t] (3x * 3y) ∧ [t] 2 (3l * 3s * 3r); zero(1) def = ⟨t⟩ 𝑏 ∈ [1,𝑛] ¬𝑝 𝑏 ; zero(𝑗 + 1) def = ⟨t⟩ [t]¬val.
The challenge is therefore how to express uniq(𝑗) and compl(𝑗), in order to guarantee that the numbers encoded by the children of 𝑤 span all over [0, 𝔱(𝑗, 𝑛) -1]. The structural properties expressed by type(𝑗) lead to strong constraints, which permits to control the effects of the separating conjunction * when submodels are built. This is a key point in designing type(𝑗) as it helps us to control which edges are lost when taking a submodel.

Nominals, forks and number comparisons

In order to define uniq(𝑗) and compl(𝑗) (completing the definition of type(𝑗)), we introduce auxiliary formulae, characterising classes of models that emerge naturally when trying to capture the semantics of (uniq 𝑗) and (compl 𝑗).

Let us consider a finite forest 𝔐 = (𝑊 , 𝑅, 𝑉) and 𝑤 ∈ 𝑊 . A first ingredient is given by the concept of local nominals, borrowed from [START_REF] Bednarczyk | Why Propositional Quantification Makes Modal Logics on Trees Robustly Hard?[END_REF]. We say that ax ∈ Aux is a (local) nominal for the depth 𝑖 ≥ 1 if there is exactly one t-node 𝑤 ′ ∈ 𝑅 𝑖 (𝑤) having an ax-child. In this case, 𝑤 ′ is said to be the world that corresponds to the local nominal ax. The following formula states that ax is a local nominal for the depth 𝑖:

nom 𝑖 (ax) def = ⟨t⟩ 𝑖 3ax ∧ 𝑖 -1 𝑘=0 [t] 𝑘 ¬ ⟨t⟩ 𝑖 -𝑘 3ax * ⟨t⟩ 𝑖 -𝑘 3ax . Lemma 4.2. Let ax ∈ Aux and 0 < 𝑖 ≤ 𝑗 ∈ N. Suppose 𝔐, 𝑤 |= init(𝑗). Then, 𝔐, 𝑤 |= nom 𝑖 (ax) if and only if ax is a local nominal for the depth 𝑖.
The proof is direct by applying the semantics of the formula nom 𝑖 (ax), and is given in Appendix D. We define the formula: @ 𝑖 ax 𝜑 def = ⟨t⟩ 𝑖 (3ax ∧ 𝜑), which, under the hypothesis that ax is a local nominal for the depth 𝑖, states that 𝜑 holds on the t-node that corresponds to ax.

Lemma 4.3. Let ax ∈ Aux and 0 < 𝑖 ≤ 𝑗 ∈ N. Suppose 𝔐, 𝑤 |= init(𝑗) ∧ nom 𝑖 (ax). Then, 𝔐, 𝑤 |= @ 𝑖 ax 𝜑 iff 𝔐, 𝑤 ′ |= 𝜑,
where 𝑤 ′ is the world corresponding to the nominal ax for the depth 𝑖. Proof. Both directions are straightforward. As we are working under the hypothesis that 𝔐, 𝑤 |= init(𝑗) ∧ nom 𝑖 (ax), by Lemma 4.2, ax is a nominal for the depth 𝑖. In the following, let 𝑤 ′ be the world in 𝑅 𝑖 (𝑤) corresponding to the nominal ax (i.e. 𝑤 ′ has an ax-child).

(⇒): Suppose 𝔐, 𝑤 |= @ 𝑖 ax 𝜑. By definition, there is 𝑤 ′′ ∈ 𝑅 𝑖 (𝑤) such that 𝔐, 𝑤 ′′ |= 3ax ∧ 𝜑. Since ax is a nominal for the depth 𝑖, we conclude that 𝑤 ′ = 𝑤 ′′ and hence 𝔐, 𝑤 ′′ |= 𝜑.

(⇐): Suppose that 𝑤 ′ is such that 𝔐, 𝑤 ′ |= 𝜑. By definition, 𝑤 ′ is the world corresponding to the nominal ax (for the depth 𝑖). Hence 𝔐, 𝑤 ′ |= 3ax. Since 𝑤 ′ ∈ 𝑅 𝑖 (𝑤), by 𝔐, 𝑤 |= init(𝑗) we conclude that there is a path of t-nodes from 𝑤 to 𝑤 ′ , of length 𝑖. Thus, 𝔐, 𝑤 |= ⟨t⟩ 𝑖 (3ax ∧ 𝜑). □ Moreover, we define nom 𝑖 (ax ≠ bx) def = nom 𝑖 (ax) ∧ nom 𝑖 (bx) ∧ ¬@ 𝑖 ax 3bx, which states that ax and bx are two nominals for the depth 𝑖 with respect to two distinct t-nodes. As a second ingredient, we introduce the notion of fork that is a specific type of models naturally emerging when trying to compare the numbers 𝐧(𝑤 1) and 𝐧(𝑤 2) of two worlds 𝑤 1 , 𝑤 2 ∈ 𝑅 𝑖 (𝑤) (e.g. when checking whether 𝐧(𝑤 1) = 𝐧(𝑤 2) or 𝐧(𝑤 2) = 𝐧(𝑤 1) + 1 holds). Given 𝑗 ≥ 𝑖 ≥ 1 we introduce the formula fork 𝑖 𝑗 (ax, bx) that is satisfied by (𝔐, 𝑤) if and only if: • ax and bx are nominals for the depth 𝑖.

• 𝑤 has exactly two t-children, say 𝑤 𝑈 and 𝑤 𝐷 .

• For every 𝑘 ∈ [1, 𝑖 -1], both 𝑅 𝑘 (𝑤 𝑈) and 𝑅 𝑘 (𝑤 𝐷) contain exactly one t-child. • The only t-node in 𝑅 𝑖 -1 (𝑤 𝑈), say 𝑤 ax , corresponds to the nominal ax. The only t-node in 𝑅 𝑖 -1 (𝑤 𝐷), say 𝑤 bx , corresponds to the nominal bx.

• If 𝑖 < 𝑗, then (𝔐, 𝑤 ax) and (𝔐, 𝑤 bx) satisfy type lsr (𝑗 -𝑖) def = type(𝑗 -𝑖) ∧ [t] (3l ∧ 3s ∧ 3r).
It should be noted that, whenever (𝔐, 𝑤) satisfies the formula fork 𝑖 𝑗 (ax, bx), we witness two paths of length 𝑖, both starting at 𝑤 and leading to 𝑤 ax and 𝑤 bx , respectively. Worlds in this path may have Aux-children. Figure 2 schematises a model satisfying fork 𝑖 𝑗 (ax, bx). Since the definition of fork 𝑖 𝑗 (ax, bx) is recursive on 𝑖 and 𝑗 (due to type(𝑗 -𝑖)), we postpone its formal definition to the next two sections where we treat the base cases for 𝑖 = 𝑗 and the inductive case for 𝑗 > 𝑖 separately.

The last auxiliary formulae are [ax < bx] 𝑖 𝑗 and [bx = ax+1] 𝑗 . Under the hypothesis that (𝔐, 𝑤) satisfies fork 𝑖 𝑗 (ax, bx), the formula [ax < bx] 𝑖 𝑗 is satisfied whenever the two (distinct) worlds 𝑤 ax , 𝑤 bx ∈ 𝑅 𝑖 (𝑤) corresponding to the nominals ax and bx are such that 𝐧(𝑤 ax) < 𝐧(𝑤 bx). Similarly, under the hypothesis that (𝔐, 𝑤) satisfies fork 1 𝑗 (ax, bx), the formula [bx = ax+1] 𝑗 is satisfied whenever 𝐧(𝑤 bx) = 𝐧(𝑤 ax) + 1 holds. Both formulae are recursively defined, with base cases for 𝑖 = 𝑗 and 𝑗 = 1, respectively.

For the base case, we define the formulae fork 𝑗 𝑗 (ax, bx) and [ax < bx] 𝑗 𝑗 (for arbitrary 𝑗), as well as [bx = ax+1] 1 . From these formulae, we are then able to define uniq(1) and compl(1), which completes the characterisation of type(1) and type lsr [START_REF] Areces | Moving Arrows and Four Model Checking Results[END_REF]. Afterwards, we consider the case 1 ≤ 𝑖 < 𝑗 and 𝑗 ≥ 2, and define fork 𝑖 𝑗 (ax, bx), [ax < bx] 𝑖 𝑗 , [bx = ax+1] 𝑗 , as well as uniq(𝑗) and compl(𝑗), by only relying on formulae that are already defined (by inductive reasoning).

Formal semantics of the inductively defined formulae used for type(𝑗)

Let us summarise the expected semantics of the formulae introduced to define type(𝑗), and whose definition is inductive. Let 𝔐 = (𝑊 , 𝑅, 𝑉) be a finite forest, 𝑤 ∈ 𝑊 , 1 ≤ 𝑖 ≤ 𝑗 and ax ≠ bx ∈ Aux.) and (aux). The formulae sub(𝑗), aux and zero(𝑗) (𝑗 ≥ 1) are also required in order to define correctly type(𝑗). However their definition and proof of correctness are straightforward. Hence we omit the proofs, and simply state the expected semantics of these formulae. It should be noted that a formal proof of zero(𝑗) relies on type(𝑗 -1), which (as we will see multiple times in the next sections), we can assume to be correctly defined by inductive hypothesis (on 𝑗). Lemma 4.5. Let 𝑗 ≥ 1. Let 𝔐 = (𝑊 , 𝑅, 𝑉) be a finite forest and 𝑤 ∈ 𝑊 .

• 𝔐, 𝔴 |= sub(𝑗) iff (𝔐, 𝑤) satisfies (sub 𝑗), i.e. every t-node in 𝑅(𝑤) satisfies type(𝑗 -1).

• 𝔐, 𝔴 |= aux iff (𝔐, 𝑤) satisfies (aux), i.e. 𝑤 is a t-node, every t-node in 𝑅(𝑤) has one x-child and one y-child, and every t-node in 𝑅 2 (𝑤) has three children satisfying l, r and s, respectively.

• Suppose 𝔐, 𝔴 |= sub(𝑗). 𝔐, 𝑤 |= zero(𝑗) iff (𝔐, 𝑤) satisfies (zero 𝑗), i.e. there is a t-node w ∈ 𝑅(𝑤) s.t. 𝐧(w) = 0.
We now prove the correctness of the formulae listed before Lemma 4.5, starting from the base case where 𝑗 = 1 or 𝑖 = 𝑗, to then show the proof for 1 ≤ 𝑖 < 𝑗.

Base cases: 𝑖

= 𝑗 or 𝑗 = 1
In what follows, we consider a finite forest 𝔐 = (𝑊 , 𝑅, 𝑉) and a world 𝑤. Following its informal description, we have

fork 𝑗 𝑗 (ax, bx) def = 3 =2 t ∧ [t] ⊞ 𝑗 -2 (t ⇒ 3 =1 t) ∧ nom 𝑗 (ax ≠ bx)
, where ⊞ 𝑗 𝜑 def = ⊤ for 𝑗 < 0. We recall that t and 3 =2 t are defined as t = ax∈Aux ¬ax,

3 =1 t = 3t ∧ ¬(3t * 3t), 3 =2 t = (3t * 3t) ∧ ¬(3t *
[ax < bx] 𝑗 𝑗 def = 𝑛 𝑢=1 @ 𝑗 ax ¬𝑝 𝑢 ∧ @ 𝑗 bx 𝑝 𝑢 ∧ 𝑛 𝑣=𝑢+1 (@ 𝑗 ax 𝑝 𝑣 ⇔ @ 𝑗 bx 𝑝 𝑣) .
The satisfaction of (𝔐, 𝑤) |= fork 𝑗 𝑗 (ax, bx) enforces that the distinct t-nodes 𝑤 ax , 𝑤 bx ∈ 𝑅 𝑗 (𝑤) corresponding to ax and bx satisfy 𝐧(𝑤 ax) < 𝐧(𝑤 bx), which can be shown by using standard properties about bit vectors. Intuitively, the formula states that there is a bit (encoded by 𝑝 𝑢) which is set to 0 in the binary encoding of 𝐧(𝑤 ax) but is set to 1 in the binary encoding of 𝐧(𝑤 bx), whereas every successive bit (encoded by 𝑝 𝑣 with 𝑣 > 𝑢) is set to 1 in 𝐧(𝑤 ax) iff it is set to 1 also in 𝐧(𝑤 bx). (⇐): This direction follows similar arguments (backwards). □

The formula [bx = ax+1] 1 uses similar arithmetical properties. It is defined as

[bx = ax+1] 1 def = 𝑛 𝑢=1 @ 1 ax (¬𝑝 𝑢 ∧ 𝑢 -1 𝑣=1 𝑝 𝑣) ∧ @ 1 bx (𝑝 𝑢 ∧ 𝑢 -1 𝑣=1 ¬𝑝 𝑣) ∧ 𝑛 𝑣=𝑢+1 (@ 1 ax 𝑝 𝑣 ⇔@ 1 bx 𝑝 𝑣) .
Assuming (𝔐, 𝑤) |= fork 1 1 (ax, bx), this formula states that the two distinct t-nodes 𝑤 ax , 𝑤 bx ∈ 𝑅(𝑤) corresponding to ax and bx are such that 𝐧(𝑤 bx) = 𝐧(𝑤 ax) + 1. As done for [ax < bx] 𝑗 𝑗 , this formula states that there must be a bit (encoded by 𝑝 𝑢) which is set to 0 in the binary encoding of 𝐧(𝑤 ax) but is set to 1 in the binary encoding of 𝐧(𝑤 bx); and that every successive bit (encoded by 𝑝 𝑣 with 𝑣 > 𝑢) is set to 1 in 𝐧(𝑤 ax) if and only if it is set to 1 also in 𝐧(𝑤 bx). However, differently from [ax < bx] 𝑗 𝑗 , this formula also requires that every bit before 𝑝 𝑢 (encoded by 𝑝 𝑣 with 𝑣 < 𝑢) is set to 1 in the binary encoding of 𝐧(𝑤 ax) but is set to 0 in the binary encoding of 𝐧(𝑤 bx). (B) for every position 𝑗 > 𝑖, 𝑥 𝑗 = 1 ⇔ 𝑦 𝑗 = 1; (C) for every position 𝑗 < 𝑖, 𝑥 𝑗 = 1 and 𝑦 𝑗 = 0. Notice that (A) and (B) are as in the characterisation of 𝑥 < 𝑦 given in Lemma 4.7. The formula [bx = ax+1] 1 uses exactly this characterisation in order to state that 𝐧(𝑤 bx) = 𝐧(𝑤 ax) + 1.

Since we are working under the hypothesis that 𝔐, 𝑤 |= init(1) ∧ fork 1 1 (ax, bx), there are two distinct worlds 𝑤 ax and 𝑤 bx corresponding to the two nominals ax and bx for the depth 1, respectively. Then, the proof of this lemma follows closely the proof of Lemma 4.7, and enforcing (C) by means of the subformula @ 1 ax (¬𝑝

𝑢 ∧ 𝑣 ∈ [1,𝑢 -1] 𝑝 𝑣) ∧ @ 1 bx (𝑝 𝑢 ∧ 𝑣 ∈ [1,𝑢 -1] ¬𝑝 𝑣). □
To define uniq(1), we first recall that a model satisfying type(1) satisfies the formula aux and hence every t-node in 𝑅(𝑤) has two children, one x-node and one y-node. The idea is to use these two Aux-children and to take advantage of * in order to state that it is not possible to find a submodel of 𝔐 such that 𝑤 has only two distinct children 𝑤 x and 𝑤 y corresponding to the nominals x and y, respectively, and such that 𝐧(𝑤 x) = 𝐧(𝑤 y). In a sense, the operator * simulates a second-order quantification on x and y. Let

[x = y] 1 1 def = ¬([x < y] 1 1 ∨ [y < x] 1 1). The corresponding formula is uniq(1) def = ¬ ⊤ * (fork 1 1 (x, y) ∧ [x = y] 1 1
) . Lemma 4.9. Suppose 𝔐, 𝑤 |= init(1) ∧ aux. Then, 𝔐, 𝑤 |= uniq(1) if and only if (𝔐, 𝑤) satisfies (uniq 1), i.e. distinct t-nodes in 𝑅(𝑤) encode different numbers.

Proof. (⇒): Contrapositively, suppose that there are two distinct t-nodes 𝑤 x and 𝑤 y encoding the same number. Since 𝔐, 𝑤 |= init(1) ∧aux, every world in 𝑅(𝑤) has exactly one child satisfying x and exactly one (different) child satisfying y. Let us then consider the submodel). Then, there is a submodel

𝔐 ′ = (𝑊 , 𝑅 1 , 𝑉) where 𝑅 1 (𝑤) = {𝑤 x , 𝑤 y }, 𝑅 1 (𝑤 x) = {𝑤 1 } and 𝑅 1 (𝑤 y) = {𝑤 2 }, so that 𝑤 1 satisfies x whereas
𝔐 ′ = (𝑊 , 𝑅 1 , 𝑉) of 𝔐 such that 𝔐 ′ , 𝑤 |= fork 1 1 (x, y) ∧ [x = y] 1 1 .
Moreover, since the satisfaction of init(1) is preserved under submodels, we have 𝔐 ′ , 𝑤 |= init(1). We can then apply Lemmata 4.6 and 4.7 in order to conclude that there are two distinct worlds 𝑤 x and 𝑤 y in 𝑅 ′ (𝑤) such that 𝐧(𝑤 x) = 𝐧(𝑤 y). Since the encoding of a number (for 𝑗 = 1) only depends on the satisfaction of the propositional symbols 𝑝 1 , . . . , 𝑝 𝑛 on a certain world, we conclude that the same property holds for 𝔐: the two worlds 𝑤 x and 𝑤 y in 𝑅(𝑤) are such that 𝐧(𝑤 x) = 𝐧(𝑤 y). Therefore, (𝔐, 𝑤) does not satisfy (uniq 1). □

Let us now consider compl(1). As done for uniq(1), we rely on the auxiliary propositions x and y and use the separating conjunction * in order to simulate a second-order quantification. We need to state that it is not possible to find a submodel of 𝔐 that looses x-nodes from 𝑅 2 (𝑤), keeps all y-nodes, and is such that (i) x is a local nominal for the depth 1, corresponding to a world 𝑤 x encoding 𝐧(𝑤 x) < 2 𝑛 -1;

(ii) there is no submodel where 𝑤 has two t-children, 𝑤 x and a second world 𝑤 y , such that 𝑤 y corresponds to the nominal y and 𝐧(𝑤 y) = 𝐧(𝑤 x)+1. Thus, compl(1) is defined as:

compl(1) def = ¬ 2⊥ * [t]3y ∧ @ 1 x ¬1 1 ∧ ¬(⊤ * (fork 1 1 (x, y) ∧ [y = x+1] 1)
) . The subscript "1" in the formula 1 1 refers to the fact that we are treating the base case of compl(𝑗) with 𝑗 = 1. We have 1

1 def = 𝑖 ∈ [1,𝑛] 𝑝 𝑖 , reflecting the encoding of 2 𝑛 -1.
Lemma 4.10. Suppose 𝔐, 𝑤 |= init(1) ∧aux. Then, 𝔐, 𝑤 |= compl(1) iff (𝔐, 𝑤) satisfies (compl 1), i.e. for every t-node 𝑤 1 ∈ 𝑅(𝑤), if 𝐧(𝑤 1) < 2 𝑛 -1 then 𝐧(𝑤 2) = 𝐧(𝑤 1) + 1 for some t-node 𝑤 2 ∈ 𝑅(𝑤).

Proof. (⇒): Suppose 𝔐, 𝑤 |= compl [START_REF] Areces | Moving Arrows and Four Model Checking Results[END_REF]. By definition of |=, this implies that for any

𝔐 ′ = (𝑊 , 𝑅 ′ , 𝑉) submodel of 𝔐 such that 𝑅 ′ (𝑤) = 𝑅(𝑤), if 𝔐 ′ , 𝑤 |= [t]3y ∧ @ 1 x ¬1 1 , then 𝔐 ′ , 𝑤 |= ⊤ * (fork 1 1 (x, y) ∧ [y = x+1] 1)
. Then, let us pick a t-node 𝑤 x ∈ 𝑅 ′ (𝑤) = 𝑅(𝑤) such that 𝐧(𝑤 x) < 2 𝑛 -1. We show that there must be a world 𝑤 y ∈ 𝑅 ′ (𝑤) such that 𝐧(𝑤 y) = 𝐧(𝑤 x) + 1. Let us consider the submodel 𝔐 ′′ = (𝑊 , 𝑅 ′ , 𝑉) of 𝔐 such that for every 𝑤 ∈ 𝑊 , if 𝑤 ≠ 𝑤 x then 𝑅 ′ (𝑤) = 𝑅(𝑤) and otherwise 𝑅 ′ (𝑤 x) = {𝑤 1 } where 𝑤 1 is the only Aux-child of 𝑤 x (w.r.t. 𝑅) satisfying x. Notice that 𝑤 1 exists and it is unique by 𝔐, 𝑤 |= init(1) ∧ aux. Moreover, 𝑤 x corresponds in 𝔐 ′ to the nominal x for the depth 1. Again by 𝔐, 𝑤 |= init(1) ∧ aux, we conclude that 𝔐 ′ , 𝑤 |= [t]3y. Moreover, since 𝐧(𝑤 x) < 2 𝑛 -1, by Lemma 4.3 we have 𝔐 ′ , 𝑤 |= @ 1

x ¬1 1 . Hence by hypothesis, 𝔐 ′ , 𝑤 |= ⊤ * (fork

1 1 (x, y) ∧ [y = x+1] 1). Then, let 𝔐 ′′ = (𝑊 , 𝑅 ′′ , 𝑉) ⊑ 𝔐 ′ be such that 𝔐 ′′ , 𝑤 |= fork 1 1 (x, y) ∧ [y = x+1] 1 .
By Lemmata 4.6 and 4.8, there is 𝑤 y ∈ 𝑅 ′′ (𝑤) such that 𝐧(𝑤 y) = 𝐧(𝑤 x) + 1. Since the encoding of a number (for 𝑗 = 1) only depends on the satisfaction of the propositional symbols 𝑝 1 , . . . , 𝑝 𝑛 on a certain world, we conclude that the same property holds for 𝔐. Thus, (𝔐, 𝑤) satisfies (compl 1).

(⇐): Suppose that (𝔐, 𝑤) satisfies (compl 1), and ad absurdum assume that 𝔐,

𝑤 ̸ |= compl(1), hence 𝔐, 𝑤 |= 2⊥ * [t]3y∧@ 1 x ¬1 1 ∧¬(⊤ * (fork 1 1 (x, y) ∧ [y = x+1] 1)) .
Then, there is a submodel

𝔐 ′ = (𝑊 , 𝑅 ′ , 𝑉) of 𝔐 such that 𝑅 ′ (𝑤) = 𝑅(𝑤) and 𝔐 ′ , 𝑤 |= [t]3y ∧ @ 1 x ¬1 1 ∧ ¬(⊤ * (fork 1 1 (x, y) ∧ [y = x+1] 1)
). Notice that this formula does not enforce x to be a nominal for the depth 1, however from 𝔐 ′ , 𝑤 |= @ 1

x ¬1 1 we deduce that there is at least one t-node 𝑤 x such that 𝔐 ′ , 𝑤 x |= 3x ∧ ¬1 1 . Then, 𝐧(𝑤 x) < 2 𝑛 -1 and by hypothesis there is a t-node 𝑤 y such that 𝐧(𝑤 y) = 𝐧(𝑤 x) + 1. Let us consider now the submodel

𝔐 ′′ = (𝑊 , 𝑅 ′′ , 𝑉) of 𝔐 ′ where 𝑅 ′′ (𝑤) = {𝑤 x , 𝑤 y }, 𝑅 ′′ (𝑤 x) = {𝑤 1 } and 𝑅 ′′ (𝑤 y) = {𝑤 2 }, where 𝑤 1 (resp. 𝑤 2)
is the only Aux-child of 𝑤 x (resp. 𝑤 y) that satisfies x (resp. y). The existence of 𝑤 1 and 𝑤 2 is guaranteed by 𝔐 ′ , 𝑤 x |= 3x ∧ ¬1 1 and 𝔐 ′ , 𝑤 |= [t]3y. By Lemma 4.6, 𝔐 ′′ , 𝑤 |= fork 1 1 (x, y). Moreover, as the encoding of a number (for 𝑗 = 1) only depends on the satisfaction of the propositional symbols 𝑝 1 , . . . , 𝑝 𝑛 on a certain world, 𝔐 ′′ , 𝑤 |= [y = x+1] 1 . Then, we conclude that 𝔐 ′ , 𝑤 |= ⊤ * (fork

1 1 (x, y) ∧ [y = x+1] 1), in contradiction with 𝔐 ′ , 𝑤 |= [t]3y ∧ @ 1 x ¬1 1 ∧ ¬(⊤ * (fork 1 1 (x, y) ∧ [y = x+1] 1)
). Thus, 𝔐, 𝑤 |= compl [START_REF] Areces | Moving Arrows and Four Model Checking Results[END_REF]. □ With all these definitions at hand, we conclude the definition of type(1) (and type lsr (1)), which is established correct with respect to its specification. Lemma 4.11. Let 𝔐, 𝑤 |= init(1). We have 𝔐, 𝑤 |= type(1) if and only if (𝔐, 𝑤) satisfies (sub 1), (zero 1), (uniq 1), (compl 1) and (aux).

The proof of Lemma 4.11 then follows directly from Lemmata 4.5, 4.9 and 4.10. Let us show the satisfiability of type [START_REF] Areces | Moving Arrows and Four Model Checking Results[END_REF]. A quick check of init(1) and the conditions (sub 1), (zero 1), (uniq 1), (compl 1) and (aux) should convince the reader that they are simultaneously satisfiable, leading to init(1) ∧ type(1) being satisfiable. However, in the following we provide an explicit model satisfiying this formula. Lemma 4.12. The formula init(1) ∧ type(1) is satisfiable.

Proof. Consider the finite forest 𝔐 = (𝑊 , 𝑅, 𝑉) and a world 𝑤 such that (1) 𝑅 is the minimal set of pairs such that 𝑅(𝑤) = {𝑤 0 , . . . , 𝑤 2 𝑛 -1 } (where 𝑤 0 , . . . , 𝑤 2 𝑛 -1 are all distinct worlds), and for every 𝑖 ∈ [0,

2 𝑛 -1], 𝑅(𝑤 𝑖) = {𝑤 x 𝑖 , 𝑤 y 𝑖 } (again, 𝑤 x 𝑖 , 𝑤 y 𝑖 are distinct); (2) 𝑊 = {𝑤 } ∪ 𝑅(𝑤) ∪ 𝑤 ′ ∈𝑅 (𝑤) 𝑅(𝑤 ′); (3) 𝑉 (x) = {𝑤 x 0 , . . . , 𝑤 x 2 𝑛 -1 }, 𝑉 (y) = {𝑤 y 0 , . . . ,

Inductive case: 1 ≤ 𝑖 < 𝑗

We now need to define the inductive cases for the corresponding formulae, and prove their correctness. As an implicit inductive hypothesis used to prove that the formulae are well-defined, we assume that [bx = ax+1] 𝑗 ′ and type(𝑗 ′) are already defined for every 𝑗 ′ < 𝑗, whereas fork 𝑖 ′ 𝑗 ′ (ax, bx), and [ax < bx] 𝑖 ′ 𝑗 ′ are already defined for all 1 ≤ 𝑖 ′ ≤ 𝑗 ′ such that 𝑗 ′ -𝑖 ′ < 𝑗 -𝑖. Therefore, we define: fork 𝑖 𝑗 (ax, bx) def = fork 𝑖 𝑖 (ax, bx) ∧ [t] 𝑖 type lsr (𝑗 -𝑖). It is easy to see that this formula is well-defined: fork 𝑖 𝑖 (ax, bx) is from the base case, whereas type lsr (𝑗-𝑖) is defined by inductive hypothesis, since we have 𝑗 -𝑖 < 𝑗.

Assuming that type(𝑗) is correctly defined, with semantics as in Section 4.3, the following result roughly states that the encoding of numbers is preserved under submodels. Proof. The proof is rather straightforward. From the semantics of type(𝑗), with respect to any of the two models (𝔐, 𝑤 ′) or (𝔐 ′ , 𝑤 ′), 𝐧 𝑗 -𝑖 (𝑤 ′) is encoded by using

(1) the t-nodes reachable from 𝑤 ′ in at most 𝑗 -𝑖 steps;

(2) the {x, y}-nodes reachable from 𝑤 ′ in exactly 2 steps;

(3) the Aux-nodes reachable from 𝑤 ′ in at least 3 steps and at most 𝑗 -𝑖 + 1 steps. Let 𝔐 ′ = (𝑊 , 𝑅 1 , 𝑉). From 𝔐 ′ , 𝑤 ′ |= type(𝑗 -𝑖) we can show that the accessibility to all these nodes is preserved between (𝔐, 𝑤 ′) and (𝔐 ′ , 𝑤 ′), leading to the result (or rather, that losing the accessibility to any of these nodes leads to a model not satisfying type(𝑗 -𝑖)). Indeed, [START_REF] Areces | Moving Arrows and Four Model Checking Results[END_REF] suppose that there is a t-node 𝑤 ∈ 𝑅 𝑘 (𝑤 ′), with 𝑘 ∈ [1, 𝑗 -𝑖], not in 𝑅 𝑘 1 (𝑤 ′). Let 𝑤 1 be the parent of 𝑤 in 𝑅. Then in particular, 𝑤 1 ∈ 𝑅 𝑘 -1 (𝑤 ′) and (𝑤 1 , 𝑤) ∈ 𝑅. Since 𝑤 ∉ 𝑅 𝑘 1 (𝑤 ′), we conclude that (𝔐 ′ , 𝑤 1) does not satisfy (compl 𝑗) and therefore 𝔐 ′ , 𝑤 1 ̸ |= type(𝑗 -𝑖 -𝑘). Then, (𝔐 ′ , 𝑤 ′) cannot satisfy (sub 𝑗), in contradiction with 𝔐 ′ , 𝑤 ′ |= type(𝑗 -𝑖);

(2) suppose that one {x, y}-node in 𝑅 2 (𝑤 ′) is not in 𝑅 2 1 (𝑤 ′). Then trivially (𝔐 ′ , 𝑤 ′) cannot satisfy (aux), in contradiction with 𝔐 ′ , 𝑤 ′ |= type(𝑗);

(3) similarly, suppose that one Aux-node in 𝑅 𝑘 (𝑤 ′), where 𝑘 ∈ [3, 𝑗 -𝑖 + 1], is not in 𝑅 Above, 'L' stands for 'left', 'R' stands for 'right' and 'S' stands for 'selected bit'. As the numbers are encoded in binary with the least significant bit on the right, by way of example, the numbers associated to nodes in 𝑅 ax are strictly smaller than the number associated to the unique node in 𝑆 ax .

It is important to notice that these conditions essentially revolve around the numbers encoded by t-children, which will be compared using the already defined (by inductive reasoning) formulae [ax < bx] 𝑖 ′ 𝑗 ′ , where 𝑗 ′ -𝑖 ′ < 𝑗 -𝑖. Since the semantics of [ax < bx] 𝑖 𝑗 is given under the hypothesis that 𝔐, 𝑤 |= fork 𝑖 𝑗 (ax, bx), we can assume that every child of 𝑤 ax and 𝑤 bx has all the possible Aux-children. Then, we rely on the auxiliary propositions in {l, s, r} in order to mimic the reasoning done in (LSR) and (LESS).

We start by considering the constraints involved in (LSR) and we express them with the formula lsr(𝑗) to be defined, which is satisfied by a pointed forest (𝔐 = (𝑊 , 𝑅, 𝑉), 𝑤) whenever:

• (𝔐, 𝑤) satisfies type(𝑗). • Every t-child of 𝑤 has exactly one {l, s, r}-child, and only one of these t-children (say 𝑤 ′) has an s-child. • Every t-child of 𝑤 that has an l-child (resp. r-child) encodes a number greater (resp. smaller) than 𝐧(𝑤 ′).

Despite this formula being defined in terms of type(𝑗), we only rely on lsr(𝑗 -𝑖) (which is defined by inductive reasoning) in order to define [ax < bx] 𝑖 𝑗 . Figure 3 (2) every t-node in 𝑅(𝑤) has exactly one Aux-child satisfying an atomic proposition from {l, s, r};

(𝑗) def = type(𝑗) ∧ [t]3 =1 (l ∨ s ∨ r) ∧ nom 1 (s) ∧ ¬(⊤ * (fork 1 𝑗 (s, l) ∧ ¬[s < l] 1 𝑗)) ∧ ¬(⊤ * (fork 1 𝑗 (s, r) ∧ ¬[r < s] 1 𝑗)).
(3) exactly one t-node in 𝑅(𝑤) (say 𝑤 s) has an Aux-child satisfying s; (4) given 𝑤 ′ ∈ 𝑅(𝑤), 𝑤 ′ has an Aux-child satisfying l if and only if 𝐧(𝑤 ′) > 𝐧(𝑤 s);

(5) given 𝑤 ′ ∈ 𝑅(𝑤), 𝑤 ′ has an Aux-child satisfying r if and only if 𝐧(𝑤 ′) < 𝐧(𝑤 s).

Proof. This proof is rather straightforward. The definition of lsr(𝑗 -𝑖) is reproduced below:

type(𝑗 -𝑖) ∧ [t]3 =1 (l ∨ s ∨ r) ∧ nom 1 (s)∧ ¬(⊤ * (fork 1 𝑗 -𝑖 (s, l) ∧ ¬[s < l] 1 𝑗 -𝑖)) ∧ ¬(⊤ * (fork 1 𝑗 -𝑖 (s, r) ∧ ¬[r < s] 1 𝑗 -𝑖))
. Then, we provide the following analysis.

• The first, second and third conjuncts of lsr(𝑗 -𝑖) directly realise requirements (1), (2) and

(3). • The fourth conjunct of lsr(𝑗 -𝑖) realises the requirement (4). Indeed, suppose 𝔐, 𝑗 -𝑖 we conclude that 𝐧(𝑤 ′) > 𝐧(𝑤 s) with respect to (𝔐 ′ , 𝑤). Now, from 𝔐 ′ , 𝑤 |= fork 1 𝑗 -𝑖 (s, l) we also conclude that 𝔐 ′ , 𝑤 s |= type(𝑗 -𝑖) and 𝔐 ′ , 𝑤 ′ |= type(𝑗 -𝑖). Then, by Lemma 4.13, 𝐧(𝑤 ′) > 𝐧(𝑤 s) also holds with respect to (𝔐, 𝑤). The other direction is analogous.

𝑤 |= ¬(⊤ * (fork 1 𝑗 -𝑖 (s, l) ∧ ¬[s < l] 1 𝑗 -𝑖)). Then, for all submodels 𝔐 ′ ⊑ 𝔐, if 𝔐 ′ , 𝑤 |= fork 1 𝑗 -𝑖 (s, l) then 𝔐 ′ , 𝑤 |= [s < l]
• The fifth conjunct of lsr(𝑗 -𝑖) realises the requirement [START_REF] Ph | Knowable' as 'known after an announcement[END_REF]. The proof is similar to the one for the requirement (4), just above. □

Then, we have the ingredients to define the formula [ax < bx] 𝑖 𝑗 as follows:

[ax < bx] 𝑖 𝑗 def = ⊤ * nom 𝑖 (ax ≠ bx) ∧ [t] 𝑖 lsr(𝑗 -𝑖) ∧ S 𝑖 𝑗 (ax, bx) ∧ L 𝑖 𝑗 (ax, bx)
, where S 𝑖 𝑗 (ax, bx) and L 𝑖 𝑗 (ax, bx) check the first and second condition in (LESS), respectively. In particular, by defining

[ax = bx] 𝑖 𝑗 def = ¬([ax < bx] 𝑖 𝑗 ∨ [bx < ax] 𝑖 𝑗), we have S 𝑖 𝑗 (ax, bx) def = ⊤ * fork 𝑖+1 𝑗 (x, y) ∧ @ 𝑖 ax ⟨t⟩(3s ∧ 3x) ∧ @ 𝑖 bx ⟨t⟩(3s ∧ 3y) ∧ [x = y] 𝑖+1 𝑗 ∧ @ 𝑖+1 x ¬val ∧ @ 𝑖+1 y val L 𝑖 𝑗 (ax, bx) def = ¬ ⊤ * fork 𝑖+1 𝑗 (x, y) ∧ @ 𝑖 ax ⟨t⟩(3l ∧ 3x) ∧ @ 𝑖 bx ⟨t⟩(3l ∧ 3y) ∧ [x = y] 𝑖+1 𝑗 ∧¬(@ 𝑖+1 x val ⇔ @ 𝑖+1 y val) . Both fork 𝑖+1 𝑗 (x,
: [bx = ax+1] 𝑗 def = ⊤ * nom 1 (ax ≠ bx) ∧ [t]lsr(𝑗 -1) ∧ LS 1 𝑗 (ax, bx) ∧ R(ax, bx) , where R(ax, bx) def = @ 1 ax [t] (3r ⇒ val) ∧ @ 1 bx [t]
(3r ⇒ ¬val) captures the last two conditions of (PLUS). We prove a technical lemma that will help us with the proof of correctness of [ax < bx] 𝑖 𝑗 and [bx = ax+1] 𝑗 stated in Lemma 4.17 and Lemma 4.18 below. Lemma 4.16. Let ax ≠ bx ∈ Aux and 1 ≤ 𝑖 < 𝑗. Suppose that (𝔐, 𝑤) is such that 𝑅 𝑖 (𝑤) = {𝑤 ax , 𝑤 bx } for some t-nodes 𝑤 ax and 𝑤 bx in 𝑊 , and these two worlds satisfy the conditions of lsr(𝑗 -𝑖), that is, for every 𝑏 ∈ {ax, bx}, Proof. We recall the definition of [bx = ax+1] 𝑗 :

(
[bx = ax+1] 𝑗 def = ⊤ * nom 1 (ax ≠ bx) ∧ [t]lsr(𝑗 -1) ∧ S 1 𝑗 (ax, bx) ∧ L 1 𝑗 (ax, bx) ∧ R(ax, bx) .
As in Lemma 4.8, the proof uses standard properties of numbers encoded in binary. Again, let 𝑥, 𝑦 be two natural numbers that can be represented in binary by using 𝑛 bits. Let us denote with 𝑥 𝑖 (resp. 𝑦 𝑖) the 𝑖-th bit of the binary representation of 𝑥 (resp. 𝑦). We have that 𝑦 = 𝑥 + 1 if and only if One can see that the formula [bx = ax+1] 𝑗 can be obtained (syntactically) from the formula

[ax < bx] 1 𝑗 def = ⊤ * (nom 1 (ax ≠ bx) ∧ [t] 𝑖 lsr(𝑗 -1) ∧ S 1 𝑗 (ax, bx) ∧ L 1 𝑗 (ax, bx)
) by simply adding the conjunct R(ax, bx) to the right of L 1 𝑗 (ax, bx). Then, it is easy to see that the proof of this lemma follows very closely the structure of the proof of Lemma 4.17. Indeed, to prove (A) and (B) we essentially rely on Lemma 4.16 (I and II), whereas (C) is shown using the third point of Lemma 4. [START_REF] Calcagno | Context logic and tree update[END_REF]. □

To define uniq(𝑗) and compl(𝑗), we rely on fork 𝑖 𝑗 (ax, bx),

[ax < bx] 𝑖 𝑗 and [bx = ax+1] 𝑗 . uniq(𝑗) def = ¬ ⊤ * (fork 1 𝑗 (x, y) ∧ [x = y] 1 𝑗) compl(𝑗) def = ¬ 2⊥ * [t] (type lsr (𝑗 -1) ∧ 3y) ∧ nom 1 (x) ∧ @ 1 x ¬1 𝑗 ∧ ¬ ⊤ * (fork 1 𝑗 (x, y) ∧ [y = x+1] 𝑗)
, where 1 𝑗 def = [t]val reflects the encoding of 𝔱(𝑗, 𝑛)-1 for 𝑗 > 1. The main difference between compl(1) and compl(𝑗) (𝑗 > 1) is that the conjunct [t]3y of compl(1) is replaced by [t] (type lsr (𝑗 -1) ∧ 3y) in compl(𝑗), as needed to correctly evaluate fork 1 𝑗 (x, y). Indeed, the difference between fork □

The size of type(𝑗) is exponential in 𝑗 > 1 and polynomial in 𝑛 ≥ 1. As its size is elementary, we can use this formula as a starting point to reduce Tile 𝑘 .

We finish this section by showing that the formulae init(𝑗) and type(𝑗) are (simultaneously) satisfiable, i.e., there exists a pointed forest 𝔐, 𝑤 such that 𝔐, 𝑤 |= init(𝑗) ∧ type(𝑗). This result is useful in the next section, as we will need to show that a model encoding a grid actually exists. Lemma 4.22. Let 𝑗 ≥ 2. init(𝑗) ∧ type(𝑗) is satisfiable.

Proof. Let 𝑗 ≥ 2. By induction on 𝑗, we suppose that init(𝑗 -1) ∧ type(𝑗 -1) is satisfiable (we already treated the base case for 𝑗 = 1 in Lemma 4.12). Let us consider 𝑤 0 , . . . , 𝑤 𝔱 (𝑗,𝑛) -1 distinct worlds. By the induction hypothesis, we can construct 𝔱(𝑗, 𝑛) models 𝔐 𝑖 = (𝑊 𝑖 , 𝑅 𝑖 , 𝑉 𝑖) (𝑖 ∈ [0, 𝔱(𝑗, 𝑛) -1]), so that 𝑤 𝑖 ∈ 𝑊 𝑖 and 𝔐 𝑖 , 𝑤 𝑖 |= init(𝑗 -1) ∧ type(𝑗 -1). W.l.o.g. we can assume, for each two distinct 𝑖, 𝑖 ′ ∈ [0, 𝔱(𝑗, 𝑛) -1], 𝑊 𝑖 ∩ 𝑊 𝑖 ′ = ∅. Similarly, we can assume that each 𝔐 𝑖 is minimal, i.e. for every 𝔐 ′ ⊑ 𝔐 𝑖 different from 𝔐 ′ , 𝔐 ′ , 𝑤 𝑖 ̸ |= init(𝑗 -1) ∧ type(𝑗 -1). This implies that 𝑤 𝑖 does not have any Aux-children, and every t-node in 𝑅 𝑖 (𝑤 𝑖) does not have {l, s, r}-children (as these two properties are not guaranteed by (aux)).

Let 𝑤 be a fresh world not appearing in the aforementioned models. Similarly, for every 𝑖 ∈ [0, 𝔱(𝑗, 𝑛) -1], let 𝑤 x 𝑖 and 𝑤 y 𝑖 be fresh worlds. Lastly, we also introduce, for every world 𝑤 ∈ 𝑅 𝑖 (𝑤 𝑖), three (distinct) new worlds 𝑤 l 𝑤 , 𝑤 s 𝑤 and 𝑤 r 𝑤 . Then, let us consider the model 𝔐 = (𝑊 , 𝑅, 𝑉) defined as follows:

(1)

𝑊 def = {𝑤 }∪𝑊 𝑖 ∪{𝑤 x 𝑖 , 𝑤 y 𝑖 | 𝑖 ∈ [0, 𝔱(𝑗, 𝑛)-1]}∪{𝑤 𝑤 l , 𝑤 𝑤 s , 𝑤 𝑤 r , | 𝑖 ∈ [0, 𝔱(𝑗, 𝑛)-1], 𝑤 ∈ 𝑅 𝑖 (𝑤 𝑖)} (2) 𝑅 def = {(𝑤, 𝑤 0), . . . , (𝑤, 𝑤 𝔱 (𝑗,𝑛) -1)} ∪ 𝑖 ∈ [0,𝔱 (𝑗,𝑛) -1] 𝑅 𝑖 ∪ {(𝑤 𝑖 , 𝑤 x 𝑖), (𝑤 𝑖 , 𝑤 y 𝑖) | 𝑖 ∈ [0, 𝔱(𝑗, 𝑛) -1]} ∪ {(𝑤, 𝑤 𝑤 l), (𝑤, 𝑤 𝑤 s), (𝑤, 𝑤 𝑤 r), | 𝑖 ∈ [0, 𝔱(𝑗, 𝑛) -1], 𝑤 ∈ 𝑅 𝑖 (𝑤 𝑖)} (3) 𝑉 is such that
• for every 𝑖 ∈ [0, 𝔱(𝑗, 𝑛) -1], 𝑝 ∈ AP and every 𝑤 ′ ∈ 𝑅 2 𝑖 (𝑤 𝑖), 𝑤 ′ ∈ 𝑉 (𝑝) if and only if 𝑤 ′ ∈ 𝑉 𝑖 (𝑝). Hence, w.r.t. (𝔐, 𝑤), the evaluations w.r.t. worlds in 𝑅 3 𝑖 (𝑤) ∩ 𝑊 𝑖 is unchanged compared to the one in (𝔐 𝑖 , 𝑤 𝑖).

• For every 𝑖 ∈ [0, 𝔱(𝑗, 𝑛) -1] and every 𝑤 ′ ∈ 𝑅 𝑖 (𝑤 𝑖), 𝑤 ′ ∈ 𝑉 (val) if and only if w.r.t.

(𝔐 𝑖 , 𝑤 𝑖), the 𝐧(𝑤 ′)-bit in the binary representation of 𝑖 is 1. Notice that this will lead to 𝐧(𝑤 𝑖) = 𝑖. • For every 𝑖 ∈ [0, 𝔱(𝑗, 𝑛) -1] and ax ∈ Aux, 𝑤 x 𝑖 ∈ 𝑉 (ax) if and only if ax = x. Similarly, 𝑤 y 𝑖 ∈ 𝑉 (ax) if and only if ax = y. Thus, every 𝑤 x 𝑖 is a x-node, whereas every 𝑤 y 𝑖 is a y-node. • For every ax ∈ Aux, 𝑤 ∉ 𝑉 (ax) and for every 𝑖 ∈ [0, 𝔱(𝑗, 𝑛) -1], 𝑤 𝑖 ∉ 𝑉 (ax). Moreover, for every 𝑤 ∈ 𝑅 𝑖 (𝑤 𝑖), 𝑤 ∉ 𝑉 (ax) (notice that, by minimality, 𝑤 is a t-node also in 𝔐 𝑖). Thus, 𝑤, 𝑤 𝑖 and 𝑤 (as above) are all t-nodes. • For every ax ∈ Aux, 𝑤 ∉ 𝑉 (ax) and for every 𝑖 ∈ [0, 𝔱(𝑗, 𝑛) -1] and 𝑤 ∈ 𝑅 𝑖 (𝑤 𝑖), (1)

𝑤 l 𝑤 ∈ 𝑉 (ax) iff ax = l, (2) 𝑤 s 𝑤 ∈ 𝑉 (ax) iff ax = s, (3) 𝑤 r 𝑤 ∈ 𝑉 (ax) iff ax = r.
Hence, every 𝑤 l 𝑤 , 𝑤 s 𝑤 and 𝑤 r 𝑤 (as above) is a l-node, s-node and r-node, respectively. We can check that (𝔐, 𝑤) satisfies init(𝑗) as well as (sub 𝑗), (zero 𝑗), (uniq 𝑗), (compl 𝑗) and (aux). Thus, by Lemma 4.21, 𝔐, 𝑤 |= init(𝑗) ∧ type(𝑗). (0, 0) [0, 𝔱(𝑘, 𝑛) -1] × [0, 𝔱(𝑘, 𝑛) -1] → T satisfying (first) and (hor&vert). W.l.o.g. we assume T is also understood as a set of atomic propositions, disjoint from {𝑝 1 , . . . , 𝑝 𝑛 , val}∪Aux used in the definition of type(𝑗). We construct a formula tiling T T,c (𝑘) that is satisfiable iff (T T , c) as a solution.

1 H , 1 V 1 H , 1 V 1 H , 1 V 0 H , 0 V 0 H , 0 V 0 H , 0 V
Let us first describe how to represent a grid [0, 𝔱(𝑘, 𝑛) -1] 2 in the pointed forest (𝔐, 𝑤). We use the same ideas needed in order to define type(𝑘), but with some minor modifications. As previously stated, if 𝔐, 𝑤 |= type(𝑘) then given a t-node 𝑤 ′ ∈ 𝑅(𝑤), the number 𝐧(𝑤 ′) ∈ [0, 𝔱(𝑘, 𝑛) -1] is encoded using the t-children of 𝑤 ′ , where the numbers encoded by these children represent positions in the binary encoding of 𝐧(𝑤 ′). Instead of being a single number, a position in the grid is a pair of numbers (ℎ, 𝑣) ∈ [0, 𝔱(𝑘, 𝑛) -1] 2 . Hence, in a model (𝔐, 𝑤) satisfying tiling T T,c (𝑘) we require that 𝑤 ′ ∈ 𝑅(𝑤) encodes two numbers 𝐧 H (𝑤 ′) and 𝐧 V (𝑤 ′), and say that 𝑤 ′ encodes the position (ℎ, 𝑣) if and only if 𝐧 H (𝑤 ′) = ℎ and 𝐧 V (𝑤 ′) = 𝑣. Since both numbers are from [0, 𝔱(𝑘, 𝑛) -1], the same amount of t-children as in type(𝑘) can be used in order to encode both 𝐧 H (𝑤 ′) and 𝐧 V (𝑤 ′). Thus, we rely on the formula type(𝑘 -1) to force 𝑤 ′ to have the correct amount of t-children, by requiring it to hold in (𝔐, 𝑤 ′). Similarly to what is done previously for type(𝑗) (𝑗 ≥ 2), we encode the numbers 𝐧 H (𝑤 ′) and 𝐧 V (𝑤 ′) by using the truth value, on the t-children of 𝑤 ′ , of two new atomic propositions val H and val V , respectively. Then, we use similar formulae to zero(𝑘), uniq(𝑘) and compl(𝑘) to state that 𝑤 witnesses exactly one child for each position in the grid. Once the grid is encoded, the tiling conditions are enforced rather easily.

Figure 4 schematises a pointed forest satisfying a formula grid T T (𝑘) that properly encodes the [0, 𝔱(𝑘, 𝑛) -1] 2 grid. The actual grid is drawn in the picture to illustrate the intended meaning of the worlds in 𝑅(𝑤). As mentioned earlier, each world 𝑤 ′ ∈ 𝑅(𝑤) encodes two numbers, corresponding to the respective horizontal and vertical coordinates of the grid. So, dotted arrows connect 𝑤 with exactly one world for each position of the grid (for simplicity, we only draw some of these arrows). Thus, 𝑤 has 𝔱(𝑘, 𝑛) 2 children. These children must satisfy type(𝑘 -1), therefore they have 𝔱(𝑘 -1, 𝑛) children that represent pairs of numbers via val H and val V , as described before. In the picture the values 1 H and 0 H stand for val H being true and false, respectively (similarly for 1 V and 0 V w.r.t. val V). For instance, in the rightmost child of 𝑤 all "bits" are set to 0, both for horizontal and for vertical position, so it corresponds to the initial position (0, 0) of the grid. Similarly, in the leftmost child, by setting all "bits" to 1 we encode the position (𝔱(𝑘, 𝑛) -1, 𝔱(𝑘, 𝑛) -1) of the grid. Now we introduce the formula grid T T (𝑘) that characterises the set of models encoding the [0, 𝔱(𝑘, 𝑛) -1] 2 grid. A model (𝔐 = (𝑊 , 𝑅, 𝑉), 𝑤) satisfying grid T T (𝑘) is such that:

(zero T T,𝑘) there is a t-node w in 𝑅(𝑤) that encodes the position (𝐧 H (w), 𝐧 V (w)) = (0, 0); (uniq T T,𝑘) for all two distinct t-nodes 𝑤 1 , 𝑤 2 ∈ 𝑅(𝑤), 𝐧 H (𝑤 1) ≠ 𝐧 H (𝑤 2) or 𝐧 V (𝑤 1) ≠ 𝐧 V (𝑤 2); (compl T T,𝑘) for every t-node 𝑤 1 ∈ 𝑅(𝑤),

• if 𝐧 H (𝑤 1) < 𝔱(𝑘, 𝑛) -1 then there is a t-node 𝑤 2 ∈ 𝑅(𝑤) such that 𝐧 H (𝑤 2) = 𝐧 H (𝑤 1) + 1 and 𝐧 V (𝑤 2) = 𝐧 V (𝑤 1);

• if 𝐧 V (𝑤 1) < 𝔱(𝑘, 𝑛) -1 then there is a t-node 𝑤 2 ∈ 𝑅(𝑤) such that 𝐧 V (𝑤 2) = 𝐧 V (𝑤 1) + 1 and 𝐧 H (𝑤 2) = 𝐧 H (𝑤 1); (init/sub/aux) (𝔐, 𝑤) satisfies init(𝑘), sub(𝑘) and aux.

It is easy to see that, with these conditions, (𝔐, 𝑤) correctly encodes the grid. The definition of grid T T (𝑘) follows rather closely the definition of type(𝑗). It is defined as

grid T T (𝑘) def = zero T T (𝑘) ∧ uniq T T (𝑘) ∧ compl T T (𝑘) ∧ init(𝑘) ∧ sub(𝑘) ∧ aux,
where each conjunct expresses the homonymous property above. To define the first three conjuncts of grid T T (𝑘) (hence completing its definition) we start by defining the formulae [ax 𝐷 = bx] 𝑘 and [bx 𝐷 = ax+1] 𝑘 , where 𝐷 ∈ {H, V}. These formulae will be defined similarly to To encode [ax 𝐷 = bx] 𝑘 we simply require that for all two t-children 𝑤 ax ∈ 𝑅(𝑤 ax) and 𝑤 bx ∈ 𝑅(𝑤 bx), if 𝐧 𝐷 (𝑤 ax) = 𝐧 𝐷 (𝑤 bx) then 𝑤 ax and 𝑤 bx agree on the satisfaction of val 𝐷 . The following formula expresses this property (whose correctness is proved immediately after its definition): The formula [bx 𝐷 = ax+1] 𝑘 can be defined by slightly modifying the formula [bx = ax+1] 𝑘 . We start by defining the formulae L[𝐷] 𝑘 (ax, bx), S[𝐷] 𝑘 (ax, bx) and R[𝐷] (ax, bx) with semantics similar to L 1 𝑘 (ax, bx), S 1 𝑘 (ax, bx) and R(ax, bx), respectively, but where, for a given t-node in 𝑅 2 (𝑤), we are interested in the satisfaction of val 𝐷 instead of val. For example, the formula S[𝐷] 𝑘 (ax, bx) is defined as

[ax = bx]
[ax 𝐷 = bx] 𝑘 def = ¬ ⊤ * (fork 2 𝑘 (x, y) ∧ @ 1 ax ⟨t⟩3x ∧ @ 1 bx ⟨t⟩3y ∧ [x = y] 2 𝑘 ∧ ¬(@ 2 x val 𝐷 ⇔ @ 2 y val 𝐷)) . Lemma
S[𝐷] 𝑘 (ax, bx) def = ⊤ * fork 2 𝑘 (x, y) ∧ @ 1 ax ⟨t⟩(3s ∧ 3x) ∧ @ 1 bx ⟨t⟩(3s ∧ 3y) ∧ [x = y] 2 𝑘 ∧ @ 2
x ¬val 𝐷 ∧ @ 2 y val 𝐷 , i.e., by replacing the two last conjuncts of S 1 𝑘 (ax, bx), @ 2 x ¬val and @ 2 y val with @ 2 x ¬val 𝐷 and @ 2 y val 𝐷 , respectively. Similarly, L[𝐷] 𝑘 (ax, bx) is defined from L 1 𝑘 (ax, bx) by replacing the last conjunct of this formula, i.e. ¬(@ 2

x val ⇔ @ 2 y val), by ¬(@ 2 x val 𝐷 ⇔ @ 2 y val 𝐷). Lastly, R[𝐷] (ax, bx) is defined from R(ax, bx) by replacing every occurrence of val by val 𝐷 . The formula [bx 𝐷 = ax+1] 𝑘 is then defined as follows: Proof. The proof unfolds as the proofs of Lemmata 4.8 and 4. [START_REF] Cooper | Theorem proving in arithmetic without multiplication[END_REF].

[bx 𝐷 = ax+1] 𝑘 def = ⊤ * nom 1 (ax ≠ bx) ∧ [t]lsr(𝑘 -1) ∧ L[𝐷] 𝑘 (ax, bx) ∧ S[𝐷] 𝑘 (ax, bx) ∧ R[𝐷] (
□

We are now ready to define the formulae zero T T (𝑘), uniq T T (𝑘) and compl T T (𝑘), achieving the conditions (zero T T,𝑘), (uniq T T,𝑘) and (compl T T,𝑘), respectively. All these formulae follow closely the definitions of zero(𝑘), uniq(𝑘) and compl(𝑘) of the previous sections, hence we refer to these latter formulae for an informal description on how they work. The formula zero T T (𝑘) is defined as: Proof. The proof is direct, by definition of zero T T (𝑘) and how (0, 0) is encoded in the grid. □

zero T T (𝑘) def = ⟨t⟩([t] (¬val H ∧ ¬val V)).
The formula uniq T T (𝑘) is defined from uniq(𝑘) by replacing Proof. This lemma is proven as Lemma 4.9 and Lemma 4.19, by relying on Lemma 4.23 in order to show that, given two distinct worlds 𝑤 x and 𝑤 y corresponding to nominals (for the depth 1) x and y, respectively, Proof. (sketch) The satisfiability of grid T T (𝑘) can be established by Lemma 4.28 as (zero T T,𝑘), (uniq T T,𝑘), (compl T T,𝑘) and (init/sub/aux) can be simultaneously satisfied. A model satisfying these constraints can be defined similarly to what is done in Lemma 4.22. The main difference is that now the root shall have 𝔱(𝑘, 𝑛) 2 children (one for each position of the grid) satisfying type(𝑘 -1). □

[x = y] 1 𝑘 with [x H = y] 𝑘 ∧ [x V = y] 𝑘 : uniq T T (𝑘) = ¬ ⊤ * (fork 1 𝑘 (x, y) ∧ [x H = y] 𝑘 ∧ [x V = y] 𝑘) .
[x H = y] 𝑘 ∧ [x V = y] 𝑘 holds if and only if 𝐧 H (𝑤 x) = 𝐧 H (𝑤 y) and 𝐧 V (𝑤 x) = 𝐧 V (𝑤 y). □ Lastly, compl T T (𝑘) def = compl[H] T T (𝑘) ∧ compl[V] T T (𝑘) where compl[H] T T (𝑘) def = ¬ 2⊥ * [t] (type lsr (𝑘-1) ∧ 3y) ∧ nom 1 (x)∧ @ 1 x ¬1 H 𝑘 ∧ ¬ ⊤ * (fork 1 𝑗 (x, y) ∧ [y H = x+1] 𝑘 ∧ [x V = y] 𝑘) ,
We can now proceed to the encoding of the tiling conditions (first) and (hor&vert). Given a model (𝔐 = (𝑊 , 𝑅, 𝑉), 𝑤) satisfying grid T T (𝑘), the existence of a solution for (T T , c), w.r.t. Tile 𝑘 , can be expressed with the following conditions: (one T T) every t-node in 𝑅(𝑤) satisfies exactly one tile in T ;

(first T T,c) for all w ∈ 𝑅(𝑤), if 𝐧 H (w)=𝐧 V (w)=0 then w ∈ 𝑉 (c); (hor T T) for all 𝑤 1 , 𝑤 2 ∈ 𝑅(𝑤), if 𝐧 H (𝑤 2) = 𝐧 H (𝑤 1) + 1 and 𝐧 V (𝑤 2) = 𝐧 V (𝑤 1) then there is (c 1 , c 2) ∈ H such that 𝑤 1 ∈ 𝑉 (c 1) and 𝑤 2 ∈ 𝑉 (c 2); (vert T T) for all 𝑤 1 , 𝑤 2 ∈ 𝑅(𝑤), if 𝐧 V (𝑤 2) = 𝐧 V (𝑤 1) + 1 and 𝐧 H (𝑤 2) = 𝐧 H (𝑤 1) then there is (c 1 , c 2) ∈ V such that 𝑤 1 ∈ 𝑉 (c 1)
and 𝑤 2 ∈ 𝑉 (c 2). Then, the formula tiling T T,c (𝑘) can be defined as

tiling T T,c (𝑘) def = grid T T (𝑘) ∧ one T T ∧ first T T,c (𝑘) ∧ hor T T (𝑘) ∧ vert T T (𝑘),
where the last four conjuncts express the homonymous property above. Given the toolkit of formulae introduced up to now, these four formulae are easy to define. The formula one T T is simply defined as

[t] c 1 ∈ T (c 1 ∧ c 2 ∈ T ¬c 2).
Similarly, first T T,c (𝑘) is also straightforward to define:

first T T,c (𝑘) def = [t] [t] (¬val H ∧ ¬val V) ⇒ c .
Notice that, in this formula, we use the fact that the t-node 𝑤 ′ ∈ 𝑅(𝑤) encoding (0, 0) is the only one, among the t-children of 𝑤, satisfying [t] (¬val H ∧ ¬val V). For the formula hor T T (𝑘), we essentially state that there cannot be two t-nodes 𝑤 1 , 𝑤 2 ∈ 𝑅(𝑤) such that 𝑤 2 encodes the position (𝐧 H (𝑤 1) + 1, 𝐧 V (𝑤 1)) and 𝑤 1 ∈ 𝑉 (c 1), 𝑤 2 ∈ 𝑉 (c 2) does not hold for any (c 1 , c 2) ∈ H . In formula:

hor T T (𝑘) def = ¬ ⊤ * fork 1 𝑘 (x, y) ∧ [y H = x+1] 𝑘 ∧ [x V = y] 𝑘 ∧ ¬ (c 1 ,c 2) ∈ H (@ 1 x c 1 ∧ @ 1 y c 2)
. Lastly, vert T T (𝑘) is defined as hor T T (𝑘), but replacing H by V and vice-versa: The proof can be found in Appendix H. It should be noticed that the reduction from tiling to Sat(ML(*)) we provided is (only) exponential in 𝑘. Therefore, with this last lemma at hand, we can finally conclude with the intended result in this section. Theorem 4.34. Sat(ML(*)) is Tower-complete.

vert T T (𝑘) def = ¬ ⊤ * fork 1 𝑘 (x, y) ∧ [y V = x+1] 𝑘 ∧ [x H = y] 𝑘 ∧ ¬ (c 1 ,c 2) ∈ V (@ 1 x c 1 ∧ @ 1 y c 2) .
Summing up, unlike ML() whose complexity is AExp Pol -complete (so, below ExpSpace), the satisfiability problem for ML(*) is Tower-complete, which does not correspond to an elementary class. However, as we will see in the next section, ML(*) is surprisingly strictly less expressive than ML(). Note also that related Tower-hard logics can be found in [START_REF] Mansutti | An Auxiliary Logic on Trees: on the Tower-Hardness of Logics Featuring Reachability and Submodel Reasoning[END_REF].

ML(*) STRICTLY LESS EXPRESSIVE THAN GML

Below, we study the expressivity of ML(*). We establish the inclusion ML(*) ⪯ GML (Section 5.1) and then prove its strictness (Section 5.2). The former result takes advantage of the notion of g-bisimulation, i.e. the underlying structural indistinguishability relation of GML, studied in [START_REF] De Rijke | A Note on Graded Modal Logic[END_REF]. This notion is instrumental in the proofs but for the sake of conciseness, the statements in the body of the paper are stated in terms of modal equivalence. To show ML(*) ≺ GML, we define an ad hoc notion of Ehrenfeucht-Fraïssé games for ML(*), see e.g. [START_REF] Libkin | Elements of Finite Model Theory[END_REF] for classical definitions and [START_REF] Calcagno | Adjunct elimination in Context Logic for trees[END_REF][START_REF] Dawar | Adjunct Elimination Through Games in Static Ambient Logic[END_REF] for similar approaches, and design a GML formula that cannot be expressed in ML(*).

ML(*) is at most as expressive as GML

To establish that ML(*) ⪯ GML, we proceed as in Section 3.2. In fact, by Lemma 2.2, given 𝜑 1 , 𝜑 2 in GML, the formula 𝜑 1 * 𝜑 2 is equivalent to (𝜑 1 𝜑 2). Moreover, we know that given 𝜑 1 , 𝜑 2 in GML, 𝜑 1 𝜑 2 is equivalent to some formula in GML, as shown in Section 3. So, to prove that ML(*) ⪯ GML by applying the proof schema of Theorem 3.7, it is sufficient to show that given 𝜑 in GML, there is 𝜓 in GML such that 𝜑 ≡ 𝜓 . To do so, we rely on the indistinguishability relation of GML, called g-bisimulation [START_REF] De Rijke | A Note on Graded Modal Logic[END_REF]. Proof. Let 𝜑 be in ML(*). As 3𝜓 ≡ 3 ≥1 𝜓 , we can replace every occurrence of the modality 3 appearing in 𝜑 with the modality 3 ≥1 . Moreover, by Lemma 2.2, we can replace every subformula of the form 𝜓 * 𝜒 with the formula (𝜓 𝜒). In this way, we obtain a formula 𝜑 ′ that is equivalent to 𝜑 and where all the modalities are of the form 3 ≥1 , and . If 𝜑 ′ has no occurrence of or , we are done. Otherwise, let 𝜓 be a subformula of 𝜑 ′ of the form (𝜑 1 𝜑 2) where 𝜑 1 and 𝜑 2 are in GML.

• By Theorem 3.7, there is a formula 𝜓 ′ in GML such that 𝜓 ′ ≡ 𝜑 1 𝜑 2 .

• By Lemma 5.2, there is a formula 𝜓 ′′ in GML such that 𝜓 ′′ ≡ 𝜓 ′ .

We have 𝜑 ′ ≡ 𝜑 ′ [𝜓 ← 𝜓 ′′], where 𝜑 ′ [𝜓 ← 𝜓 ′′] is obtained from 𝜑 ′ by replacing every occurrence of 𝜓 by 𝜓 ′′ . Note that the number of occurrences of and in 𝜑 ′ [𝜓 ← 𝜓 ′′] is strictly less than the number of occurrences of and in 𝜑 ′ . By repeating such a type of replacement, we eventually obtain a formula 𝜑 ′′ in GML such that 𝜑 ′ ≡ 𝜑 ′′ . Indeed, all the occurrences of and only appear as instances of the pattern (𝜓 𝜒). Hence, we get a formula in GML logically equivalent to 𝜑. □

Showing ML(*) ≺ GML with EF games for ML(*)

We tackle the problem of showing that ML(*) is strictly less expressive than GML. To do so, we adapt the notion of Ehrenfeucht-Fraïssé games (EF games, in short) [START_REF] Libkin | Elements of Finite Model Theory[END_REF] to ML(*), which gives us the corresponding structural equivalence between models that are logically indistinguishable. With this definition at hand, we design a GML formula that is not expressible in ML(*): we will find two models that are indistinguishable for ML(*) but distinguishable for GML . We write ML(*) [𝑚, 𝑠, P] for the set of formulae 𝜑 of ML(*) having md(𝜑) ≤ 𝑚, at most 𝑠 nested * , and atomic propositions from P ⊆ fin AP. It is easy to see that ML(*) [𝑚, 𝑠, P] is finite up to logical equivalence. We introduce the EF games for ML(*). A game is played between two players: the spoiler and the duplicator. A game state is a triple made of two pointed forests (𝔐, 𝑤) and (𝔐 ′ , 𝑤 ′) and a rank (𝑚, 𝑠, P), where 𝑚, 𝑠 ∈ N and P ⊆ fin AP. The goal of the spoiler is to show that the two models are different. The goal of the duplicator is to counter the spoiler and to show that the two models are similar. Two models are different whenever there is 𝜑 ∈ ML(*) [𝑚, 𝑠, P] that is satisfied by only one of the two models. The EF games for ML(*) are formally defined in Figure 5. The exact correspondence between the game and the logic is formalised in Lemma 5.4.

Using the standard definitions in [START_REF] Libkin | Elements of Finite Model Theory[END_REF], the duplicator has a winning strategy for the game ((𝔐, 𝑤), (𝔐 ′ , 𝑤 ′), (𝑚, 𝑠, P)) if she can play in a way that guarantees her to win regardless of how the spoiler plays. When this is the case, we write (𝔐, 𝑤) ≈ P 𝑚,𝑠 (𝔐 ′ , 𝑤 ′). Similarly, the spoiler has a winning strategy, written (𝔐, 𝑤) P 𝑚,𝑠 (𝔐 ′ , 𝑤 ′), if he can play in a way that guarantees him to win, regardless of how the duplicator plays. Lemma 5.4 guarantees that the games are well-defined. Lemma 5.4 is proven with standard arguments from [START_REF] Libkin | Elements of Finite Model Theory[END_REF] (see the details in [9, Page 46]). For instance the left-to-right direction, i.e. the completeness of the game, is by induction on the rank (𝑚, 𝑠, P). Thanks to the EF games, we characterise a notion of model equivalence for ML(*). Then, by designing a formula 𝜑 that distinguishes two ML(*) equivalent models, we are able to find a GML formula that is not expressible in ML(*). By Lemma 2.1 and as ML() ≈ GML, such a formula is necessary of modal degree at least 2. Happily, 𝜑 = 3 =2 3 =1 ⊤ does the job and cannot be expressed in ML(*). For the proof, we show that for every rank (𝑚, 𝑠, P), there are two structures (𝔐, 𝑤) and (𝔐 ′ , 𝑤 ′) such that (𝔐, 𝑤) ≈ P 𝑚,𝑠 (𝔐 ′ , 𝑤 ′), 𝔐, 𝑤 |= 𝜑 and 𝔐 ′ , 𝑤 ′ ̸ |= 𝜑. The inexpressibility of 𝜑 then stems from Lemma 5.4. The two structures are represented below ((𝔐, 𝑤) on the left). 𝑤

≥ 2 𝑠 + 1 ≥ 2 𝑠 -1 (𝑠 + 1) (𝑠 + 2) + 1 ≈ P 𝑚,𝑠 𝑤 ′ ≥ 2 𝑠 + 1 ≥ 2 𝑠 -1 (𝑠 + 1) (𝑠 + 2) + 1
In the following, we say that a world has type 𝑖 if it has 𝑖 children. As one can see in the figure above, children of the current worlds 𝑤 and 𝑤 ′ are of three types: 0, 1 or 2. When the spoiler performs a spatial move in the game, a world of type 𝑖 can take, in the submodels, a type between 0 and 𝑖. That is, the number of children of a world weakly monotonically decreases when taking submodels. This monotonicity, together with the finiteness of the game, lead to bounds on the number of children of each type, over which the duplicator is guaranteed to win. For instance, the bound for worlds of type 2 is given by the value 2 𝑠 (𝑠 + 1) (𝑠 + 2), where 𝑠 is the number of spatial moves in the game. In the two presented pointed forests, one child of type 0 and one of type 2 are added with respect to these bounds, so that the duplicator can make up for the different numbers of children of type 1. Lemma 5.5. ML(*) cannot characterise the class of pointed models satisfying 3 =2 3 =1 ⊤.

Proof. (sketch) As usual, the non-expressivity of 3 =2 3 =1 ⊤ is shown by proving that for every rank (𝑚, 𝑠, P) there are two structures (𝔐, 𝑤) and (𝔐 ′ , 𝑤 ′) such that (𝔐, 𝑤) ≈ P 𝑚,𝑠 (𝔐 ′ , 𝑤 ′), and

𝔐, 𝑤 |= 3 =2 3 =1 ⊤ whereas 𝔐 ′ , 𝑤 ′ ̸ |= 3 =2 3 =1 ⊤.
The proof follows by establishing two properties of ≈ P 𝑚,𝑠 , named below (A) and (B). We start with some preliminary definitions. Let 𝔐 = (𝑊 , 𝑅, 𝑉) be a finite forest and 𝑤 ∈ 𝑊 . We denote with 𝑅(𝑤) =𝑖 the set of worlds in 𝑅(𝑤) having type 𝑖, i.e.

𝑅 (𝑤) =0 𝑅 (𝑤) =1 𝑅 (𝑤) =2
The first property of ≈ P 𝑚,𝑠 is presented below (see its proof in Appendix L). Property (A). Consider a rank (𝑚, 𝑠, P) and let (𝔐 = (𝑊 , 𝑅, 𝑉), 𝑤) and (𝔐 ′ = (𝑊 ′ , 𝑅 ′ , 𝑉 ′), 𝑤 ′) be two pointed forests satisfying I, II and III and such that

• min(|𝑅(𝑤) =0 |, 2 𝑠) = min(|𝑅 ′ (𝑤 ′) =0 |, 2 𝑠); • min(|𝑅(𝑤) =1 |, 2 𝑠 (𝑠 + 1)) = min(|𝑅 ′ (𝑤 ′) =1 |, 2 𝑠 (𝑠 + 1)); and • min(|𝑅(𝑤) =2 |, 2 𝑠 -1 (𝑠 + 1) (𝑠 + 2)) = min(|𝑅 ′ (𝑤 ′) =2 |, 2 𝑠 -1 (𝑠 + 1) (𝑠 + 2)).
Then, (𝔐, 𝑤) ≈ P 𝑚,𝑠 (𝔐 ′ , 𝑤 ′). As worlds in our models do not satisfy any propositional symbol, the spoiler cannot win because of distinct propositional valuations. The proof is by cases on 𝑚 and on the moves done by the spoiler, and by induction on 𝑠. The only significant case to be dealt with corresponds to the case 𝑠 ≥ 1 and the spoiler decides to perform a spatial move.

By relying on (A), the second property (B) can be established (see its proof in Appendix M).

Property (B). Consider a rank (𝑚, 𝑠, P) and let (𝔐 = (𝑊 , 𝑅, 𝑉), 𝑤) and (𝔐 ′ = (𝑊 ′ , 𝑅 ′ , 𝑉 ′), 𝑤 ′) be two pointed forests satisfying I, II and III and such that

• |𝑅(𝑤) =0 | ≥ 2 𝑠 + 1 and |𝑅 ′ (𝑤 ′) =0 | ≥ 2 𝑠 + 1; • |𝑅(𝑤) =1 | = 2 and |𝑅 ′ (𝑤 ′) =1 | = 1; and • |𝑅(𝑤) =2 | ≥ 2 𝑠 -1 (𝑠 + 1) (𝑠 + 2) + 1 and |𝑅 ′ (𝑤 ′) =2 | ≥ 2 𝑠 -1 (𝑠 + 1) (𝑠 + 2) + 1.
Then, (𝔐, 𝑤) ≈ P 𝑚,𝑠 (𝔐 ′ , 𝑤 ′). Obviously, (A) and (B) are quite close. The first condition of (B) satisfies the first condition of (A). Similarly, the third condition of (B) satisfies the third condition of (A). However, the second condition of (B) does not satisfy the second condition of (A) and this is the crucial difference.

It is also worth noticing that (B) implies the statement of the lemma, as 𝔐, 𝑤 |= 3 =2 3 =1 ⊤ whereas 𝔐 ′ , 𝑤 ′ ̸ |= 3 =2 3 =1 ⊤. Indeed, ad absurdum suppose that such an ML(*) formula 𝜑 exists. Let 𝑚 be its modal degree, 𝑠 be its maximal number of imbricated * and P be the set of propositional variables occurring in 𝜑. Let us consider two pointed forests (𝔐 1 , 𝑤 1) and

(𝔐 2 , 𝑤 2) such that 𝔐 1 , 𝑤 1 |= 3 =2 3 =1 ⊤, 𝔐 2 , 𝑤 2 ̸ |= 3 =2 3 =1 ⊤
and satisfying the conditions in (B). This would lead to a contradiction, as (𝔐 1 , 𝑤 1) and (𝔐 2 , 𝑤 2) are supposed to satisfy 𝜑 (or not) equivalently. □

We conclude by noticing that ML(*) is more expressive than ML. Indeed, the formula 3⊤ * 3⊤ distinguishes the following two models, which are bisimilar (as the valuations at every world are empty) and hence indistinguishable in ML [53]: Theorem 5.6. ML ≺ ML(*) ≺ GML ≈ ML().

Proof. By ML(*) ⪯ GML, Lemma 5. [START_REF] Ph | Knowable' as 'known after an announcement[END_REF]

• 𝑇 0 ≡ 𝑇 • 𝑇 1 ≡ 𝑇 2 ⇒ 𝑇 2 ≡ 𝑇 1 • 𝑇 1 ≡ 𝑇 2 , 𝑇 2 ≡ 𝑇 3 ⇒ 𝑇 1 ≡ 𝑇 3 • 𝑇 1 𝑇 2 ≡ 𝑇 2 𝑇 1 • (𝑇 1 𝑇 2) 𝑇 3 ≡ 𝑇 1 (𝑇 2 𝑇 3) • 𝑇 1 ≡ 𝑇 2 ⇒ 𝑇 1 𝑇 ≡ 𝑇 2 𝑇 • 𝑇 1 ≡ 𝑇 2 ⇒ n[𝑇 1] ≡ n[𝑇 2]
Fig. 6. Interpretation and semantics of SAL().

ML() AND STATIC AMBIENT LOGIC

Static ambient logic (SAL) is a formalism proposed to reason about spatial properties of concurrent processes specified in the ambient calculus [START_REF] Cardelli | Formal Methods for Distributed Processing[END_REF]. In [START_REF] Calcagno | Deciding validity in a spatial logic for trees[END_REF], the satisfiability and validity problems for a very expressive fragment of SAL are shown to be decidable and conjectured to be in PSpace (see [START_REF] Calcagno | Deciding validity in a spatial logic for trees[END_REF]Section 6]). We invalidate this conjecture (under standard complexity-theoretic assumptions) by showing that the intensional fragment of SAL (see [START_REF] Lozes | Adjuncts elimination in the static ambient logic[END_REF]), herein denoted SAL(), is already AExp Polcomplete. More precisely, we design semantically faithful reductions between Sat(ML()) and Sat(SAL()) (in both directions), leading to the above-mentioned result by Theorem 3.12. In [START_REF] Bednarczyk | Modal Logics with Composition on Finite Forests: Expressivity and Complexity[END_REF], these results are shown with respect to Kripke-like structures that can be shown isomorphic to the syntactical trees historically used in ambient calculus. Here, we provide the reductions directly on these syntactical trees. Let us start by introducing SAL(). This correspondence between SAL() and ML() is rather intuitive but a presentation of the complete formal developments could be too long to be included herein due to space restrictions. However, the proofs can be found in the preliminary report [START_REF] Bednarczyk | Modal Logics with Composition on Finite Forests: Expressivity and Complexity (Extra Material)[END_REF] (the complete version of [START_REF] Bednarczyk | Modal Logics with Composition on Finite Forests: Expressivity and Complexity[END_REF] with its proofs) and in Mansutti's PhD thesis [START_REF] Mansutti | Reasoning with Separation Logics: Complexity, Expressive Power, Proof Systems[END_REF].

Let Σ be a countably infinite set of ambient names. The formulae of SAL() are built from:

𝜑 := ⊤ | 0 | n[𝜑] | 𝜑 ∧ 𝜑 | ¬𝜑 | 𝜑 𝜑,
where n ∈ Σ. SAL() is interpreted on edge-labelled finite trees: syntactical objects equipped with a structural equivalence relation ≡. We denote with T SAL the set of these finite trees. The grammar used to construct these structures, their structural equivalence as well as the satisfaction relation |= for SAL() are provided in Figure 6 (the cases for ∧ and ¬ being omitted). We will also use 𝑖 ∈𝐼 𝑇 𝑖 , for a given set of indices 𝐼 = {𝑖 1 , . . . , 𝑖 𝑚 }, as an abbreviation of 𝑇 𝑖 1 𝑇 𝑖 2 . . . 𝑇 𝑖 𝑚 .

Obviously SAL() and ML() are strongly related, but how close? For example, n[𝜑] ⊤ can be seen as a relativised version of 3 of the form 3(n ∧ 𝜑). To formalise this intuition, we borrow the syntax from Hennesy-Milner logic (HML) [START_REF] Hennessy | On Observing Nondeterminism and Concurrency[END_REF] and define the formula ⟨n⟩𝜑 def = n[𝜑] ⊤ and its dual [n]𝜑 def = ¬⟨n⟩¬𝜑. Below, w.l.o.g. we assume Σ = AP (for the sake of clarity).

From Sat(SAL()) to Sat(ML()).

The reduction from Sat(SAL()) to Sat(ML()) is quite simple as SAL() is essentially interpreted on finite trees where each world satisfies a single propositional variable (its ambient name). Let 𝑇 ∈ T SAL be a tree built with ambient names from P⊆ fin AP, 𝔐 = (𝑊 , 𝑅, 𝑉) be a finite forest and 𝑤 ∈ 𝑊 . We say that (𝔐, 𝑤) encodes 𝑇 if and only if:

(1) every 𝑤 ′ ∈ 𝑅 * (𝑤) satisfies at most one symbol in P;

(2) there is 𝔣 : 𝑊 → T SAL such that 𝔣(𝑤) ≡ 𝑇 and for all 𝑤 ′ ∈ 𝑅 * (𝑤), we have 𝔣(𝑤 ′) ≡ 𝐾 𝑖=1 n 𝑖 [𝔣(𝑤 𝑖)] where {𝑤 1 , . . . , 𝑤 𝐾 } = 𝑅(𝑤 ′) and 𝑤 𝑖 ∈ 𝑉 (n 𝑖) for all 1 ≤ 𝑖 ≤ 𝐾. It is easy to verify that every tree in T SAL has an encoding. The figure just below depicts a tree 𝑇 (on the left) and one of its possible encodings as a finite forest (on the right).

0 0 n 1 n 2 n 3 n 4 n 1 n 2 n 3 n 4
Given a formula 𝜑 of SAL(), we define its translation 𝜏 (𝜑) in ML(). The translation 𝜏 is homomorphic for Boolean connectives and ⊤, and otherwise it is inductively defined as follows:

𝜏 (0) def = 2⊥; 𝜏 (𝜑 𝜓) def = 𝜏 (𝜑) 𝜏 (𝜓); 𝜏 (n[𝜑]) def = 3(n ∧ 𝜏 (𝜑)) ∧ ¬(3⊤ 3⊤).
The following lemma states that the translation is correct. The proof can be achieved with an easy structural induction and therefore we omit it herein. So, we can complete the reduction. Theorem 6.2. Let 𝜑 be in SAL() built over P ⊆ fin AP and 𝑝 ∉ P. 𝜑 is satisfiable if and only if

𝜏 (𝜑) ∧ 𝑖 ∈ [1,size(𝜑)] 2 𝑖 n∈P∪{𝑝 } n ∧ m∈ (P∪{𝑝 }
)\{n} ¬m is satisfiable. Proof. Suppose 𝜑 satisfiable. Then, there is 𝑇 such that 𝑇 |= 𝜑. In general, it could be that 𝑇 contains ambient names that do not appear in 𝜑. However, we can assume that there is only one name in 𝑇 that does not appear in 𝜑 and that name is 𝑝 (as in the statement of this theorem). Indeed, this assumption relies on the following property of static ambient logic. Lemma 6.3 ([14], Lemma 8). Let 𝑝 and 𝑞 be two ambient names not appearing in 𝜑. Then, 𝑇 |= 𝜑 iff 𝑇 [𝑝 ← 𝑞] |= 𝜑, where 𝑇 [𝑝 ← 𝑞] is the tree obtained from 𝑇 by replacing every occurrence of 𝑝 with 𝑞.

Let (𝔐, 𝑤) be a pointed forest, where 𝔐 = (𝑊 , 𝑅, 𝑉), encoding of 𝑇 (it always exists). From Lemma 6.1, 𝔐, 𝑤 |= 𝜏 (𝜑). Let us recall the properties of the encoding of 𝑇 by a model (𝔐, 𝑤):

(1) every world in 𝑊 satisfies at most one propositional symbol in P;

(2) there is a function 𝔣 from 𝑊 to T SAL such that 𝔣(𝑤) ≡ 𝑇 and for every 𝑤 ′ ∈ 𝑅 * (𝑤), we have

𝔣(𝑤 ′) ≡ 𝑖 ∈ [1,𝐾] n 𝑖 [𝔣(𝑤 𝑖)]
where {𝑤 1 , . . . , 𝑤 𝐾 } = 𝑅(𝑤 ′) and for all 𝑖 ∈ [1, 𝐾], 𝑤 𝑖 ∈ 𝑉 (n 𝑖). The first property together with the last part of the second property imply that every world reachable in at least one step from 𝑤 satisfies exactly one propositional symbol of P. Then,

𝔐, 𝑤 |= size(𝜑) 𝑖=1 2 𝑖 n∈P∪{𝑝 } n ∧ m∈ (P∪{𝑝 })\{n} ¬m . Conversely, suppose 𝜓 = 𝜏 (𝜑) ∧ size(𝜑) 𝑖=1 2 𝑖 n∈P∪{𝑝 } n ∧ m∈ (P∪{𝑝 })\{n} ¬m satisfiable.
To prove the result it is sufficient to show that there is a pair (𝔐, 𝑤) encoding a tree 𝑇 that satisfies 𝜓 . Indeed, if this is the case then by 𝔐, 𝑤 |= 𝜏 (𝜑) we obtain 𝑇 |= 𝜑 by Lemma 6.1. As 𝜓 is satisfiable, we know that there is a forest 𝔐 = (𝑊 , 𝑅, 𝑉) and a world 𝑤 ∈ 𝑊 such that 𝔐, 𝑤 |= 𝜓 . It is important to notice that, as in Theorem 6.5, we can get rid of all the parts beyond md(𝜑), so we can ensure that as 𝔐, 𝑤 |= 𝜓 , then it is an encoding of some 𝑇 , and therefore, 𝑇 |= 𝜑. □ 6.2 From Sat(ML()) to Sat(SAL()).

One of the main challenges in order to obtain a polynomial-time reduction from Sat(ML()) to Sat(SAL()), is to understand how to encode a finite set of propositional symbols. This problem arises since Kripke-style finite forests can satisfy multiple atomic propositions at each world, whereas each ambient of an information tree only satisfies exactly one atomic proposition: its ambient name. To solve this, it is crucial to deal with two issues: we need to avoid an exponential blow up in the representation, and we have to maintain information about the children of a node.

We solve both issues by representing a propositional symbol 𝑝 as a particular ambient, and copying enough times the ambient encoding 𝑝. Let P ⊆ fin AP and 𝑛 ∈ N >0 , where N >0 denotes the set of positive natural numbers. Let 𝔐 = (𝑊 , 𝑅, 𝑉) be a finite forest and 𝑤 ∈ 𝑊 . Let rel and ap be two ambient names not in P. The ambient name rel encodes the relation 𝑅 whereas ap can be seen as a container for propositional variables holding on the current world. We say that 𝑇 ∈ T SAL is an encoding of (𝔐, 𝑤) with respect to P and 𝑛 if and only if (1) every ambient name in 𝑇 is from P ∪ {rel, ap};

(2) there is a function 𝔣 from 𝑊 to T SAL s.t. 𝔣(𝑤) ≡ 𝑇 and for each 𝑤 ′ ∈ 𝑅 * (𝑤) there is 𝑚 ≥ 𝑛 s.t.

𝔣(𝑤

′) ≡ 𝑚 ∑︁ 𝑖=1 ap[∑︁ 𝑝 ∈P 𝑤 ′ ∈𝑉 (𝑝) 𝑝 [0]] ∑︁ 𝑤 ′′ ∈𝑅 (𝑤 ′) rel[𝔣(𝑤 ′′)].
The figure below shows on the right a possible encoding of the model on the left.

𝑤 {𝑝 1 , . . . , 𝑝 𝑙 } 𝑤 1 . . . 𝑤 𝑘 𝔣(𝑤) 𝔣(𝑤 𝑘) 0 0 0 0 . . . 𝑚 . . . times 𝔣(𝑤 1) ap a p 𝑝 1 𝑝 1 𝑝 𝑙 𝑝 𝑙 r e l r e l
It is easy to verify that (𝔐, 𝑤) always admits such an encoding. We define the translation of 𝜑, written 𝜏 (𝜑), into SAL(). It is homomorphic for Boolean connectives and ⊤, 𝜏 (𝑝) def = ⟨ap⟩⟨p⟩⊤ and otherwise it is inductively defined (using the notation from HML):

𝜏 (3𝜑) def = ⟨rel⟩𝜏 (𝜑);
𝜏 (𝜑 𝜓) def = 𝜏 (𝜑) ∧ ⟨ap⟩ ≥size(𝜑) ⊤ 𝜏 (𝜓) ∧ ⟨ap⟩ ≥size(𝜓) ⊤ , where ⟨n⟩ ≥𝑘 𝜑 is the graded modality defined as ⊤ for 𝑘 = 0, otherwise (⟨n⟩𝜑) ⟨n⟩ ≥𝑘 -1 𝜑. In the translation of , the model of SAL() has to be split in such a way that both subtrees contain enough ap ambients to correctly answer to the formula ⟨ap⟩⟨p⟩⊤. It is easy to see that the size of 𝜏 (𝜑) is quadratic in size(𝜑). Lemma 6.4. Let 𝔐 be a finite forest and 𝑤 be one of its worlds. Let P ⊆ fin AP and 𝑛 ∈ N >0 . Let 𝑇 be an encoding of (𝔐, 𝑤) w.r.t P and 𝑛. For every formula 𝜑 built over P with size(𝜑) ≤ 𝑛, we have 𝔐, 𝑤 |= 𝜑 if and only if 𝑇 |= 𝜏 (𝜑).

The proof is by structural induction on 𝜑 and it is quite straightforward. Then, with this result at hand, we can state the intended result. Theorem 6.5. Let 𝜑 be in ML() built over P. Then 𝜑 is satisfiable iff 𝜓 below is satisfiable:

𝜓 def = 𝜏 (𝜑) ∧ size(𝜑) 𝑖=0 [rel] 𝑖 ⟨ap⟩ ≥size(𝜑) ⊤ ∧ 𝑝 ∈P ⟨ap⟩⟨p⟩⊤ ⇒ [ap] ⟨p⟩⊤ ∧ [ap] ∑︁ 𝑝 ∈P (𝑝 [0] ∨ 0) .
As a corollary of the reductions we provided in this section, and appealing to Theorem 3.12, we can establish the following complexity results. Corollary 6.6. Sat(SAL()) is AExp Pol -complete. Sat(SAL) with SAL from [START_REF] Calcagno | Deciding validity in a spatial logic for trees[END_REF] is AExp Pol -hard.

ML(*) AND MODAL SEPARATION LOGIC

The family of modal separation logics (MSL), combining separating and modal connectives, has been recently introduced in [START_REF] Demri | The power of modal separation logics[END_REF]. Its models, inspired from the memory states used in separation , Vol. 1, No. 1, Article . Publication date: November 2023. logic (see also [START_REF] Courtault | A modal separation logic for resource dynamics[END_REF]), are Kripke-style structures 𝔐 = (𝑊 , 𝑅, 𝑉), where 𝑊 = N and 𝑅 ⊆ 𝑊 × 𝑊 is finite and functional. Hence, unlike finite forests, 𝔐 may have loops.

Among the fragments studied in [START_REF] Demri | The power of modal separation logics[END_REF], the modal separation logic MSL (* , 3 -1) was left with a huge complexity gap: between PSpace-hardness and a Tower upper bound. We fill this gap, by showing that the logic is Tower-hard, by reducing Sat(ML(*)) to Sat(MSL (* , 3 -1)). Full details of the reduction can be found in [START_REF] Mansutti | Reasoning with Separation Logics: Complexity, Expressive Power, Proof Systems[END_REF]Section 9.4.2].

Formulae of MSL (* , 3 -1) are defined from

𝜑 := 𝑝 | 3 -1 𝜑 | 𝜑 ∧ 𝜑 | ¬𝜑 | 𝜑 * 𝜑 . The satisfaction relation is as in ML(*) for 𝑝 ∈ AP, Boolean connectives and 𝜑 1 * 𝜑 2 , otherwise 𝔐, 𝑤 |= 3 -1 𝜑 ⇔ ∃𝑤 ′ s.t. (𝑤 ′ , 𝑤) ∈ 𝑅 and 𝔐, 𝑤 ′ |= 𝜑.
Since MSL (* , 3 -1) is interpreted over a finite and functional relation, 3 -1 effectively works as the 3 modality of ML(*). Then, assume we want to check the satisfiability of 𝜑 in ML(*) by relying on an algorithm for Sat(MSL (* , 3 -1)). We simply need to consider the formula 𝜑 [3 ← 3 -1] obtained from 𝜑 by replacing every occurrence of 3 by 3 -1 , and check if it can be satisfied by a locally acyclic model (𝔐, 𝑤) of MSL, i.e. one where 𝑤 does not belong to a loop of length ≤ md(𝜑). Notice that given a finite forest (𝑊 , 𝑅, 𝑉), the structure (𝑊 , 𝑅 -1 , 𝑉) is locally acyclic. The next lemma establishes the correspondence between the satisfaction of a formula in a model, in the two logics.

Lemma 7.1. Let 𝜑 in ML(*). Let (𝑊 , 𝑅, 𝑉) be a finite forest and 𝑤 ∈ 𝑊 . Then, (𝑊 , 𝑅, 𝑉

), 𝑤 |= 𝜑 in ML(*) if and only if (𝑊 , 𝑅 -1 , 𝑉), 𝑤 |= 𝜑 [3 ← 3 -1] in MSL (* , 3 -1).
Proof. The result is proven with a rather straightforward structural induction on 𝜑. □

In order to provide a complete reduction from Sat(ML(*)) to Sat(MSL (* , 3 -1)), we need to make sure that the formulae are being checked against the appropriate class of models. Notice that in ML(*), only the worlds that are reachable from the current one in at most md(𝜑) steps are relevant for the satisfiability of 𝜑 (see Lemma A.1 in Appendix A). Thus, for a given formula 𝜑, we can restrict ourselves to the class of MSL models in which the current point of evaluation is not reachable by any world in more than md(𝜑) + 1 steps. The formula doing the job is (2 -1) md(𝜑) ⊥, where 2 -1 𝜑 def = ¬3 -1 ¬𝜑, and (2 -1) 𝑛 𝜑 with 𝑛 ∈ N is defined as expected. Then, we can conclude:

Lemma 7.2. Let 𝜑 in ML(*), 𝜑 is satisfiable in ML(*) if and only if 𝜑 [3 ← 3 -1] ∧ (2 -1) md(𝜑) ⊥ is satisfiable in MSL (* , 3 -1).
Proof. The proof is rather straightforward, relying on Lemma 7.1. □

Hence, the results in Section 4 allow us to close the complexity gap from [START_REF] Demri | The power of modal separation logics[END_REF].

Corollary 7.3. Sat(MSL (* , 3 -1)) is Tower-complete.

CONCLUSION

We have studied and compared the logics ML() and ML(*), two modal logics interpreted on finite forests and featuring composition operators. We have not only characterised the expressive power and the complexity for both logics, but also identified remarkable differences and export our results to other logics. ML() is shown as expressive as GML, and its satisfiability problem is found to be AExp Pol -complete. Besides the obvious similarities between ML() and ML(*), these results are counter-intuitive: though the logic ML(*) is strictly less expressive than GML (and consequently, than ML()), Sat(ML(*)) is Tower-complete. Our proof techniques go beyond what is known in the literature. For instance, to design the Tower-hardness proof we needed substantial modifications from the proof introduced in [START_REF] Bednarczyk | Why Propositional Quantification Makes Modal Logics on Trees Robustly Hard?[END_REF] for QK 𝑡 . On the other hand, to show the expressivity inclusion of ML(*) within GML, we provided a novel definition of Ehrenfeucht-Fraïssé games for ML(*).

Lastly, our framework led to the characterisation of the satisfiability problems for two sister logics . We proved that the satisfiability problem for the modal separation logic MSL (* , 3 -1) is Tower-complete [START_REF] Demri | The power of modal separation logics[END_REF]. Moreover, the satisfiability problem for the static ambient logic SAL() is AExp Pol -complete, solving open problems from [START_REF] Calcagno | Deciding validity in a spatial logic for trees[END_REF][START_REF] Demri | The power of modal separation logics[END_REF] and paving the way to study the complexity of the full SAL. Proof. We start the proof by stating a classical property of ML and GML which carries over to ML(*) and ML(). Let 𝔐 = (𝑊 , 𝑅, 𝑉) be a finite forest and 𝑤 ∈ 𝑊 . We introduce the notation

ELECTRONIC APPENDIX (ON COMPOSING FINITE FORESTS WITH MODAL LOGICS)

𝑅| ≤𝑛 𝑤 def = {(𝑤 ′ , 𝑤 ′′) ∈ 𝑅 | 𝑤 ′ ∈ 𝑅 𝑖 (𝑤) for some 𝑖 ∈ [0, 𝑛 -1]}.
Informally, 𝑅| ≤𝑛 𝑤 is the maximal subset of 𝑅 encoding exactly a subtree rooted at 𝑤 having only paths of length at most 𝑛. We denote with 𝑅| 𝑤 the set {(𝑤 ′ , 𝑤 ′′) ∈ 𝑅 | 𝑤 ′ ⊆ 𝑅 * (𝑤)}, i.e. the maximal subset of 𝑅 encoding exactly a subtree rooted at 𝑤. Alternatively, 𝑅| 𝑤 = 𝑛∈N 𝑅| ≤𝑛 𝑤 . Lemma A.1. Let 𝑛 ∈ N and 𝜑 be a formula of ML() or ML(*) such that md(𝜑) ≤ 𝑛. Let 𝔐 = (𝑊 , 𝑅, 𝑉) be a finite forest and 𝑤 ∈ 𝑊 . 𝔐, 𝑤 |= 𝜑 if and only if (𝑊 , 𝑅| ≤𝑛 𝑤 , 𝑉), 𝑤 |= 𝜑. The proof is by structural induction on 𝜑. Details are omitted as this poses no difficulty. Now, let 𝔐 = (𝑊 , 𝑅, 𝑉) be a finite forest and 𝑤 ∈ 𝑊 . Notice that if md(𝜑) is at most 1, by Lemma A.1 the satisfaction of 𝜑 only depends on the set of worlds {𝑤 } ∪ 𝑅(𝑤). More precisely, 𝔐, 𝑤 |= 𝜑 iff (𝑊 , 𝑅| ≤1 𝑤 , 𝑉), 𝑤 |= 𝜑. The same holds for formulae in ML(*). Similarly, 𝜓 def = 𝜑 [← *] (as in the statement) has modal degree at most 1 and again by Lemma A.1 we have 𝔐, 𝑤 |= 𝜓 iff (𝑊 , 𝑅| ≤1 𝑤 , 𝑉), 𝑤 |= 𝜓 . To conclude the proof it is sufficient then to prove the following: (𝑊 , 𝑅| ≤1 𝑤 , 𝑉), 𝑤 |= 𝜑 if and only if (𝑊 , 𝑅| ≤1 𝑤 , 𝑉), 𝑤 |= 𝜓 . Notice that this result already trivially holds for md(𝜑) = 0. Indeed, in this case the satisfaction of 𝜑 and 𝜓 only depends on the satisfaction of propositional variables on the current world 𝑤 and therefore not at all on the accessibility relation. Instead, the proof for md(𝜑) = 1 boils down to the proof of the equivalence (𝑊 , 𝑅| ≤1 𝑤 , 𝑉), 𝑤 |= 𝜑 1 𝜑 2 if and only if (𝑊 , 𝑅| ≤1 𝑤 , 𝑉), 𝑤 |= 𝜑 1 * 𝜑 2 . depicted as follows. The statements below are equivalent. The second condition can be restated as follows: whenever a child of 𝑤 satisfies a valuation with respect to P and belongs to (𝑘 ∈𝑋 𝑉 (𝑞 𝑘)), then the valuation is satisfied in a child of 𝑤 satisfying 𝑞 𝑘 for all 𝑘 ∈ 𝑋 . We recall that cp(𝑋) is defined as follows.

• (𝑊 , 𝑅| ≤1 𝑤 , 𝑉), 𝑤 |= 𝜑 1 𝜑 2 • there are 𝔐 1 = (𝑊 , 𝑅 1 , 𝑉) and 𝔐 2 = (𝑊 , 𝑅 2 , 𝑉) s.t. 𝔐 1 + 𝑤 𝔐 2 = (𝑊 , 𝑅| ≤1 𝑤 , 𝑉), 𝔐 1 , 𝑤 |= 𝜑 1 and 𝔐 2 , 𝑤 |= 𝜑 2 (by definition of |=) • there are disjoint 𝑅 1 and 𝑅 2 such that 𝑅 1 ∪𝑅 2 = 𝑅| ≤1 𝑤 , (𝑊 , 𝑅 1 , 𝑉), 𝑤 |= 𝜑 1 and (𝑊 , 𝑅 2 , 𝑉), 𝑤 |= 𝜑 2 (by definition of + 𝑤 , as 𝑅| ≤1 𝑤 = {𝑤 } × 𝑅(𝑤)) • there are 𝔐 1 = (𝑊 , 𝑅 1 , 𝑉) and 𝔐 2 = (𝑊 , 𝑅 2 , 𝑉) such that 𝔐 1 + 𝔐 2 = (𝑊 , 𝑅| ≤1 𝑤 , 𝑉), 𝔐 1 , 𝑤 |= 𝜑
𝑅 ′ 1 def = 𝑅 1 ∪ {(𝑤 ′ , 𝑤 ′′) ∈ 𝑅 | 𝑤 ′ ∉ 𝑅 * 1 (𝑤)} 𝑅 ′ 2 def = 𝑅 2 ∪ (𝑅 \ 𝑅 ′ 1) By definition, it is easy to see that 𝑅 ′ 1 | 𝑤 = 𝑅 1 | 𝑤 and 𝑅 ′ 2 | 𝑤 = 𝑅 2 | 𝑤 . Moreover, 𝑅 ′ 1 ∩ 𝑅 ′ 2 = ∅ and 𝑅 ′ 1 ∪ 𝑅 ′ 2 = 𝑅.
𝑘≠𝑘 ′ ∈𝑋 ¬ 2𝑞 𝑘 (3 =1 𝑞 𝑘 ∧ ¬(⊤ 3 =1 𝑞 𝑘 ∧ 3 =1 𝑞 𝑘 ′ ∧ 𝑗 ∈ [1,𝑚] 3𝑝 𝑗 ⇒ 2𝑝 𝑗)) .
Proof. In order to show the main equivalence of the statement, we proceed by showing intermediate properties for subformulae of cp(𝑋). Actually, we shall state the properties, assuming that their proof are by an easy verification. In what follows, we always assume that (𝔐, 𝑤) be a pointed forest such that 𝔐, 𝑤 |= uni(Q).

(unicity) The first property is related to the formula uni(Q

) def = 2(𝑖≠𝑖 ′ ∈ [1,𝑛+1] ¬(𝑞 𝑖 ∧ 𝑞 𝑖 ′) ∧ 𝑖 ∈ [1,𝑛+1] 𝑞 𝑖),
= {0} ∪ [1, 𝐾] × [1, 𝑛 + 1], 𝑅 = {(0, (𝑖, 𝑗)) | (𝑖, 𝑗) ∈ [1, 𝐾] × [1, 𝑛 + 1]}, and 𝑉 is a valuation such that, • 𝑉 (𝑞 𝑗) = [1, 𝐾] × { 𝑗 } for all 𝑗 ∈ [1, 𝑛 + 1], • 𝑉 (𝑝 𝑠) = {(𝑖, 𝑗) | 𝔳 𝑖 (𝑝 𝑠) = ⊤} for all 𝑠 ∈ [1, 𝑚]. One can show that 𝔐, 𝑤 |= uni(Q) ∧ cp([1, 𝑛 + 1]) and 𝔐, 𝑤 ≡ [1,𝑛+1] P 𝔗. As w ∨ (𝜑) = | [1, 𝑛 + 1] | -1 (= 𝑛), by Lemma C.2, we have 𝔐, 𝑤 |= 𝜏 (𝜑, [1, 𝑛 + 1]). Conversely, suppose that uni(Q) ∧ cp([1, 𝑛 + 1]) ∧ 𝜏 (𝜑, [1, 𝑛 + 1]
) is satisfiable, meaning that there is a pointed forest (𝔐, 𝑤) satisfying it with 𝔐 = (𝑊 , 𝑅, 𝑉). We define the team 𝔗 such that for all valuations 𝔳 built over P, 𝔳 belongs to 𝔗 iff there is 𝑤 ′ ∈ 𝑅(𝑤) such that 𝔐, 𝑤 ′ |= 𝑞 𝑘 for some 𝑘 ∈ [1, 𝑛 + 1] and 𝔐, 𝑤 ′ |= 𝔳. Again, one can check that 𝔐, 𝑤 ≡ [1,𝑛+1] P 𝔗 (here we use the fact the 𝔐, 𝑤 |= uni(Q) ∧ cp([1, 𝑛 + 1])) and by Lemma C.

¬ ⊤ * fork 𝑖+1 𝑗 (x, y) ∧ @ 𝑖 ax ⟨t⟩(3l ∧ 3x) ∧ @ 𝑖 bx ⟨t⟩(3l ∧ 3y) ∧ [x = y] 𝑖+1 𝑗 ∧¬(@ 𝑖+1 x val ⇔ @ 𝑖+1 y val) .
Notice also that by definition of the satisfaction relation |=, we have that 𝔐, 𝑤 |= L 𝑖 𝑗 (ax, bx) if and only if for all 𝔐 ′ = (𝑊 , 𝑅 1 , 𝑉) such that 𝔐 ′ ⊑ 𝔐, we have

𝔐 ′ , 𝑤 |= (fork 𝑖+1 𝑗 (x, y) ∧ @ 𝑖 ax ⟨t⟩(3l ∧ 3x) ∧ @ 𝑖 bx ⟨t⟩(3l ∧ 3y) ∧ [x = y] 𝑖+1 𝑗) ⇒ (@ 𝑖+1
x val ⇔ @ 𝑖+1 y val) (⇒): Suppose 𝔐, 𝑤 |= L 𝑖 𝑗 (ax, bx). Then, for all 𝔐 ′ = (𝑊 , 𝑅 1 , 𝑉) such that 𝔐 ′ ⊑ 𝔐, if the following conditions hold (a) 𝑤 has exactly two t-children and exactly two paths of t-nodes, both of length 𝑖 + 1;

(b) one of these two paths ends on a world (say 𝑤 x) corresponding to the nominal x whereas the other ends on a world (say 𝑤 y) corresponding to the nominal y;

(c) there is a t-world 𝑤 ax ∈ 𝑅 𝑖 1 (𝑤) corresponding to the nominal ax s. Thus, the binary representation of 𝐧(𝑤 ax) and 𝐧(𝑤 bx), is the same when restricted to the bits that are more significant than 𝐧(𝑤 ax,s) (which is equal to 𝐧(𝑤 bx,s) by the previous case). Hence, the property (B) is also verified by 𝐧(𝑤 ax) and 𝐧(𝑤 bx).

Directly, we then conclude that 𝐧(𝑤 ax) < 𝐧(𝑤 bx).

(⇐): This direction is proven analogously by essentially relying on Lemma 4.16 (I and II). □ G PROOF OF LEMMA 4.31 Proof. We show the proof for I, the one for II being analogous. Recall that (hor T T) stands for:

∀𝑤 1 , 𝑤 2 ∈ 𝑅(𝑤), if 𝐧 H (𝑤 2) = 𝐧 H (𝑤 1) + 1 and 𝐧 V (𝑤 2) = 𝐧 V (𝑤 1) then there is (c 1 , c 2) ∈ H s.t.
𝑤 1 ∈ 𝑉 (c 1) and 𝑤 2 ∈ 𝑉 (c 2). Suppose 𝔐, 𝑤 |= grid T T (𝑘). Then in particular every world 𝑤 ′ ∈ 𝑅(𝑤) encodes a pair of numbers

(𝐧 H (𝑤), 𝐧 V (𝑤)) ∈ [0, 𝔱(𝑘, 𝑛) -1] 2 .
(⇒): Suppose 𝔐, 𝑤 |= hor T T (𝑘). Then, by definition, for every

𝔐 ′ ⊑ 𝔐, if 𝔐 ′ , 𝑤 |= fork 1 𝑘 (x, y) ∧ [y H = x+1] 𝑘 ∧ [x V = y] 𝑘 then 𝔐 ′ , 𝑤 |= (c 1 ,c 2) ∈ H (@ 1 x c 1 ∧ @ 1 y c 2)
. Consider now two worlds 𝑤 x , 𝑤 y ∈ 𝑅(𝑤) such that 𝐧 H (𝑤 y) = 𝐧 H (𝑤 x) + 1 and 𝐧 V (𝑤 y) = 𝐧 V (𝑤 x). Notice that 𝔐 at 𝑤 x and 𝔐 at 𝑤 y satisfy type(𝑘 -1), by definition of grid T T (𝑘). Let 𝔐 ′ = (𝑊 , 𝑅 1 , 𝑉) be the submodel of 𝔐 where 𝑅 1 is defined from 𝑅 by removing the following pairs of worlds:

• (𝑤, 𝑤 ′) ∈ 𝑅 where 𝑤 ′ is different from 𝑤 x and 𝑤 y ;

• (𝑤 x , 𝑤 ′′) ∈ 𝑅 where 𝑤 ′′ is the only Aux-child of 𝑤 x satisfying y (this world exists as 𝔐, 𝑤 x |= type(𝑘 -1), then it satisfies init(𝑘 -1) and aux); • (𝑤 y , 𝑤 ′′′) ∈ 𝑅 where 𝑤 ′′′ is the only Aux-child of 𝑤 y satisfying x (again, this world exists as 𝔐, 𝑤 y |= type(𝑘 -1), then it satisfies init(𝑘 -1) and aux).

We can easily check that the pointed forest (𝔐 ′ , 𝑤) satisfies fork 1 𝑘 (x, y), where 𝑤 x and 𝑤 y correspond to two nominals (for the depth 1) x and y, respectively. Thus, 𝔐 ′ , 𝑤 x |= type(𝑘 -1) and 𝔐 ′ , 𝑤 y |= type(𝑘 -1). Therefore, by Lemma 4.13 (which can be easily extended in order to consider pairs of numbers described with val H and val V , instead of a single number described with val), we conclude that 𝑤 x and 𝑤 y keep encoding the same two pairs of numbers when 𝔐 is modified to 𝔐 ′ . Then, since by hypothesis 𝐧 H (𝑤 y) = 𝐧 H (𝑤 x) + 1 and 𝐧 V (𝑤 y) = 𝐧 V (𝑤 x), by Lemmata 4.23 and 4.24 we conclude that 𝔐 ′ , 𝑤 |= [y H

= x+1] 𝑘 ∧ [x V = y] 𝑘 . Then, by hypothesis 𝔐, 𝑤 |= hor T T (𝑘), we conclude that 𝔐 ′ , 𝑤 |= (c 1 ,c 2) ∈ H (@ 1

x c 1 ∧ @ 1 y c 2). Thus, there must be a pair (c 1 , c 2) ∈ H such that 𝔐 ′ , 𝑤 |= @ 1

x c 1 ∧ @ 1 y c 2 . Since 𝑤 x (resp. 𝑤 y) corresponds to the nominal (for the depth 1) x (resp. y), we conclude that 𝔐, 𝑤 x |= c 1 and 𝔐, 𝑤 y |= c 2 . By definition, this implies that (𝔐, 𝑤) satisfies (hor T T).

(⇐): This direction is rather straightforward and, analogously to the left-to-right direction, relies on Lemmata 4.13, 4.23 and 4.24. Briefly, suppose that (𝔐, 𝑤) satisfies (hor T T) and, ad absurdum, assume that 𝔐, 𝑤 ̸ |= hor T T (𝑘). Therefore,

𝔐, 𝑤 |= ⊤ * fork 1 𝑘 (x, y) ∧ [y H = x+1] 𝑘 ∧ [x V = y] 𝑘 ∧ ¬ (c 1 ,c 2) ∈ H (@ 1 x c 1 ∧ @ 1 y c 2) . Then, there is a submodel 𝔐 ′ = (𝑊 , 𝑅, 𝑉) of 𝔐 such that 𝔐 ′ , 𝑤 |= fork 1 𝑘 (x, y) ∧ [y H = x+1] 𝑘 ∧ [x V = y] 𝑘 ∧ ¬ (c 1 ,c 2) ∈ H (@ 1 x c 1 ∧ @ 1 y c 2)
. By 𝔐 ′ , 𝑤 |= fork 1 𝑘 (x, y) we conclude that there are two worlds 𝑤 x and 𝑤 y corresponding to two nominals (depth 1) x and y, respectively. Moreover, by Lemma 4.13, these worlds encode the same two numbers w.r.t. (𝔐, 𝑤) and (𝔐 ′ , 𝑤).

From 𝔐 ′ , 𝑤 |= [y H = x+1] 𝑘 ∧ [x V
= y] 𝑘 and the fact that (𝔐, 𝑤) satisfies (hor T T), together with Lemmata 4.23 and 4.24 we conclude that there is a pair (c 1 , c 2) ∈ H such that 𝑤 x ∈ 𝑉 (c 1) and 𝑤 y ∈ 𝑉 (c 2). However, this contradicts 𝔐 ′ , 𝑤 |= ¬ (c 1 ,c 2) ∈ H (@ 1

x c 1 ∧ @ 1 y c 2). Thus, 𝔐, 𝑤 |= hor T T (𝑘). □ H PROOF OF LEMMA 4.33 Proof. (⇒): Suppose that (T T , c) has a solution 𝜏 : [0, 𝔱(𝑘, 𝑛) -1] 2 → T . Let 𝔐 = (𝑊 , 𝑅, 𝑉) and 𝑤 ∈ 𝑊 be such that 𝔐, 𝑤 |= grid T T (𝑘) (such a pointed forest exists by Corollary 4.29). We slightly modify 𝑉 so that the resulting model still satisfies grid T T (𝑘), but also satisfies (one T T), (first T T,c), (hor T T) and (vert T T). This can be done rather straightforwardly. Indeed, since 𝔐, 𝑤 |= grid T T (𝑘), by Lemma 4.28 every t-node 𝑤 ′ ∈ 𝑅(𝑤) encodes a pair of numbers (𝐧 H (𝑤 ′), 𝐧 V (𝑤 ′)) ∈ [0, 𝔱(𝑘, 𝑛) -1]. Then, let us consider the model 𝔐 ′ = (𝑊 , 𝑅, 𝑉 ′) such that (1) for every 𝑝 ∈ AP \ T , 𝑉 ′ (𝑝) = 𝑉 (𝑝). This property leads to 𝔐 ′ , 𝑤 |= grid T T (𝑘), since grid T T (𝑘) is written with propositional symbols not appearing in T . (2) for every c ∈ T and 𝑤 ′ ∈ 𝑅(𝑤), 𝑤 ′ ∈ 𝑉 (c) if and only if 𝜏 (𝐧 H (𝑤 ′), 𝐧 V (𝑤 ′)) = c.

The second condition allows us to conclude that (𝔐 ′ , 𝑤) satisfies (one T T), (first T T,c), (hor T T) and (vert T T). Indeed, (one T T) holds as 𝜏 is functional; (first T T,c) holds as 𝜏 satisfies (first); whereas (hor T T) and (vert T T) hold as 𝜏 satisfies (hor&vert). Thus, (𝔐 ′ , 𝑤) |= tiling T T,c (𝑘) and therefore tiling T T,c (𝑘) is satisfiable.

(⇐): Suppose tiling T T,c (𝑘) satisfiable and let 𝔐 = (𝑊 , 𝑅, 𝑉) and 𝑤 ∈ 𝑊 such that 𝔐, 𝑤 |= tiling T T,c (𝑘). Let us consider the relation 𝜏 ⊆ [0, 𝔱(𝑘, 𝑛) -1] × [0, 𝔱(𝑘, 𝑛) -1] × T defined as (𝑖, 𝑗, c ′) ∈ 𝜏 if and only if there is 𝑤 ′ ∈ 𝑅(𝑤) such that 𝐧 H (𝑤 ′) = 𝑖, 𝐧 V (𝑤 ′) = 𝑗 and 𝑤 ′ ∈ 𝑉 (c ′). Directly by Lemma 4.32 we have that: I. from (uniq T T,𝑘) and (one T T), 𝜏 is (possibly weakly) functional in its first two components, i.e.

for every (𝑖, 𝑗) ∈ [0, 𝔱(𝑘, 𝑛) -1] 2 there is at most one c ′ such that (𝑖, 𝑗, c ′) ∈ 𝜏; II. from (zero T T,𝑘) and (compl T T,𝑘), 𝜏 is total (hence not weakly functional), i.e. cannot be that there is (𝑖, 𝑗) ∈ [0, 𝔱(𝑘, 𝑛) -1] 2 such that for every c ′ ∈ T , (𝑖, 𝑗, c ′) ∉ 𝜏. Together with I, this means that 𝜏 is a map;

where Z 𝑖 = (Z 𝑖 1 , . . . , Z 𝑖 𝑘) for every 𝑖 ∈ [0, 𝑚], is a g-bisimulation up to (𝑚, 𝑘, P) between 𝔐 and (𝑊 , 𝑅| 𝑤 , 𝑉). As {𝑤 } Z 𝑚 1 {𝑤 } by definition, we conclude that 𝔐, 𝑤 ⇆ P 𝑚,𝑘 (𝑊 , 𝑅| 𝑤 , 𝑉), 𝑤. □ J PROOF OF LEMMA 5.1

In the following, we denote with T P (𝑚, 𝑘) the set T P (𝑚, 𝔣(𝑚, 𝑘)). Then, notice that T P (𝑚, 𝑘) = T P (0, 𝑘) for 𝑚 = 0, and otherwise (𝑚 ≥ 1) T P (𝑚, 𝑘) = T P (𝑚, 𝑘 • (|T P (𝑚 -1, 𝑘)| + 1)). Since T P ′ (𝑚 ′ , 𝑘 ′) is finite for all 𝑚 ′ , 𝑘 ′ and finite P ′ , T P (𝑚, 𝑘) is well-defined and finite. Lemma 5.1 can be reformulated using T P (𝑚, 𝑘) as follows.

Lemma Let 𝑚, 𝑘 ∈ N and P ⊆ fin AP. Let (𝔐, 𝑤), (𝔐 ′ , 𝑤 ′) be pointed forests such that 𝔐 = (𝑊 , 𝑅, 𝑉) and 𝔐 ′ = (𝑊 ′ , 𝑅 ′ , 𝑉 ′). If {(𝔐, 𝑤), (𝔐 ′ , 𝑤 ′)} ⊆ T for some T ∈ T P (𝑚, 𝑘), then for every

𝑅 1 ⊆ 𝑅 there is 𝑅 ′ 1 ⊆ 𝑅 ′ such that ((𝑊 , 𝑅 1 , 𝑉), 𝑤) ≡ P 𝑚,𝑘 ((𝑊 ′ , 𝑅 ′ 1 , 𝑉 ′), 𝑤 ′), and if 𝑅 1 (𝑤) = 𝑅(𝑤) then 𝑅 ′ 1 (𝑤 ′) = 𝑅 ′ (𝑤 ′).
Proof. In the case 𝑘 = 0, any formula in GML[𝑚, 0, P] is equivalent to a formula in the propositional calculus built over propositional variables in P as 3 ≥0 𝜓 is logically equivalent to ⊤. Hence, the lemma trivially holds.

Otherwise (𝑘 ≥ 1), we prove semantically the lemma as ≡ P 𝑚,𝑘 and ⇆ P 𝑚,𝑘 are identical relations. The proof is by induction on the modal depth 𝑚. The induction step is articulated in three steps:

(I) definition and proof of various properties of the two models, (II) definition of a strategy to reduce 𝑅 ′ to 𝑅 ′ 1 that closely follows the relationship between 𝑅 and 𝑅 1 with respect to the children of 𝑤 and, (III) a proof that the relation 𝑅 ′ 1 is such that (𝑊 , 𝑅 1 , 𝑉), 𝑤 ⇆ P 𝑚,𝑘 (𝑊 ′ , 𝑅 ′ 1 , 𝑉 ′), 𝑤 ′ . By construction, we also obtain that if 𝑅 1 (𝑤) = 𝑅(𝑤) then 𝑅 ′ 1 (𝑤 ′) = 𝑅 ′ (𝑤 ′). Let us begin with the base case.

Base case: 𝑚 = 0. The base case is straightforward from the following property of g-bisimulations.

When 𝑚 = 0, given 𝔐 = (𝑊 , 𝑅, 𝑉), 𝑅 1 ⊆ 𝑅, 𝑤 ∈ 𝑊 and 𝑘 ∈ N, we have 𝔐, 𝑤 ⇆ P 0, 𝑘 (𝑊 , 𝑅 1 , 𝑉), 𝑤. This statement holds as it can be easily shown that the set of relations Z 0 = (Z 0 1 , . . . , Z 0

𝑘

) where Z 0 1 = {(𝑤, 𝑤)} and Z 0 𝑗 = ∅ for 𝑗 ∈ [2, 𝑘] satisfies all the requirements for being a g-bisimulation. Then, with respect to the statement of the lemma, by definition, we have (𝑊 , 𝑅 1 , 𝑉), 𝑤 ⇆ P 0,𝑘 𝔐, 𝑤. Now, by definition T P (0, 𝑘) = T P (0, 𝑘) and by hypothesis there is T ∈ T P (0, 𝑘) such that {(𝔐, 𝑤), (𝔐 ′ , 𝑤 ′)} ⊆ T. By definition of T P (0, 𝑘), we have 𝔐, 𝑤 ⇆ P 0,𝑘 𝔐 ′ , 𝑤 ′ .

As ⇆ P 0,𝑘 is an equivalence relation, we conclude (𝑊 , 𝑅 1 , 𝑉), 𝑤 ⇆ P 0,𝑘 𝔐 ′ , 𝑤 ′ and therefore it is sufficient to take 𝑅 ′ reducing 𝑅 to 𝑅 1 is that 𝑤 1 , together with the updated model, "jumps" 2 to an equivalence class T 1 ∈ T P (𝑚 -1, 𝑘). Obviously, (𝔐, 𝑤 1) already belongs to a class in T P (𝑚 -1, 𝑘). However (from the statement of the lemma), we are only interested in T P (𝑚 -1, 𝑘) when considering 𝑅 1 , whereas we focus on T P (𝑚 -1, 𝑘) when studying 𝑅. To prove the result, we have to show that there is a child 𝑤 ′ 1 of 𝑤 ′ in 𝔐 ′ so that (𝔐 ′ , 𝑤 ′ 1) is in the same equivalence class T of (𝔐, 𝑤 1) and to show that it is possible to update 𝑅 ′ to make 𝑤 ′ 1 (together with the updated model) "jump" to the equivalence class T 1 . However, we need to do this for all the children of 𝑤 and 𝑤 ′ , respecting the constraints of being a g-bisimulation. The key step is to show that the graded rank 𝑘 • (|T P (𝑚 -1, 𝑘)| + 1) is all we need to find enough children in 𝑅 ′ (𝑤 ′) and to be able to construct a relation 𝑅 ′ 1 so that the resulting models are g-bisimilar up to (𝑚, 𝑘, P). Let us now formalise the proof, which requires some intermediate steps that are below highlighted .

We start by considering a single equivalence class T ∈ T P (𝑚 -1, 𝑘) (in fact, our proof is done modularly on these classes). We introduce the two following sets: 2) belong to the same class in T P (𝑚 -1, 𝑘). However, this leads to a contradiction as we have 𝑤 2 ∉ T and 𝑤 ′ 2 ∈ T (where T ∈ T P (𝑚 -1, 𝑘)). This concludes the proof of (★). Given an equivalence class T ′ in T P (𝑚 -1, 𝑘), we define the set below 2 We always put the word "jump" in quotes as it is used in an informal way. Following the proof idea presented above, a world 𝑤 1 ∈ 𝑅 1 (𝑤)| T▶T ′ is a child of 𝑤 such that (𝔐, 𝑤 1) is in the class T and "jumps" to the class T ′ when updating the accessibility relation from 𝑅 to 𝑅 1 . In what follows, we denote with 𝑅| 𝑤 1 the restriction of 𝑅 to those worlds reachable from 𝑤 1 , i.e. the set {(𝑤 2 , 𝑤 3) ∈ 𝑅 | {𝑤 2 , 𝑤 3 } ⊆ 𝑅 * (𝑤 1)}, as defined in the statement of Lemma I.2. We also consider similar restrictions for 𝑅 ′ and 𝑅 ′ 1 . We are interested in the following key property: , 𝑉 ′), 𝑤 ′ 1 , concluding the proof of (★★). This intermediate result gives us an important information: every single "jump" (as informally expressed above) done while updating the accessibility relation of 𝔐 can be mimicked by updating 𝔐 ′ . An important missing piece is proving that all jumps can be simultaneously mimicked. In order to prove this, we start by considering the following partition of 𝑅(𝑤)| T : 𝑅(𝑤) T K PROOF OF LEMMA 5.2 Proof. If 𝑘 = 0, then the proof is by an easy verification as the formula 𝜑 from the statement is logically equivalent to a formula from the propositional calculus (each subformula 3 ≥0 𝜓 is logically equivalent to ⊤). Otherwise (𝑘 ≥ 1), let 𝑘 + = 𝑘 × (|T P (𝑚 - First, as worlds in our models do not satisfy any propositional symbol, the spoiler cannot win because of distinct propositional valuations. The proof is by cases on 𝑚 and on the moves done by the spoiler, and by induction on 𝑠. First, suppose 𝑚 = 0. Then it is easy to see that the duplicator has a winning strategy. Indeed, as 𝑚 = 0, the spoiler cannot play the modal move and therefore cannot change the current worlds 𝑤 and 𝑤 ′ . Then, after 𝑠 spatial moves the game will be in the state (𝔐 1 , 𝑤) and (𝔐 ′ 1 , 𝑤 ′) w.r.t. the rank (0, 0, P). From I we conclude that the duplicator wins. Suppose now 𝑚 ≥ 1 and the spoiler decides to perform a modal move. Notice that, in particular, this case also takes care of the case where 𝑠 = 0 and the spoiler is forced to play a modal move. Moreover, suppose that the spoiler chooses (𝔐, 𝑤) (the case where it picks (𝔐 ′ , 𝑤 ′) is analogous). We have to distinguish the following situations.

• 𝑅(𝑤)| T def = {𝑤 1 ∈ 𝑅(𝑤) | (𝔐, 𝑤 1) ∈ T}. • 𝑅 ′ (𝑤 ′)| T def = {𝑤 ′ 1 ∈ 𝑅 ′ (𝑤 ′) | (𝔐 ′ , 𝑤 ′
∈ 𝑋 such that (𝔐, 𝑤 2) ∉ T. • From (g-forth), there is 𝑤 ′ 2 ∈ 𝑌 such that {𝑤 2 }Z 𝑚-1 1 {𝑤 ′ 2 }. • As {𝑤 2 }Z 𝑚-1 1 {𝑤 ′ 2 },
𝑅 1 (𝑤)| T▶T ′ def = 𝑅(𝑤)| T ∩ 𝑅 1 (𝑤)| T ′ .
(★★): for all 𝑤 1 ∈ 𝑅 1 (𝑤)| T▶T ′ and 𝑤 ′ 1 ∈ 𝑅 ′ (𝑤 ′)| T there is 𝑅 ′ 1,𝑤 ′ 1 ⊆ 𝑅 ′ | 𝑤 ′ 1 such that (𝑊 , 𝑅 1 | 𝑤 1 , 𝑉), 𝑤 1 ⇆ P 𝑚-1,𝑘 (𝑊 ′ , 𝑅 ′ 1,𝑤 ′ 1 , 𝑉 ′),
• Suppose that the spoiler chooses a world Then again, it is sufficient for the duplicator to choose 𝑤 1 ∈ 𝑅 ′ (𝑤 ′) =1 to guarantee him a victory, as the subtrees rooted in 𝑤 1 and 𝑤 ′ 1 are isomorphic. • Suppose that the spoiler chooses a world 𝑤 1 ∈ 𝑅(𝑤) =2 . Then |𝑅(𝑤) =2 | ≥ 1 and by hypothesis min(|𝑅(𝑤) =2 |, 2 𝑠 -1 (𝑠 + 1) (𝑠 + 2)) = min(|𝑅 ′ (𝑤 ′) =2 |, 2 𝑠 -1 (𝑠 + 1) (𝑠 + 2)), it follows that |𝑅 ′ (𝑤 ′) =2 | ≥ 1 (notice here that 2 𝑠 -1 (𝑠 + 1) (𝑠 + 2) = 1 for 𝑠 = 0). Then again, it is sufficient for the duplicator to choose 𝑤 1 ∈ 𝑅 ′ (𝑤 ′) =2 to guarantee him a victory, as the subtrees rooted in 𝑤 1 and 𝑤 ′ 1 are isomorphic.

As stated before, the case where the spoiler decides to perform a modal move also captures the base case of the induction on 𝑠. Then, it remains to show the case where 𝑠 ≥ 1 and the spoiler decides to do a spatial move. Again suppose that the spoiler chooses (𝔐, 𝑤) (the case where it picks (𝔐 ′ , 𝑤 ′) is analogous). It then picks two structures 𝔐 1 = (𝑊 , 𝑅 1 , 𝑉) and 𝔐 2 = (𝑊 , 𝑅 2 , 𝑉) such that 𝔐 1 + 𝔐 2 = 𝔐. Notice that these two structures are such that both (𝔐 1 , 𝑤) and (𝔐 2 , 𝑤) satisfy I, II and III, as it is easy to see that these three properties are all preserved when taking submodels. The duplicator has now to pick two structures 𝔐 ′ 1 = (𝑊 ′ , 𝑅 ′ 1 , 𝑉 ′) and 𝔐 ′ 2 = (𝑊 ′ , 𝑅 ′ 2 , 𝑉 ′) such that 𝔐 ′ 1 + 𝔐 ′ 2 = 𝔐 ′ while guaranteeing him a victory. It does so by constructing 𝑅 ′ 1 and 𝑅 ′ 2 as follows (from the empty set):

Split of 𝑅 ′ (𝑤) =0 . We introduce the sets

𝑅 1 (𝑤)| 0▶0 def = 𝑅 1 (𝑤) =0 ∩ 𝑅(𝑤) =0 𝑅 2 (𝑤)| 0▶0 def = 𝑅 2 (𝑤) =0 ∩ 𝑅(𝑤) =0 .
It is easy to see that these sets are pairwise disjoint. From (S1) it follows that 𝑅(𝑤) =0 = (𝑅 1 (𝑤) =0 ∩ 𝑅(𝑤) =0) ∪ (𝑅 2 (𝑤) =0 ∩ 𝑅(𝑤) =0). The duplicator starts by partitioning 𝑅 ′ (𝑤) =0 into two sets 𝑍 1 and 𝑍 2 according to the cardinalities of the two components of 𝑅(𝑤) =0 highlighted above, namely the two sets 𝑅 The duplicator starts by partitioning 𝑅 ′ (𝑤) =1 into four sets 𝑍 ′ 1 , 𝑍 ′ 2 , 𝑂 1 and 𝑂 2 according to the cardinalities of the four sets above ('Z' for 'zero', 'O' for 'one'). In order to shorten the presentation, instead of concretely make explicit all the cases as we did in the previous point of the construction, we treat them "schematically". Let X = {𝑅 𝑖 (𝑤 ′) =2 |, 2 𝑠 -2 𝑠 (𝑠 + 1)). Again, notice that these properties, which we later refer to with (‡ ‡), are exactly (zero), (one) and (two) in the proof of (A). Let us see how to use these pieces of information to derive a strategy for the duplicator in the original game ((𝔐, 𝑤), (𝔐 ′ , 𝑤 ′), (𝑚, 𝑠, P)). As the spoiler chooses (𝔐 ′ , 𝑤 ′), it selects 𝔐 ′ 1 and 𝔐 ′ 2 such that 𝔐 ′ 1 + 𝔐 ′ 2 = 𝔐 ′ . Consider the two structures 𝔐 1 = (𝑊 , 𝑅 1 , 𝑉) and 𝔐 2 = (𝑊 , 𝑅 2 , 𝑉) choosen by the duplicator following the strategy, discussed above, for the game ((𝔐, 𝑤), (𝔐 ′ , 𝑤 ′), (𝑚, 𝑠, P)) in the case when the spoiler chooses (𝔐 ′ , 𝑤 ′) and again select 𝔐 ′ 1 and 𝔐 ′ 2 . In particular these structures satisfy (‡ ‡). Moreover, the two forests 𝔐 1 and 𝔐 2 are such that 𝔐 1 + 𝔐 2 = 𝔐 and therefore 𝑅 1 ∪ 𝑅 2 = 𝑅 = 𝑅 \ {(𝑤 1 , 𝑤 2)} where (𝑤 1 , 𝑤 2) ∈ 𝑅 and 𝑤 1 ∈ 𝑅(𝑤) =1 . We distinguish two cases.

• If 𝑤 1 ∈ 𝑅 1 (𝑤) then in the original game ((𝔐, 𝑤), (𝔐 ′ , 𝑤 ′), (𝑚, 𝑠, P)), the duplicator replies to 𝔐 ′ 1 and 𝔐 ′ 2 with the two structures 𝔐 1 = (𝑊 , 𝑅 1 , 𝑉) and 𝔐 2 = (𝑊 , 𝑅 2 , 𝑉) such that 𝑅 1 = 𝑅 1 and 𝑅 2 = 𝑅 2 ∪ {(𝑤 1 , 𝑤 2)}.

• Otherwise 𝑤 1 ∈ 𝑅 2 (𝑤) and in the game ((𝔐, 𝑤), (𝔐 ′ , 𝑤 ′), (𝑚, 𝑠, P)) the duplicator replies to 𝔐 ′ 1 and 𝔐 ′ 2 with the two structures 𝔐 1 = (𝑊 , 𝑅 1 , 𝑉) and 𝔐 2 = (𝑊 , 𝑅 2 , 𝑉) such that 𝑅 1 = 𝑅 1 ∪ {(𝑤 1 , 𝑤 2)} and 𝑅 2 = 𝑅 2 . In both cases, as the pair (𝑤, 𝑤 1) is in one relation between 𝑅 1 and 𝑅 2 whereas (𝑤 1 , 𝑤 2) is in the other relation, the world 𝑤 1 effectively behaves as if it was a member of the set 𝑅(𝑤) =0 instead of 𝑅(𝑤) =1 , exactly as in the case of 𝑅. In particular, it is easy to see that for 𝑖 ∈ {1, 2}: 𝑖 (𝑤 ′) =2 |, 2 𝑠 -2 𝑠 (𝑠 + 1)). Moreover, 𝔐 1 , 𝔐 2 , 𝔐 ′ 1 and 𝔐 ′ 2 all satisfy I, II and III (as they are submodels of 𝔐 or 𝔐 ′), we can apply (A) and conclude that (𝔐 1 , 𝑤) ≈ P 𝑚,𝑠 -1 (𝔐 ′ 1 , 𝑤 ′) and (𝔐 2 , 𝑤) ≈ P 𝑚,𝑠 -1 (𝔐 ′ 2 , 𝑤 ′). Therefore, the play we just described leads to a winning strategy for the duplicator on the game ((𝔐, 𝑤), (𝔐 ′ , 𝑤 ′), (𝑚, 𝑠, P)), under the hypothesis that the spoiler chooses (𝔐 ′ , 𝑤 ′). As we constructed a strategy for the duplicator in both cases where the spoiler picks (𝔐, 𝑤) and (𝔐 ′ , 𝑤 ′), we have that (𝔐, 𝑤) ≈ P 𝑚,𝑠 (𝔐 ′ , 𝑤 ′) and therefore (B) holds.

Lemma 2 . 1 .

 21 Let 𝜑 be a formula in ML() with md(𝜑) ≤ 1. Then, 𝜑 ≡ 𝜑 [← *] where 𝜑 [← *] is the formula in ML(*) obtained from 𝜑 by replacing every occurrence of by * . , Vol. 1, No. 1, Article . Publication date: November 2023.

, Vol. 1 ,

 1 No. 1, Article . Publication date: November 2023.

, Vol. 1 ,

 1 No. 1, Article . Publication date: November 2023.

, Vol. 1 ,Fig. 1 .

 11 Fig. 1. Schema of a model satisfying type(𝑗) (for 𝑗 ≥ 2).

Lemma 4 . 4 .

 44 Let ax ≠ bx ∈ Aux and 0 < 𝑖 ≤ 𝑗 ∈ N. Suppose 𝔐, 𝑤 |= init(𝑗). Then, 𝔐, 𝑤 |= nom 𝑖 (ax ≠ bx) iff ax and bx are nominals for the depth 𝑖, corresponding to two different worlds. Proof. (⇒): Suppose 𝔐, 𝑤 |= nom 𝑖 (ax ≠ bx). By Lemma 4.2, ax and bx are nominals for depth 𝑖. Let 𝑤 ax (resp. 𝑤 bx) be the world in 𝑅 𝑖 (𝑤) corresponding to the nominal ax (resp. bx). Note that 𝔐, 𝑤 bx |= 3bx. By 𝔐, 𝑤 |= ¬@ 𝑖 ax 3bx and Lemma 4.3, we get 𝔐, 𝑤 ax ̸ |= 3bx. Thus, 𝑤 ax ≠ 𝑤 bx . (⇐): This direction is analogous and simply relies on Lemmata 4.2 and 4.3. □

.Fig. 2 .

 2 Fig. 2. Schema of a pointed forest (𝔐, 𝑤) satisfying fork 𝑖 𝑗 (ax, bx).

Lemma

Lemma 4 . 8 .

 48 Let ax ≠ bx ∈ Aux and 𝔐, 𝑤 |= init(1) ∧fork

 𝑤 2 satisfies y. By Lemma 4.6, 𝔐 ′ , 𝑤 |= fork 1 1 (x, y). By hypothesis, 𝐧(𝑤 x) = 𝐧(𝑤 y) and therefore we also have 𝔐 ′ , 𝑤 |= [x = y] 1 1 . Thus, by definition, 𝔐, 𝑤 ̸ |= uniq(1). (⇐): Again contrapositively, suppose 𝔐, 𝑤 ̸ |= uniq(1) and so 𝔐, 𝑤 |= ⊤ * (fork 1 1 (x, y) ∧ [x = y] 1 1

Lemma 4 . 13 .

 413 Let 0 ≤ 𝑖 ≤ 𝑗 with 𝑗 ≥ 2. Let 𝔐 = (𝑊 , 𝑅, 𝑉) and 𝑤 ∈ 𝑊 be such that 𝔐, 𝑤 |= init(𝑗) ∧ type(𝑗). Consider a world 𝑤 ′ ∈ 𝑅 𝑖 (𝑤) and a number 𝑚 ∈ [0, 𝔱(𝑗 -𝑖, 𝑛) -1]. Lastly, suppose 𝔐 ′ ⊑ 𝔐 such that 𝔐 ′ , 𝑤 ′ |= type(𝑗 -𝑖). Then, 𝐧 𝑗 -𝑖 (𝑤 ′) = 𝑚 w.r.t. (𝔐, 𝑤 ′) if and only if 𝐧 𝑗 -𝑖 (𝑤 ′) = 𝑚 w.r.t. (𝔐 ′ , 𝑤 ′).

 sketches a model satisfying lsr(𝑗). The definition of lsr(𝑗) follows closely its specification: , Vol. 1, No. 1, Article . Publication date: November 2023.

 lsr

Lemma 4 . 15 .

 415 Let 1 ≤ 𝑖 < 𝑗. Suppose 𝔐, 𝑤 |= init(𝑗). Then, 𝔐, 𝑤 |= lsr(𝑗 -𝑖) if and only if (1) 𝔐, 𝑤 |= type(𝑗 -𝑖);

 (A) there is a position 𝑖 ∈ [1, 𝑛] such that 𝑥 𝑖 = 0 and 𝑦 𝑖 = 1; (B) for every position 𝑗 > 𝑖, 𝑥 𝑗 = 0 ⇔ 𝑦 𝑗 = 0; (C) for every position 𝑗 < 𝑖, 𝑥 𝑗 = 1 and 𝑦 𝑗 = 0. The formula [bx = ax+1] 𝑗 uses this characterisation to state that 𝐧(𝑤 bx) = 𝐧(𝑤 ax) + 1.

□ 4 . 6

 46 Tiling a grid [0, 𝔱(𝑘, 𝑛) -1] × [0, 𝔱(𝑘, 𝑛) -1] In this section we explain how to use previous developments to define a uniform reduction from Tile 𝑘 , for every 𝑘 ≥ 2. Several adaptations are needed to encode smoothly the grid, but the hardest part was the design of the formula type(𝑗), which we already achieved in the previous section.As usual, in the following let 𝔐 = (𝑊 , 𝑅, 𝑉) be a finite forest and consider 𝑤 ∈ 𝑊 . Let 𝑘 ≥ 2 and let (T T , c) be an instance of Tile 𝑘 , where T T = (T , H, V) and c ∈ T (see Section 4.1 for a formal definition). Recall that a solution for (T T , c) w.r.t. Tile 𝑘 is a map 𝜏 : , Vol. 1, No. 1, Article . Publication date: November 2023. 𝑤 (𝔱 (𝑘, 𝑛) -1, 𝔱 (𝑘, 𝑛) -1))

Fig. 4 .

 4 Fig. 4. Schema of a model satisfying grid T T (𝑘) (for 𝑘 ≥ 2).

Lemma 4 . 25 .

 425 𝔐, 𝑤 |= zero T T (𝑘) if and only if (𝔐, 𝑤) satisfies (zero T T,𝑘).

Lemma 4 . 26 .

 426 Let 𝑘 ≥ 2. Suppose 𝔐, 𝑤 |= init(𝑘) ∧ aux. Then, 𝔐, 𝑤 |= uniq(𝑘) if and only if (𝔐, 𝑤) satisfies (uniq T T,𝑘), i.e. distinct t-nodes in 𝑅(𝑤) encode different pairs of numbers.

Lemma 4 . 30 .

 430 Let 𝑘 ≥ 2 and suppose 𝔐, 𝑤 |= grid T T (𝑘). Then, I. 𝔐, 𝑤 |= one T T if and only if (𝔐, 𝑤) satisfies (one T T); II. 𝔐, 𝑤 |= first T T,c (𝑘) if and only if (𝔐, 𝑤) satisfies (first T T,c). Proof. Both I and II are easily proven directly from the definition of one T T and first T T,c (𝑘). □ , Vol. 1, No. 1, Article . Publication date: November 2023.

Lemma 4 . 31 .

 431 Let 𝑘 ≥ 2 and suppose 𝔐, 𝑤 |= grid T T (𝑘). Then, I. 𝔐, 𝑤 |= hor T T (𝑘) if and only if (𝔐, 𝑤) satisfies (hor T T); II. 𝔐, 𝑤 |= vert T T (𝑘) if and only if (𝔐, 𝑤) satisfies (vert T T).See the proof in Appendix G. This concludes the definition of tiling T T,c (𝑘).

Lemma 4 .

 4 [START_REF] Ishtiaq | BI as an assertion language for mutable data structures[END_REF]. 𝔐, 𝑤 |= tiling T T,c (𝑘) if and only if (𝔐, 𝑤) satisfies (zero T T,𝑘), (uniq T T,𝑘), (compl T T,𝑘), (init/sub/aux), (one T T), (first T T,c), (hor T T) and (vert T T). Proof. Directly from Lemmata 4.28, 4.30 and 4.31. □ We can now prove Lemma 4.33 (shown below), leading directly to Theorem 4.34. Lemma 4.33. Let 𝑘 ≥ 2 and let (T T , c) be an instance of Tile 𝑘 , where T T = (T , H, V) and c ∈ T . Then, (T T , c) is a solution for Tile 𝑘 iff the formula tiling T T,c (𝑘) is satisfiable.

Fig. 5 .

 5 Fig. 5. Ehrenfeucht-Fraïssé games for ML(*)

Lemma 5 . 4 .

 54 (𝔐, 𝑤) P 𝑚,𝑠 (𝔐 ′ , 𝑤 ′) iff there is 𝜑 ∈ ML(*) [𝑚, 𝑠, P] s.t. 𝔐, 𝑤 |= 𝜑 and 𝔐 ′ , 𝑤 ′ ̸ |= 𝜑.

{𝑤 1 ∈

 1 𝑅(𝑤) | |𝑅(𝑤 1)| = 𝑖}. During the proof, we only use pointed forests (𝔐, 𝑤) satisfying the following properties: I 𝑉 (𝑝) = ∅ for every 𝑝 ∈ AP; II 𝑅(𝑤) =0 , 𝑅(𝑤) =1 and 𝑅(𝑤) =2 form a partition of 𝑅(𝑤); III 𝑅 3 (𝑤) = ∅, i.e. the set of worlds reachable from 𝑤 in at least three steps is empty. Below, we represent schematically the models satisfying the properties I, II and III. , Vol. 1, No. 1, Article . Publication date: November 2023.

, Vol. 1 ,

 1 No. 1, Article . Publication date: November 2023.

 0

Lemma 6 . 1 .

 61 If (𝔐, 𝑤) encodes 𝑇 ∈ T SAL then for every 𝜑 in SAL() we have 𝑇 |= 𝜑 iff 𝔐, 𝑤 |= 𝜏 (𝜑).

 Bartosz Bednarczyk, TU Dresden, Germany & University of Wrocław, Poland Stéphane Demri, Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, 91190, Gif-sur-Yvette, France Raul Fervari, FAMAF, Universidad Nacional de Córdoba & CONICET, Argentina, & GTIIT, China Alessio Mansutti, University of Oxford, UK & IMDEA Software Institute, Spain A PROOF OF LEMMA 2.1

 1 and 𝔐 2 , 𝑤 |= 𝜑 2 (by definition of +) • (𝑊 , 𝑅| ≤1 𝑤 , 𝑉), 𝑤 |= 𝜑 1 * 𝜑 2 (by definition of |=). □ B PROOF OF LEMMA 2.2 Proof. Let 𝔐 = (𝑊 , 𝑅, 𝑉) be a finite forest and 𝑤 ∈ 𝑊 . For the left to right direction, suppose 𝔐, 𝑤 |= 𝜑 * 𝜓 . Then, by definition of |=, there are 𝔐 1 = (𝑊 , 𝑅 1 , 𝑉) and 𝔐 2 = (𝑊 , 𝑅 2 , 𝑉) such that 𝔐 1 + 𝔐 2 = 𝔐, 𝔐 1 , 𝑤 |= 𝜑 and 𝔐 2 , 𝑤 |= 𝜓 . By Lemma A.1 we can easily conclude that (𝑊 , 𝑅 1 | 𝑤 , 𝑉), 𝑤 |= 𝜑 and (𝑊 , 𝑅 2 | 𝑤 , 𝑉), 𝑤 |= 𝜓 , where 𝑅| 𝑤 def = {(𝑤 ′ , 𝑤 ′′) ∈ 𝑅 | 𝑤 ′ ∈ 𝑅 * (𝑤)}. Indeed, this holds as by definition, for every 𝑛 ∈ N, (𝑅| 𝑤)| ≤𝑛 𝑤 = 𝑅| ≤𝑛 𝑤 . Now, consider the model 𝔐 = (𝑊 , 𝑅 1 | 𝑤 ∪ 𝑅 2 | 𝑤 , 𝑉). It is easy to see that (𝑊 , 𝑅 1 | 𝑤 , 𝑉) and (𝑊 , 𝑅 2 | 𝑤 , 𝑉) are such that (𝑊 , 𝑅 1 | 𝑤 , 𝑉) + 𝑤 (𝑊 , 𝑅 2 | 𝑤 , 𝑉) = 𝔐. Hence 𝔐, 𝑤 |= 𝜑 𝜓 . Moreover by definition 𝑅 1| 𝑤 ∪ 𝑅 2 | 𝑤 ⊆ 𝑅 and (𝑅 1 | 𝑤 ∪ 𝑅 2 | 𝑤) (𝑤) = 𝑅(𝑤). We conclude that 𝔐, 𝑤 |= (𝜑 𝜓).For the right to left direction, suppose 𝔐, 𝑤 |= (𝜑 𝜓). Then by definition of |= there is a model 𝔐 = (𝑊 , 𝑅, 𝑉) such that 𝑅 ⊆ 𝑅, 𝑅(𝑤) = 𝑅(𝑤) and 𝔐, 𝑤 |= 𝜑 𝜓 . Again by definition of |=, there are 𝔐 1 = (𝑊 , 𝑅 1 , 𝑉) and 𝔐 2 = (𝑊 , 𝑅 2 , 𝑉) such that 𝔐 1 + 𝑤 𝔐 2 = 𝔐 and 𝔐 1 , 𝑤 |= 𝜑 and 𝔐 2 , 𝑤 |= 𝜓 . Consider now the set 𝑅 = 𝑅 \ 𝑅. We define:

Lemma C. 1 .

 1 Let ∅ ≠ 𝑋 ⊆ [1, 𝑛 + 1] and (𝔐, 𝑤) be a pointed forest such that 𝔐, 𝑤 |= uni(Q). We have 𝔐, 𝑤 |= cp(𝑋) iff for all 𝑤 ′ ∈ 𝑅(𝑤) ∩ (𝑘 ∈𝑋 𝑉 (𝑞 𝑘)), 𝑋 ⊆ {𝑘 ∈ [1, 𝑛 + 1] | there is 𝑤 ′′ ∈ 𝑅(𝑤) such that 𝑤 ′ ≈ P 𝑤 ′′ and 𝔐, 𝑤 ′′ |= 𝑞 𝑘 }.

1 def=

 1 𝑅 ′ to end the proof. Note that in this case, 𝑅 ′ 1 (𝑤 ′) = 𝑅 ′ (𝑤 ′) holds too. Induction case. In particular, we have 𝑚 > 1 and T P (𝑚, 𝑘) = T P (𝑚, 𝑘 • (|T P (𝑚 -1, 𝑘)| + 1)). Moreover, by hypothesis there exists T ∈ T P (𝑚, 𝑘 • (|T P (𝑚 -1, 𝑘)| + 1)) such that {(𝔐, 𝑤), (𝔐 ′ , 𝑤 ′)} ⊆ T. By definition, we have 𝔐, 𝑤 ⇆ P 𝑚,𝑘 • (|T P (𝑚-1,𝑘) |+1) 𝔐 ′ , 𝑤 ′ . Let us explain the main idea of the proof. Let us pick one child 𝑤 1 of 𝑤 in 𝔐. Obviously, the pointed forest (𝔐, 𝑤 1) belongs to a specific equivalence class T ∈ T P (𝑚 -1, 𝑘). The effect of , Vol. 1, No. 1, Article . Publication date: November 2023.

 1) ∈ T}. It is fairly simple to see that the following property holds:(★): min(|𝑅(𝑤)| T |, 𝑘 • (|T P (𝑚 -1, 𝑘)| + 1)) = min(|𝑅 ′ (𝑤 ′)| T |, 𝑘 • (|T P (𝑚 -1, 𝑘)| + 1))Indeed, ad absurdum, suppose that (†):|𝑅(𝑤)| T | < 𝑘 • (|T P (𝑚 -1, 𝑘)| + 1) and |𝑅(𝑤)| T | < |𝑅 ′ (𝑤 ′)| T | The other case |𝑅 ′ (𝑤 ′)| T | < 𝑘 • (|T P (𝑚 -1, 𝑘)| + 1) and |𝑅 ′ (𝑤 ′)| T | < |𝑅(𝑤)| T |is analogous and therefore its treatment is omitted below. Since it holds by hypothesis that 𝔐, 𝑤 ⇆ P 𝑚,𝑘 • (|T P (𝑚-1,𝑘) |+1) 𝔐 ′ , 𝑤 ′ , there is a g-bisimulation up to (𝑚, 𝑘 • (|T P (𝑚 -1, 𝑘)| + 1), P) between 𝔐 and 𝔐 ′ , say Z 0 , . . . , Z 𝑚 , such that {𝑤 }Z 𝑚 1 {𝑤 ′ }. • From (m-back), by taking 𝑌 as a subset of 𝑅 ′ (𝑤 ′)| T such that |𝑌 | = min(|𝑅 ′ (𝑤 ′)| T |, 𝑘 • (|T P (𝑚 -1, 𝑘)| + 1)), it must hold that there is a subset 𝑋 ⊆ 𝑅(𝑤) such that 𝑋 Z 𝑚-1 |𝑌 | 𝑌 . • From (size), |𝑋 | = |𝑌 |. Hence, by (†) there must be a world 𝑤 2

, Vol. 1 ,

 1 No. 1, Article . Publication date: November 2023.

▶𝑅 1 def=T▶T 1

 11 {𝑅 1 (𝑤)| T▶T ′ | T ′ ∈ T P (𝑚 -1, 𝑘)} ∪ {𝑅(𝑤)| T \ 𝑅 1 (𝑤)}. Informally, 𝑅(𝑤) T ▶𝑅 1 partitions the children of 𝑤 in 𝑅(𝑤)| T in different sets depending on what is the set T ′ ∈ T P (𝑚 -1, 𝑘) they "jump" to. One additional set, i.e. 𝑅(𝑤)| T \ 𝑅 1 (𝑤), contains all the children of 𝑤 in 𝑅(𝑤)| T that are lost when updating 𝑅 to 𝑅 1 . To be completely formal, let us first prove that 𝑅(𝑤) T ▶𝑅 1 is a partition of 𝑅(𝑤)| T . Indeed, 𝑅(𝑤)| T can be written as (𝑅(𝑤)| T ∩ 𝑅 1 (𝑤)) ∪ (𝑅(𝑤)| T \ 𝑅 1 (𝑤)). Moreover, by definition of T P (𝑚 -1, 𝑘) as the quotient set of ⇆ P 𝑚-1,𝑘 , we have 𝑅 1 (𝑤) = T ′ ∈ T P (𝑚-1,𝑘) 𝑅 1 (𝑤)| T ′ . Lastly, 𝑅(𝑤)| T ∩ T ′ ∈ T P (𝑚-1,𝑘) 𝑅 1 (𝑤)| T ′ is equivalent to T ′ ∈ T P (𝑚-1,𝑘) (𝑅(𝑤)| T ∩ 𝑅 1 (𝑤)| T ′), which leads to the definition of the partition 𝑅(𝑤) T ▶𝑅 1 from the definition of 𝑅 1 (𝑤)| T▶T ′ together with the remaining component 𝑅(𝑤)| T \𝑅 1 (𝑤). The figure below presents schematically the results we have shown so far, only considering the children of 𝑤 in 𝑅(𝑤)| T (on the left) and the children of 𝑤 ′ in 𝑅 ′ (𝑤 ′)| T (on the right).To work towards the definition of 𝑅 ′ 1 (as in the statement of the T▶T 2 ... T▶T |T P (𝑚-1,𝑘) | {𝑅 1 (𝑤) | T▶T ′ | T ′ ∈ T P (𝑚 -1, 𝑘) } 𝑅 (𝑤) | T \ 𝑅 1 (𝑤) (★): if |𝑅 (𝑤) | T | < 𝑘 • (|T P (𝑚 -1, 𝑘) | + 1) then there are |𝑅 (𝑤) | T | children, otherwise there are at least 𝑘 • (|T P (𝑚 -1, 𝑘) | + 1) children.lemma), we now deal with the children in 𝑅 ′ (𝑤 ′)| T and find suitable subsets of 𝑅 ′ 1 in order to define a partition of 𝑅 ′ (𝑤 ′)| T that is similar to 𝑅(𝑤) T ▶𝑅 1 (where "similar" here means that, later, , Vol. 1, No. 1, Article . Publication date: November 2023.

𝑤 1 ∈

 1 𝑅(𝑤) =0 . Then |𝑅(𝑤) =0 | ≥ 1 and by hypothesis min(|𝑅(𝑤) =0 |, 2 𝑠) = min(|𝑅 ′ (𝑤 ′) =0 |, 2 𝑠), it follows that |𝑅 ′ (𝑤 ′) =0 | ≥ 1. It is then sufficient for the duplicator to choose 𝑤 1 ∈ 𝑅 ′ (𝑤 ′) =0 to guarantee him a victory, as the subtrees rooted in 𝑤 1 and 𝑤 ′ 1 are isomorphic. • Suppose that the spoiler chooses a world 𝑤 1 ∈ 𝑅(𝑤) =1 . Then |𝑅(𝑤) =1 | ≥ 1 and by hypothesis min(|𝑅(𝑤) =1 |, 2 𝑠 (𝑠 + 1)) = min(|𝑅 ′ (𝑤 ′) =1 |, 2 𝑠 (𝑠 + 1)), it follows that |𝑅 ′ (𝑤 ′) =1 | ≥ 1.

 1 (𝑤) =0 ∩ 𝑅(𝑤) =0 and 𝑅 2 (𝑤) =0 ∩ 𝑅(𝑤) =0 . • Suppose that |𝑅 1 (𝑤)| 0▶0 | < 2 𝑠 -1 and |𝑅 2 (𝑤)| 0▶0 | < 2 𝑠 -1 . Hence, |𝑅(𝑤) =0 | < 2 𝑠 and by hypothesis |𝑅 ′ (𝑤 ′) =0 | = |𝑅(𝑤) =0 |.Then the split of 𝑅 ′ (𝑤) =0 into 𝑍 1 and 𝑍 2 is made so that|𝑍 1 | = |𝑅 1 (𝑤)| 0▶0 | and |𝑍 2 | = |𝑅 2 (𝑤)| 0▶0 |. • Suppose that there is 𝑖 ∈ {1, 2} such that |𝑅 𝑖 (𝑤)| 0▶0 | < 2 𝑠 -1 and |𝑅 𝑗 (𝑤)| 0▶0 | ≥ 2 𝑠 -1 , where 𝑗 = 3 -𝑖 is the index of the other set. Then the split of 𝑅 ′ (𝑤) =0 into 𝑍 𝑖 and 𝑍 𝑗 is made so that |𝑍 𝑖 | = |𝑅 𝑖 (𝑤)| 0▶0 |.Notice that by hypothesis on the cardinality of 𝑅 ′ (𝑤) =0 it holds that|𝑍 𝑗 | ≥ 2 𝑠 -1 (otherwise min(|𝑅(𝑤) =0 |, 2 𝑠) ≠ min(|𝑅 ′ (𝑤 ′) =0 |, 2 𝑠)). • Suppose that |𝑅 1 (𝑤)| 0▶0 | ≥ 2 𝑠 -1 and |𝑅 2 (𝑤)| 0▶0 | ≥ 2 𝑠 -1 . Then the split of 𝑅 ′ (𝑤) =0 into 𝑍 1 and 𝑍 2 is made so that |𝑍 1 | = 2 𝑠 -1. Notice that by hypothesis on the cardinality of𝑅 ′ (𝑤) =0 it holds that |𝑍 𝑗 | ≥ 2 𝑠 -1 . For each 𝑤 ′ 1 ∈ 𝑍 1 , the duplicator adds (𝑤 ′ , 𝑤 ′ 1) to 𝑅 ′ 1 . For each 𝑤 ′ 2 ∈ 𝑍 2 , it adds (𝑤 ′ , 𝑤 ′ 2) to 𝑅 ′ 2 .Notice that by construction the two sets introduced are always such thatZ1: min(|𝑅 1 (𝑤)| 0▶0 |, 2 𝑠 -1) = min(|𝑍 1 |, 2 𝑠 -1) Z2: min(|𝑅 2 (𝑤)| 0▶0 |, 2 𝑠 -1) = min(|𝑍 2 |, 2 𝑠 -1). Split of 𝑅 ′ (𝑤) =1 . We introduce the following sets:𝑅 1 (𝑤)| 1▶0 def = 𝑅 1 (𝑤) =0 ∩ 𝑅(𝑤) =1 𝑅 2 (𝑤)| 1▶0 def = 𝑅 2 (𝑤) =0 ∩ 𝑅(𝑤) =1 𝑅 1 (𝑤)| 1▶1 def = 𝑅 1 (𝑤) =1 ∩ 𝑅(𝑤) =1 𝑅 2 (𝑤)| 1▶1 def = 𝑅 2 (𝑤) =1 ∩ 𝑅(𝑤) =1 . It iseasy to see that these sets are pairwise disjoint. From (S2) it follows that 𝑅(𝑤) =1 = 𝑅 1 (𝑤)| 1▶0 ∪ 𝑅 2 (𝑤)| 1▶0 ∪ 𝑅 1 (𝑤)| 1▶1 ∪ 𝑅 2 (𝑤)| 1▶1 . , Vol. 1, No. 1, Article . Publication date: November 2023.

2 𝔣(𝑅 1 (

 21 1 (𝑤)| 1▶0 , 𝑅 2 (𝑤)| 1▶0 , 𝑅 1 (𝑤)| 1▶1 , 𝑅 2 (𝑤)| 1▶1 } and let 𝔣 be the bijection 𝔣(𝑅 1 (𝑤)| 1▶0) def = 𝑍 ′ 1 , 𝔣(𝑅 2 (𝑤)| 1▶0) def = 𝑍 ′ 𝑤)| 1▶1) def = 𝑂 1 , 𝔣(𝑅 2 (𝑤)| 1▶1) def = 𝑂 2 . Moreover, we define (B stands for "bound") B (𝑅 1 (𝑤)| 1▶0) def = B (𝑅 2 (𝑤)| 1▶0) def = 2 𝑠 -1B (𝑅1 (𝑤)| 1▶1) def = B (𝑅 2 (𝑤)| 1▶1) def = 2 𝑠 -1 𝑠.So, these definitions (actually notations) are helpful at the metalevel. Besides, notice that, from 𝑠 ≥ 1, it holds that 2 𝑠 -1 and 2 𝑠 -1 𝑠 are both at least 1.• Suppose that for every set 𝑆 ∈ X it holds that |𝑆 | < B (𝑆). Then, since it holds that|𝑅(𝑤) =1 | = |𝑅 1 (𝑤)| 1▶0 | + |𝑅 2 (𝑤)| 1▶0 | + |𝑅 1 (𝑤)| 1▶1 | + |𝑅 2 (𝑤)| 1▶1 | it holds that |𝑅(𝑤) =1 | < 2 𝑠 -1 + 2 𝑠 -1 + 2 𝑠 -1 𝑠 + 2 𝑠 -1 𝑠 = 2 𝑠 (𝑠 + 1)and therefore by hypothesis we conclude that |𝑅(𝑤) =1 | = |𝑅 ′ (𝑤 ′) =1 |. Then, the split of 𝑅 ′ (𝑤 ′) =1 into 𝑍 ′ 1 , 𝑍 ′ 2 , 𝑂 1 and 𝑂 2 is made so that for every 𝑆 ∈ X, |𝔣(𝑆)| = |𝑆 |. • Suppose instead that there is 𝑆 ∈ X such that | 𝑆 | ≥ B (𝑆). Then, the split of 𝑅 ′ (𝑤 ′) =1 into 𝑍 ′ 1 , 𝑍 ′ 2 , 𝑂 1 and 𝑂 2 can be made so that for every 𝑆 ∈ X \ { 𝑆 }, |𝔣(𝑆)| = min(|𝑆 |, B (𝑆)). From the hypothesis min(|𝑅(𝑤) =1 |, 2 𝑠 (𝑠 + 1)) = min(|𝑅 ′ (𝑤 ′) =1 |, 2 𝑠 (𝑠 +1)) we conclude that this construction can be effectively made and it is such that |𝔣(𝑆)| ≥ B (𝑆). For each 𝑤 ′ 1 ∈ 𝑍 ′ 1 , the duplicator adds (𝑤 ′ , 𝑤 ′ 1) to 𝑅 ′ 1 and the only element of 𝑅 ′ | 𝑤 ′ 1 to 𝑅 ′ 2 . For each 𝑤 ′ 2 ∈ 𝑍 ′ 2 , it adds (𝑤 ′ , 𝑤 ′ 2) to 𝑅 ′ 2 and the only element of 𝑅 ′ | 𝑤 ′ 2 to 𝑅 ′ 1 . For each 𝑤 ′ 1 ∈ 𝑂 1 , it adds (𝑤 ′ , 𝑤 ′ 1) and the only element of 𝑅 ′ | 𝑤 ′ 1 to 𝑅 ′ 1 . Lastly, for each 𝑤 ′ 2 ∈ 𝑂 2 , it adds (𝑤 ′ , 𝑤 ′ 2) and the only element of 𝑅 ′ | 𝑤 ′ 2 to 𝑅 ′ 2 . Notice that by construction the four sets introduced are always such that Z11: min(|𝑅 1(𝑤)| 1▶0 |, 2 𝑠 -1) = min(|𝑍 ′ 1 |, 2 𝑠 -1) Z21: min(|𝑅 2 (𝑤)| 1▶0 |, 2 𝑠 -1) = min(|𝑍 ′ 2 |, 2 𝑠 -1) O1: min(|𝑅 1 (𝑤)| 1▶1 |, 2 𝑠 -1 𝑠) = min(|𝑂 1 |, 2 𝑠 -1 𝑠) O2: min(|𝑅 2 (𝑤)| 1▶1 |, 2 𝑠 -1 𝑠) = min(|𝑂 2 |, 2 𝑠 -1 𝑠)or, more schematically, for every 𝑆 ∈ X, min(|𝑆 |, B (𝑆)) = min(|𝔣(𝑆)|, B (𝑆)). Split of 𝑅 ′ (𝑤) =2 . Similarly to the previous steps, we introduce the following sets:𝑅 1 (𝑤)| 2▶0 def = 𝑅 1 (𝑤) =0 ∩ 𝑅(𝑤) =2 𝑅 2 (𝑤)| 2▶0 def = 𝑅 2 (𝑤) =0 ∩ 𝑅(𝑤) =2 𝑅 1 (𝑤)| 2▶1 def = 𝑅 1 (𝑤) =1 ∩ 𝑅(𝑤) =2 𝑅 2 (𝑤)| 2▶1 def = 𝑅 2 (𝑤) =1 ∩ 𝑅(𝑤) =2 𝑅 1 (𝑤)| 2▶2 def = 𝑅 1 (𝑤) =2 ∩ 𝑅(𝑤) =2 𝑅 2 (𝑤)| 2▶2 def = 𝑅 2 (𝑤) =2 ∩ 𝑅(𝑤) =2 .It is easy to see that these sets are pairwise disjoint. From (S3) it follows that𝑅(𝑤) =2 = 𝑅 1 (𝑤)| 2▶0 ∪ 𝑅 2 (𝑤)| 2▶0 ∪ 𝑅 1 (𝑤)| 2▶1 ∪ 𝑅 2 (𝑤)| 2▶1 ∪ 𝑅 1 (𝑤)| 2▶2 ∪ 𝑅 2 (𝑤)| 2▶2The duplicator starts by partitioning 𝑅 ′ (𝑤) =2 into six sets 𝑍 ′′ 1 , 𝑍 ′′ 2 , 𝑂 ′ 1 , 𝑂 ′ 2 , 𝑇 1 and 𝑇 2 according to the cardinalities of the six sets above ('T' for 'two'). Again, to shorten the presentation we introduce the setX = {𝑅 1 (𝑤)| 2▶0 , 𝑅 2 (𝑤)| 2▶0 , 𝑅 1 (𝑤)| 2▶1 , 𝑅 2 (𝑤)| 2▶1 , 𝑅 1 (𝑤)| 2▶2 , 𝑅 2 (𝑤)| 2▶2 }, and the bijection 𝔣 such that 𝔣(𝑅 1 (𝑤)| 2▶0) def = 𝑍 ′′ 1 , 𝔣(𝑅 2 (𝑤)| 2▶0) def = 𝑍 ′′ 2 𝔣(𝑅 1 (𝑤)| 2▶1) def = 𝑂 ′ 1 , 𝔣(𝑅 2 (𝑤)| 2▶1) def = 𝑂 ′ 2 , 𝔣(𝑅 1 (𝑤)| 2▶2) def = 𝑇 1 , 𝔣(𝑅 2 (𝑤)| 2▶2) def = 𝑇2 . , Vol. 1, No. 1, Article . Publication date: November 2023. described in (A). Two structures 𝔐 1 = (𝑊 , 𝑅 1 , 𝑉) and 𝔐 2 = (𝑊 , 𝑅 2 , 𝑉) are constructed such that 𝔐 1 + 𝔐 2 = 𝔐 and for every 𝑖 ∈ {1, 2}: • min(| 𝑅 𝑖 (𝑤) =0 |, 2 𝑠 -1) = min(|𝑅 ′ 𝑖 (𝑤 ′) =0 |, 2 𝑠 -1); • min(| 𝑅 𝑖 (𝑤) =1 |, 2 𝑠 -1 𝑠) = min(|𝑅 ′ 𝑖 (𝑤 ′) =1 |, 2 𝑠 -1 𝑠); • min(| 𝑅 𝑖 (𝑤) =2 |, 2 𝑠 -2 𝑠 (𝑠 + 1)) = min(|𝑅 ′

 |𝑅 𝑖 (𝑤) =0 | = | 𝑅 𝑖 (𝑤) =0 | |𝑅 𝑖 (𝑤) =1 | = | 𝑅 𝑖 (𝑤) =1 | |𝑅 𝑖 (𝑤) =2 | = | 𝑅 𝑖 (𝑤) =2 | Hence, by (‡ ‡) we have • min(|𝑅 𝑖 (𝑤) =0 |, 2 𝑠 -1) = min(|𝑅 ′ 𝑖 (𝑤 ′) =0 |, 2 𝑠 -1); • min(|𝑅 𝑖 (𝑤) =1 |, 2 𝑠 -1 𝑠) = min(|𝑅 ′ 𝑖 (𝑤 ′) =1 |, 2 𝑠 -1 𝑠); • min(|𝑅 𝑖 (𝑤) =2 |, 2 𝑠 -2 𝑠 (𝑠 + 1)) = min(|𝑅 ′

 . . , 3 ≥𝑘 𝑛 𝜓 𝑛 } such that for every 𝑖 ∈ [1, 𝑛], there is exactly one 𝑗 ∈ [1, 𝑞] such that 𝜓 𝑖 ≡ 𝛾 𝑗 , and in that case 𝑘 𝑗 ≥ 𝑘 𝑖 . Since 𝜒 is in

, Vol. 1, No. 1, Article . Publication date: November 2023.

 1, 𝑞], 𝑐 ∈ [1, 𝑘 𝑖] and 𝑤 ′ ∈ 𝑊 𝑐,𝑖 , 𝑤 ′ ∈ 𝑉 (𝑝) if and only if 𝑤 ′ ∈ 𝑉 𝑐,𝑖 (𝑝), • for every 𝑝 ∈ max PC (𝜑), 𝑤 ∈ 𝑉 (𝑝) if and only if 𝑝 occurs positively in 𝐿 1 ∧ • • • ∧ 𝐿 𝑟 . We have 𝔐, 𝑤 |= 𝜒. Indeed, 𝔐, 𝑤 |= 𝐿 1 ∧ • • • ∧ 𝐿 𝑟 holds by definition of 𝑉 , whereas 𝔐, 𝑤 |= 3 ≥𝑘 1 𝜓 1 ∧• • •∧3 ≥𝑘 𝑛 𝜓 𝑛 holds directly from the definition of R together with the definition of the various (𝔐 𝑐,𝑖 , 𝑤 𝑐,𝑖) with 𝑖 ∈ [1, 𝑞] and 𝑐 ∈ [1, 𝑘 𝑖]. Similarly, 𝔐, 𝑤 |= ¬3 ≥ 𝑗 1 𝜓 ′ 1 ∧. . .∧¬3 ≥ 𝑗 𝑚 𝜓 ′

𝑚

holds by definition of R together with the satisfiability of 𝜒, which implies that for all 𝑖 ∈ [1, 𝑛] and 𝑟 ∈ [1, 𝑚] if 𝜓 𝑖 ≡ 𝜓 ′ 𝑟 then 𝑘 𝑖 < 𝑗 𝑟 . Space-wise, by definition of R, 𝑞 𝑖=1 𝑘 𝑖 ≤ 𝑛 𝑖=1 𝑘 𝑖 ≤ bd(0, 𝜒) ≤ max bd (𝜑). Let |𝑊 𝑖 | be the number of worlds in 𝔐 𝑖 . The number of worlds in 𝑊 is

 formula [𝜑 1 , 𝜑 2] PA (x 1 , . . . , x 𝑛 , 𝑝 1 , . . . , 𝑝 𝑚) of Presburger arithmetic defined below: 𝑛 , 𝑝 1 , . . . , 𝑝 𝑚) ∧ 𝜑 PA 2 (y 2 1 , . . . , y 2 𝑛 , 𝑝 1 , . . . , 𝑝 𝑚

	∃ y 1 1 , y 2 1 , . . . , y 1 𝑛 , y 2 𝑛 (𝑛 𝑗=1 x 𝑗 = y 1 𝑗 + y 2 𝑗) ∧ 𝜑 PA 1 (y 1 1 , . . . , y 1

 1 , . . . , 𝑝 𝑚) is equivalent to a quantifier-free formula 𝜒 (x 1 , . . . , x 𝑛 , 𝑝 1 , . . . , 𝑝 𝑚) of Presburger arithmetic, whose atomic formulae are only of the form x 𝑗 ≥ 𝑘 (𝑗 ∈[1, 𝑛]), with 𝑘 ≤ gr(𝜑 1)+gr(𝜑 2), or 𝑝 𝑗 ≥ 1 (𝑗 ∈[1, 𝑚]). . Notice that if either 𝜑 PA 1 or 𝜑 PA 2 is inconsistent, then 𝜒 can be defined as ⊥. In the sequel, we assume that both 𝜑 PA 1 and 𝜑 PA 2 are consistent. For each 𝑖 ∈ {1, 2}, it is straightforward to establish that there is an arithmetical formula 𝜑 ′

	Proof

𝑖 (y 𝑖 1 , . . . , y 𝑖 𝑛 , 𝑝 1 , . . . , 𝑝 𝑚) in disjunctive normal form that is logically equivalent to the formula 𝜑 PA 𝑖 (y 𝑖 1 , . . . , y 𝑖 𝑛 , 𝑝 1 , . . . , 𝑝 𝑚), and where in each disjunct of 𝜑 ′ 𝑖 , every variable y 𝑖 𝑗 (𝑗 ∈ [1, 𝑛]) occurs in at most two literals with the following three options: • y 𝑖 𝑗 occurs in a unique literal of the form y 𝑖 𝑗 ≥ 𝑘, • y 𝑖 𝑗 occurs in a unique (negative) literal of the form ¬(y 𝑖 𝑗 ≥ 𝑘), or • y 𝑖 𝑗 occurs in two literals whose conjunction is y 𝑖 𝑗 ≥ 𝑘 ∧ ¬(y 𝑖 𝑗 ≥ 𝑘 ′) and, 𝑘 ′ > 𝑘. Above, we can guarantee that 𝑘, 𝑘 ′ ≤ gr(𝜑 𝑖). Moreover, in each disjunct of 𝜑 ′ 𝑖 , every variable 𝑝 𝑗 (𝑗 ∈ [1, 𝑚]) occurs exactly once, in a (possibly negated) atomic proposition of the form 𝑝 𝑗 ≥ 1.

 • y 𝑖 𝑗 ′ occurs in a unique literal of the form y 𝑖 𝑗 ′ ≥ 𝑘, • y 𝑖 𝑗 ′ occurs in a unique (negative) literal of the form ¬(y 𝑖 𝑗 ′ ≥ 𝑘), • y 𝑖 𝑗 ′ occurs in two literals whose conjunction is y 𝑖 𝑗 ′ ≥ 𝑘 1 ∧ ¬(y 𝑖 𝑗 ′ ≥ 𝑘 2) and 𝑘 2 > 𝑘 1 . Now, let us show how to perform quantifier elimination of ∃ y 1 𝑗 ∃ y 2 𝑗 Ψ 𝑗+1 to preserve the property for 𝑗 -1. First note that ∃ y 1 𝑗 ∃ y 2 𝑗 Ψ 𝑗+1 is logically equivalent to

 𝐷 2 and each variable y 𝑖 𝑗 does not occur in 𝐶 ′′ 𝑖 , and each 𝐷 𝑖 is either ⊤, or contains at most 2 literals involving the variable y 𝑖 𝑗 . It is then easy to eliminate quantifiers in ∃ y 1 𝑗 ∃ y 2 𝑗

division is possible because, if a child of 𝑤 contributes to the value 𝛼 𝑗 in 𝔐 (and therefore it satisfies 𝜓 𝑗), it cannot contribute to any value 𝛼 𝑗 ′ with 𝑗 ′ ≠ 𝑗, thanks to the assumption that 𝜓 𝑗 ∧𝜓 𝑗 ′ is unsatisfiable, given by the disjoint form of 𝜑 1 ∧ 𝜑 2 . Hence, by construction, 𝔐 = 𝔐 1 + 𝑤 𝔐 2 . Moreover, for any child 𝑤 ′ of 𝑤 in 𝔐 𝑖 , we have 𝔐 𝑖 , 𝑤 ′ |= 𝜓 𝑗 if and only if 𝔐, 𝑤 ′ |= 𝜓 𝑗 (for all 𝑗 ∈ [1, 𝑛]) as the whole subtree of 𝑤 ′ in 𝔐 is present in 𝔐 𝑖 . For 𝑖 ∈ {1, 2}, the validity of

 • for all 𝑗 ∈ [1, 𝑛], let 𝛽 𝑖 𝑗 = |{𝑤 ′ ∈ 𝑊 𝑖 | 𝔐 𝑖 , 𝑤 ′ |= 𝜓 𝑗 and (𝑤, 𝑤 ′) ∈ 𝑅 𝑖 }|, • for all 𝑗 ∈ [1, 𝑚], if 𝑤 ∈ 𝑉 𝑖 (𝑝 𝑗) then let 𝑐 𝑖 𝑗 be an arbitrary number greater than 0, else let 𝑐 𝑖 𝑗 = 0. We have the following equivalence 𝔐 𝑖 , 𝑤 |= 𝜑 𝑖 if and only if 𝜑 PA 𝑗 (resp. 𝑝 𝑗) with the natural number 𝛽 𝑖 𝑗 (resp. 𝑐 𝑖 𝑗). Let us show that 𝜑 1 𝜑 2 ≡ 𝜒 GML . We start by showing that 𝜑 1 𝜑 2 ⇒ 𝜒 GML is valid. Let 𝔐 = (𝑊 , 𝑅, 𝑉) be a finite forest and 𝑤 ∈ 𝑊 , such that 𝔐, 𝑤 |= 𝜑 1 𝜑 2 . By definition of |=, there are 𝔐 1 , 𝔐 2 such that 𝔐 = 𝔐 1 + 𝑤 𝔐 2 , 𝔐 1 , 𝑤 |= 𝜑 1 and 𝔐 2 , 𝑤 |= 𝜑 2 . Let us keep the definition of the 𝛽 𝑖 𝑗 's and 𝑐 𝑖 𝑗 's from above, and for each 𝑗 ∈ [1, 𝑛], let 𝛼 𝑗 = |{𝑤 ′ ∈ 𝑊 | 𝔐, 𝑤 ′ |= 𝜓 𝑗 and (𝑤, 𝑤 ′) ∈ 𝑅}|. Since 𝑉 is shared between 𝔐 1 and 𝔐 2 , 𝑐 1 𝑗 ≥ 1 holds if and only if 𝑐 2 𝑗 ≥ 1. Let 𝑐 𝑗 = max(𝑐 1 𝑗 , 𝑐 2 𝑗). By (1) and as 𝔐 = 𝔐 1 + 𝔐 2 holds too, we have the following: for all 𝑗 ∈ [1, 𝑛] 𝛼 𝑗 = 𝛽 1 𝑗 + 𝛽 2 𝑗 , for all 𝑖 ∈ {1, 2} 𝜑 PA 1 (𝛽 𝑖 1 , . . . , 𝛽 𝑖 𝑛 , 𝑐 1 , . . . , 𝑐 𝑚) is valid, which implies the validity of [𝜑 1 , 𝜑 2] PA (𝛼 1 , . . . , 𝛼 𝑛 , 𝑐 1 , . . . , 𝑐 𝑚). Hence, 𝜒 (𝛼 1 , . . . , 𝛼 𝑛 , 𝑐 1 , . . . , 𝑐 𝑚) is valid. By definition of 𝜒 GML together with the definitions of 𝛼 𝑗 and 𝑐 𝑗 , 𝔐, 𝑤 |= 𝜒 GML . Now, we show that 𝜒 GML ⇒ 𝜑 1 𝜑 2 is valid. Let 𝔐 = (𝑊 , 𝑅, 𝑉) be a finite forest and 𝑤 ∈ 𝑊 such that 𝔐, 𝑤 |= 𝜒 GML . As above, • for each 𝑗 ∈ [1, 𝑛], let 𝛼 𝑗 = |{𝑤 ′ ∈ 𝑊 | 𝔐, 𝑤 ′ |= 𝜓 𝑗 and (𝑤, 𝑤 ′) ∈ 𝑅}|. • for all 𝑗 ∈ [1, 𝑚], if 𝑤 ∈ 𝑉 (𝑝 𝑗) then let 𝑐 𝑗 be an arbitrary number greater than 0, else let 𝑐 𝑗 = 0. Similarly to (1), we get that 𝜒 (𝛼 1 , . . . , 𝛼 𝑛 , 𝑐 1 , . . . , 𝑐 𝑚) is valid, and so [𝜑 1 , 𝜑 2] PA (𝛼 1 , . . . , 𝛼 𝑛 , 𝑐 1 , . . . , 𝑐 𝑚) is valid. From the semantics of the formula [𝜑 1 , 𝜑 2] PA , there are 𝛽 1 2} let us build 𝔐 𝑖 such that for all 𝑗 ∈ [1, 𝑛], 𝑤 has 𝛽 𝑖 𝑗 children in 𝔐 𝑖 , and by construction for each such a child, its whole subtree in (𝑊 , 𝑅) is present in (𝑊 , 𝑅 𝑖) too. Such a 𝜑 PA 𝑖 (𝛽 𝑖 1 , . . . , 𝛽 𝑖 𝑛 , 𝑐 1 , . . . , 𝑐 𝑚) entails, by (1), 𝔐 𝑖 , 𝑤 |= 𝜑 𝑖 . Consequently, we get 𝔐, 𝑤 |= 𝜑 1 𝜑 2 . □The bound on gr(𝜒 GML) stated in this key lemma is essential to obtain an exponential bound on the smallest model satisfying a formula in ML() (see Section 3.3). Combining Lemma 3.3 and Lemma 3.6, we conclude that GML is closed under the operator .Proof. Let 𝜑 be a formula in ML(). As 3𝜓 ≡ 3 ≥1 𝜓 , we can assume that the only modalities in 𝜑 are of the form 3 ≥1 or . If 𝜑 has no occurrence of , we are done. Otherwise, let 𝜓 be a subformula of 𝜑 whose outermost connective is and the arguments are in GML, say 𝜓 = 𝜑 1 𝜑 2 . 𝜓 ′ in GML that is equivalent to 𝜓 . We have 𝜑 ≡ 𝜑 [𝜓 ← 𝜓 ′], where 𝜑 [𝜓 ← 𝜓 ′] is obtained from 𝜑 by replacing every occurrence of 𝜓 by 𝜓 ′ . Note that the number of occurrences of in 𝜑 [𝜓 ← 𝜓 ′] is strictly less than the number of occurrences of in 𝜑. By repeating such a type of replacement, eventually we obtain a formula 𝜑 ′ in GML such that 𝜑 ≡ 𝜑 ′ . □3.3The satisfiability problem of ML() is AExp Pol -complete First, we will prove the upper bound, i.e., that Sat(ML()) is in AExp Pol .

		𝑖 (𝛽 𝑖 1 , . . . , 𝛽 𝑖 𝑛 , 𝑐 𝑖 1 , . . . , 𝑐 𝑖 𝑚) is valid,	(1)
	where 𝜑 PA 𝑖 (𝛽 𝑖 1 , . . . , 𝛽 𝑖 𝑛 , 𝑐 𝑖 1 , . . . , 𝑐 𝑖 𝑚) is the sentence from Presburger arithmetic obtained by replacing
	each variable x 1 , 𝛽 2 1 , . . . , 𝛽 1 𝑛 , 𝛽 2 𝑛 ∈ N such that
	for all 𝑗 ∈ [1, 𝑛] 𝛼 𝑗 = 𝛽 1 𝑗 + 𝛽 2 𝑗 ,	for all 𝑖 ∈ {1, 2} 𝜑 PA 1 (𝛽 𝑖 1 , . . . , 𝛽 𝑖 𝑛 , 𝑐 1 , . . . , 𝑐 𝑚) is valid.
	For each 𝑖 ∈ {1, Theorem 3.7. ML() ⪯ GML. Therefore, ML() ≈ GML.
	By Lemma 3.3 there are GML formulae 𝜑 ′ 1 and 𝜑 ′ 2 in disjoint form such that 𝜑 ′ 1 ≡ 𝜑 1 and 𝜑 ′ 2 ≡ 𝜑 2 . Hence, 𝜑 ′ 1 𝜑 ′ 2 ≡ 𝜓 . We apply Lemma 3.6 on 𝜑 ′ 1 𝜑 ′ 2 , obtaining a formula

 where 𝜑 [← ∧] is the formula obtained from 𝜑 by replacing every occurrence of by ∧. Similarly, gm(𝑑, 𝜑) def = gm(𝑑, 𝜑 [← ∧]). We say that 𝜑 in L is in disjoint form if so is 𝜑 [← ∧]. Alternatively, this means that given max GM (𝜑) = {3 ≥𝑘 1 𝜓 1 , . . . , 3 ≥𝑘 𝑛 𝜓 𝑛 }, 𝑘 = max{𝑘 1 , . . . , 𝑘 𝑛 }, the GML formula 3 ≥𝑘 1 𝜓 1 ∧ • • • ∧ 3 ≥𝑘 𝑛 𝜓 𝑛 is in disjoint form.We start by extending Lemma 3.6 for formulae of the fragment L in disjoint form.Lemma 3.8. Let 𝜑 be a formula of the fragment L such that max GM (𝜑) = {3 ≥𝑘 1 𝜓 1 , . . . ,3 ≥𝑘 𝑛 𝜓 𝑛 } and 𝜑 is in disjoint form. There is a GML formula 𝜓 in disjoint form such that 𝜑 ≡ 𝜓 , max PC (𝜓) ⊆ max PC (𝜑)and max GM (𝜓) ⊆ {3 ≥ 𝑗 𝜓 𝑖 | 𝑗 ∈ [0, (cd(𝜑) + 1) • gr(𝜑)] and 𝑖 ∈ [1, 𝑛]}.Proof. By induction on cd(𝜑). If cd(𝜑) = 0, then 𝜓 = 𝜑. Otherwise, let Φ be the set of subformulae of the form 𝜑 1 𝜑 2 of 𝜑 appearing not in scope of a modality . Fix 𝜑 1 𝜑 2 in Φ. As cd(𝜑 1)+cd(𝜑 2)< ≥𝑘 𝜓 ∈ max GM (𝜒)} ⊆ {𝜓 | 3 ≥𝑘 𝜓 ∈ max GM (𝜑 ′ 1 ∧ 𝜑 ′ 2)}. Let 3 ≥ 𝑗 𝛾 ∈ max GM (𝜒). By definition, 𝛾 ∈ {𝜓 1 , . . . ,𝜓 𝑛 } and 𝑗 ≤ gr(𝜒) ≤ gr(𝜑 ′

	cd(𝜑), by induction hypothesis, there are GML formulae 𝜑 ′ 1 , 𝜑 ′ 2 in disjoint form such that, for all 𝑖 ∈ {1, 2}, 𝜑 𝑖 ≡ 𝜑 ′ 𝑖 and max GM (𝜑 ′ 𝑖) ⊆ {3 ≥ 𝑗 𝜓 𝑖 | 𝑗 ≤ (cd(𝜑 𝑖) + 1) • gr(𝜑 𝑖) and 𝑖 ∈ [1, 𝑛]} and max PC (𝜑 ′ 𝑖) ⊆
	max PC (𝜑 𝑖). Notice that gr(𝜑 ′ 𝑖) ≤ (cd(𝜑 𝑖)+1)•gr(𝜑 𝑖) ≤ (cd(𝜑 𝑖)+1)•gr(𝜑). By Lemma 3.6, there is a for-
	mula 𝜒 in disjoint form such that 𝜒 ≡ 𝜑 ′ 1 𝜑 ′ 2 , max PC (𝜒) ⊆ max PC (𝜑 ′ 1 ∧ 𝜑 ′ 2), gr(𝜒) ≤ gr(𝜑 ′ 1) + gr(𝜑 ′ 2), and {𝜓 | 3 1) + gr(𝜑 ′ 2) ≤ (cd(𝜑 1) + cd(𝜑 2) + 2) • gr(𝜑) ≤
	(cd(𝜑) + 1) • gr(𝜑).

 so is 3 ≥𝑘 𝑗 𝜓 𝑗 . Hence, applying Lemma 3.2, we conclude that 3 ≥𝑘 𝑗 𝜓 𝑗 ≡ 𝜓 ′ 𝑗 , for some GML formula 𝜓 ′ 𝑗 in disjoint form such that max GM (𝜓 ′ 𝑗) ⊆ {3 ≥𝑘 𝜒 | 𝑘 ∈ [0, 𝑘] and 𝜒 ∈ C ∧ (𝜓 1 , . . . ,𝜓 𝑛)}. For every ℓ ∈ [1, 𝑝], let 𝜒 ′ ℓ be the formula obtained from 𝜒 ℓ by substituting with 𝜓 ′ 𝑗 each occurrence of 3 ≥𝑘 𝑗 𝜓 𝑗 not appearing under the scope of graded modalities, for all 𝑗 ∈ [1, 𝑛]. The formula 𝜒 ′ ℓ belongs to L; moreover, 𝜒 ′ ℓ ≡ 𝜒 ℓ , and max GM (𝜒 ′ ℓ) ⊆ {3 ≥𝑘 𝛾 | 𝑘 ∈ [0, 𝑘] and 𝛾 ∈ C ∧ (𝜓 1 , . . . ,𝜓 𝑛)}. The latter implies that 𝜒 ′ ℓ is in disjoint form. Applying Lemma 3.8, there is a GML formula 𝜒 ′′ ℓ in disjoint form such that 𝜒 ′′ ℓ ≡ 𝜒 ′ ℓ , max GM (𝜒 ′′ ℓ) ⊆ {3 ≥ 𝑗 𝛾 | 𝑗 ∈ [0, (𝑐 + 1) • 𝑘] and 𝛾 ∈ C ∧ (𝜓 1 , . . . ,𝜓 𝑛)} and max PC (𝜒 ′′ ℓ) ⊆ max PC (𝜒 ′ ℓ).Let 𝜑 𝑖 be the formula obtained from 𝜑 𝑖 -1 by replacing with 𝜒 ′′ ℓ every occurrence of 𝜒 ℓ appearing under the scope of 𝑚 -𝑖 graded modalities, for every ℓ ∈ [1, 𝑝]. Let us analyse 𝜑 𝑖 . First of all, since 𝜑 𝑖 is obtained from 𝜑 𝑖 -1 by only substituting formulae 𝜒 ℓ appearing under the scope of 𝑚 -𝑖 graded modalities with equivalent formulae 𝜒 ′′ ℓ from GML, such that md(𝜒 ′′ ℓ) ≤ md(𝜒 ℓ), the properties (1) and (3) hold directly from the properties (1 𝑖 -1) and (3 𝑖 -1). By definition of 𝜑 𝑖 , gm(𝑚 -𝑖, 𝜑 𝑖

 ∨𝜑,where 𝑝 ∈ AP and the connectives ¬ and ∨ are dotted to avoid confusion with those of ML(). PL[~] is interpreted on sets of (Boolean) propositional valuations over a finite subset of AP. They are called teams and are denoted by 𝔗, 𝔗 1 , A model for 𝜑 is a team 𝔗 over a set of propositional variables including those occurring in 𝜑 and such that 𝔗 |= 𝜑 with:𝔗 |= 𝜑 1 ∨𝜑 2 ⇔ there are 𝔗 1 , 𝔗 2 such that 𝔗 = 𝔗 1 ∪ 𝔗 2 , 𝔗 1 |=𝜑 1 and 𝔗 2 |=𝜑 2 .The connectives ~and ∧ are interpreted as the classical negation and conjunction, respectively. Notice that, in the clause for ∨, the teams 𝔗 1 and 𝔗 2 are not necessarily disjoint.Let us discuss the reduction from Sat(PL[~]) to Sat(ML()). A direct encoding of a team 𝔗 into a pointed forest (𝔐, 𝑤) consists in having a correspondence between the propositional valuations , Vol. 1, No. 1, Article . Publication date: November 2023.

	𝔗 |= 𝑝	⇔ for all 𝔳 ∈ 𝔗, we have 𝔳(𝑝) = ⊤;
	𝔗 |= ¬𝑝	⇔ for all 𝔳 ∈ 𝔗, we have 𝔳(𝑝) = ⊥;

 4.1. 𝔐, 𝑤 |= init(𝑗) if and only if for every 0 ≤ 𝑖 ≤ 𝑗, 𝑤 ′ ∈ 𝑅 most one child of 𝑤 ′ satisfies ax); (2) for every 𝑤 ′′ ∈ 𝑅(𝑤 ′), if 𝔐, 𝑤 ′′ |= ax, then 𝑅(𝑤 ′′) = ∅ (i.e. 𝑤 ′′ does not have children) and it cannot be that 𝔐, 𝑤

𝑖 (𝑤) and ax ∈ Aux, (1) if 𝔐, 𝑤 ′ |= t then for all 𝑤 ′ 1 , 𝑤 ′ 2 ∈ 𝑅(𝑤 ′), if 𝔐, 𝑤 ′ 1 |= ax and 𝔐, 𝑤 ′ 2 |= ax then 𝑤 ′ 1 = 𝑤 ′ 2 (i.e. at ′′ |= bx for some bx ∈ Aux syntactically different from ax (i.e. among the propositions in Aux, 𝑤 ′′ only satisfies ax). Moreover, given 𝔐

 Formula fork 𝑖 𝑗 (ax, bx): Suppose 𝔐, 𝑤 |= init(𝑗). 𝔐, 𝑤 |= fork 𝑖 𝑗 (ax, bx) if and only if (i) 𝑤 has exactly two t-children and exactly two paths of t-nodes, both of length 𝑖; (ii) one of these two paths ends on a world (say 𝑤 ax) corresponding to the nominal ax whereas the other ends on a world (say 𝑤 bx) corresponding to the nominal bx; (iii) if 𝑖 < 𝑗 then (𝔐, 𝑤 ax) and (𝔐, 𝑤 bx) satisfy type lsr (𝑗 -𝑖) def = type(𝑗 -𝑖) ∧ [t] (3l∧3s∧3r). Formula [ax < bx] 𝑖 𝑗 if and only if there are two distinct t-nodes 𝑤 ax , 𝑤 bx ∈ 𝑅(𝑤) s.t. 𝑤 ax corresponds to the nominal ax, 𝑤 bx corresponds to the nominal bx and 𝐧(𝑤 bx) = 𝐧(𝑤 ax) + 1. Formula uniq(𝑗): Suppose 𝔐, 𝑤 |= init(𝑗) ∧ sub(𝑗) ∧ aux. 𝔐, 𝑤 |= uniq(𝑗) if and only if (𝔐, 𝑤) satisfies (uniq 𝑗), i.e. distinct t-nodes in 𝑅(𝑤) encode different numbers. Formula compl(𝑗): Suppose 𝔐, 𝑤 |= init(𝑗) ∧ sub(𝑗) ∧ aux. 𝔐, 𝑤 |= compl(𝑗) if and only if (𝔐, 𝑤) satisfies (compl 𝑗), i.e. for every t-node 𝑤 1 ∈ 𝑅(𝑤), if 𝐧(𝑤 1) < 𝔱(𝑗, 𝑛) -1 then 𝐧(𝑤 2) = 𝐧(𝑤 1) + 1 for some t-node 𝑤 2 ∈ 𝑅(𝑤). Formula type(𝑗): Suppose 𝔐, 𝑤 |= init(𝑗). 𝔐, 𝑤 |= type(𝑗) if and only if (𝔐, 𝑤) satisfies (sub 𝑗), (zero 𝑗), (uniq 𝑗), (compl 𝑗

𝑗 : Suppose 𝔐, 𝑤 |= init(𝑗) ∧ fork 𝑖 𝑗 (ax, bx). 𝔐, 𝑤 |= [ax < bx] 𝑖 𝑗 if and only if there are two distinct t-nodes 𝑤 ax , 𝑤 bx ∈ 𝑅 𝑖 (𝑤) such that 𝑤 ax corresponds to the nominal ax, 𝑤 bx corresponds to the nominal bx and 𝐧(𝑤 ax) < 𝐧(𝑤 bx). Formula [bx = ax+1] 𝑗 : Suppose 𝔐, 𝑤 |= init(𝑗) ∧ fork 1 𝑗 (ax, bx). 𝔐, 𝑤 |= [bx = ax+1] , Vol. 1, No. 1, Article . Publication date: November 2023.

 𝑤 has exactly two t-children and exactly two paths of t-nodes, both of length 𝑗, ending in two t-nodes (say 𝑤 1 and 𝑤 2); (2) 𝑤 1 (resp. 𝑤 2) corresponds to the nominal ax (resp. bx) for the depth 𝑗. Proof. (⇒): Suppose 𝔐, 𝑤 |= fork 𝑗 𝑗 (ax, bx). By 𝔐, 𝑤 |= 3 =2 t, 𝑤 has exactly two t-children (let us say 𝑤 ′ 1 and 𝑤 ′ 2). Then, by 𝔐, 𝑤 |= [t] ⊞ 𝑗 -2 (t⇒3 =1 t), it is easy to show that there is exactly one path of t-nodes of length 𝑗 -1, starting in 𝑤 ′ 1 (resp. 𝑤 ′ 2) and ending in a t-node 𝑤 1 ∈ 𝑅 𝑗 (𝑤) (resp. 𝑤 2 ∈ 𝑅 𝑗 (𝑤)). Then, the property (1) of the statement is verified. The property (2) of the statement follows by simply applying Lemma 4.4. (⇐): This direction is straightforward. In short, from (1), 𝔐, 𝑤 |= 3 =2 t ∧ [t] ⊞ 𝑗 -2 (t⇒3 =1 t), whereas from (2) together with Lemma 4.4 we have 𝔐, 𝑤 |= nom 𝑗 (ax ≠ bx).

3t * 3t). Lemma 4.6. Let ax ≠ bx ∈ Aux, 𝑗 ≥ 1. Suppose 𝔐, 𝑤 |= init(𝑗). Then, 𝔐, 𝑤 |= fork 𝑗 𝑗 (ax, bx) iff (1) □ As previously explained, in the base case, the number 𝐧(𝑤 ′) encoded by a t-node 𝑤 ′ ∈ 𝑅 𝑗 (𝑤) is represented by the truth values of 𝑝 1 , . . . , 𝑝 𝑛 . Then, the formula [ax < bx] 𝑗 𝑗 is defined as

 4.7. Let ax ≠ bx ∈ Aux and 𝑗 ≥ 1. Suppose 𝔐, 𝑤 |= init(𝑗) ∧ fork 𝑗 𝑗 (ax, bx). Then, 𝔐, 𝑤 |= [ax < bx] 𝑗 𝑗 if and only if there are two distinct t-nodes 𝑤 ax , 𝑤 bx ∈ 𝑅 𝑗 (𝑤) such that 𝑤 ax corresponds to the nominal ax, 𝑤 bx corresponds to the nominal bx and 𝐧(𝑤 ax) < 𝐧(𝑤 bx). Proof. Let 𝑥, 𝑦 be natural numbers represented in binary by using 𝑛 bits. Let us denote with 𝑥 𝑖 (resp. 𝑦 𝑖) the 𝑖-th bit of the binary representation of 𝑥 (resp. 𝑦). We have that 𝑥 < 𝑦 if and only if (A) there is a position 𝑖 ∈ [1, 𝑛] such that 𝑥 𝑖 = 0 and 𝑦 𝑖 = 1; (B) for every position 𝑗 > 𝑖, 𝑥 𝑗 = 1 ⇔ 𝑦 𝑗 = 1. The formula [ax < bx] 𝑗 𝑗 uses exactly this characterisation in order to state that 𝐧(𝑤 ax) < 𝐧(𝑤 bx). In the following, since we are working under the hypothesis that 𝔐, 𝑤 |= init(𝑗)∧fork 𝑗 𝑗 (ax, bx), let 𝑤 ax (resp. 𝑤 bx) be the world corresponding to the nominal ax (resp. bx), w.r.t. the depth 𝑗. 𝑤 ax |= ¬𝑝 𝑢 and 𝔐, 𝑤 bx |= 𝑝 𝑢 . Hence, the 𝑢-th bit is 0 in the number encoded by 𝑤 ax , whereas it is 1 in the number encoded by 𝑤 bx , as required by (A). Similarly, by Lemma 4.3 and 𝔐, 𝑤 |= 𝑣 ∈ [𝑢+1,𝑛] (@ 𝑗 ax 𝑝 𝑣 ⇔ @ 𝑗 bx 𝑝 𝑣), we conclude that for every 𝑣 ∈ [𝑢 + 1, 𝑛], 𝔐, 𝑤 ax |= 𝑝 𝑣 if and only if 𝔐, 𝑤 bx |= 𝑝 𝑣 . This corresponds to the property (B) above, leading to 𝐧(𝑤 ax) < 𝐧(𝑤 bx).

(⇒): Suppose 𝔐, 𝑤 |= [ax < bx] 𝑗 𝑗 . Then there is 𝑢 ∈ [1, 𝑛] such that 𝔐, 𝑤 |= @ 𝑗 ax ¬𝑝 𝑢 ∧ @ 𝑗 bx 𝑝 𝑢 ∧ 𝑛 𝑣=𝑢+1 (@ 𝑗 ax 𝑝 𝑣 ⇔ @ 𝑗 bx 𝑝 𝑣).

By Lemma 4.3 and 𝔐, 𝑤 |= @ 𝑗 ax ¬𝑝 𝑢 ∧ @ 𝑗 bx 𝑝 𝑢 , we conclude that 𝔐,

 1 1 (ax, bx). Then, 𝔐, 𝑤 |= [bx = ax+1] 1 if and only if there are two distinct t-nodes 𝑤 ax , 𝑤 bx ∈ 𝑅(𝑤) such that 𝑤 ax corresponds to the nominal ax, 𝑤 bx corresponds to the nominal bx and 𝐧(𝑤 bx) = 𝐧(𝑤 ax) + 1.Proof. The proof uses standard properties of numbers encoded in binary. Let 𝑥, 𝑦 be two natural numbers that can be represented in binary by using 𝑛 bits. Let us denote with 𝑥 𝑖 (resp. 𝑦

𝑖) the 𝑖-th bit of the binary representation of 𝑥 (resp. 𝑦). We have that 𝑦 = 𝑥 + 1 if and only if (A) there is a position 𝑖 ∈ [1, 𝑛] such that 𝑥 𝑖 = 0 and 𝑦 𝑖 = 1; , Vol. 1, No. 1, Article . Publication date: November 2023.

 𝑛], 𝑤 𝑖 ∈ 𝑉 (𝑝 𝑗) if and only if the 𝑗-th bit in the binary encoding of 𝑖 is 1. It is easy to check that (𝔐, 𝑤) satisfies init(1) as well as (sub 1), (zero 1), (uniq 1), (compl 1) and (aux). Thus, by Lemma 4.11 𝔐, 𝑤 |= init(1) ∧ type[START_REF] Areces | Moving Arrows and Four Model Checking Results[END_REF]. □

𝑤 y 2 𝑛 -1 } and for every 𝑖 ∈ [0, 2 𝑛 -1] and 𝑗 ∈ [1, , Vol. 1, No. 1, Article . Publication date: November 2023.

 2 1 (𝑤 ′). Then again (𝔐 ′ , 𝑤 ′) cannot satisfy (aux), in contradiction with 𝔐 ′ , 𝑤 ′ |= type(𝑗). □ With this technical lemma at hand, we are now able to show the correctness of fork 𝑖 𝑗 (ax, bx). Lemma 4.14. Let ax ≠ bx ∈ Aux, 1 ≤ 𝑖 < 𝑗, and 𝔐, 𝑤 |= init(𝑗). Then, 𝔐, 𝑤 |= fork 𝑖 𝑗 (ax, bx) if and only if the conditions below hold: (i) 𝑤 has exactly two t-children and exactly two paths of t-nodes, both of length 𝑖; (ii) one of these two paths ends on a world (say 𝑤 ax) corresponding to the nominal ax whereas the other ends on a world (say 𝑤 bx) corresponding to the nominal bx; (iii) (𝔐, 𝑤 ax) and (𝔐, 𝑤 bx) satisfy type lsr (𝑗 -𝑖) def = type(𝑗 -𝑖) ∧ [t] (3l ∧ 3s ∧ 3r). Proof. Recall that fork 𝑖 𝑗 (ax, bx) is defined as fork 𝑖 𝑖 (ax, bx) ∧ [t] 𝑖 type lsr (𝑗 -𝑖). We have: • 𝔐, 𝑤 |= fork 𝑖 𝑖 (ax, bx) if and only if (by Lemma 4.6) (i) 𝑤 has exactly two t-children and exactly two paths of t-nodes, both of length 𝑗;(ii) one of these two paths ends on a world corresponding to the nominal ax whereas the other ends on a world corresponding to the nominal bx. Fig. 3. Schema of a model satisfying lsr(𝑗).• Let 𝑤 ax , 𝑤 bx ∈ 𝑅 𝑖 (𝑤), since 𝔐, 𝑤 |= [t] 𝑖 type lsr (𝑗 -𝑖) we get 𝔐, 𝑤 ′ |= type lsr (𝑗 -𝑖), for 𝑤 ′ ∈ {𝑤 ax , 𝑤 bx }, which proves (iii), concluding the proof. □ Consider now [ax < bx] 𝑖 𝑗 . Assuming 𝔐,𝑤 |= fork 𝑖 𝑗 (ax, bx), we wish to express 𝐧(𝑤 ax) < 𝐧(𝑤 bx) for the two distinct worlds 𝑤 ax , 𝑤 bx ∈ 𝑅 𝑖 (𝑤) corresponding to the nominals ax and bx, respectively. As 𝑖 < 𝑗, 𝐧(𝑤 ax) (resp. 𝐧(𝑤 bx)) is encoded using the truth value of val on the t-children of 𝑤 ax (resp. 𝑤 bx). To rely on arithmetical properties of binary numbers used to define [ax < bx] 𝑗 𝑗 , we need to find two partitions 𝑃 ax = {𝐿 ax , 𝑆 ax , 𝑅 ax } and 𝑃 bx = {𝐿 bx , 𝑆 bx , 𝑅 bx }, one for the t-children of 𝑤 ax and another one for those of 𝑤 bx such that: 𝑃 ax and 𝑃 bx are constrained so that the intended relation < between the two numbers can be satisfied:

		. 𝑤		lsr(𝑗) implies type(𝑗)
	l	l	s	r	r
	
	<	<	<	<	

(LSR): Given 𝑏 ∈ {ax, bx}, 𝑃 𝑏 splits the t-children as follows:

• there is a t-child

𝑠 𝑏 of 𝑤 𝑏 such that 𝑆 𝑏 = {𝑠 𝑏 }; • 𝐧(𝑙) > 𝐧(𝑠 𝑏) > 𝐧(𝑟),

for every 𝑟 ∈ 𝑅 𝑏 and 𝑙 ∈ 𝐿 𝑏 . (LESS): • 𝐧(𝑠 ax) = 𝐧(𝑠 bx), 𝔐, 𝑠 ax |= ¬val and 𝔐, 𝑠 bx |= val; • for every 𝑙 ax ∈ 𝐿 ax and 𝑙 bx ∈ 𝐿 bx , if 𝐧(𝑙 ax) = 𝐧(𝑙 bx) then 𝔐, 𝑙 ax |= val iff 𝔐, 𝑙 bx |= val.

 𝑗 -𝑖 . Let us consider 𝔐 ′ = (𝑊 , 𝑅 ′ ,𝑊) obtained from 𝔐 by removing from 𝑅 every pair (𝑤 1 , 𝑤 2) ∈ 𝑅 such that -𝑤 1 and 𝑤 2 are t-nodes; -(𝑤 1 , 𝑤 2) does not belong to the path from 𝑤 to 𝑤 s , nor to the path from 𝑤 to 𝑤 ′ ; -(𝑤 1 , 𝑤 2) does not belong to any path starting from 𝑤 s or 𝑤 ′ . Then, we can show that 𝔐

1 𝑗 -𝑖 . Let 𝑤 ′ ∈ 𝑅(𝑤) be such that 𝑤 ′ has an Aux-child satisfying l. Then by Lemma 4.14, 𝔐, 𝑤 |= fork 1 𝑗 -1 (s, l) and as a consequence 𝔐, 𝑤 |= [s < l] 1 ′ , 𝑤 |= fork 1 𝑗 -𝑖 (s, l) and thus, by hypothesis, 𝔐 ′ , 𝑤 |= [s < l] 1 𝑗 -𝑖 . By the induction hypothesis, from [s < l]

 𝔐 ′ , 𝑤 |= fork 𝑖+1 𝑗 (x, y); II. 𝑠 ax corresponds to the nominal x at depth 𝑖 + 1; III. 𝑠 bx corresponds to the nominal y at depth 𝑖 + 1; IV. 𝐧(𝑠 ax) = 𝐧(𝑠 bx), V. 𝔐, 𝑠 ax ̸ |= val, and VI. 𝔐, 𝑠 bx |= val. The enumeration I-VI refers to the conjuncts in the formula. S 𝑖 𝑗 (ax, bx) correctly models the first condition of (LESS). Regarding L 𝑖 𝑗 (ax, bx) and (LESS), a similar analysis can be performed. We define LS 𝑖 𝑗 (ax, bx) def = L 𝑖 𝑗 (ax, bx) ∧ S 𝑖 𝑗 (ax, bx). Let us consider [bx = ax+1] 𝑗 . Under the hypothesis that 𝔐, 𝑤 |= fork 𝑖 𝑗 (ax, bx), this formula must express 𝐧(𝑤 bx) = 𝐧(𝑤 ax) + 1 for the two (distinct) worlds 𝑤 ax , 𝑤 bx ∈ 𝑅 𝑖 (𝑤). Then, as done for defining [ax < bx] 𝑖 𝑗 , we take advantage of arithmetical properties on binary numbers and we search for two partitions 𝑃 ax = {𝐿 ax , 𝑆 ax , 𝑅 ax } and 𝑃 bx = {𝐿 bx , 𝑆 bx , 𝑅 bx } of the t-children of 𝑤 ax and 𝑤 bx , respectively, such that 𝑃 ax and 𝑃 bx satisfy (LSR) as well as the condition below: (PLUS): 𝑃 ax and 𝑃 bx have the arithmetical properties of the successor relation: • 𝑃 ax and 𝑃 bx satisfy (LESS); • for every 𝑟 ax ∈ 𝑅 ax , we have 𝔐, 𝑟 ax |= val; • for every 𝑟 bx ∈ 𝑅 bx , we have 𝔐, 𝑟 ax ̸ |= val, where 𝑆 ax = {𝑠 ax } and 𝑆 bx = {𝑠 bx }, as required by (LSR). The definition of [bx = ax+1] 𝑗 is similar to [ax < bx] 𝑖 𝑗

y) and [x = y] 𝑖+1 𝑗 used in these formulae are defined recursively. The formula S 𝑖 𝑗 (ax, bx) states that there is a submodel 𝔐 ′ ⊑ 𝔐 such that , Vol. 1, No. 1, Article . Publication date: November 2023.

I.

 A) 𝔐, 𝑤 𝑏 |= type(𝑗 -𝑖); (B) every t-node in 𝑅(𝑤 𝑏) has exactly one Aux-child satisfying an atomic proposition from {l, s, r}; (C) exactly one t-node in 𝑅(𝑤 𝑏) (say 𝑤 𝑏,s) has an Aux-child satisfying s; (D) given 𝑤 ′ ∈ 𝑅(𝑤 𝑏), 𝑤 ′ has an Aux-child satisfying l if and only if 𝐧(𝑤 ′) > 𝐧(𝑤 𝑏,s); (E) given 𝑤 ′ ∈ 𝑅(𝑤 𝑏), 𝑤 ′ has an Aux-child satisfying r if and only if 𝐧(𝑤 ′) < 𝐧(𝑤 𝑏,s). 𝔐, 𝑤 |= S 𝑖 𝑗 (ax, bx) if and only if 𝐧(𝑤 ax,s) = 𝐧(𝑤 bx,s), 𝔐, 𝑤 ax,s |= ¬val and 𝔐, 𝑤 bx,s |= val; II. 𝔐, 𝑤 |= L 𝑖 𝑗 (ax, bx) if and only if (𝔐, 𝑤 ax,l |= val iff 𝔐, 𝑤 bx,l |= val), for all 𝑤 ax,l ∈ 𝑅(𝑤 ax) and 𝑤 bx,l ∈ 𝑅(𝑤 bx) s.t. 𝐧(𝑤 ax,l) > 𝐧(𝑤 ax,s), 𝐧(𝑤 bx,l) > 𝐧(𝑤 bx,s) and 𝐧(𝑤 ax,l) = 𝐧(𝑤 bx,l). III. If 𝑖 = 1 then, 𝔐, 𝑤 |= R(ax, bx) if and only if • for every world 𝑤 ax,r ∈ 𝑅(𝑤 ax), if 𝐧(𝑤 ax,r) < 𝐧(𝑤 ax,s) then 𝔐, 𝑤 ax,r |= val; • for every world 𝑤 bx,r ∈ 𝑅(𝑤 bx), if 𝐧(𝑤 bx,r) < 𝐧(𝑤 bx,s) then 𝔐, 𝑤 bx,r |= ¬val. Let ax ≠ bx ∈ Aux and 1 ≤ 𝑖 < 𝑗. Suppose 𝔐, 𝑤 |= init(𝑗) ∧ fork 𝑖 𝑗 (ax, bx). Then, 𝔐, 𝑤 |= [ax < bx] 𝑖 𝑗 if and only if there are two distinct t-nodes 𝑤 ax , 𝑤 bx ∈ 𝑅 𝑖 (𝑤) such that 𝑤 ax corresponds to the nominal ax, 𝑤 bx corresponds to the nominal bx and 𝐧(𝑤 ax) < 𝐧(𝑤 bx). 4.18. Let ax ≠ bx ∈ Aux and 1 ≤ 𝑖 < 𝑗. Suppose 𝔐, 𝑤 |= init(𝑗) ∧ fork 1 𝑗 (ax, bx). Then, 𝔐, 𝑤 |= [bx = ax+1] 𝑗 if and only if there are two distinct t-nodes 𝑤 ax , 𝑤 bx ∈ 𝑅(𝑤) such that 𝑤 ax corresponds to the nominal ax, 𝑤 bx corresponds to the nominal bx and 𝐧(𝑤 bx) = 𝐧(𝑤 ax) + 1.

	Then,
	I. See the proof in Appendix E.
	Lemma 4.17. See the proof in Appendix F.

, Vol. 1, No. 1, Article . Publication date: November 2023.

Lemma

 Let 𝑗 ≥ 2. Suppose 𝔐, 𝑤 |= init(𝑗) ∧ aux. Then, 𝔐, 𝑤 |= uniq(𝑗) if and only if (𝔐, 𝑤) satisfies (uniq 𝑗), i.e. distinct t-nodes in 𝑅(𝑤) encode different numbers.Proof. As in Lemma 4.9, but using Lemma 4.17 on the inductive formula [x = y] 1 𝑗 . 𝑗) if and only if (𝔐, 𝑤) satisfies (compl 𝑗), i.e. for every t-node 𝑤 1 ∈ 𝑅(𝑤), if 𝐧(𝑤 1) < 𝔱(𝑗, 𝑛)-1 then 𝐧(𝑤 2) = 𝐧(𝑤 1)+1 for some t-node 𝑤 2 ∈ 𝑅(𝑤).

	Proof. As in Lemma 4.10, but using Lemma 4.18 and the formula type lsr (𝑗 -1) in order to properly evaluate fork 1 𝑗 (x, y).

1 1 (x, y) and fork 1 𝑗 (x, y) is precisely that the latter requires [t]type lsr (𝑗 -1). The definition of type(𝑗) is now complete. Lemma 4.19. □ Lemma 4.20. Let 𝑗 ≥ 2. Suppose 𝔐, 𝑤 |= init(𝑗) ∧ aux. Then, 𝔐, 𝑤 |= compl(□ Finally, we can state the correctness of the definition of type(𝑗). Lemma 4.21. Let 𝔐, 𝑤 |= init(𝑗). We have 𝔐, 𝑤 |= type(𝑗) if and only if (𝔐, 𝑤) satisfies (sub 𝑗), (zero 𝑗), (uniq 𝑗), (compl 𝑗) and (aux). Proof. It follows directly from Lemmata 4.5, 4.19 and 4.20.

 1 𝑘 and [bx = ax+1] 𝑘 . Given a pointed model (𝔐, 𝑤) (with 𝔐 = (𝑊 , 𝑅, 𝑉)) satisfying fork 1 𝑘 (ax, bx), and the two t-nodes 𝑤 ax , 𝑤 bx ∈ 𝑅(𝑤) corresponding to the nominals ax and bx, respectively, [ax 𝐷 = bx] 𝑘 states that 𝐧 𝐷 (𝑤 ax) = 𝐧 𝐷 (𝑤 bx); [bx 𝐷 = ax+1] 𝑘 states that 𝐧 𝐷 (𝑤 bx) = 𝐧 𝐷 (𝑤 ax) + 1.

 𝑤 bx corresponds to the nominal bx and 𝐧 𝐷 (𝑤 ax) = 𝐧 𝐷 (𝑤 bx). . This proof is similar to the one of Lemma 4.16 (II). Since 𝔐, 𝑤 |= init(𝑘) ∧fork 1 𝑘 (ax, bx), by Lemma 4.14 there are two worlds 𝑤 ax and 𝑤 bx in 𝑅(𝑤) corresponding to the nominals (for the depth 1) ax and bx, respectively.We show that 𝔐, 𝑤 x |= val 𝐷 if and only if 𝔐, 𝑤 y |= val 𝐷 , thus concluding that 𝐧 𝐷 (𝑤 ax) = 𝐧 𝐷 (𝑤 bx). Let us consider the finite forest 𝔐 ′ = (𝑊 , 𝑅 1 , 𝑉) where 𝑅 1 is obtained from 𝑅 by removing every edge (𝑤 𝑏 , 𝑤 ′) ∈ 𝑅 where 𝑏 ∈ {ax, bx}, and 𝑤 ′ is a t-node different from 𝑤 x and 𝑤 y . We also remove the edge (𝑤 x , 𝑤 ′) ∈ 𝑅 where 𝑤 ′ is the only y-child of 𝑤 x , as well as (𝑤 y , 𝑤 ′′) where 𝑤 ′′ is the only x-child of 𝑤 y . The existence of these nodes is guaranteed by 𝔐, 𝑤 ax |= type(𝑘 -1) and 𝔐, 𝑤 bx |= type(𝑘 -1). By Lemma 4.14, we have 𝔐 ′ , 𝑤 |= fork 2 𝑘 (x, y), where 𝑤 x corresponds to the nominal (at depth 2) x, whereas 𝑤 y corresponds to the nominal (at depth 2) y. Moreover, Lemma 4.14 ensures that 𝔐, 𝑤 x |= type(𝑘 -2) and 𝔐, 𝑤 y |= type(𝑘 -2), hence by Lemma 4.13 we conclude that 𝑤 x (resp. 𝑤 y) encodes the same number w.r.t. (𝔐, 𝑤) and (𝔐 ′ , 𝑤). Again from the definition of 𝑅 1 it is easy to see that 𝔐 ′ , 𝑤 |= @ 1 ax ⟨t⟩3x ∧ @ 1 bx ⟨t⟩3y. Lastly, by hypothesis on 𝑤 x and 𝑤 y , together with Lemma 4.17 and that [x = y] 2

	Proof

4.23. Let ax ≠ bx ∈ Aux and 𝑘 ≥ 2. Suppose 𝔐, 𝑤 |= init(𝑘) ∧ fork 1 𝑘 (ax, bx). Then, 𝔐, 𝑤 |= [ax 𝐷 = bx] 𝑘 if and only if there are two distinct t-nodes 𝑤 ax , 𝑤 bx ∈ 𝑅(𝑤) such that 𝑤 ax corresponds to the nominal ax, (⇒): Suppose 𝔐, 𝑤 |= [ax 𝐷

= bx] 𝑘 . Then, for every

𝔐 ′ = (𝑊 , 𝑅 1 , 𝑉), if 𝔐 ′ ⊑ 𝔐 and 𝔐 ′ , 𝑤 |= fork 2 𝑘 (x, y) ∧ @ 1 ax ⟨t⟩3x ∧ @ 1 bx ⟨t⟩3y ∧ [x = y] 2 𝑘 then 𝔐 ′ , 𝑤 |= @ 2

x val 𝐷 ⇔ @ 2 y val 𝐷 . Now, from 𝔐, 𝑤 |= fork 1 𝑘 (ax, bx) we have 𝔐, 𝑤 ax |= type(𝑘 -1) and 𝔐, 𝑤 bx |= type(𝑘 -1) (notice that then, all the worlds in 𝑅(𝑤 ax) ∪ 𝑅(𝑤 bx) satisfy type(𝑘 -2)). Thus, let us consider two arbitrary worlds 𝑤 x and 𝑤 y such that

• 𝑤 x ∈ 𝑅(𝑤 ax) and 𝑤 y ∈ 𝑅(𝑤 bx);

• 𝐧 𝑘 -1 (𝑤 x) = 𝐧 𝑘 -1 (𝑤 y). 𝑘 is equal to ¬([x < y] 2 𝑘 ∨ [y < x]

2 𝑘) by definition, we conclude that 𝔐 ′ , 𝑤 |= [x = y] 2 𝑘 . Thus, by hypothesis, 𝔐 ′ , 𝑤 |= @ 2 x val 𝐷 ⇔ @ 2 y val 𝐷 , concluding the proof. (⇐): This direction is proved analogously by mainly relying on Lemma 4.17 and Lemma 4.13. □ , Vol. 1, No. 1, Article . Publication date: November 2023.

 𝔐, 𝑤 |= [bx 𝐷 = ax+1] 𝑘 if and only if there are two distinct t-nodes 𝑤 ax , 𝑤 bx ∈ 𝑅(𝑤) such that 𝑤 ax corresponds to the nominal ax, 𝑤 bx corresponds to the nominal bx and 𝐧 𝐷 (𝑤 bx) = 𝐧 𝐷 (𝑤 ax) + 1.

ax, bx) . Lemma 4.24. Let ax ≠ bx ∈ Aux and 𝑘 ≥ 2. Suppose 𝔐, 𝑤 |= init(𝑘) ∧ fork 1 𝑘 (ax, bx). Then,

 4.27. Let 𝑘 ≥ 2. Suppose 𝔐, 𝑤 |= init(𝑘) ∧ aux. 𝔐, 𝑤 |= compl T T (𝑘) if and only if (𝔐, 𝑤) satisfies (compl T T,𝑘). More precisely, (1) 𝔐, 𝑤 |= compl[H] T T (𝑘) if and only if for every t-node 𝑤 1 ∈ 𝑅(𝑤), if 𝐧 H (𝑤 1) < 𝔱(𝑘, 𝑛) -1 then there is a t-node 𝑤 2 ∈ 𝑅(𝑤) such that 𝐧 H (𝑤 2) = 𝐧 H (𝑤 1) + 1 and 𝐧V (𝑤 2) = 𝐧 V (𝑤 1); (2) 𝔐, 𝑤 |= compl[V] T T (𝑘) if and only if for every t-node 𝑤 1 ∈ 𝑅(𝑤), if 𝐧 V (𝑤 1) < 𝔱(𝑘, 𝑛) -1 then there is a t-node 𝑤 2 ∈ 𝑅(𝑤) such that 𝐧 H (𝑤 2) = 𝐧 H (𝑤 1) and 𝐧 V (𝑤 2) = 𝐧 V (𝑤 1) + 1.Proof. Both (1) and (2) are proved as Lemma 4.10 and Lemma 4.20, with the sole difference that we rely on Lemma 4.23 and Lemma 4.24 in order to show that, given two distinct worlds 𝑤 x and 𝑤 y corresponding to nominals (for the depth 1) x and y, respectively,[y H = x+1] 𝑘 ∧ [x V = y] 𝑘 holds if and only if 𝐧 H (𝑤 x) = 𝐧 H (𝑤 y) + 1 and 𝐧 V (𝑤 x) = 𝐧 V (𝑤 y) (in the proof of 1). Similarly, (in the proof of 2) [y V = x+1] 𝑘 ∧ [x H = y] 𝑘 holds ifand only if 𝐧 H (𝑤 x) = 𝐧 H (𝑤 y) and 𝐧 V (𝑤 x) = 𝐧 V (𝑤 y) + 1. □ This concludes the definition of grid T T (𝑘). It is proved correct in the following lemma. Lemma 4.28. 𝔐, 𝑤 |= grid T T (𝑘) if and only if (𝔐, 𝑤) satisfies (zero T T,𝑘), (uniq T T,𝑘), (compl T T,𝑘) and (init/sub/aux). . Directly from Lemmata 4.1, 4.5 and 4.25 to 4.27.

	Proof

and compl[V] T T (𝑘) is defined from compl[H] T T (𝑘) by replacing 1 H 𝑘 , [y H = x+1] 𝑘 and [x V = y] 𝑘 with 1 V 𝑘 , [y V = x+1] 𝑘 and [x H = y] 𝑘 , respectively. Here, 1 𝐷 𝑘 (𝐷 ∈ {H, V}) is defined as [t]val 𝐷 , and hence it is satisfied by the t-nodes 𝑤 ′ ∈ 𝑅(𝑤) such that 𝐧 𝐷 (𝑤 ′) = 𝔱(𝑘, 𝑛) -1. , Vol. 1, No. 1, Article . Publication date: November 2023. Lemma □ Corollary 4.29. The formula grid T T (𝑘) is satisfiable.

 Game on [(𝔐 1 =(𝑊 1 , 𝑅 1 , 𝑉 1), 𝑤 1), (𝔐 2 =(𝑊 2 , 𝑅 2 , 𝑉 2), 𝑤 2), (𝑚, 𝑠, P)].if there is 𝑝 ∈ P such that 𝑤 1 ∈ 𝑉 1 (𝑝) iff 𝑤 2 ∉ 𝑉 2 (𝑝) then the spoiler wins. else the spoiler chooses 𝑖 ∈ {1, 2} and plays on 𝔐 𝑖 . The duplicator replies on 𝔐 𝑗 where 𝑗 ≠ 𝑖. The spoiler must choose one of the following moves, otherwise the duplicator wins: modal move: if 𝑚 ≥ 1 and 𝑅 𝑖 (𝑤 𝑖) ≠ ∅ then the spoiler can choose to play a modal move by selecting an element 𝑤 ′ 𝑖 ∈ 𝑅 𝑖 (𝑤 𝑖). Then,•the duplicator must reply with a 𝑤 ′ 𝑗 ∈ 𝑅 𝑗 (𝑤 𝑗) (else, the spoiler wins); • the game continues on [(𝔐 1 , 𝑤 ′ 1), (𝔐 2 , 𝑤 ′ 2), (𝑚 -1, 𝑠, P)]. spatial move: if 𝑠 ≥ 1 then the spoiler can choose to play a spatial move by selecting two finite forests 𝔐 1 𝑖 and 𝔐 2 𝑖 such that 𝔐 1 𝑖 + 𝔐 2 𝑖 = 𝔐 𝑖 . Then, • the duplicator replies with two finite forests 𝔐 1 𝑗 and 𝔐 2 𝑗 such that 𝔐 1 𝑗 + 𝔐 2 𝑗 = 𝔐 𝑗 ; • The game continues on [(𝔐 𝑘 1 , 𝑤 1), (𝔐 𝑘 2 , 𝑤 2), (𝑚, 𝑠 -1, P)], where 𝑘 ∈ {1, 2} is chosen by the spoiler.

 and Theorem 3.7. □ 𝑇 |= n[𝜑] iff ∃𝑇 ′ s.t. 𝑇 ≡ n[𝑇 ′] and 𝑇 ′ |= 𝜑 𝑇 |= 𝜑 𝜓 iff ∃𝑇 1 ,𝑇 2 s.t. 𝑇 ≡ 𝑇 1 𝑇 2 ,𝑇 1 |= 𝜑 and 𝑇 2 |= 𝜓

		Structural eqivalence
		Semantics
	𝑇 |= ⊤	always holds
	𝑇 |= 0	iff 𝑇 ≡ 0

Trees 𝑇 := 0 | n[𝑇] | 𝑇 𝑇

 Hence, again by using Lemma A.1 we can easily conclude that (𝑊 , 𝑅 ′ 1 , 𝑉), 𝑤 |= 𝜑 and (𝑊 , 𝑅 ′ 2 , 𝑉), 𝑤 |= 𝜓 . From the properties of 𝑅 ′ 1 and 𝑅 ′ 2 expressed above, we obtain 𝔐, 𝑤 |= 𝜑 * 𝜓 . □ C PROOF OF LEMMA 3.11 Proof. The proof of Lemma 3.11 essentially consists in proving the lemmas C.1 and C.2 below. Given P = {𝑝 1 , . . . , 𝑝 𝑚 } and a finite forest 𝔐 = (𝑊 , 𝑅, 𝑉), for all 𝑤 ′ , 𝑤 ′′ ∈ 𝑊 , we write 𝑤 ′ ≈ P 𝑤 ′′ iff for all 𝑖 ∈ [1, 𝑚], we have 𝔐, 𝑤 ′ |= 𝑝 𝑖 iff 𝔐, 𝑤 ′′ |= 𝑝 𝑖 , i.e. 𝑤 ′ and 𝑤 ′′ agree on the truth values of all the propositional variables in P. As done in Section 3.3, we recall that Q = {𝑞 1 , . . . , 𝑞 𝑛+1 }.

 which allows us to state a unicity property. We have 𝔐, 𝑤 |= uni(Q) iff for all 𝑤 ′ ∈ 𝑅(𝑤), there is a unique 𝑖 ∈ [1, 𝑛 + 1] such that 𝔐, 𝑤 ′ |= 𝑞 𝑖 . (uniformity) The second property is related to the subformula 𝑗 ∈[1,𝑚] 3𝑝 𝑗 ⇒ 2𝑝 𝑗 that states a uniformity condition. We have 𝔐, 𝑤 |= 𝑗 ∈ [1,𝑚] 3𝑝 𝑗 ⇒ 2𝑝 𝑗 if and only if for all 𝑤 ′ , 𝑤 ′′ ∈ 𝑅(𝑤), we have 𝑤 ′ ≈ P 𝑤 ′′ . (two-witnesses) Let 𝑘 ≠ 𝑘 ′ ∈ 𝑋 and 𝜓 𝑘,𝑘 ′ def = (⊤ 3 =1 𝑞 𝑘 ∧ 3 =1 𝑞 𝑘 ′ ∧ 𝑗 ∈ [1,𝑚] 3𝑝 𝑗 ⇒ 2𝑝 𝑗). We have 𝔐, 𝑤 |= 𝜓 𝑘,𝑘 ′ iff there are 𝑤 ′ ≠ 𝑤 ′′ ∈ 𝑅(𝑤) s.t. 𝔐, 𝑤 ′ |= 𝑞 𝑘 , 𝔐, 𝑤 ′′ |= 𝑞 𝑘 ′ and 𝑤 ′ ≈ P 𝑤 ′′ . (no-witness-1) Again, let 𝑘 ≠ 𝑘 ′ ∈ 𝑋 . We have 𝔐, 𝑤 |= 3 =1 𝑞 𝑘 ∧ ¬𝜓 𝑘,𝑘 ′ iff there is a unique 𝑤 ′ ∈ 𝑅(𝑤) such that 𝔐, 𝑤 ′ |= 𝑞 𝑘 and there is no 𝑤 ′′ ∈ 𝑅(𝑤) s.t. 𝔐, 𝑤 ′′ |= 𝑞 𝑘 ′ and 𝑤 ′ ≈ P 𝑤 ′′ . (no-witness-2) Finally, we have 𝔐, 𝑤 |= 2𝑞 𝑘 (3 =1 𝑞 𝑘 ∧ ¬𝜓 𝑘,𝑘 ′) there is 𝑤 ′ ∈ 𝑅(𝑤) such that 𝔐, 𝑤 ′ |= 𝑞 𝑘 and there is no 𝑤 ′′ ∈ 𝑅(𝑤) such that 𝔐, 𝑤 ′′ |= 𝑞 𝑘 ′ and 𝑤 ′ ≈ P 𝑤 ′′ . 𝔐, 𝑤 |= cp(𝑋) iff for all 𝑘 ≠ 𝑘 ′ ∈ 𝑋 , there is no 𝑤 ′ ∈ 𝑅(𝑤) such that 𝔐, 𝑤 ′ |= 𝑞 𝑘 and for which there is no 𝑤 ′′ ∈ 𝑅(𝑤) such that 𝔐, 𝑤 ′′ |= 𝑞 𝑘 ′ and 𝑤 ′ ≈ P 𝑤 ′′ . Otherwise said, for all 𝑤 ′ ∈ 𝑅(𝑤) such that 𝔐, 𝑤 ′ |= 𝑞 𝑘 , there is 𝑤 ′′ ∈ 𝑅(𝑤) such that 𝔐, 𝑤 ′′ |= 𝑞 𝑘 ′ and 𝑤 ′ ≈ P 𝑤 ′′ (P and Q are disjoint). □ Let (𝔐, 𝑤) be a pointed forest satisfying uni(Q), 𝔗 be a team built upon P and ∅ ≠ 𝑋 ⊆ [1, 𝑛 + 1]. We write (𝔐, 𝑤) ≡ 𝑋 P 𝔗 iff the conditions below are satisfied. (1) For all valuations 𝔳 ∈ 𝔗, for all 𝑘 ∈ 𝑋 , there is 𝑤 ′ ∈ 𝑅(𝑤) such that for all 𝑖 ∈ [1, 𝑚], we have 𝔐, 𝑤 ′ |= 𝑝 𝑖 iff 𝔳(𝑝 𝑖) = ⊤ (written 𝔐, 𝑤 ′ |= 𝔳) and 𝔐, 𝑤 ′ |= 𝑞 𝑘 . (2) For all valuations 𝔳 such that (for all 𝑘 ∈ 𝑋 , there is 𝑤 ′ 𝑘 ∈ 𝑅(𝑤) such that 𝔐, 𝑤 ′ 𝑘 |= 𝔳 and 𝔐, 𝑤 ′ 𝑘 |= 𝑞 𝑘), we have 𝔳 ∈ 𝔗. Hence, when (𝔐, 𝑤) ≡ 𝑋 P 𝔗, the children of 𝑤 encodes the team 𝔗 with the property that each encoding of 𝔳 ∈ 𝔗 is witnessed by |𝑋 | witness worlds. Given an PL[~] formula 𝜑, its ∨-weight, written w ∨ (𝜑), is defined as the number of occurrences of ∨ in 𝜑. Lemma C.2. Let ∅ ≠ 𝑋 ⊆ [1, 𝑛 + 1], (𝔐, 𝑤) be a pointed forest such that 𝔐, 𝑤 |= uni(Q) ∧ cp(𝑋) and 𝔗 be a team built over P such that (𝔐, 𝑤) ≡ 𝑋 P 𝔗. For all PL[~] formula 𝜓 built over P such that w ∨ (𝜓) ≤ |𝑋 | -1, we have 𝔗 |= 𝜓 iff 𝔐, 𝑤 |= 𝜏 (𝜓, 𝑋). Base case with 𝜓 = 𝑝 𝑖 , 𝑖 ∈ [1, 𝑚]. First, assume that 𝔗 |= 𝑝 𝑖 , which means that for all valuations 𝔳 ∈ 𝔗, we have 𝔳(𝑝 𝑖) = ⊤. Ad absurdum, suppose that there is 𝑤 ′ ∈ 𝑅(𝑤) ∩ (𝑘 ∈𝑋 𝑉 (𝑞 𝑘)), such that 𝔐, 𝑤 ′ ̸ |= 𝑝 𝑖 . Let 𝔳 be the valuation over P satisfied by 𝑤 ′ . As 𝔐, 𝑤 |= cp(𝑋), by Lemma C.1, the valuation 𝔳 is satisfied in a child of 𝑤 satisfying 𝑞 𝑘 for all 𝑘 ∈ 𝑋 . By (2.) in the definition of ≡ 𝑋 P , this implies that 𝔳 ∈ 𝔗, which leads to a contradiction. Consequently, for all 𝑤 ′ ∈ 𝑅(𝑤) ∩ (𝑘 ∈𝑋 𝑉 (𝑞 𝑘)), we have 𝔐, 𝑤 ′ |= 𝑝 𝑖 , which can be expressed precisely with 𝔐, 𝑤 |= 2((𝑗 ∈𝑋 𝑞 𝑗) ⇒ 𝑝 𝑖). Hence, 𝔐, 𝑤 |= 𝜏 (𝑝 𝑖 , 𝑋) by definition of 𝜏. For the proof of the other direction, we assume that 𝔐, 𝑤 |= 2((𝑗 ∈𝑋 𝑞 𝑗) ⇒ 𝑝 𝑖) and one can show 𝔗 |= 𝑝 𝑖 by using this time (1.). Indeed, ad absurdum, suppose that 𝔗 ̸ |= 𝑝 𝑖 . So, there is a valuation 𝔳 such that 𝔳(𝑝 𝑖) =⊥. By (1.), for all 𝑘 ∈ 𝑋 , there is 𝑤 ′ 𝑘 ∈ 𝑅(𝑤) such that 𝔐, 𝑤 ′ 𝑘 ̸ |= 𝑝 𝑖 and 𝔐, 𝑤 ′ 𝑘 |= 𝑞 𝑘 . Since 𝑤 ′ 𝑘 ∈ 𝑅(𝑤), 𝔐, 𝑤 ′ 𝑘 |= 𝑞 𝑘 and 𝔐, 𝑤 |= 2((𝑗 ∈𝑋 𝑞 𝑗) ⇒ 𝑝 𝑖), we get 𝔐, 𝑤 ′ 𝑘 |= 𝑝 𝑖 , which leads to a contradiction. Base case with 𝜓 = ¬𝑝 𝑖 , 𝑖 ∈ [1, 𝑚]. Similar to the case 𝜓 = 𝑝 𝑖 . Induction step. The cases in the induction step for which the outermost connective of 𝜓 is either ∧ or ~are by an easy verification. Let us consider the case 𝜓 = 𝜓 1 ∨𝜓 2 . Observe that w ∨ (𝜓) = w ∨ (𝜓 1) + w ∨ (𝜓 2) + 1 and recall that w ∨ (𝜓) ≤ |𝑋 | -1. Consequently, w ∨ (𝜓 1) + w ∨ (𝜓 2) + 2 ≤ |𝑋 | and let 𝑋 𝑖 = 𝔠 𝑖 (𝑋, w ∨ (𝜓 1) + 1, w ∨ (𝜓 2) + 1) for 𝑖 ∈ {1, 2}. Assume 𝔗 |= 𝜓 1 ∨𝜓 2 . By definition of |= for PL[~], there are 𝔗 1 and 𝔗 2 such that 𝔗 = 𝔗 1 ∪𝔗 2 , 𝔗 1 |= 𝜓 1 and 𝔗 2 |= 𝜓 2 . We define 𝔐 1 = (𝑊 , 𝑅 1 , 𝑉 1) and 𝔐 2 = (𝑊 , 𝑅 2 , 𝑉 2) s.t. 𝔐 = 𝔐 1 + 𝑤 𝔐 2 and satisfying the conditions below (only the relevant part is explicitly specified). • Assume 𝔳 ∈ 𝔗 1 ∩ 𝔗 2 . As (𝔐, 𝑤) ≡ 𝑋 P 𝔗, for all 𝑘 ∈ 𝑋 , there is 𝑤 ′ 𝑘 ∈ 𝑅(𝑤) such that 𝔐, 𝑤 ′ 𝑘 |= 𝔳 and 𝔐, 𝑤 ′ 𝑘 |= 𝑞 𝑘 . For all 𝑖 ∈ {1, 2} and 𝑘 ∈ 𝑋 , for all 𝑤 ′ ∈ 𝑅(𝑤) ∩ 𝑉 (𝑞 𝑘) such that 𝔐, 𝑤 ′ |= 𝔳, if 𝑘 ∈ 𝑋 𝑖 , then (𝑤, 𝑤 ′) ∈ 𝑅 𝑖 by definition, otherwise (𝑤, 𝑤 ′) ∈ 𝑅 3-𝑖 . For all 𝑤 ′ ∈ 𝑅(𝑤) such that 𝑤 ′ ∉ (𝑘 ∈𝑋 𝑉 (𝑞 𝑘)) and 𝔐, 𝑤 ′ |= 𝔳, it is irrelevant whether (𝑤, 𝑤 ′) belongs to 𝑅 1 or to 𝑅 2 . • Assume that 𝔳 ∈ 𝔗 𝑗 \ 𝔗 3-𝑗 for some 𝑗 ∈ {1, 2}. For all 𝑤 ′ ∈ 𝑅(𝑤) such that 𝔐, 𝑤 ′ |= 𝔳, (𝑤, 𝑤 ′) ∈ 𝑅 𝑗 by definition. One can check that 𝔐 1 , 𝑤 ≡ 𝑋 1 P 𝔗 1 , 𝔐 2 , 𝑤 ≡ 𝑋 2 P 𝔗 2 , w ∨ (𝜓 1) ≤ |𝑋 1 | -1 and w ∨ (𝜓 2) ≤ |𝑋 2 | -1. By the induction hypothesis, we have 𝔐 1 , 𝑤 |= 𝜏 (𝜓 1 , 𝑋 1) and 𝔐 2 , 𝑤 |= 𝜏 (𝜓 2 , 𝑋 2). Moreover, as 𝔐, 𝑤 |= cp(𝑋), it is also easy to check that 𝔐 1 , 𝑤 |= cp(𝑋 1) and 𝔐 2 , 𝑤 |= cp(𝑋 2). Hence, 𝔐, 𝑤 |= (𝜏 (𝜓 1 , 𝑋 1) ∧ cp(𝑋 1)) (𝜏 (𝜓 2 , 𝑋 2) ∧ cp(𝑋 2)), i.e. 𝔐, 𝑤 |= 𝜏 (𝜓, 𝑋) by definition of 𝜏. Assume 𝔐, 𝑤 |= 𝜏 (𝜓 1 ∨𝜓 2 , 𝑋). There are 𝔐 1 , 𝔐 2 such that 𝔐 = 𝔐 1 + 𝑤 𝔐 2 , 𝔐 1 , 𝑤 |= cp(𝑋 1) ∧ 𝜏 (𝜓 1 , 𝑋 1) and 𝔐 2 , 𝑤 |= cp(𝑋 2) ∧ 𝜏 (𝜓 2 , 𝑋 2). Let us define 𝔗 1 and 𝔗 2 such that 𝔗 = 𝔗 1 ∪ 𝔗 2 , 𝔐 1 , 𝑤 ≡ 𝑋 1 P 𝔗 1 and 𝔐 2 , 𝑤 ≡ 𝑋 2 P 𝔗 2 . Let 𝔳 ∈ 𝔗 and 𝑗 ∈ {1, 2}. We have 𝔳 ∈ 𝔗 𝑗 def ⇔ for all 𝑘 ∈ 𝑋 𝑗 , there is 𝑤 ′ 𝑘 ∈ 𝑅 𝑗 (𝑤) such that 𝔐 𝑗 , 𝑤 ′ 𝑘 |= 𝔳 and 𝔐 𝑗 , 𝑤 ′ 𝑘 |= 𝑞 𝑘 . As 𝔐, 𝑤 |= cp(𝑋) and 𝑋 = 𝑋 1 ⊎ 𝑋 2 , one can verify that the definition of 𝔗 1 and 𝔗 2 is well-designed and the teams 𝔗 1 and 𝔗 2 satisfy the expected properties. Using that w ∨ (𝜓 1) + 1 ≤ |𝑋 1 | and w ∨ (𝜓 2) + 1 ≤ |𝑋 2 |, by the induction hypothesis, we have 𝔗 1 |= 𝜓 1 and 𝔗 2 |= 𝜓 2 . Consequently, 𝔗 |= 𝜓 . □ The proof of Lemma 3.11 can be now easily completed. Let 𝜑 be an PL[~] formula built upon P = {𝑝 1 , . . . , 𝑝 𝑚 } with w ∨ (𝜑) = 𝑛 and Q = {𝑞 1 , . . . , 𝑞 𝑛+1 }.Suppose that 𝜑 is satisfiable, meaning that there is a team 𝔗 = {𝔳 1 , . . . , 𝔳 𝐾 } satisfying 𝜑. Let 𝔐 = (𝑊 , 𝑅, 𝑉) be the finite forest such that 𝑊

	Proof. The proof is by structural induction.

, Vol. 1, No. 1, Article . Publication date: November 2023.

Consequently,

 2, we have 𝔗 |= 𝜑. □ D PROOF OF LEMMA 4.2Proof. Recall that nom 𝑖 (ax) is defined as follows:nom 𝑖 (ax) def = ⟨t⟩ 𝑖 3ax ∧ 𝑘 ¬ ⟨t⟩ 𝑖 -𝑘 3ax * ⟨t⟩ 𝑖 -𝑘 3ax .(⇒): Suppose 𝔐, 𝑤 |= nom 𝑖 (ax). By definition of |= and the relativised modality ⟨t⟩, there exists a path of t-worlds 𝑤 1 , 𝑤 2 , . . . , 𝑤 𝑖 , such that 𝑤𝑅𝑤 1 𝑅𝑤 2 . . . 𝑅𝑤 𝑖 , and there exists 𝑤 ′ such that (𝑤 𝑖 , 𝑤 ′) ∈ 𝑅 and 𝔐, 𝑤 ′ |= ax. The second conjunct of nom 𝑖 (ax) guarantees that there is only one such paths, leading to 𝑤 𝑖 being a nominal for the depth 𝑖. Indeed, suppose ad absurdum that there is a second world 𝑤 ′ 𝑖 ∈ 𝑅 𝑖 (𝑤), distinct from 𝑤 𝑖 , such that 𝔐, 𝑤 ′ 𝑖 |= 3ax. Since 𝔐, 𝑤 |= init(𝑗), 𝑤 ′ 𝑖 must be a t-node and there must be a path of t-worlds𝑤 ′ 1 , 𝑤 ′ 2 , . . . , 𝑤 ′ 𝑖 such that 𝑤𝑅𝑤 ′ 1 𝑅𝑤 ′ 2 . . . 𝑅𝑤 ′ 𝑖 .Then, there must be 𝑘 ∈ [0, 𝑖 -1] such that for every 𝑗 ≤ 𝑘, 𝑤 𝑗 = 𝑤 ′ 𝑗 , and for every 𝑙 ∈ [𝑗 + 1, 𝑖], 𝑤 𝑙 ≠ 𝑤 ′ 𝑙 . By considering the pointed forest (𝔐, 𝑤 𝑘), we can easily show that 𝔐, 𝑤 𝑘 |= ⟨t⟩ 𝑖 -𝑘 3ax * ⟨t⟩ 𝑖 -𝑘 3ax. This implies that 𝔐, 𝑤 |= ⟨t⟩ 𝑘 ⟨t⟩ 𝑖 -𝑘 3ax * ⟨t⟩ 𝑖 -𝑘 3ax , in contradiction with the second conjunct of nom 𝑖 (ax). Hence, 𝑤 ′ 𝑖 cannot be distinct from 𝑤 𝑖 . (⇐): This direction is analogous. Suppose that 𝔐, 𝑤 |= init(𝑗) and ax is a nominal for the depth 𝑖. By definition, there is a unique t-world 𝑤 ′ in 𝑅 𝑖 (𝑤) having a child satisfying ax. Since 𝔐, 𝑤 |= init(𝑗), the path from 𝑤 to 𝑤 ′ must only witness t-nodes. Hence 𝔐, 𝑤 |= ⟨t⟩ 𝑖 3ax. Moreover, by the uniqueness of this path we conclude that 𝔐, 𝑤 |= 𝑘 ∈ [0,𝑖 -1] [t] 𝑘 ¬ ⟨t⟩ 𝑖 -𝑘 3ax * ⟨t⟩ 𝑖 -𝑘 3ax also holds. Thus, 𝔐, 𝑤 |= nom 𝑖 (ax).□ 𝑤 |= S 𝑖 𝑗 (ax, bx). By unfolding the definition above, there exists 𝔐 ′ = (𝑊 , 𝑅 1 , 𝑉), such that 𝔐 ′ ⊑ 𝔐 and: (a) 𝑤 has exactly two t-children and exactly two paths of t-nodes, both of length 𝑖 + 1;(b) one of these two paths ends on a world (say 𝑤 x) corresponding to the nominal x whereas the other ends on a world (say 𝑤 y) corresponding to the nominal y;(c)there is a t-world 𝑤 ax ∈ 𝑅 𝑖 1 (𝑤) corresponding to the nominal ax s.t. 𝔐 ′ , 𝑤 ax |= ⟨t⟩(3s ∧ 3x); (d) there is a t-world 𝑤 bx ∈ 𝑅 𝑖 1 (𝑤) corresponding to the nominal bx s.t. 𝔐 ′ , 𝑤 bx |= ⟨t⟩(3s ∧ 3y); (e) 𝔐 ′ , 𝑤 |= [x = y] 𝑖+1 𝑗 ; (f) 𝔐 ′ , 𝑤 x |= ¬val and 𝔐 ′ , 𝑤 y |= val. Let 𝑤 ax,s ∈ 𝑅 1 (𝑤 ax) and 𝑤 bx,s ∈ 𝑅 1 (𝑤 bx) be such that they are the only t-children of 𝑤 ax and 𝑤 bx respectively, having a child satisfying s (notice they exist due to the hypothesis (𝐶)). Notice by item (b) above, there exists 𝑤 ′ ∈ 𝑅 1 (𝑤 ax) such that 𝔐 ′ , 𝑤 ′ |= t and 𝔐 ′ , 𝑤 ′ |= 3s ∧ 3x. Since 𝑤 ax,s is the only child of 𝑤 ax having an s-child, then 𝑤 ax,s = 𝑤 ′ , and as a consequence 𝔐 ′ , 𝑤 ax,s |= 3x. The same argument can be applied by using item (c) above in order to get 𝔐 ′ , 𝑤 bx,s |= 3y. By item (a) and (b) above, we have that 𝑤 x and 𝑤 y must be the unique t-worlds at distance 𝑖 + 1 of 𝑤 having x and children, respectively. Therefore, we have necessarily 𝑤 ax,s = 𝑤 x and 𝑤 bx,s = 𝑤 y , so 𝔐, 𝑤 ax,s |= ¬val and 𝔐, 𝑤 bx,s |= val as wanted (by using item (f) above). Finally, by applying the induction hypothesis on item (e), together with Lemma 4.13, we get 𝐧(𝑤 ax,s) = 𝐧(𝑤 bx,s), which concludes the proof of this direction. (⇐): For this direction, we can use a similar argument backwards.

	Proof. We prove each item. (Proof of I) We recall that S 𝑖 𝑗 (ax, bx) is defined as ⊤ * fork 𝑖+1 𝑗 (x, y) ∧@ 𝑖 ax ⟨t⟩(3s∧3x) ∧@ 𝑖 bx ⟨t⟩(3s∧3y) ∧ [x = y] 𝑖+1 𝑗 ∧@ 𝑖+1 x ¬val∧@ 𝑖+1 y val . [t] E PROOF OF LEMMA 4.16 (⇒): Suppose 𝔐, (Proof of II) We recall that L 𝑖 𝑗 (ax, bx) is defined as
	𝑘 ∈ [0,𝑖 -1]

, Vol. 1, No. 1, Article . Publication date: November 2023.

 t. 𝔐 ′ , 𝑤 ax |= ⟨t⟩(3l ∧ 3x); (d) there is a t-world 𝑤 bx ∈ 𝑅 𝑖 1 (𝑤) corresponding to the nominal bx s.t. 𝔐 ′ , 𝑤 bx |= ⟨t⟩(3l ∧ 3y); 𝔐 ′ , 𝑤 x |= val if and only if 𝔐 ′ , 𝑤 y |= val. By hypothesis, there exist 𝑤 ax , 𝑤 bx at distance 𝑖 from 𝑤 corresponding to nominals ax and bx, respectively. Let 𝑤 ax,l ∈ 𝑅(𝑤 ax) and 𝑤 bx,l ∈ 𝑅(𝑤 bx) be such that 𝐧(𝑤 ax,l) > 𝐧(𝑤 ax,s) and 𝐧(𝑤 bx,l) > 𝐧(𝑤 bx,s). If we are able to satisfy all the conditions a.-e. above, we can conclude what we want. Suppose 𝐧(𝑤 ax,l) = 𝐧(𝑤 bx,l). By the induction hypothesis, together with Lemma 4.13, we get 𝔐, 𝑤 |= [x = y] 𝑖+1 𝑗 . Also, since by hypothesis 𝔐, 𝑤 𝑏 |= type(𝑗 -𝑖), for 𝑤 𝑏 ∈ {𝑤 ax , 𝑤 bx }, then it is easy to check that the remaining conditions above are satisfied. Therefore we can conclude 𝔐 ′ , 𝑤 x |= val iff 𝔐 ′ , 𝑤 y |= val. (⇐): The other direction uses similar steps backwards. (Proof of III) We recall that R(ax, bx) def = @ 1 ax [t] (3r ⇒ val) ∧ @ 1 bx [t] (3r ⇒ ¬val). (⇒): Suppose 𝔐, 𝑤 |= R(ax, bx). By unfolding the definition above, there exist two distinct t-nodes 𝑤 ax , 𝑤 bx ∈ 𝑅(𝑤), corresponding to nominals ax and bx respectively, such that: (a) 𝔐, 𝑤 ax |= [t] (3r ⇒ val), and (b) 𝔐, 𝑤 bx |= [t] (3r ⇒ ¬val). By item (𝐶) in the hypothesis, we know that there is exactly one t-node in 𝑅(𝑤 ax) (say 𝑤 ax,s) having an Aux-child satisfying s. Let 𝑤 ax,r ∈ 𝑅(𝑤 ax) be such that 𝐧(𝑤 ax,r) < 𝐧(𝑤 ax,s). By item (𝐸) in the hypothesis, there exists 𝑤 ′ ∈ 𝑅(𝑤 ax,r) such that 𝔐, 𝑤 ′ |= r, so 𝔐, 𝑤 ax,r |= 3r. As a consequence, by the item (a) above, we have 𝔐, 𝑤 ax,r |= val. By applying the same reasoning with 𝑤 bx,r ∈ 𝑅(𝑤 bx) such that 𝐧(𝑤 bx,r) < 𝐧(𝑤 bx,s), and the item (b) above, we get 𝔐, 𝑤 bx,r |= ¬val. 𝑖 (ax ≠ bx) ∧ [t] 𝑖 lsr(𝑗 -𝑖) ∧ S 𝑖 𝑗 (ax, bx) ∧ L 𝑖 𝑗 (ax, bx)). As in Lemma 4.7, the proof uses standard properties of numbers encoded in binary. Again, let 𝑥, 𝑦 be two natural numbers that can be represented in binary by using 𝑛 bits. Let us denote with 𝑥 𝑖 (resp. 𝑦 𝑖) the 𝑖-th bit of the binary representation of 𝑥 (resp. 𝑦). We have that 𝑥 < 𝑦 if and only if(A) there is a position 𝑖 ∈ [1, 𝑛] such that 𝑥 𝑖 = 0 and 𝑦 𝑖 = 1; (B) for every position 𝑗 > 𝑖, 𝑥 𝑗 = 0 ⇔ 𝑦 𝑗 = 0.The formula [ax < bx] 𝑖 𝑗 uses exactly this characterisation in order to state that 𝐧(𝑤 ax) < 𝐧(𝑤 bx). Suppose 𝔐, 𝑤 |= init(𝑗) ∧ fork 𝑖 𝑗 (ax, bx). From Lemma 4.14, in (𝔐, 𝑤) it holds that (i) 𝑤 has exactly two t-children and exactly two paths of t-nodes, both of length 𝑖; (ii) one of these two paths ends on a world (say 𝑤 ax) corresponding to the nominal ax whereas the other ends on a world (say 𝑤 bx) corresponding to the nominal bx; (iii) (𝔐, 𝑤 ax) and (𝔐, 𝑤 bx) satisfy type lsr (𝑗 -𝑖) def = type(𝑗 -𝑖) ∧ [t] (3l ∧ 3s ∧ 3r). , from (i)-(iii), we can conclude that in (𝔐 ′ , 𝑤), the two worlds 𝑤 ax and 𝑤 bx (corresponding to the nominals ax and bx in (𝔐, 𝑤)) are exactly the ones responsible for the satisfaction of nom 𝑖 (ax ≠ bx). Moreover, from 𝔐 ′ , 𝑤 |= [t] 𝑖 lsr(𝑗 -𝑖) and Lemma 4.15, we have 𝔐 ′ , 𝑤 ax |= type(𝑗 -𝑖). Then, by Lemma 4.13 we conclude that 𝑤 ax encodes the same number w.r.t. (𝔐, 𝑤) and (𝔐 ′ , 𝑤). The same property holds for 𝑤 bx , since again by 𝔐 ′ , 𝑤 |= [t] 𝑖 lsr(𝑗 -𝑖) and Lemma 4.15, we have 𝔐 ′ , 𝑤 bx |= type(𝑗 -𝑖). Lastly, again from Lemma 4.15,(1) every t-node in 𝑅 ′ (𝑤 ax) and 𝑅 ′ (𝑤 bx) has exactly one Aux-child satisfying an atomic proposition from {l, s, r};(2) exactly one t-node in 𝑅 ′ (𝑤 ax) (say 𝑤 ax,s) has an Aux-child satisfying s. Similarly, exactly one t-node in 𝑅 ′ (𝑤 bx) (say 𝑤 bx,s) has an Aux-child satisfying s; (3) given 𝑤 ax,l ∈ 𝑅 ′ (𝑤 ax) (resp. 𝑤 bx,l ∈ 𝑅 ′ (𝑤 bx)), it has an Aux-child satisfying l if and only if 𝐧(𝑤 ax,l) > 𝐧(𝑤 ax,s) (resp. 𝐧(𝑤 bx,l) > 𝐧(𝑤 bx,s)). Recall that the number 𝐧(𝑤 ax) (resp. 𝐧(𝑤 bx)) is represented by the binary encoding of the truth values of val on the t-children of 𝑤 ax (resp. 𝑤 bx) which, since (𝔐 ′ , 𝑤 ax) |= type(𝑗 -𝑖) (resp. (𝔐 ′ , 𝑤 bx) |= type(𝑗 -𝑖)), are 𝔱(𝑗 -𝑖, 𝑛) children implicitly ordered by the number they, in turn, encode. As (𝔐 ′ , 𝑤) satisfies the hypothesis of Lemma 4.16, from 𝔐 ′ , 𝑤 |= S 𝑖 𝑗 (ax, bx) ∧ L 𝑖 𝑗 (ax, bx) we conclude that • 𝐧(𝑤 ax,s) = 𝐧(𝑤 bx,s), 𝔐, 𝑤 ax,s |= ¬val and 𝔐, 𝑤 bx,s |= val. Thus, in the binary representation of 𝐧(𝑤 ax), the 𝐧(𝑤 ax,s)th-bit is 0, whereas in the binary representation of 𝐧(𝑤 bx), it is 1. Hence, the property (A) of numbers encoded in binary holds for 𝐧(𝑤 ax) and 𝐧(𝑤 bx); • for all worlds 𝑤 ax,l ∈ 𝑅(𝑤 ax) and 𝑤 bx,l ∈ 𝑅(𝑤 bx) such that 𝐧(𝑤 ax,l) > 𝐧(𝑤 ax,s) and 𝐧(𝑤 bx,

	(e) 𝔐 ′ , 𝑤 |= [x = y] 𝑖+1 𝑗 ;	
	then, it follows that	
	(f) (⇐): This direction uses similar arguments (backwards).	□
	F PROOF OF LEMMA 4.17	
	Proof. Recall that [ax < bx] 𝑖 𝑗 is defined as	
	⊤ * (nom To complete the proof, we prove each direction separately.	

(⇒): Suppose 𝔐, 𝑤 |= [ax < bx] 𝑖 𝑗 . Then, by definition of the satisfaction relation |=, there exists 𝔐 ′ = (𝑊 , 𝑅 ′ , 𝑉), such that 𝔐 ′ ⊑ 𝔐 and 𝔐 ′ , 𝑤 |= nom 𝑖 (ax ≠ bx) ∧ [t] 𝑖 lsr(𝑗 -𝑖) ∧ S 𝑖 𝑗 (ax, bx) ∧ L 𝑖 𝑗 (ax, bx). , Vol. 1, No. 1, Article . Publication date: November 2023. Thenl) > 𝐧(𝑤 bx,s), if 𝐧(𝑤 ax,l) = 𝐧(𝑤 bx,l) then 𝔐, 𝑤 ax,l |= val if and only if 𝔐, 𝑤 bx,l |= val.

 from the definition of g-bisimulation it holds that 𝔐, 𝑤 2 ⇆ P 𝑚-1,𝑘 • (|T P (𝑚-1,𝑘) |+1) 𝔐 ′ , 𝑤 ′ 2 . • Again by definition of g-bisimulation, it is easy to see that if two models are in the same equivalence class w.r.t. ⇆ P 𝑚 ′ ,𝑘 ′ then they are in the same equivalence class w.r.t. ⇆ P 𝑚 ′ ,𝑘 ′′ for every 𝑘 ′′ ≤ 𝑘 ′ . Therefore 𝔐, 𝑤 2 ⇆ P 𝑚-1,𝑘 • (|T P (𝑚-2,𝑘) |+1) 𝔐 ′ , 𝑤 ′ 2 . Notice that the set of equivalence classes induced by ⇆ P 𝑚-1,𝑘 • (|T P (𝑚-2,𝑘) |+1) is T P (𝑚 -1, 𝑘). We conclude that (𝔐, 𝑤 2) and (𝔐 ′ , 𝑤 ′

 𝑤 ′ 1 Let us prove (★★). By definition, we have 𝑤 1 ∈ 𝑅(𝑤)| T and 𝑤 ′ 1 ∈ 𝑅 ′ (𝑤 ′)| T . Therefore, {(𝔐, 𝑤 1), (𝔐 ′ , 𝑤 ′ 1)} ⊆ T ∈ T P (𝑚 -1, 𝑘). By Lemma I.2, it follows that (𝑊 , 𝑅| 𝑤 1 , 𝑉), 𝑤 1 and (𝑊 ′ , 𝑅 ′ | 𝑤 ′ 1 , 𝑉 ′), 𝑤 ′ 1 are also in T. Moreover, by definition 𝑅 1 | 𝑤 1 ⊆ 𝑅| 𝑤 1 . Then, we can use the induction hypothesis (notice that the modal degree is now 𝑚 -1) to conclude that there is 𝑅 ′ 1,𝑤 ′ 1 ⊆ 𝑅 ′ | 𝑤 ′ 1 such that (𝑊 , 𝑅 1 | 𝑤 1 , 𝑉), 𝑤 1 ⇆ P 𝑚-1,𝑘 (𝑊 ′ , 𝑅 ′

	1,𝑤 ′ 1

 1, 𝑘)| + 1). As, ≡ P 𝑚,𝑘 + and ⇆ P 𝑚,𝑘 + are identical relations, there is a finite set {𝜒 1 , . . . , 𝜒 𝑄 } ⊆ GML[𝑚, 𝑘 + , P] such that • 𝜒 1 ∨ • • • ∨ 𝜒 𝑄 is valid, and each 𝜒 𝑖 is satisfiable, • for all 𝑖 ≠ 𝑗 ∈ [1, 𝑄], 𝜒 𝑖 ∧ 𝜒 𝑗 is unsatisfiable, • (𝔐, 𝑤) ≡ P 𝑚,𝑘 + (𝔐 ′ , 𝑤 ′) iff there is 𝑖 such that (𝔐, 𝑤) |= 𝜒 𝑖 and (𝔐 ′ , 𝑤 ′) |= 𝜒 𝑖 . This is a direct consequence of Proposition I.1 containing results established in [22]. Let 𝜓 be the formula {𝜒 𝑖 | ∃ 𝔐, 𝑤 s.t. 𝔐, 𝑤 |= 𝜒 𝑖 ∧ 𝜑 }. An empty disjunction is understood as ⊥. Now, we show that 𝜓 is logically equivalent to 𝜑. Suppose that 𝔐, 𝑤 |= 𝜑. As 𝜒 1 ∨ • • • ∨ 𝜒 𝑄 is valid, there is 𝑖 ∈ [1, 𝑄] such that 𝔐, 𝑤 |= 𝜒 𝑖 . Therefore 𝜒 𝑖 occurs in 𝜓 and consequently, 𝔐, 𝑤 |= 𝜓 . Conversely, suppose that 𝔐, 𝑤 |= 𝜓 with 𝔐 = (𝑊 , 𝑅, 𝑉). So, there is 𝜒 𝑖 occuring in 𝜓 such that 𝔐, 𝑤 |= 𝜒 𝑖 and there exist a model 𝔐 ′ = (𝑊 ′ , 𝑅 ′ , 𝑉 ′) and 𝑤 ′ ∈ 𝑊 ′ such that 𝔐 ′ , 𝑤 ′ |= 𝜒 𝑖 ∧ 𝜑. So, (𝔐, 𝑤) ≡ P 𝑚,𝑘 + (𝔐 ′ , 𝑤 ′). By the definition of the satisfaction relation |=, there is 𝑅 ′ 1 ⊆ 𝑅 ′ such that 𝑅 ′ 1 (𝑤 ′) = 𝑅 ′ (𝑤 ′) and (𝑊 ′ , 𝑅 ′ 1 , 𝑉 ′), 𝑤 ′ |= 𝜑. All the assumptions of Lemma 5.1 apply and therefore, there is 𝑅 1 ⊆ 𝑅 such that 𝑅 1 (𝑤) = 𝑅(𝑤), (𝑊 , 𝑅 1 , 𝑉), 𝑤 ⇆ P 𝑚,𝑘 (𝑊 ′ , 𝑅 ′ 1 , 𝑉 ′), 𝑤 ′ and (𝑊 , 𝑅 1 , 𝑉), 𝑤 ≡ P 𝑚,𝑘 (𝑊 ′ , 𝑅 ′ 1 , 𝑉 ′), 𝑤 ′ . As 𝜑 belongs to GML[𝑚, 𝑘, P], we also get that (𝑊 , 𝑅 1 , 𝑉), 𝑤 |= 𝜑. But then by definition of |=, we conclude that 𝔐, 𝑤 |= 𝜑. □ L PROOF OF (A) FOR LEMMA 5.5 Let us start by stating a few properties. Let us consider two models 𝔐 1 = (𝑊 , 𝑅 1 , 𝑉) and 𝔐 2 = (𝑊 , 𝑅 2 , 𝑉) such that 𝔐 1 + 𝔐 2 = 𝔐. We pinpoint three important properties of the models we are considering. Every world in 𝑅(𝑤) =0 is either in 𝑅 1 (𝑤) =0 or 𝑅 2 (𝑤) =0 ; S2: Every world 𝑤 1 ∈ 𝑅(𝑤) =1 is in 𝑅 1 (𝑤) =0 , 𝑅 2 (𝑤) =0 , 𝑅 1 (𝑤) =1 or in 𝑅 2 (𝑤) =1 . Indeed, suppose (𝑤, 𝑤 1) ∈ 𝑅 𝑖 (for some 𝑖 ∈ {1, 2}). If 𝑤 1 is in the domain of the same relation 𝑅 𝑖 then 𝑤 1 ∈ 𝑅 𝑖 (𝑤) =1 . Otherwise (𝑤 1 is in the domain of 𝑅 3-𝑖) then 𝑤 1 ∈ 𝑅 𝑖 (𝑤) =0 . S3: Every world in 𝑅(𝑤) =2 is in 𝑅 1 (𝑤) =0 , 𝑅 2 (𝑤) =0 , 𝑅 1 (𝑤) =1 , 𝑅 2 (𝑤) =1 , 𝑅 1 (𝑤) =2 or 𝑅 2 (𝑤) =2 . The justification is similar to the one given above for 𝑅(𝑤) =1 .

S1:

Problems in AExp Pol are decidable by an alternating Turing machine working in exponential-time and using polynomially many alternations[START_REF] Bozzelli | On the Complexity of Model Checking for Syntactically Maximal Fragments of the Interval Temporal Logic HS with Regular Expressions[END_REF]. , Vol. 1, No. 1, Article . Publication date: November

, Vol. 1, No. 1, Article . Publication date: November 2023.

ACKNOWLEDGEMENTS

Bartosz Bednarczyk was supported by the Polish Ministry of Science and Higher Education program "Diamentowy Grant" no. DI2017 006447. Stéphane Demri is supported by the Centre National de la Recherche Scientifique (CNRS). Raul Fervari is supported by ANPCyT-PICT-2020-3780, CONICET PIP 11220200100812CO, and by the Laboratoire International Associé SINFIN. Alessio Mansutti is supported by the ERC project ARiAT (European Union's Horizon 2020 research and innovation programme -Grant agreement No. 852769).

Formal definitions about g-bisimulation are recalled in Appendix I but are not required in this section. Nevertheless, let us recall that a g-bisimulation is a refinement of the classical back-andforth conditions of a bisimulation (see e.g. [START_REF] Blackburn | Modal Logic[END_REF]), tailored towards capturing graded modalities. It relates models with similar structural properties, but up to parameters 𝑚, 𝑘 ∈ N responsible for the modal degree and the graded rank, respectively. The following invariance result holds: g-bisimilar models are modally equivalent in GML (up to formulae of modal degree 𝑚 and graded rank at most 𝑘). For simplicity, we present the construction of the above-mentioned formula 𝜓 by directly using the notion of modal equivalence, without going explicitly through g-bisimulations. The notion of g-bisimulation is used explicitely in the proofs developed in the appendices.

Given 𝑚, 𝑘 ∈ N and P ⊆ fin AP, we write GML[𝑚, 𝑘, P] to denote the set of GML formulae 𝜓 having md(𝜓) ≤ 𝑚, gr(𝜓) ≤ 𝑘 and propositional variables from P. It is known that GML[𝑚, 𝑘, P] is finite up to logical equivalence [START_REF] De Rijke | A Note on Graded Modal Logic[END_REF]. Given pointed forests (𝔐, 𝑤) and (𝔐 ′ , 𝑤 ′), we write (𝔐, 𝑤) ≡ P 𝑚,𝑘 (𝔐 ′ , 𝑤 ′) whenever (𝔐, 𝑤) and (𝔐 ′ , 𝑤 ′) are GML[𝑚, 𝑘, P]-indistinguishable, i.e. for every 𝜓 in GML[𝑚, 𝑘, P], 𝔐, 𝑤 |= 𝜓 iff 𝔐 ′ , 𝑤 ′ |= 𝜓 . We write T P (𝑚, 𝑘) to denote the quotient set induced by the equivalence relation ≡ P 𝑚,𝑘 . As GML[𝑚, 𝑘, P] is finite up to logical equivalence, we get that T P (𝑚, 𝑘) is a finite set.

To establish that GML is closed under , we show that there is a function 𝔣 : N 2 → N such that for all 𝑚, 𝑘 ∈ N and P ⊆ fin AP, if two models are in the same equivalence class of ≡ P 𝑚,𝔣 (𝑚,𝑘) , then they satisfy the same formulae of the form 𝜑, where 𝜑 is in GML[𝑚, 𝑘, P]. Then, we can conclude that 𝜑 is equivalent to a formula in GML[𝑚, 𝔣(𝑚, 𝑘), P], see the proof of Lemma 5.2. Similar ideas are followed in [START_REF] Demri | Internal Proof Calculi for Modal Logics with Separating Conjunction[END_REF][START_REF] Echenim | The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates[END_REF][START_REF] Mansutti | Extending Propositional Separation Logic for Robustness Properties[END_REF]. As we are not interested in the size of the equivalent formula, we can simply use the cardinality of T P (𝑚, 𝑘) in order to inductively define a suitable function:

𝔣(0, 𝑘) def = 𝑘, 𝔣(𝑚 + 1, 𝑘) def = 𝑘 • (|T P (𝑚, 𝔣(𝑚, 𝑘))| + 1). In conformity with the results in Section 4, the map 𝔣 can be shown to be a non-elementary function.

To prove that 𝔣 satisfies the required properties, we start by showing a technical lemma which essentially formalises a simulation argument on the relation ≡ P 𝑚,𝔣 (𝑚,𝑘) with respect to the submodel relation. By taking submodels as with the operator, equivalence in GML is preserved. Lemma 5.1. Consider (𝔐, 𝑤) ≡ P 𝑚,𝔣 (𝑚,𝑘) (𝔐 ′ , 𝑤 ′) where 𝑚, 𝑘 ∈ N, P ⊆ fin AP, 𝔐 = (𝑊 , 𝑅, 𝑉) and 𝔐 ′ = (𝑊 ′ , 𝑅 ′ , 𝑉 ′). Let 𝑅 1 ⊆ 𝑅. There is 𝑅 ′ 1 ⊆ 𝑅 ′ such that ((𝑊 , 𝑅 1 , 𝑉), 𝑤) ≡ P 𝑚,𝑘 ((𝑊 ′ , 𝑅 ′ 1 , 𝑉 ′), 𝑤 ′) and if 𝑅 1 (𝑤) = 𝑅(𝑤), then 𝑅 ′ 1 (𝑤 ′) = 𝑅 ′ (𝑤 ′). Intuitively, Lemma 5.1 states that given two models satisfying the same formulae up to the parameters 𝑚 and 𝔣(𝑚, 𝑘), we can extract submodels satisfying the same formulae up to 𝑚 and 𝑘 (reduced graded rank). This allows us to conclude that if 𝜑 is in GML, there is some GML formula equivalent to 𝜑 (Lemma 5.2). In other words, the operator can be eliminated to obtain a GML formula. The last condition about 𝑅 1 (𝑤) = 𝑅(𝑤) will serve in the proof of Lemma 5.2, as it allows us to capture the semantics of , by preserving the children of the world 𝑤 ′ .

The proof of Lemma 5.1 is in Appendix J and goes by induction on 𝑚. It relies on the properties of g-bisimulations [START_REF] De Rijke | A Note on Graded Modal Logic[END_REF] to define a binary relation ↔ between the worlds of 𝑅(𝑤) and 𝑅 ′ (𝑤 ′). Every

. The operator does not necessarily preserve the children of 𝑤 1 and 𝑤 ′ 1 , so that the induction hypothesis, naturally defined from the statement of Lemma 5.1, is applied on models where the condition 𝑅 1 (𝑤 1) = 𝑅(𝑤 1) may not hold. We show that for all

. The result is then lifted to ((𝑊 , 𝑅 1 , 𝑉), 𝑤) ≡ P 𝑚,𝑘 ((𝑊 ′ , 𝑅 ′ 1 , 𝑉 ′), 𝑤 ′) in Lemma 5.2, again thanks to the properties of the g-bisimulation. The proof of this lemma is in Appendix K. III. from (first T T,c), (0, 0, c) ∈ 𝜏; IV. from (hor T T) and (vert T T), for all 𝑖 ∈ [0, 𝔱(𝑘, 𝑛) -1] and 𝑗 ∈ [0, 𝔱(𝑘, 𝑛) -2], (𝜏 (𝑗, 𝑖), 𝜏 (𝑗 + 1, 𝑖)) ∈ H and (𝜏 (𝑖, 𝑗), 𝜏 (𝑖, 𝑗 + 1)) ∈ V.

Therefore, we conclude that 𝜏 is a solution for Tile 𝑘 . □

I REMINDER ABOUT G-BISIMULATION

Let 𝔐 = (𝑊 , 𝑅, 𝑉) and 𝔐 ′ = (𝑊 ′ , 𝑅 ′ , 𝑉 ′) be two finite forests. Let 𝑚 ∈ N, 𝑘 ∈ N >0 and P ⊆ fin AP. A g-bisimulation up to (𝑚, 𝑘, P) between 𝔐 and 𝔐 ′ is a sequence of 𝑚 + 1 𝑘-uples

𝑖 𝑌 and 𝑤 ′ ∈ 𝑌 , then there is 𝑤 ∈ 𝑋 such that {𝑤 }Z 𝑗 1 {𝑤 ′ }. We write 𝔐, 𝑤 ⇆ P 𝑚,𝑘 𝔐 ′ , 𝑤 ′ and we say that the two models are g-bisimilar whenever there is a g-bisimulation up to (𝑚, 𝑘, P) between 𝔐 and 𝔐 ′ , say Z 0 , . . . , Z 𝑚 , such that {𝑤 }Z 𝑚 1 {𝑤 ′ }. We write Γ(𝔐, 𝑤) P 𝑚,𝑘 to denote the set of formulae in GML of rank (𝑚, 𝑘) and with propositional symbols from P that are satisfied in 𝔐, 𝑤, i.e. Γ(𝔐, 𝑤) P we will be able to construct a g-bisimulation using this partition). More precisely, we show that: (★ ★ ★): it is possible to construct a family of sets 𝑅 ′ (𝑤 ′)| T;T ′ for every T ′ ∈ T P (𝑚 -1, 𝑘) G T satisfying the following properties.

𝑚,𝑘

(1) For every

T appears in exactly one set among 𝑅 ′ (𝑤 ′)| T;T ′ (for all T ′ ∈ T P (𝑚 -1, 𝑘)) and G T . Then, these sets underlie a partition of 𝑅 ′ (𝑤 ′)| T . (4) For every

Let us informally explain these properties (apart from the second and third properties, which are self-explanatory). The first property basically requires us to modify 𝑅 ′ so that the children of 𝑅 ′ (𝑤 ′)| T "jumps" to specific sets in T P (𝑚 -1, 𝑘), in line with the developments that lead to the proof of (★★). Instead, the set G T is dedicated to those worlds that should be made unaccessible from 𝑤 ′ . The updates to 𝑅 ′ cannot be arbitrary, and this is where the fourth and fifth properties come into play. These properties impose cardinality constraints on the sets we construct, in line with the graded rank 𝑘 that is used in the equivalence relation ⇆ P 𝑚,𝑘 . For example, suppose that for a given set T ′ we have |𝑅 1 (𝑤)| T▶T ′ | < 𝑘. Then, we need to select exactly |𝑅 1 (𝑤)| T▶T ′ | children in 𝑅 ′ (𝑤 ′)| T and modify 𝑅 ′ so that all of them can be used to define the set 𝑅 ′ (𝑤 ′)| T;T ′ . If instead |𝑅 1 (𝑤)| T▶T ′ | ≥ 𝑘, it is possible to select an arbitrary amount of children from 𝑅 ′ (𝑤 ′)| T , as long as they are at least 𝑘. Again, after selecting these children we need to modify 𝑅 ′ so that they define the set 𝑅 ′ (𝑤 ′)| T;T ′ . To comply with these two last properties we rely on (★). The proof of (★ ★ ★) distinguishes two cases (which are very similar in substance):

By doing this, trivially the second and fifth properties required by (★★★) are satisfied. In order to define the sets of the form 𝑅 ′ (𝑤 ′)| T;T ′ , we start by an initialisation to the empty set ∅ and then we populate them. Iteratively, for every T ′ ∈ T P (𝑚 -1, 𝑘) and every

). Notice that this pair satisfies the constraints required in the first property of (★ ★ ★). After the iterations over all T ′ ∈ T P (𝑚 -1, 𝑘) and over all 𝑤 1 ∈ 𝑅 1 (𝑤)| T▶T ′ , the construction is completed. As we are guided by the bijection 𝔣, we obtain that every 𝑤 ′ 1 ∈ 𝑅 ′ (𝑤 ′)| T appears in exactly one set among 𝑅 ′ (𝑤 ′)| T;T ′ for some T ′ ∈ T P (𝑚 -1, 𝑘) or in G T (condition 3 of (★ ★ ★)). Moreover (again thanks to the bijection 𝔣) it holds that for every

1) too. For this case, it is easy to show that there is a set in the partition 𝑅(𝑤) T ▶𝑅 1 of 𝑅(𝑤)| T that has cardinality at least 𝑘. Indeed, ad absurdum, suppose all the sets in 𝑅(𝑤) ▶𝑅 1 that has at least 𝑘 elements. For the construction, we initialise all the sets 𝑅 ′ (𝑤 ′)| T;T ′ and G T to the empty set ∅ and we show how to populate them. Moreover, we introduce an auxiliary set Δ which is initially equal to 𝑅 ′ (𝑤 ′)| T and keeps track of which elements of this latter set have not been already used in the construction (and are hence available). The set Δ can be understood as a copy of 𝑅 ′ (𝑤 ′)| T with unmarked elements and marked elements. Unmarked elements are the worlds yet to be handled by the algorithm. Iteratively, (1) consider some T ′ ∈ T P (𝑚 -1, 𝑘) s.t. 𝑅 1 (𝑤)| T▶T ′ ≠ Ω and that was not already treated;

(2

𝛽 from the pool of available worlds Δ.

(3) As in the previous case of the proof, by (★★) we have that for each 𝑖 ∈ [1, 𝛽] there is

Notice that by construction this set satisfies the first and fourth properties of (★ ★ ★). (4) Remove 𝑤 ′ 1 , . . . , 𝑤 ′ 𝛽 from Δ (they will not be used in the successive iterations). After this iterative construction, only two sets still need to be handled: Ω and 𝑅(𝑤)| T \𝑅 1 (𝑤). In the case these two sets are different, we proceed as follows.

(1) We start by considering 𝑅(𝑤)| T \ 𝑅 1 (𝑤), and we select 𝛽 = min(|𝑅(𝑤)| T \ 𝑅 1 (𝑤)|, 𝑘) worlds, say 𝑤 ′ 1 , . . . , 𝑤 ′ 𝛽 from the pool of available worlds Δ. (2) We define G T as {𝑤 ′ 1 , . . . , 𝑤 ′ 𝛽 } and remove these worlds from Δ. By construction, G T satisfies the second and fifth properties of (★ ★ ★).

(3) We consider Ω. A few things should be noted now.

• There is

By construction, this set satisfies the first and fourth properties of (★ ★ ★) (recall that both 𝑅 ′ (𝑤 ′)| T;T ′ and 𝑅 1 (𝑤)| T▶T ′ have at least 𝑘 elements, see the previous point). [START_REF] Ph | Knowable' as 'known after an announcement[END_REF] Empty Δ as every remaining world in it is now used. We completed the construction in the case of Ω ≠ 𝑅(𝑤)| T \ 𝑅 1 (𝑤).

, Vol. 1, No. 1, Article . Publication date: November 2023.

In the case Ω = 𝑅(𝑤)| T \ 𝑅 1 (𝑤), the construction is trivially completed by adding to G T every world in Δ. Notice that for the same considerations done before (point 3 of the construction for Ω ≠ 𝑅(𝑤)| T \ 𝑅 1 (𝑤)) it holds that Δ has at least 𝑘 elements. Hence, G T satisfies both the second and the fifth properties of (★ ★ ★). Again, as a last step, we empty Δ as every remaining world is now used.

During the definition of the construction, we already detailed why the first, second, fourth and fifth properties of (★ ★ ★) are satisfied. The same holds true for the third one, as we relied on the set Δ to never use twice the same world, and at the end of the construction Δ was always empty. Therefore (★★★) holds. A last note about this construction: from the first and third properties of (★ ★ ★), in particular that "for all

Keeping this in mind, we are now ready to construct 𝑅 ′ 1 . We consider every T ∈ T P (𝑚 -1, 𝑘) and apply (★ ★ ★) to construct the sets 𝑅 ′ (𝑤 ′)| T;T ′ (for every T ′ ∈ T P (𝑚 -1, 𝑘)) and G T . We then define 𝑅 ′ 1 as

Clearly. we have that 𝑅 ′ 1 ⊆ 𝑅 1 . Moreover, from the properties of (★ ★ ★), it holds that for every

In order to conclude the proof, we need to show that

). Let us first prove (2) by using the fifth property of (★★★). Suppose 𝑅 1 (𝑤) = 𝑅(𝑤) and hence 𝑅(𝑤) \ 𝑅 1 (𝑤) = ∅. It is easy to see that 𝑅(𝑤) \ 𝑅 1 (𝑤) can also be written as T∈T P (𝑚-1,𝑘) (𝑅(𝑤)| T \ 𝑅 1 (𝑤)). We conclude that |𝑅(𝑤)| T \ 𝑅 1 (𝑤)| = 0 for every T ∈ T P (𝑚 -1, 𝑘). Similarly, 𝑅 ′ (𝑤 ′) \ 𝑅 ′ 1 (𝑤 ′) can be shown to be equivalent to T∈T P (𝑚-1,𝑘) (𝑅 ′ (𝑤 ′)| T \ 𝑅 ′ 1 (𝑤 ′)). Notice that for every T ∈ T

) cannot be inside a pair of 𝑅 ′ (𝑤 ′)| T;T ′ (for any T ′ ∈ T P (𝑚 -1, 𝑘)). Indeed, if this was the case, then

We can now apply the fifth property of (★ ★ ★), i.e. min(|𝑅(𝑤)| T \ 𝑅 1 (𝑤)|, 𝑘) = min(|G T |, 𝑘) so that together with 𝑘 ≥ 1 (see the beginning of the proof) and

As by definition 𝑅 ′ 1 (𝑤 ′) ⊆ 𝑅 ′ (𝑤 ′), this ends the proof of (2). In order to conclude the proof, let us prove (1) and this is done by constructing a g-bisimulation Z 0 , . . . , Z 𝑚 up to (𝑚, 𝑘, P) between (𝑊 , 𝑅 1 , 𝑉) and (𝑊 ′ , 𝑅 ′ 1 , 𝑉 ′) such that {𝑤 }Z 𝑚 1 {𝑤 ′ }. Here, we iteratively construct the g-bisimulation starting from the sets Z 𝑗 1 = {(𝑤, 𝑤 ′)} (for every 𝑗 ∈ [0, 𝑚]). During the construction we make sure to always preserve the satisfaction of the conditions (init), (refine), (size) and (atoms). Notice that these conditions hold for our initial sequence of relations. In particular, (atoms) holds as by hypothesis there is T ∈ T P (𝑚, 𝑘 • (|T P (𝑚 -1, 𝑘)| + 1)) such that {(𝔐, 𝑤), (𝔐 ′ , 𝑤 ′)} ⊆ T and hence 𝔐, 𝑤 ⇆ P 𝑚,𝑘 • (|T P (𝑚-1,𝑘) |+1) 𝔐 ′ , 𝑤 ′ . The construction can be split into four steps: m-forth-step: Let 𝑋 ⊆ 𝑅 1 (𝑤) be a set such that |𝑋 | ∈ [1, 𝑘]. As required by the condition (mforth), we want to pair this set with a suitable subset 𝑌 ⊆ 𝑅 ′ 1 (𝑤) of cardinality |𝑋 | so that it is possible to then satisfy the conditions (g-forth) and (g-back). Let us consider the partition of 𝑋 defined as {𝑋 T▶T ′ | T ∈ T P (𝑚 -1, 𝑘) and T ′ ∈ T P (𝑚 -1, 𝑘)} where 𝑋 T▶T ′ = 𝑋 ∩ 𝑅 1 (𝑤)| T▶T ′ . We consider the set 𝑅 ′ (𝑤 ′)| T;T ′ and select |𝑋 T▶T ′ | worlds appearing in one of its pairs (which are of the form (𝑅 ′

). Let 𝑌 T;T ′ be the set of these selected worlds. By (★ ★ ★) this set is guaranteed to exist and is such that every world 𝑤 ′ 1 in it is also in 𝑅 ′ 1 (𝑤 ′). Let 𝑌 = T∈T P (𝑚-1,𝑘),T ′ ∈ T P (𝑚-1,𝑘) 𝑌 T;T

We select a subset 𝑋 T▶T ′ of 𝑅 . g-forth-step: From the first two steps of the construction, the set Z 𝑗 𝑖 was updated with new pairs (𝑋, 𝑌) where every element in 𝑋 is from 𝑅 1 (𝑤) and every element of 𝑌 is from 𝑅 ′ 1 (𝑤). Consider then one of these pairs (𝑋, 𝑌) and let 𝑤 1 ∈ 𝑋 . There is T ∈ T P (𝑚 -1, 𝑘) and T ′ ∈ T P (𝑚 -1, 𝑘) such that 𝑤 1 ∈ 𝑅 1 (𝑤)| T▶T ′ . By construction (first and second steps above), there is 𝑤 ′ 1 ∈ 𝑌 such that for some 𝑅 ′

1 and from Lemma I.2 we obtain (𝑊 , 𝑅 1 , 𝑉), 𝑤 1 ⇆ P 𝑚-1,𝑘 (𝑊 ′ , 𝑅 ′ 1 , 𝑉 ′), 𝑤 ′ 1 . Then, let K 0 , . . . , K 𝑚-1 be the g-bisimulation up to (𝑚 -1, 𝑘, P) between (𝑊 , 𝑅 1 , 𝑉) and (𝑊 ′ , 𝑅 ′ 1 , 𝑉 ′) such that {𝑤 1 }K 𝑚-1 1 {𝑤 ′ 1 }. For every 𝑖 ∈ [1, 𝑘] and every 𝑗 ∈ [0, 𝑚 -1], update Z 𝑗 𝑖 to Z 𝑗 𝑖 ∪K 𝑗 𝑖 . g-back-step: Symmetrically to the previous point of the construction, let us consider again a pair (𝑋, 𝑌) introduced by one of the two steps (m-forth-step) and (m-back-step). Let 𝑤 ′ 1 ∈ 𝑌 . Then there is T ∈ T P (𝑚 -1, 𝑘) and T ′ ∈ T P (𝑚 -1, 𝑘) and 𝑅 ′

. By construction (steps (m-forth-step) and (m-back-step)), there is 𝑤 1 ∈ 𝑋 such that 𝑤 1 ∈ 𝑅 ′ (𝑤)| T▶T ′ . Then by (★★★), we obtain that (𝑊 , 𝑅 1 , 𝑉),

Then, let K 0 , . . . , K 𝑚-1 be the g-bisimulation up to (𝑚 -1, 𝑘, P) between (𝑊 , 𝑅 1 , 𝑉) and

It is simple to see that this construction leads to a sequence of relations Z 0 , . . . , Z 𝑚 that is a g-bisimulation up to (𝑚, 𝑘, P) between (𝑊 , 𝑅 1 , 𝑉) and (𝑊 ′ , 𝑅 ′ 1 , 𝑉 ′) such that {𝑤 }Z 𝑚 1 {𝑤 ′ }. Indeed, the conditions (init), (refine), (size) and (atoms) hold at any point during the construction. For the other condition, let (𝑋, 𝑌) be a pair in some Z 𝑗 𝑖 . If it was not introduced by the first two steps of the construction, then (𝑋, 𝑌) is a member of some set K 𝑗 𝑖 ⊆ Z 𝑗 𝑖 that is used in a g-bisimulation whose elements are all used to construct Z 0 , . . . , Z 𝑚 (third and fourth point of the proof). Hence, w.r.t. (𝑋, 𝑌) no condition can be violated. If instead (𝑋, 𝑌) is added to the g-bisimulation during the first and second point of the construction, then by construction it is easy to check that it satisfies all the conditions. Therefore (𝑊 , 𝑅 Moreover, we define

Notice that, from 𝑠 ≥ 1, it holds that 2 𝑠 -1 , 2 𝑠 -1 𝑠 and 2 𝑠 -2 𝑠 (𝑠 + 1) are all at least 1.

• Suppose that for every set 𝑆 ∈ X it holds that |𝑆 | < B (𝑆). Then, since |𝑅(𝑤

and therefore by hypothesis we conclude that |𝑅(𝑤

)) we conclude that this construction can be effectively made and it is such that |𝔣(𝑆)| ≥ B (𝑆). Then, the duplicator updates 𝑅 ′ 1 and 𝑅 ′ 2 as follows:

and one of the two elements of

After these steps, since (𝔐 ′ , 𝑤 ′) satisfies II and III, every element

Duplicator then concludes the construction of 𝔐 ′ 1 and 𝔐 ′ 2 by assigning the remaining elements of 𝑅 ′ (i.e. the pairs

1 or 𝑅 ′ 2 (for example, it can put all these elements in 𝑅 ′ 1). The two models 𝔐 ′ 1 and 𝔐 ′ 2 are now defined and they trivially satisfy I, II and III (as they are submodels of 𝔐 ′). Moreover, by construction it is easy to verify that:

Indeed, we specifically built 𝑅 ′ 1 and 𝑅 ′ 2 so that these properties (which we later refer to with (†):) hold. Now, we end the proof of (A) by showing that for all 𝑖 ∈ {1, 2}, zero:

). Indeed, once these three properties are shown we can apply the induction hypothesis to conclude that (𝔐 1 , 𝑤) ≈ P 𝑚,𝑠 -1 (𝔐 ′ 1 , 𝑤 ′) and (𝔐 2 , 𝑤) ≈ P 𝑚,𝑠 -1 (𝔐 ′ 2 , 𝑤 ′) and therefore, the play described with the construction above leads to a winning strategy for the duplicator on the game ((𝔐, 𝑤), (𝔐 ′ , 𝑤 ′), (𝑚, 𝑠, P)), i.e. (𝔐, 𝑤) ≈ P 𝑚,𝑠 (𝔐 ′ , 𝑤 ′). The proof of these three properties is quite easy (each case is similar to the others). Let 𝑖 ∈ {1, 2}. By using the definitions given during the construction of 𝑅 ′ 1 and 𝑅 ′ 2 it holds that

and by definition for all

and by definition 𝑅

In what follows, we refer to these three properties with (‡):. proof of (zero). By (‡), it holds that |𝑅 𝑖 (𝑤 M PROOF OF (B) FOR LEMMA 5.5

The two finite forests of the statement are schematically represented below, with (𝔐, 𝑤) on the left and (𝔐 ′ , 𝑤 ′) on the right. 𝑤

The proof of (B) is shown by cases on 𝑚, 𝑠 and on the moves done by the spoiler. As in the proof of (A), if 𝑚 = 0 then the duplicator has a winning strategy as after 𝑠 spatial moves the game will be in the state (𝔐 1 , 𝑤) and (𝔐 ′ 1 , 𝑤 ′) (notice that 𝑤 and 𝑤 ′ do not change, since 𝑚 = 0) w.r.t. the rank (0, 0, P). From I, we conclude that the duplicator wins. Now, suppose 𝑚 ≥ 1 and the spoiler decides to perform a modal move. Notice that, in particular, this case also takes care of the case where 𝑠 = 0 and the spoiler is forced to play a modal move. Moreover, suppose that the spoiler chooses (𝔐, 𝑤) (the case where it picks (𝔐 ′ , 𝑤 ′) is analogous). Then, suppose that the spoiler chooses a world 𝑤 1 ∈ 𝑅(𝑤) =𝑛 for some 𝑛 ∈ {0, 1, 2}. It is then sufficient for the duplicator to choose 𝑤 ∈ 𝑅 ′ (𝑤 ′) =𝑛 (which is a non-empty set by hypothesis) to guarantee him a victory, as the subtrees rooted in 𝑤 1 and 𝑤 ′ 1 are isomorphic. It remains to show the strategy for the duplicator when the spoiler decides to perform a spatial move (and therefore 𝑠 ≥ 1). The proof distinguishes several cases depending on the structure choosen by the spoiler.

The spoiler picks (𝔐, 𝑤). Notice that then the spoiler chooses the structure such that |𝑅(𝑤) =1 | = 2 and the duplicator has to reply in the structure (𝔐 ′ , 𝑤 ′), where we recall that |𝑅 ′ (𝑤 ′) =1 | = 1.

The idea is to make up for this discrepancy by using an element of 𝑅 ′ (𝑤 ′) =2 . Let us see how. For a moment, consider the model obtained from 𝔐 ′ by removing from 𝑅 ′ exactly one pair (𝑤 ′ 1 , 𝑤 ′ 2) where 𝑤 ′ 1 is a world of 𝑅 ′ (𝑤 ′) =2 . Formally, we are interested in a model

If the game was played on (𝔐, 𝑤) and (𝔐 ′ , 𝑤 ′) w.r.t. (𝑚, 𝑠, P) then it is clear that the duplicator would have a winning strategy. Indeed, both (𝔐, 𝑤) and (𝔐 ′ , 𝑤 ′) satisfy I, II and III. Moreover,

}. These properties allow us to apply (A) and conclude that (𝔐, 𝑤) ≈ P 𝑚,𝑠 (𝔐 ′ , 𝑤 ′). In particular, in this game, if the spoiler picks (𝔐, 𝑤) and chooses 𝔐 1 = (𝑊 , 𝑅 1 , 𝑉) and 𝔐 2 = (𝑊 , 𝑅 2 , 𝑉) such that 𝔐 1 +𝔐 2 = 𝔐, then the duplicator can apply the strategy described in (A) in order to construct two structures 𝔐

). Notice that these properties, which we later refer to with († †): are exactly (zero), (one) and (two) in the proof of (A).

Let us see how to use these pieces of information to derive a strategy for the duplicator in the original game ((𝔐, 𝑤), (𝔐 ′ , 𝑤 ′), (𝑚, 𝑠, P)). As the spoiler chooses (𝔐, 𝑤), it selects 𝔐 1 and 𝔐 2 such that 𝔐 1 + 𝔐 2 = 𝔐. Consider the two structures 𝔐 ′ 1 = (𝑊 ′ , 𝑅 ′ 1 , 𝑉 ′) and 𝔐 ′ 2 = (𝑊 ′ , 𝑅 ′ 2 , 𝑉 ′) choosen by the duplicator following the strategy, discussed above, for the game ((𝔐, 𝑤), (𝔐 ′ , 𝑤 ′), (𝑚, 𝑠, P)) in the case when the spoiler chooses (𝔐, 𝑤) and again selects 𝔐 1 and 𝔐 2 . In particular these structures satisfy († †). Moreover, the two forests 𝔐 ′ 1 and 𝔐 ′ 2 are such that 𝔐) is in the other relation, the world 𝑤 ′ 1 effectively behaves like if it was a member of the set 𝑅 ′ (𝑤 ′) =1 instead of 𝑅 ′ (𝑤 ′) =2 , exactly as in the case of 𝑅 ′ . In particular, it is easy to see that for 𝑖 ∈ {1, 2}:). Moreover, 𝔐 1 , 𝔐 2 , 𝔐 ′ 1 and 𝔐 ′ 2 all satisfy I, II and III (as they are submodels of 𝔐 or 𝔐 ′), we can apply (A) and conclude that (𝔐 1 , 𝑤) ≈ P 𝑚,𝑠 -1 (𝔐 ′ 1 , 𝑤 ′) and (𝔐 2 , 𝑤) ≈ P 𝑚,𝑠 -1 (𝔐 ′ 2 , 𝑤 ′). Therefore, the play we just described leads to a winning strategy for the duplicator on the game ((𝔐, 𝑤), (𝔐 ′ , 𝑤 ′), (𝑚, 𝑠, P)), under the hypothesis that the spoiler chooses (𝔐, 𝑤). The spoiler picks (𝔐 ′ , 𝑤 ′). Then, the spoiler chooses the structure such that |𝑅 ′ (𝑤 ′) =1 | = 1 and the duplicator has to reply in the structure (𝔐, 𝑤) where |𝑅(𝑤) =1 | = 2. The proof is very similar to the previous case, but instead of choosing an element of 𝑅 ′ (𝑤 ′) =2 to make up for the discrepancy between |𝑅(𝑤) =1 | and |𝑅 ′ (𝑤 ′) =1 |, the duplicator manipulates the additional element in 𝑅(𝑤) =1 so that it becomes a member of 𝑅